JP2008122102A - Ultrasonic type meter device - Google Patents

Ultrasonic type meter device Download PDF

Info

Publication number
JP2008122102A
JP2008122102A JP2006303144A JP2006303144A JP2008122102A JP 2008122102 A JP2008122102 A JP 2008122102A JP 2006303144 A JP2006303144 A JP 2006303144A JP 2006303144 A JP2006303144 A JP 2006303144A JP 2008122102 A JP2008122102 A JP 2008122102A
Authority
JP
Japan
Prior art keywords
temperature
ultrasonic
deriving
propagation time
meter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006303144A
Other languages
Japanese (ja)
Inventor
Yoshinori Ozawa
由規 小澤
Hisao Onishi
久男 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2006303144A priority Critical patent/JP2008122102A/en
Publication of JP2008122102A publication Critical patent/JP2008122102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of simplification and cost reduction, and quick and accurate derivation of a flow velocity value, in an ultrasonic type meter device for measuring a propagation time of an ultrasonic wave in a fluid such as a gas flowing along a measuring channel, and deriving the flow velocity value relative to the flow velocity such as the flow velocity or the flow rate of the fluid from the propagation time. <P>SOLUTION: The ultrasonic type meter device 1 includes a temperature deriving means 27 for deriving the temperature of a transmitter/receiver 6, a heater 33 as a temperature adjusting means for adjusting the temperature of the transmitter/receiver 6, and a temperature setting means 32 for setting the temperature of the transmitter/receiver 6 within a setting temperature range by controlling the heater 33 based on a derivation result by the temperature deriving means 27. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置に関する。   The present invention relates to an ultrasonic meter device that measures the propagation time of an ultrasonic wave in a fluid such as a gas flowing in a measurement flow path and derives a flow velocity value related to the flow velocity such as a flow velocity and a flow rate of the fluid from the propagation time.

従来、この種の超音波式メータ装置は、流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、その一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、その伝播時間計測手段の計測結果に基づいて上記流速値を導出する流速値演算手段とを備えて構成されている(例えば、特許文献1を参照。)。   Conventionally, this type of ultrasonic meter device has been installed with a pair of ultrasonic transmitters / receivers capable of transmitting and receiving ultrasonic waves to and from the upstream and downstream sides of a measurement channel through which a fluid flows. Based on the measurement result of the propagation time measuring means for receiving the ultrasonic wave transmitted from one side of the transmitter on the other side and measuring the propagation time of the ultrasonic wave between the pair of ultrasonic transceivers And a flow velocity value calculating means for deriving the flow velocity value (see, for example, Patent Document 1).

具体的に、伝播時間計測手段は、流体の流れ方向に沿った順方向で超音波が一対の超音波送受信器間を伝播する順方向伝播時間t1と、その順方向とは逆の逆方向で超音波が一対の超音波送受信器間を伝播する逆方向伝播時間t2とを計測する。このように計測した順方向伝播時間t1と逆方向伝播時間t2とは、測定流路における超音波送受信器間の対向方向に沿った流体の瞬時流速をv’とし、測定流路における流体中の音速をCとし、超音波送受信器間の距離をLとしたときに、次式に示すようになる。
t1=L/(C+v’)
t2=L/(C−v’)
Specifically, the propagation time measuring means includes a forward propagation time t1 in which the ultrasonic wave propagates between the pair of ultrasonic transceivers in the forward direction along the fluid flow direction, and a reverse direction opposite to the forward direction. A backward propagation time t2 in which the ultrasonic wave propagates between the pair of ultrasonic transceivers is measured. The forward propagation time t1 and the backward propagation time t2 measured in this way are the instantaneous flow velocity of the fluid along the opposing direction between the ultrasonic transmitters and receivers in the measurement channel, and v ′, When the speed of sound is C and the distance between the ultrasonic transceivers is L, the following equation is obtained.
t1 = L / (C + v ′)
t2 = L / (Cv ′)

そして、上記流速v’は、音速Cに関係なく、次式で求めることができる。
v’=L・(1/t1−1/t2)/2
The flow velocity v ′ can be obtained by the following equation regardless of the sound velocity C.
v ′ = L · (1 / t1-1 / t2) / 2

よって、流速値演算手段は、上式により求められる流速v’を用いて、測定流路における流体の流速、又は、その流速に測定流路の流路断面積を乗じて求められる流量を、流速値として導出することができる。   Therefore, the flow velocity value calculation means uses the flow velocity v ′ obtained by the above equation to calculate the flow velocity of the fluid in the measurement channel, or the flow rate obtained by multiplying the flow velocity by the channel cross-sectional area of the measurement channel. It can be derived as a value.

