JP5298388B2 - Temperature measuring method and temperature measuring apparatus using ultrasonic waves - Google Patents
Temperature measuring method and temperature measuring apparatus using ultrasonic waves Download PDFInfo
- Publication number
- JP5298388B2 JP5298388B2 JP2009065210A JP2009065210A JP5298388B2 JP 5298388 B2 JP5298388 B2 JP 5298388B2 JP 2009065210 A JP2009065210 A JP 2009065210A JP 2009065210 A JP2009065210 A JP 2009065210A JP 5298388 B2 JP5298388 B2 JP 5298388B2
- Authority
- JP
- Japan
- Prior art keywords
- time
- wave
- temperature
- ultrasonic
- propagation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
本発明は超音波を用いた非接触型の温度測定方法及び装置に関する。 The present invention relates to a non-contact type temperature measuring method and apparatus using ultrasonic waves.
従来、温度測定には熱電対、サーミスタ、アルコール温度計などが用いられている。
これらの温度測定法ではセンサが接触した部分の温度を測定するため、空間の一点の温度しか測定することができない。
空間の全領域の温度を測定するためにはセンサを多数設置しなければならず、大がかりになり、高コストになる問題があった。
そこで、例えば特開2003−130735号公報または特開2000−329623号公報に、超音波を用いて空間領域の温度を非接触で測定する方法が開示されている。
超音波を用いた温度測定では伝搬経路の平均温度を非接触で測定でき、センサ自体の熱容量を考慮する必要がないため、従来センサより比較的優れた応答性を持つ。
さらに、超音波の伝搬経路を複数変えることで、空間内に多数のセンサを配置することなく非接触で温度分布を測定できる。
Conventionally, thermocouples, thermistors, alcohol thermometers, etc. are used for temperature measurement.
In these temperature measurement methods, the temperature of the portion in contact with the sensor is measured, and therefore, only the temperature at one point in space can be measured.
In order to measure the temperature of the entire area of the space, a large number of sensors must be installed, which causes a problem that the scale becomes large and the cost is high.
Thus, for example, Japanese Patent Application Laid-Open No. 2003-130735 or Japanese Patent Application Laid-Open No. 2000-329623 discloses a method for measuring the temperature of the spatial region in a non-contact manner using ultrasonic waves.
In the temperature measurement using ultrasonic waves, the average temperature of the propagation path can be measured in a non-contact manner, and there is no need to consider the heat capacity of the sensor itself.
Further, by changing a plurality of ultrasonic propagation paths, the temperature distribution can be measured in a non-contact manner without arranging a large number of sensors in the space.
このような特徴を持つ超音波温度測定は、実開平1−107942号公報に開示されている室内、特開平6−194237号公報に開示されている車両および非特許文献1において報告されているビニールハウスなどにおける長距離空間の空調等に関する温度監視技術への適用が期待できる。 Ultrasonic temperature measurement having such characteristics is disclosed in the room disclosed in Japanese Utility Model Laid-Open No. 1-170942, the vehicle disclosed in Japanese Patent Laid-Open No. 6-194237, and the vinyl reported in Non-Patent Document 1. It can be expected to be applied to temperature monitoring technology related to air conditioning of long-distance spaces in houses.
その空中超音波を用いた温度測定方法としては、伝搬速度が温度に依存することを利用する方法が公知であり、この場合、超音波の伝搬時間を正確に求めることが必要となる。
しかし、一般的に実用されている汎用圧電型超音波センサは、その感度を高めるために狭帯域の共振器を利用することから、包絡線が矩形のパルスで駆動しても、送波信号の波形は変形してしまう。
その送波信号は十分な振幅レベルに達するまで波数が必要であり、受波した第一波を特定することが困難である。
広帯域のスピーカやマイクロフォンも市販されているが、これらは高価または大型といった課題がある。
また、仮に包絡線が矩形の超音波を送波できたとしても、周波数に依存する高い伝搬減衰の影響から、超音波の伝搬過程において波形が変形してしまう。
その対策として、受波した第一波ではなく、受波基準時刻を設定することが必要となる。
基準時刻の設定方法としては、従来、電圧閾値に対応する時刻を利用する方法が広く用いられている。
しかし、実際は、例えば気流の影響や湿度変化などの要因により超音波信号の振幅が変動または変形すると、正確な受波時刻の決定が困難となる。
閾値を用いた方法は一般的にS/Nが悪く、高精度な計測は困難である。
閾値を用いる方法の改善策として、時間情報と位相情報を組み合わせる方法が、例えば特開平6−194237号公報に開示されている。
しかし、この方法は原理的には時間情報を超音波の周期以下の誤差で決定する必要があり、従来の閾値を用いた時刻測定法では、特にS/Nが低い環境において十分な精度が得られない場合が多い。
時間情報を超音波の周期以下の誤差で決定できない場合には、例えば特開平6−194237号公報に開示されているように測定前後の位相変化量が一周期を超えたかを判別して補正することで対応可能であるが、常に位相を測定する必要があるうえ、突発的に大きく温度が変化すると対応が困難である。
他の手法として、例えば非特許文献3において振幅および位相変調信号により形成した超音波波形の振幅ゼロとなる位相変調点を用いる手法、または非特許文献2にあるような包絡線ピーク時刻を用いる手法が提案されている。
しかし、前者は、振幅ゼロ付近を用いるためS/Nが悪く、後者は、汎用センサより送波された超音波は波形の立ち上がりおよび減衰が緩やかであり包絡線がなだらかであるため、ピーク時刻の検出が容易ではない。
また、受波信号と参照波との相関をとる方法に基づいた技術を導入することも考えられる。
しかし、一般的に長い時間の波形が必要であり、直接到達波と障害物からの反射波が干渉するマルチパスの影響や計算処理が複雑といった問題がある。
As a temperature measurement method using the aerial ultrasonic wave, a method using the fact that the propagation speed depends on temperature is known, and in this case, it is necessary to accurately determine the propagation time of the ultrasonic wave.