また、従来の超音波式メータ装置では、超音波を受信した超音波送受信器の受信信号は、設定電圧を最大とするものに増幅しても、振幅が次第に増大した後に減衰するような波形を有するので、その受信信号が受信された直後の時点は振幅が非常に小さく、その受信時点を正確に認識することは困難である。尚、本願において、受信信号の波形とは、受信信号全体の最大電圧に対する各波の最大電圧の比率を示す。
そこで、上記伝搬時間計測手段は、超音波送受信器の超音波の受信時点を、受信信号の振幅が正確に認識可能な程度に大きくなった時点を基準として判定する形態で、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成されている。
例えば、上記伝搬時間計測手段は、受信信号が基準電圧に到達した時点の直後に受信信号がゼロレベルとなった時点(以下、「ゼロクロス点」と呼ぶ。)を求める。このように求めたゼロクロス点は、受信信号の波形が一定であると仮定すると、受信時点から特定番目の波(以下、「ターゲット波」と呼ぶ。)のゼロクロス点と一致することから、受信時点からゼロクロス点までの遅れ時間が、受信信号の周期の一定倍の値として予め認識可能となる。
よって、上記伝搬時間計測手段は、上記のように求めたゼロクロス点から上記遅れ時間分前の時点を、上記受信時点として正確に判定することができる。
Further, in the conventional ultrasonic meter device, the received signal of the ultrasonic transmitter / receiver that has received the ultrasonic wave has a waveform that attenuates after the amplitude gradually increases, even if it is amplified to the maximum set voltage. Therefore, the time immediately after the reception signal is received has a very small amplitude, and it is difficult to accurately recognize the reception time. In the present application, the waveform of the received signal indicates the ratio of the maximum voltage of each wave to the maximum voltage of the entire received signal.
Therefore, the propagation time measuring means determines the ultrasonic wave reception time of the ultrasonic wave transmitter / receiver with reference to the time point when the amplitude of the received signal becomes large enough to be accurately recognized. The received signal and the reference voltage are compared for determination.
For example, the propagation time measuring means obtains a time point (hereinafter referred to as “zero cross point”) when the received signal becomes zero level immediately after the received signal reaches the reference voltage. Assuming that the waveform of the received signal is constant, the zero cross point obtained in this way coincides with the zero cross point of the specific wave from the reception time point (hereinafter referred to as “target wave”). The delay time from to the zero cross point can be recognized in advance as a value that is a fixed multiple of the period of the received signal.
Therefore, the propagation time measuring means can accurately determine the time point before the delay time from the zero cross point obtained as described above as the reception time point.

しかし、受信信号の波形が変化すると、例えば、基準電圧を超える受信信号の波が上記ターゲット波ではなく、その前後の波となってしまい、上記受信時点を正確に判定できなくなる場合がある。
そこで、従来の超音波式メータ装置では、基準電圧を変化させながら、逐次、一対の超音波送受信器間の超音波の伝搬時間や、受信信号が基準電圧に到達した時点からゼロクロス点までの時間差を求めることで、その伝搬時間や時間差の変化状態から、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出するという最適基準電圧検出処理を実行する。
そして、基準電圧を上記最適基準電圧検出処理で検出した最適なものに設定して計測した超音波の伝搬時間から、流速値を導出するように構成されている。
そして、この種の超音波式メータ装置では、上記受信信号が変化した場合でも、上記最適基準電圧検出処理を実行することにより、ターゲット波のゼロクロス点を検知するための最適な基準電圧を検出して、正確な流速値を導出することができる。
However, when the waveform of the received signal changes, for example, the wave of the received signal exceeding the reference voltage is not the target wave but the waves before and after the target wave, and the reception time may not be accurately determined.
Therefore, in the conventional ultrasonic meter device, while changing the reference voltage, the propagation time of the ultrasonic wave between the pair of ultrasonic transmitters / receivers and the time difference from the time when the received signal reaches the reference voltage to the zero cross point are sequentially changed. Thus, the optimum reference voltage detection process for detecting the optimum reference voltage for detecting the zero-cross point of the target wave is executed from the propagation time and the change state of the time difference.
The flow velocity value is derived from the propagation time of the ultrasonic wave measured by setting the reference voltage to the optimum one detected by the optimum reference voltage detection process.
In this type of ultrasonic meter device, even when the received signal changes, the optimum reference voltage for detecting the zero-cross point of the target wave is detected by executing the optimum reference voltage detection process. Thus, an accurate flow velocity value can be derived.

特開2003−106882号公報JP 2003-106882 A

しかしながら、上記特許文献1に記載の超音波式メータ装置では、上述したように最適基準電圧検出処理を実行する必要があるので、装置構成の煩雑化及び高コスト化を招き、更には、流速値を導出するまでの時間が長くなるという問題があった。
上述のように、流速値を導出するまでの時間が長くなると、当該時間が経過する間に流体の流速が大幅に変化する場合があり、上記最適基準電圧検出処理で検出した基準電圧が、次に流速値を導出するために最適なものではなくなって、正確な流速値を導出できなくなるという問題がある。
However, in the ultrasonic meter device described in Patent Document 1, since it is necessary to execute the optimum reference voltage detection process as described above, the device configuration becomes complicated and the cost is increased. There was a problem that it took a long time to derive.
As described above, if the time until the flow velocity value is derived becomes long, the flow velocity of the fluid may change significantly while the time elapses, and the reference voltage detected in the optimum reference voltage detection process is However, it is not optimal for deriving the flow velocity value, and there is a problem that an accurate flow velocity value cannot be derived.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置において、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出することができる技術を提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to measure the propagation time of an ultrasonic wave in a fluid such as a gas flowing through a measurement flow path, and to determine the flow velocity and flow rate of the fluid from the propagation time. In the ultrasonic meter device for deriving a flow velocity value related to the flow velocity, it is possible to simplify and reduce the cost, and to provide a technique capable of deriving the flow velocity value quickly and accurately.

上記目的を達成するための本発明に係る超音波式メータ装置は、流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備え、前記伝播時間計測手段が、前記超音波送受信器の超音波の受信時点を、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成された超音波式メータ装置であって、その第1特徴構成は、前記超音波送受信器の温度を導出する温度導出手段と、前記超音波送受信器の温度を調整する温度調整手段と、前記温度導出手段による導出結果に基づいて前記温度調整手段を制御して、前記超音波送受信器の温度を設定温度範囲内に設定する温度設定手段を備えた点にある。   In order to achieve the above object, an ultrasonic meter device according to the present invention is provided with a pair of ultrasonic transmitters / receivers capable of transmitting / receiving ultrasonic waves to / from an upstream side and a downstream side of a measurement channel through which a fluid flows, Propagation time measuring means for receiving ultrasonic waves transmitted from one side of the pair of ultrasonic transceivers on the other side and measuring ultrasonic propagation time between the pair of ultrasonic transceivers, and the propagation time A flow velocity value calculating means for deriving a flow velocity value related to the flow velocity of the fluid flowing through the measurement flow path based on the measurement result of the measurement means, and the propagation time measuring means determines the reception time of the ultrasonic waves of the ultrasonic transceiver. An ultrasonic meter device configured to make a determination by comparing a received signal of the ultrasonic transceiver and a reference voltage, the first characteristic configuration is a temperature for deriving the temperature of the ultrasonic transceiver Deriving means and the supersonic sound Temperature adjusting means for adjusting the temperature of the transceiver, and temperature setting means for controlling the temperature adjusting means based on a result derived by the temperature deriving means to set the temperature of the ultrasonic transceiver within a set temperature range. It is in the point prepared.