However, since general-purpose piezoelectric ultrasonic sensors that are generally used use a narrow-band resonator to increase the sensitivity, even if the envelope is driven by a rectangular pulse, The waveform is deformed.
The transmitted signal needs a wave number until it reaches a sufficient amplitude level, and it is difficult to identify the received first wave.
Broadband speakers and microphones are also commercially available, but they have a problem of being expensive or large.
Even if an ultrasonic wave having a rectangular envelope can be transmitted, the waveform is deformed in the propagation process of the ultrasonic wave due to the influence of high propagation attenuation depending on the frequency.
As a countermeasure, it is necessary to set the reception reference time instead of the received first wave.
As a reference time setting method, a method of using a time corresponding to a voltage threshold has been widely used.
However, in practice, for example, if the amplitude of the ultrasonic signal fluctuates or deforms due to factors such as the influence of airflow or changes in humidity, it is difficult to accurately determine the reception time.
A method using a threshold generally has a poor S / N, and it is difficult to measure with high accuracy.
As a measure for improving the method using a threshold, a method of combining time information and phase information is disclosed in, for example, Japanese Patent Laid-Open No. 6-194237.
However, this method, in principle, requires time information to be determined with an error that is less than or equal to the period of the ultrasound, and the conventional time measurement method that uses a threshold value provides sufficient accuracy, particularly in environments with low S / N. Often not.
If the time information cannot be determined with an error equal to or less than the period of the ultrasonic wave, for example, as disclosed in Japanese Patent Laid-Open No. 6-194237, it is determined and corrected whether the phase change amount before and after the measurement exceeds one period. However, it is necessary to always measure the phase, and it is difficult to respond if the temperature changes suddenly.
As another method, for example, a method using a phase modulation point at which the amplitude of an ultrasonic waveform formed by an amplitude and phase modulation signal in Non-Patent Document 3 becomes zero, or a method using an envelope peak time as in Non-Patent Document 2 Has been proposed.
However, since the former uses a value near zero amplitude, the S / N is poor, and in the latter, the ultrasonic wave transmitted from the general-purpose sensor has a gentle rise and decay of the waveform and a gentle envelope. It is not easy to detect.
It is also conceivable to introduce a technique based on a method for obtaining a correlation between a received signal and a reference wave.
However, in general, a waveform of a long time is required, and there are problems such as the influence of multipath in which a direct arrival wave and a reflected wave from an obstacle interfere with each other, and calculation processing is complicated.
本発明は、上記背景技術に鑑みて、振幅変動の影響を受けにくく、かつ実用的に超音波受波時刻を測定可能にすることで安定した測定が可能な温度測定方法及び温度測定装置の提供を目的とする。 In view of the above-described background art, the present invention provides a temperature measurement method and a temperature measurement apparatus that are not easily affected by amplitude fluctuations and that enable stable measurement by making ultrasonic wave reception time practical. With the goal.
本発明に係る超音波を用いた温度測定方法は、送波器から送波された超音波を、送波器と同一又は異なる受波器で受波し、測定対象となる領域を伝搬する伝搬時間を測定することで超音波の伝搬速度を算出し、当該領域の温度を測定する方法であって、受波側の包絡線ピーク点を受波時刻の基準点に設定し、所定時間正位相波を送信した後に、振幅および波数が制御された逆位相波を送信することで、受波時刻の検出精度を向上させ、温度測定の精度を向上させたことを特徴とする。
ここで、正位相波の駆動信号の振幅よりも、逆位相波の駆動信号の振幅の方が大きく、また正位相波の駆動信号の波数よりも、逆位相波の駆動信号の波数の方が少ない点にも特徴を有する。
また、受波した包絡線ピーク時刻を基準としてその直後のゼロクロス点の時刻を検出することで受波時刻の検出精度を向上させてもよい。
In the temperature measurement method using ultrasonic waves according to the present invention, the ultrasonic waves transmitted from the transmitter are received by a receiver that is the same as or different from the transmitter, and the propagation propagates through the region to be measured. This is a method of measuring the propagation speed of ultrasonic waves by measuring time and measuring the temperature of the region, setting the envelope peak point on the receiving side as the reference point of the receiving time, and positive phase for a predetermined time After transmitting a wave, an anti-phase wave whose amplitude and wave number are controlled is transmitted, thereby improving the detection accuracy of the reception time and improving the accuracy of temperature measurement.