上記第1特徴構成によれば、上記温度導出手段と上記温度調整手段と上記温度設定手段とを備えるという比較的簡単な構成により、所定の基準電圧を予め定めておいた場合において、逐次、基準電圧を背景技術の欄で説明したような最適基準電圧検出処理で検出する必要なしに、受信信号の受信時点を正確に特定し、正確な伝播時間を得ることで正確な流速値を得ることができる。
すなわち、超音波送受信器の温度を、設定温度範囲内に設定することで、超音波送受信器の温度が変化することによる超音波送受信器の受信信号の波形の変化を防止できる。この様な比較的簡単な構成を採用することにより、基準電圧を所定の値にして正確な流速値を導出できる理由は、受信信号の波形の変化要因が、主として温度に支配されることを本願の発明者が見出して、超音波送受信器の温度を所定の設定温度範囲内にしたことによる。よって、基準電圧を所定の値としても、受信時点を正確に特定できるとともに、正確な伝播時間を得ることで正確な流速値を導出することができる。
According to the first characteristic configuration, when a predetermined reference voltage is determined in advance by a relatively simple configuration including the temperature deriving unit, the temperature adjusting unit, and the temperature setting unit, the reference is sequentially performed. Accurate flow velocity value can be obtained by accurately identifying the reception time of the received signal and obtaining the correct propagation time without the need to detect the voltage by the optimum reference voltage detection processing as described in the background art section. it can.
That is, by setting the temperature of the ultrasonic transceiver within the set temperature range, it is possible to prevent a change in the waveform of the received signal of the ultrasonic transceiver due to a change in the temperature of the ultrasonic transceiver. By adopting such a relatively simple configuration, the reason why an accurate flow velocity value can be derived by setting the reference voltage to a predetermined value is that the change factor of the waveform of the received signal is mainly governed by temperature. The inventors found out that the temperature of the ultrasonic transmitter / receiver was set within a predetermined set temperature range. Therefore, even when the reference voltage is set to a predetermined value, the reception time point can be accurately specified, and an accurate flow velocity value can be derived by obtaining an accurate propagation time.

本発明に係る超音波式メータ装置の第2特徴構成は、上記第1特徴構成に加えて、前記温度調整手段として、前記超音波送受信器を加熱可能なヒータを備え、前記温度設定手段が、前記温度導出手段により導出された前記超音波送受信器の温度が設定温度範囲を下回る場合に、前記ヒータを作動させる点にある。   A second characteristic configuration of the ultrasonic meter device according to the present invention includes, in addition to the first characteristic configuration, a heater capable of heating the ultrasonic transceiver as the temperature adjusting unit, and the temperature setting unit includes: The heater is operated when the temperature of the ultrasonic transmitter / receiver derived by the temperature deriving means falls below a set temperature range.

超音波送受信器の温度が設定温度範囲を下回る低温状態において、低温状態にある超音波送受信器の受信信号の波形は、設定温度範囲における超音波送受信器の受信信号の波形と比較して変化する。そこで、上記第2特徴構成によれば、超音波送受信器の温度がヒータの加熱によって設定温度範囲内に維持されるので、受信信号の波形の変化を防止して、所定のターゲット波を用いてゼロクロス点を導き、正確な流速値を導出することができる。   When the temperature of the ultrasonic transmitter / receiver is lower than the set temperature range, the waveform of the received signal of the ultrasonic transmitter / receiver in the low temperature state changes compared to the waveform of the received signal of the ultrasonic transmitter / receiver in the set temperature range. . Therefore, according to the second feature configuration, since the temperature of the ultrasonic transmitter / receiver is maintained within the set temperature range by the heating of the heater, the change of the waveform of the received signal is prevented, and a predetermined target wave is used. A zero-cross point can be derived and an accurate flow velocity value can be derived.

本発明に係る超音波式メータ装置の第3特徴構成は、上記第2特徴構成に加えて、前記温度設定手段が、前記超音波送受信器の温度を設定温度範囲の下限値に設定する点にある。   A third characteristic configuration of the ultrasonic meter device according to the present invention is that, in addition to the second characteristic configuration, the temperature setting means sets the temperature of the ultrasonic transceiver to a lower limit value of a set temperature range. is there.

上記第3特徴構成によれば、温度設定手段が、超音波送受信器の温度が設定温度範囲を下回る低温状態において、超音波送受信器の温度を設定温度範囲の下限値に設定することで、低温状態から設定温度範囲内へのヒータによる温度調整幅や加熱時間を短くできることにより、加熱に必要なエネルギーを節減することができる。   According to the third characteristic configuration, the temperature setting means sets the temperature of the ultrasonic transmitter / receiver to the lower limit value of the set temperature range in a low temperature state where the temperature of the ultrasonic transmitter / receiver falls below the set temperature range. By reducing the temperature adjustment range and heating time by the heater from the state to the set temperature range, the energy required for heating can be reduced.

本発明に係る超音波式メータ装置の第4特徴構成は、上記第1〜3の何れか一つの特徴構成に加えて、前記超音波送受信器の受信信号のピーク電圧を計測するピーク電圧計測手段を備え、前記温度導出手段が、前記ピーク電圧計測手段で計測したピーク電圧に基づいて前記超音波送受信器の温度を導出する点にある。   A fourth characteristic configuration of the ultrasonic meter device according to the present invention includes, in addition to any one of the first to third characteristic configurations, a peak voltage measuring unit that measures a peak voltage of a reception signal of the ultrasonic transceiver. And the temperature deriving means derives the temperature of the ultrasonic transceiver based on the peak voltage measured by the peak voltage measuring means.

上記第4特徴構成によれば、超音波送受信器の温度が低いほど、受信信号のピーク電圧(増幅前の受信信号全体の最大電圧)が小さくなることを利用して、上記温度導出手段により、上記ピーク電圧計測手段で計測した超音波送受信器の受信信号のピーク電圧が小さいほど超音波送受信器の温度が低いと判定する形態で、そのピーク電圧に基づいて超音波送受信器の温度を容易に導出することができる。   According to the fourth characteristic configuration, the lower the temperature of the ultrasonic transceiver, the smaller the peak voltage of the received signal (the maximum voltage of the entire received signal before amplification) becomes smaller. The temperature of the ultrasonic transmitter / receiver is easily determined based on the peak voltage in such a form that the temperature of the ultrasonic transmitter / receiver is lower as the peak voltage of the received signal of the ultrasonic transmitter / receiver measured by the peak voltage measuring means is smaller. Can be derived.

本発明に係る超音波式メータ装置の第5特徴構成は、上記第1〜3の何れか一つの特徴構成に加えて、前記伝播時間計測手段の計測結果に基づいて前記測定流路における音速を導出する音速演算手段を備え、前記温度導出手段が、前記音速演算手段で導出した音速に基づいて前記超音波送受信器の温度を導出する点にある。   The fifth characteristic configuration of the ultrasonic meter device according to the present invention is the sound characteristic in the measurement flow path based on the measurement result of the propagation time measuring means in addition to any one of the first to third characteristic configurations. There is a sonic speed calculating means for deriving, and the temperature deriving means derives the temperature of the ultrasonic transceiver based on the sound speed derived by the sonic speed calculating means.