Here, the amplitude of the driving signal of the antiphase wave is larger than the amplitude of the driving signal of the antiphase wave, and the wave number of the driving signal of the antiphase wave is larger than the wave number of the driving signal of the positive phase wave. It is also characterized by a few points.
Further, the detection accuracy of the received time may be improved by detecting the time of the zero cross point immediately after the received envelope peak time as a reference.
本発明に係る超音波を用いた温度測定装置は、超音波を送波する送波器と、当該送波器と同一又は異なる受波器を備え、測定対象となる領域を伝搬する伝搬時間を測定することで超音波の伝搬速度を算出し、当該領域の温度を測定できる温度測定装置であって、所定時間正位相波を送信した後に振幅および波数を任意に制御可能な逆位相波を送信するための送信制御手段と、包絡線ピーク時刻検出手段とを有することを特徴とする。
ここで、包絡線ピーク時刻検出手段を用いて、当該包絡線ピーク時刻の直後のゼロクロス点の時刻を検出するゼロクロス時刻検出手段を有していてもよい。
A temperature measuring device using ultrasonic waves according to the present invention includes a transmitter that transmits ultrasonic waves and a receiver that is the same as or different from the transmitter, and has a propagation time for propagating in a region to be measured. This is a temperature measurement device that can measure the propagation speed of ultrasonic waves by measuring and measure the temperature of the region, and transmits an antiphase wave whose amplitude and wave number can be controlled arbitrarily after transmitting a positive phase wave for a predetermined time. Transmission control means for performing the operation and envelope peak time detection means.
Here, it may have a zero cross time detecting means for detecting the time of the zero cross point immediately after the envelope peak time using the envelope peak time detecting means.
次に本発明の測定原理について説明する。
例えば発振器から発振した駆動信号を汎用の送波器に印加して信号を送波すると図1(a)に示すような超音波波形になる。
図1(a)示す超音波波形に対して逆位相の信号(図1(b))を加えることで、図1(a)のピーク付近から始まる残留振動を抑制でき、包絡線のピーク点を強調させる(図1(c))ことが可能である。
これにより、包絡線ピーク点を明確にでき、超音波受波時刻の基準点を高精度に検出できる。
特に、より少ない測定点数またはより狭い波形測定範囲での時刻検出を可能とする。
さらに図1(d)に示すように、包絡線ピーク時刻(同図中○)の整数倍周期後(図1(d)の例では0周期後)のゼロクロス点の時刻を検出することで、より高精度な計測が可能となる。
これは、どのゼロクロス点に着目するかを決める長いものさしをピーク時刻により正確に決定でき、最終的な短いものさしは振幅変動の影響を受けない位相レベルの計測で求めることができるためである。
Next, the measurement principle of the present invention will be described.
For example, when a drive signal oscillated from an oscillator is applied to a general-purpose transmitter and the signal is transmitted, an ultrasonic waveform as shown in FIG.
By adding an antiphase signal (FIG. 1 (b)) to the ultrasonic waveform shown in FIG. 1 (a), residual vibration starting from the vicinity of the peak in FIG. 1 (a) can be suppressed, and the peak point of the envelope is set. It is possible to emphasize (FIG. 1 (c)).
Thereby, the envelope peak point can be clarified, and the reference point of the ultrasonic wave reception time can be detected with high accuracy.
In particular, it is possible to detect the time with a smaller number of measurement points or a narrower waveform measurement range.
Further, as shown in FIG. 1 (d), by detecting the time of the zero cross point after an integer multiple cycle of the envelope peak time (circle in the figure) (after 0 cycle in the example of FIG. 1 (d)), More accurate measurement is possible.
This is because a long ruler that determines which zero-cross point to focus on can be accurately determined based on the peak time, and a final short ruler can be obtained by measurement of a phase level that is not affected by amplitude fluctuation.
以上の信号処理手順の一形態を示したブロック図を図2に示す。
はじめに包絡線導出手段11にて超音波受波波形の包絡線を求め、包絡線ピーク時刻検出手段12にてそのピーク時刻を求める。
次に、位相検出手段13にて求めたゼロクロス点とピーク時刻との時間差を最終時間差決定手段14にて求め、その時間差が最小となるゼロクロス点またはその整数倍周期後のゼロクロス点を受波時刻とする。
さらに、一定の基準温度において校正した送受波信号間の時間差に、温度が基準値から変化したときの受波時刻の変化量を加えることで、最終的な送受波信号間の時間差Tを最終時間差決定手段14にて決定できる。
この時間差Tと既知の超音波伝搬距離Lを用いて、次式により伝搬速度cを求める。
式(1)により求めた伝搬速度をchとし、式(3)に代入することで、温度tを算出する。
FIG. 2 is a block diagram showing an embodiment of the above signal processing procedure.