上記伝播時間計測手段により、流体の流れ方向に沿った順方向で超音波が一対の超音波送受信器間を伝播する順方向伝播時間と、その順方向とは逆の逆方向で超音波が一対の超音波送受信器間を伝播する逆方向伝播時間とを計測すれば、伝搬時間から音速を求めることができる。
更に、測定流路における音速は、測定流路における温度の関数で表せられるので、その音速を求めれば、測定流路における温度を求めることができ、その温度を超音波送受信器の温度とすることができる。なお、超音波送受信器は測定流路内に設置されているので、超音波送受信器の温度は測定流路における温度若しくはそれに近い温度になる。
即ち、上記第5特徴構成によれば、上記音速演算手段により伝播時間計測手段の計測結果に基づいて測定流路における音速を導出し、上記温度導出手段により、当該音速に基づいて超音波送受信器の温度を容易に導出することができる。
By the propagation time measuring means, a forward propagation time in which the ultrasonic wave propagates between the pair of ultrasonic transmitters / receivers in the forward direction along the fluid flow direction, and a pair of ultrasonic waves in a direction opposite to the forward direction. The velocity of sound can be obtained from the propagation time by measuring the backward propagation time propagating between the ultrasonic transceivers.
Furthermore, since the speed of sound in the measurement channel is expressed as a function of the temperature in the measurement channel, the temperature in the measurement channel can be obtained by obtaining the speed of sound, and that temperature is the temperature of the ultrasonic transceiver. Can do. Since the ultrasonic transmitter / receiver is installed in the measurement channel, the temperature of the ultrasonic transmitter / receiver becomes the temperature in the measurement channel or a temperature close thereto.
That is, according to the fifth characteristic configuration, the sound speed calculation means derives the sound speed in the measurement channel based on the measurement result of the propagation time measurement means, and the temperature deriving means uses the ultrasonic wave transceiver based on the sound speed. The temperature can be easily derived.

本発明に係る超音波式メータ装置の第6特徴構成は、上記第1〜5の何れか一つの特徴構成に加えて、前記超音波送受信器の受信信号を、設定電圧を最大とするものに増幅させる増幅手段を備えた点にある。   The sixth characteristic configuration of the ultrasonic meter device according to the present invention is such that, in addition to any one of the first to fifth characteristic configurations, the received signal of the ultrasonic transmitter / receiver maximizes a set voltage. It is in the point provided with the amplification means to amplify.

上記第6特徴構成によれば、超音波送受信器の受信信号が全体的に弱い場合、言い換えれば超音波送受信器の受信信号の電圧が全体的に小さい場合でも、当該受信信号を上記増幅手段により増幅させることで、増幅後の受信信号の全体的な強さをある程度安定させることができる。よって、超音波送受信器における超音波の受信時点を、増幅された受信信号と基準電圧との比較により、より正確に判定することができる。   According to the sixth characteristic configuration, when the reception signal of the ultrasonic transceiver is weak overall, in other words, even when the voltage of the reception signal of the ultrasonic transceiver is small overall, the reception signal is By amplifying, the overall strength of the received signal after amplification can be stabilized to some extent. Therefore, it is possible to more accurately determine the reception time of the ultrasonic wave in the ultrasonic transceiver by comparing the amplified reception signal with the reference voltage.

本発明に係る超音波式メータ装置の第7特徴構成は、上記第1〜5の何れか一つの特徴構成に加えて、前記超音波送受信器の受信信号のピーク電圧に対する所定比率の電圧に、前記基準電圧を設定する基準電圧設定手段を備える点にある。   The seventh characteristic configuration of the ultrasonic meter device according to the present invention includes, in addition to any one of the first to fifth characteristic configurations, a voltage having a predetermined ratio with respect to a peak voltage of a reception signal of the ultrasonic transceiver. A reference voltage setting means for setting the reference voltage is provided.

即ち、上記第7特徴構成によれば、超音波送受信器の受信信号の強度が全体的に変動する場合でも、基準電圧を当該受信信号のピーク電圧に対する所定比率の電圧に設定することで、受信信号の全体的な強度に対する基準電圧の相対的な高さをある程度安定させることができる。よって、超音波送受信器における超音波の受信時点を、受信信号と基準電圧との比較により、より正確に判定することができる。   That is, according to the seventh characteristic configuration, even when the intensity of the reception signal of the ultrasonic transceiver fluctuates as a whole, the reference voltage is set to a voltage having a predetermined ratio with respect to the peak voltage of the reception signal. The relative height of the reference voltage with respect to the overall strength of the signal can be stabilized to some extent. Therefore, it is possible to more accurately determine the reception time point of the ultrasonic wave in the ultrasonic transceiver by comparing the received signal with the reference voltage.