First, an envelope of the ultrasonic wave reception waveform is obtained by the envelope derivation means 11, and the peak time is obtained by the envelope peak time detection means 12.
Next, the time difference between the zero cross point obtained by the phase detection means 13 and the peak time is obtained by the final time difference determination means 14, and the zero cross point at which the time difference becomes the minimum or the zero cross point after the integer multiple cycle is received time. And
Furthermore, the time difference T between the final transmission and reception signals is added to the final time difference by adding the amount of change in reception time when the temperature changes from the reference value to the time difference between the transmission and reception signals calibrated at a fixed reference temperature. It can be determined by the determination means 14.
Using this time difference T and a known ultrasonic propagation distance L, a propagation velocity c is obtained by the following equation.
The propagation speed obtained by the equation (1) and c h, by substituting the equation (3), calculates the temperature t.
逆位相信号を用いたことで超音波信号の残留振動を抑制し、包絡線ピーク点を明確にすることで、受波時刻を高精度に検出できる。
特に、より少ない測定点数またはより狭い波形測定範囲での時刻検出が可能である。
さらに位相情報と組み合わせることで、振幅変動の影響をほとんど受けない、より高精度な温度計測システムとなる。
また、逆位相信号の導入により包絡線ピーク位置を早い時刻に形成できるうえピーク付近が鋭いことから比較的マルチパスに強い実用的なシステムとなる。
By using the reverse phase signal, the residual vibration of the ultrasonic signal is suppressed, and the envelope peak point is clarified, so that the reception time can be detected with high accuracy.
In particular, time detection can be performed with a smaller number of measurement points or a narrower waveform measurement range.
Furthermore, by combining with phase information, a more accurate temperature measurement system that is hardly affected by amplitude fluctuations can be obtained.
In addition, by introducing an antiphase signal, the envelope peak position can be formed at an early time, and since the vicinity of the peak is sharp, it becomes a practical system that is relatively resistant to multipath.
なお、超音波分野において2つの駆動信号により他方の残留振動を打ち消す概念は、例えば非特許文献4にあるような水中用の超音波センサに関する検討がほとんどであり、その目的も制動信号により残留振動をきれいに打ち消すことで超音波パルス幅の特性を改善する点にある。
空中用のセンサへの応用例は、例えば特開2007−85867号公報に開示されている。
しかし、この例も上記目的と同様である。
一方、本発明は、超音波が受波した特徴的な基準時刻を形成することで正確に超音波伝搬時間を決定しようとするものであり、この点において上記手法とは異なり、そのために逆位相信号の振幅を大きく変化させるなどの特徴を有している。
通常、逆位相信号の振幅を大きくすると過制動となるためそのような概念は考え難いが、本発明の目的達成のためには有効な手法となる。
このようにピーク点を鋭くすることで、時刻検出の精度の向上およびマルチパスの影響の低減を目的としている。
さらに本発明はこのようにして求めた時刻と位相情報とを組み合わせることでより一層時刻検出精度を向上させ、高精度に空間温度を測定することに特徴を有するものであり、従来技術とは目的と手法が異なるものである。
In the field of ultrasonics, the concept of canceling the other residual vibration by two drive signals is mostly studied for an underwater ultrasonic sensor as described in Non-Patent Document 4, for example, and the purpose of the residual vibration is also determined by a braking signal. It is in the point that the characteristic of the ultrasonic pulse width is improved by canceling out cleanly.
An application example to an aerial sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-85867.
However, this example is similar to the above purpose.
On the other hand, the present invention is intended to accurately determine the ultrasonic propagation time by forming a characteristic reference time when the ultrasonic wave is received. It has features such as greatly changing the amplitude of the signal.
Usually, when the amplitude of the antiphase signal is increased, overbraking occurs, so such a concept is difficult to consider, but it is an effective technique for achieving the object of the present invention.
By sharpening the peak point in this way, the object is to improve the accuracy of time detection and reduce the influence of multipath.
Further, the present invention is characterized in that the time detection accuracy is further improved by combining the time thus obtained and the phase information, and the spatial temperature is measured with high accuracy. And the method is different.
従来は熱電対、サーミスタ、アルコール温度計などにより測定空間の一部の温度を測定していたが、本発明システムにより送受波一組の超音波センサにより空間の平均温度を非接触で計測することが可能となる。
あるいは、複数のセンサを測定空間内に配置するといった大掛かりな設備を導入することなく非接触で温度計測が可能となる。
さらに、超音波はセンサ自体の熱容量を考慮する必要がないため従来センサより比較的優れた応答性を有した温度計測が可能となる。
Conventionally, the temperature of a part of the measurement space was measured with a thermocouple, thermistor, alcohol thermometer, etc., but the system of the present invention measures the average temperature of the space in a non-contact manner with a pair of ultrasonic sensors. Is possible.
Alternatively, temperature measurement can be performed in a non-contact manner without introducing a large facility such as arranging a plurality of sensors in the measurement space.
Furthermore, since the ultrasonic wave does not need to consider the heat capacity of the sensor itself, it is possible to perform temperature measurement with relatively better response than the conventional sensor.
特定領域の空間温度を非接触で測定できるという特徴から、長距離空間の温度計測への応用が期待できる。
空気中の超音波は周波数に依存した伝搬減衰が大きいため、長距離を対象とした温度計測では十分なS/Nを得ることが困難であるが、本発明システムを利用することで、低いS/Nの環境下においても高精度な温度計測が可能となる。
このような特徴により、10m前後を対象とした長距離の空間平均温度を非接触で測定可能となる。
Because it can measure the space temperature in a specific area without contact, it can be expected to be applied to temperature measurement in long-distance space.
Since ultrasonic propagation in the air has a large propagation attenuation depending on the frequency, it is difficult to obtain a sufficient S / N in temperature measurement for long distances. However, by using the system of the present invention, low S High-precision temperature measurement is possible even in an / N environment.
With such a feature, it is possible to measure a long-distance spatial average temperature about 10 m without contact.
また、室内における壁面反射を利用した室内環境の温度監視および温度制御技術への適用も期待できる。
超音波の反射波を用いた計測は伝搬距離が透過法の2倍と長くなるため、高いS/Nを有するシステムが要求されるが、本発明システムを利用することでこれを実現できる。
さらに複数の壁面からの反射波を用いれば、少数の超音波センサにより室内の各領域の温度を非接触で測定できる可能性も有している。
In addition, it can be expected to be applied to indoor environment temperature monitoring and temperature control technology using wall reflection in the room.
The measurement using the reflected wave of the ultrasonic wave requires a system having a high S / N because the propagation distance is twice as long as that of the transmission method, but this can be realized by using the system of the present invention.
Furthermore, if reflected waves from a plurality of wall surfaces are used, there is a possibility that the temperature of each region in the room can be measured in a non-contact manner with a small number of ultrasonic sensors.
また、上記温度計測の際に超音波伝搬経路付近に障害物がある場合でも、本システムを用いることで、障害物からの反射波の影響を受けにくく、実用上での制約を低減できる。
以上のような本発明により、多様な応用が可能であり、省エネルギーや快適空間を支援することが期待できる。
Further, even when there is an obstacle in the vicinity of the ultrasonic wave propagation path during the temperature measurement, by using this system, it is difficult to be affected by the reflected wave from the obstacle, and practical restrictions can be reduced.
With the present invention as described above, various applications are possible, and it can be expected to support energy saving and comfortable space.
図2の構成に基づいた温度測定装置の一実施例を示すシステム構成図を図3に示す。
発振器21から発振した駆動信号を増幅器22にて増幅した後、送波器23に印加することで、空気中に超音波を送波させ、空気中を距離Lだけ伝搬した超音波を受波器24で受波する。
送波器を駆動する信号とその受波波形の一例を図4(a)および(b)にそれぞれ示す。
同図における最初の正位相信号は、発生する超音波信号をある程度立ち上がらせ、適切な振幅レベルを得るための信号である。
次の逆位相の信号は、上記原理に基づき、図5(a)の信号で駆動したときの従来の受波波形[図5(b)]のピーク付近以降の残留振動を抑制させ、包絡線のピーク点を明確にするための信号である。
図4(a)におけるv1とv2の振幅比をk=v2/v1とし、逆位相信号の波数をn、正位相信号に対する逆位相信号の遅延時間tdとする。
振幅比kと波数nを変化させ(td=20Tperiod(Tperiodは超音波の周期))、包絡線の鋭さの指標として受波波形の包絡線の3dB幅を求めた結果を図6のグラフに示す。
同グラフより、振幅比k=1とした場合はn=10程度で十分であった。
また、k=1、n=10よりも、kを大きくしたほうが3dB幅を短くでき、効果的であることがわかった。
さらに、k=2ではn=4、k=5ではn=3、k=10および20ではn=2程度の少ない波数で十分であることが明らかになった。
消費電力量と同グラフの結果を考慮するとkを10以上に大きくすることは効率的ではない。
以上より、k=1〜10の範囲でnを必要最小限としたうえで、精度や消費電力量など目的に応じて設定すればよい。
一例として、k=10、n=2の受波波形例は図4(b)に示す通りであり、図5(b)の従来波形に比べてピーク点が鋭くかつ明確であることがわかる。
包絡線の変局点の変化量が大きいことからピーク点を高精度に検出できる。
また、パルス幅が短いことから波形解析範囲も従来に比べて狭くてよいため、少数点数での測定やマルチパスの影響を受けにくいといった特徴を有する。
遅延時関tdについては、これを短くすることでピーク点を早い時刻で形成し、直接到達波と障害物による反射波との識別を容易にするように構成してもよい。
受波器24で受波したアナログ信号を増幅器25にて増幅した後、A/D変換器26にてA/D変換することでディジタル信号に変換する。
この信号をメモリ手段27にてメモリに書き込んだ後、演算装置により包絡線の導出およびゼロクロス点を検出する。
包絡線の導出は、例えば受波信号の搬送波のピークを求めた後、その近似曲線を求めることで行う。
その後、包絡線ピーク値に対応する受波時刻を算出し、必要に応じてその時刻の整数倍周期後のゼロクロス点を求め、これを受波時刻とすることで高精度に超音波伝搬時間を算出する。
受波時刻を式(1)に代入して求めた伝搬速度cを式(2)に代入することで温度tを算出し、表示する。
湿度が大きく変動する環境下では、湿度センサ31を配置し、測定した湿度をメモリ手段29に記憶させ、この値と超音波より求めた温度から湿度の補正係数CFhを求め、これを式(3)に代入することで温度tを求めてもよい。
なお、符号28は演算装置で30は表示装置である。
FIG. 3 shows a system configuration diagram showing an embodiment of a temperature measuring device based on the configuration of FIG.