本発明に係る超音波式メータ装置の実施の形態について、図面に基づいて説明する。
図1は、本実施形態の超音波式メータ装置(以下、「本装置」と略称する。)1により測定流路2を流れるガスg(流体の一例)の流速や流量等の当該流速に関する流速値の導出を実施している状態における本装置の側断面図である。
尚、図1において、測定流路2でのガスgの流れ方向は、左から右に向かう方向とされている。
An embodiment of an ultrasonic meter device according to the present invention will be described with reference to the drawings.
FIG. 1 shows a flow velocity relating to a flow rate such as a flow rate or a flow rate of a gas g (an example of a fluid) flowing through a measurement channel 2 by an ultrasonic meter device (hereinafter referred to as “this device”) 1 according to the present embodiment. It is side sectional drawing of this apparatus in the state which has implemented derivation | leading-out of the value.
In FIG. 1, the flow direction of the gas g in the measurement channel 2 is a direction from left to right.

先ず、本装置の基本構成について説明する。
本装置は、図1及び図2に示すように、上記測定流路2を上流側と下流側との間で斜めに横断する方向の両端部に配置されて相互に当該横断方向に沿って超音波を送受信可能な一対の超音波送受信器(以下、「送受信器」と略称する。)6と、その一対の送受信器6により計測した測定流路2における超音波の伝搬状態により測定流路2を流通するガスgの流速値を導出するように構成された制御装置50を備える。また、本装置は、測定流路2の上流側に、比較的大きな上流側空間3を備え、ガスgはその上流側空間3を介して測定流路2に流入する。
First, the basic configuration of this apparatus will be described.
As shown in FIG. 1 and FIG. 2, this apparatus is disposed at both ends of the measurement flow channel 2 in a direction that obliquely crosses between the upstream side and the downstream side, and is superordinate to each other along the transverse direction. The measurement channel 2 is determined by a pair of ultrasonic transmitters / receivers (hereinafter abbreviated as “transmitter / receiver”) 6 capable of transmitting and receiving sound waves and the propagation state of ultrasonic waves in the measurement channel 2 measured by the pair of transmitters / receivers 6. The control apparatus 50 comprised so that the flow velocity value of the gas g which distribute | circulates was derived | led-out was provided. Further, the present apparatus includes a relatively large upstream space 3 on the upstream side of the measurement flow path 2, and the gas g flows into the measurement flow path 2 through the upstream space 3.

測定流路2の上流側に設置された送受信器6aと、測定流路2の下流側に設置された送受信器6bとは、距離Lを隔てた位置に互いに対向して設置され、それら一対の送受信器6の対向方向と測定流路2を流通するガスgの流れ方向(測定流路2の中心軸に沿った方向)とが角度θをなす。   The transmitter / receiver 6a installed on the upstream side of the measurement channel 2 and the transmitter / receiver 6b installed on the downstream side of the measurement channel 2 are installed facing each other at a position separated by a distance L. The facing direction of the transmitter / receiver 6 and the flow direction of the gas g flowing through the measurement flow path 2 (the direction along the central axis of the measurement flow path 2) form an angle θ.

また、この送受信器6は、制御装置50側から電気信号である駆動パルスが入力されると、超音波を他方の送受信器6側に向けて送信し、一方、他方の送受信器6側から送信された超音波を受信すると、電気信号である受信信号を制御装置50側に出力するように構成されている。   In addition, when a drive pulse that is an electrical signal is input from the control device 50 side, the transmitter / receiver 6 transmits an ultrasonic wave toward the other transmitter / receiver 6 side, while transmitting from the other transmitter / receiver 6 side. When the received ultrasonic wave is received, a reception signal which is an electric signal is output to the control device 50 side.

制御装置50は、メモリ等からなる記憶媒体、CPU、入出力部等を備えたマイクロコンピュータで構成され、そのコンピュータが所定のプログラムを実行することにより、後述の伝搬時間計測手段10、流速値演算手段20、基準電圧設定手段25、温度導出手段27、温度設定手段32等の様々な手段として機能する。以下、各手段の詳細構成について説明を加える。   The control device 50 is configured by a microcomputer including a storage medium including a memory, a CPU, an input / output unit, and the like, and the computer executes a predetermined program, thereby causing a propagation time