The drive signal oscillated from the oscillator 21 is amplified by the amplifier 22 and then applied to the transmitter 23 to transmit the ultrasonic wave in the air, and the ultrasonic wave propagated in the air by the distance L is received by the receiver. Receive at 24.
An example of a signal for driving the transmitter and its received waveform is shown in FIGS. 4 (a) and 4 (b), respectively.
The first positive phase signal in the figure is a signal for raising the generated ultrasonic signal to some extent and obtaining an appropriate amplitude level.
Based on the above principle, the next anti-phase signal suppresses the residual vibration after the vicinity of the peak of the conventional received waveform [FIG. 5B] when driven by the signal of FIG. This is a signal for clarifying the peak point.
In FIG. 4A, the amplitude ratio of v 1 and v 2 is k = v 2 / v 1 , the wave number of the anti-phase signal is n, and the delay time t d of the anti-phase signal with respect to the positive phase signal.
The amplitude ratio k and the wave number n are changed (t d = 20T period (T period is the period of the ultrasonic wave)), and the result of obtaining the 3 dB width of the envelope of the received waveform as an index of the sharpness of the envelope is shown in FIG. Shown in the graph.
From the graph, when the amplitude ratio k = 1, n = 10 is sufficient.
In addition, it was found that increasing 3 k can shorten the 3 dB width and is more effective than k = 1 and n = 10.
Further, it was found that a wave number as small as n = 4 is sufficient for k = 2, n = 3 for k = 5, and n = 2 for k = 10 and 20.
Considering the power consumption and the result of the graph, it is not efficient to increase k to 10 or more.
From the above, after setting n to the minimum necessary in the range of k = 1 to 10, it may be set according to purposes such as accuracy and power consumption.
As an example, a received waveform example of k = 10 and n = 2 is as shown in FIG. 4B, and it can be seen that the peak point is sharper and clearer than the conventional waveform of FIG. 5B.
Since the amount of change in the inflection point of the envelope is large, the peak point can be detected with high accuracy.
In addition, since the pulse width is short, the waveform analysis range may be narrower than in the prior art.
The delay time of about t d, which form a peak point in time earlier by a shorter, may be configured to facilitate the identification of the reflected wave by directly reaching wave and the obstacle.
The analog signal received by the receiver 24 is amplified by the amplifier 25 and then A / D converted by the A / D converter 26 to be converted into a digital signal.
After this signal is written in the memory by the memory means 27, the derivation of the envelope and the zero cross point are detected by the arithmetic unit.
The envelope is derived by, for example, obtaining the approximate curve after obtaining the carrier peak of the received signal.
After that, the reception time corresponding to the envelope peak value is calculated, and if necessary, the zero cross point after an integer multiple of that time is obtained, and this is used as the reception time to accurately calculate the ultrasonic propagation time. calculate.
The temperature t is calculated and displayed by substituting the propagation speed c obtained by substituting the received time into the equation (1) into the equation (2).
In an environment where humidity varies greatly, the humidity sensor 31 is disposed, was measured humidity stored in the memory unit 29, obtains a correction factor CF h of humidity from the temperature determined from this value and the ultrasound, which formula ( The temperature t may be obtained by substituting in 3).
Reference numeral 28 denotes an arithmetic device, and 30 denotes a display device.
本発明は以下のような構成例もとり得る。
超音波の送受波は送波と受波のセンサを対向に配置する透過法、または送波と受波用センサを分離して配置する送受分離型反射法、または送波と受波用センサを同一で送受波する送受兼用型反射法でもよい。
超音波センサは送受波センサ一組として単一の受波波形に着目してもよいし、送波または受波用センサを複数とし、複数の超音波受波信号の情報を利用してもよい。
伝搬経路を複数とした場合、コンピュータ断層撮影(Computer Tomography: CT)の再構成アルゴリズムを利用して温度分布画像を再構成してもよい。
The present invention can also take the following configuration examples.
Ultrasound transmission / reception can be performed by transmission method in which transmission and reception sensors are arranged oppositely, transmission / reception separation type reflection method in which transmission and reception sensors are arranged separately, or transmission and reception sensors. The transmission / reception combined reflection method for transmitting and receiving the same wave may be used.
The ultrasonic sensor may focus on a single received waveform as a set of transmitting / receiving sensors, or may use a plurality of transmitting / receiving sensors and use information of a plurality of ultrasonic receiving signals. .
When there are a plurality of propagation paths, the temperature distribution image may be reconstructed by using a computer tomography (CT) reconstruction algorithm.
超音波の伝搬媒質は主として空気を対象としているが、気体に限らず液体または固体でもよい。
超音波の周波数は空気中で利用する場合、40kHzの周波数帯が最もよく用いられており、この周波数帯において本発明を利用することが最も効果的である。
しかし、原理的には、直流に近い低周波数から実用上の上限と考えられる10MHz程度までが対象となり得る。
固体または液体においては、10MHz以上の超音波も利用可能である。
The ultrasonic propagation medium mainly targets air, but is not limited to gas but may be liquid or solid.
When the ultrasonic frequency is used in the air, the frequency band of 40 kHz is most often used, and it is most effective to use the present invention in this frequency band.
However, in principle, a low frequency close to a direct current to about 10 MHz considered as a practical upper limit can be targeted.
In solid or liquid, ultrasonic waves of 10 MHz or higher can also be used.
本システムは主として温度測定を対象としているが、本質的には超音波の伝搬時間測定法に特徴を有するものであり、温度のみではなく、気流、距離または湿度の測定にも適用可能であると考えられる。
例えば、超音波の送受波方向が異なる2組の送受波系を並列に配置し、それぞれの受波信号の伝搬時間の情報を利用することで、気流と温度の同時計測が可能となる。
Although this system is mainly intended for temperature measurement, it is essentially characterized by the ultrasonic propagation time measurement method, and is applicable not only to temperature but also to measurement of airflow, distance, or humidity. Conceivable.
For example, two sets of transmission / reception systems with different ultrasonic wave transmission / reception directions are arranged in parallel, and information on the propagation time of each reception signal is used, thereby enabling simultaneous measurement of airflow and temperature.
本発明は、室内における壁面反射を利用した温度監視、車両内空調用温度監視およびビニールハウスにおける長距離空間の温度監視など様々な環境における応用が可能となる。
特に車両内の温度計測ではセンサと壁面などの物体が近接している状況が多いと考えられ、このような状況下でより一層効果を発揮できると考えられる。
また、車両内空調では従来センサによる測定温度が一部の温度情報であることや、応答性の悪さが懸念される場合があるが、本発明により優れた応答性で空間温度を測定可能となる。
また、超音波センサの配置やセンサ数を変えることで、複数の領域の温度測定ができ、温度分布計測も可能となり、省エネルギーや快適空間を支援し得るシステムとなる。
ボイラー内の温度分布計測への応用化も考えられる。
さらに利用する周波数を低周波に選定すれば大型の屋内競技場やホール等の空調への応用も期待できる。
超音波を利用した風速計や屋内位置認識技術への応用展開も可能となる。
INDUSTRIAL APPLICABILITY The present invention can be applied in various environments such as temperature monitoring using wall reflection in a room, temperature monitoring for air conditioning in a vehicle, and temperature monitoring of a long distance space in a greenhouse.
In particular, in temperature measurement in a vehicle, it is considered that there are many situations in which an object such as a wall and a sensor are close to each other, and it is considered that the effect can be further exhibited under such a situation.
Further, in the air conditioning in a vehicle, there is a concern that the temperature measured by a conventional sensor is a part of temperature information or poor responsiveness, but the present invention makes it possible to measure the space temperature with excellent responsiveness. .
Further, by changing the arrangement of the ultrasonic sensors and the number of sensors, it is possible to measure the temperature in a plurality of regions and to measure the temperature distribution, thereby providing a system that can support energy saving and comfortable space.
Application to temperature distribution measurement in boilers is also conceivable.
Furthermore, if the frequency to be used is selected as a low frequency, it can be expected to be applied to air conditioning in large indoor stadiums and halls.
Application to ultrasonic anemometers and indoor position recognition technology is also possible.
Claims (6)
測定対象となる領域を伝搬する伝搬時間を測定することで超音波の伝搬速度を算出し、当該領域の温度を測定する方法であって、
受波側の包絡線ピーク点を受波時刻の基準点に設定し、所定時間正位相波を送信した後に、振幅および波数が制御された逆位相波を送信することで、受波時刻の検出精度を向上させ、温度測定の精度を向上させたことを特徴とする超音波を用いた温度測定方法。 The ultrasonic wave transmitted from the transmitter is received by the same or different receiver as the transmitter,
A method of calculating the propagation speed of ultrasonic waves by measuring the propagation time of propagation through the region to be measured, and measuring the temperature of the region,
Detection of the reception time by setting the envelope peak point on the reception side as the reference point of reception time, transmitting a positive phase wave for a predetermined time, and then transmitting an anti-phase wave with controlled amplitude and wave number A temperature measurement method using ultrasonic waves, characterized by improving accuracy and improving temperature measurement accuracy.
測定対象となる領域を伝搬する伝搬時間を測定することで超音波の伝搬速度を算出し、当該領域の温度を測定できる温度測定装置であって、
所定時間正位相波を送信した後に、振幅および波数を任意に制御可能な逆位相波を送信するための送信制御手段と、包絡線ピーク時刻検出手段とを有することを特徴とする超音波を用いた温度測定装置。 A transmitter that transmits ultrasonic waves, and a receiver that is the same as or different from the transmitter,
A temperature measurement device capable of calculating the propagation speed of ultrasonic waves by measuring the propagation time of propagation through the region to be measured, and measuring the temperature of the region,
After transmitting a normal phase wave for a predetermined time, an ultrasonic wave characterized by having a transmission control means for transmitting an antiphase wave whose amplitude and wave number can be controlled arbitrarily and an envelope peak time detection means A temperature measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009065210A JP5298388B2 (en) | 2009-03-17 | 2009-03-17 | Temperature measuring method and temperature measuring apparatus using ultrasonic waves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009065210A JP5298388B2 (en) | 2009-03-17 | 2009-03-17 | Temperature measuring method and temperature measuring apparatus using ultrasonic waves |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010217046A JP2010217046A (en) | 2010-09-30 |
JP5298388B2 true JP5298388B2 (en) | 2013-09-25 |
Family
ID=42976046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009065210A Expired - Fee Related JP5298388B2 (en) | 2009-03-17 | 2009-03-17 | Temperature measuring method and temperature measuring apparatus using ultrasonic waves |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5298388B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5939837B2 (en) * | 2012-03-01 | 2016-06-22 | 本田技研工業株式会社 | Distance measuring method and distance measuring system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003090770A (en) * | 2001-09-20 | 2003-03-28 | Babcock Hitachi Kk | Sound-wave type gas temperature measuring apparatus and method therefor |
-
2009
- 2009-03-17 JP JP2009065210A patent/JP5298388B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010217046A (en) | 2010-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107576371B (en) | A kind of Ultrasonic Liquid Level Measurement and ultrasonic wave liquid level measuring apparatus | |
JP2007500348A (en) | Distance measuring method and apparatus using ultrasonic waves | |
Ghahramani et al. | Measuring air speed with a low-power MEMS ultrasonic anemometer via adaptive phase tracking | |
Tsai et al. | High accuracy ultrasonic air temperature measurement using multi-frequency continuous wave | |
US20210003436A1 (en) | Time-of-flight generating circuit and chip, flow meter and method of the same | |
JP5321106B2 (en) | Ultrasonic measuring instrument | |
KR101238387B1 (en) | Towing tank using ultrasonic measurement of ice thickness measurement system and method | |
JP5442215B2 (en) | Ultrasonic distance measurement system | |
JP2015530576A (en) | Noise robust propagation time estimation for acoustic pyrometry | |
WO2016046569A1 (en) | Acoustic thermometry | |
CN104605890A (en) | Shear wave crest value waveform correction method, device and system and application thereof | |
JP7021019B2 (en) | Detection system, detection device, and detection method | |
JP2007187506A (en) | Ultrasonic flowmeter | |
US20210231507A1 (en) | Measuring apparatus, and measuring method | |
JP5298388B2 (en) | Temperature measuring method and temperature measuring apparatus using ultrasonic waves | |
CN103336052B (en) | A kind of indoor relative humidity on-line monitoring system and humidity computing method | |
JP4826392B2 (en) | Object identification device | |
JP2006300854A (en) | Piping plate thickness measuring device | |
JP2017142172A (en) | Ultrasonic receiver | |
Huang et al. | Accurate ultrasonic range measurement using MLS-modulated continuous waves | |
Huang et al. | Temperature measurement system based on ultrasonic phase-shift method | |
JP4904099B2 (en) | Pulse signal propagation time measurement device and ultrasonic flow measurement device | |
JP2012058186A (en) | Ultrasonic flowmeter | |
JP4704536B2 (en) | Liquid level measuring device in pipe and liquid level measuring method | |
Asami et al. | Possibility of an embedded system for ultrasound-based measurement of the distances to two target objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120316 Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130418 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |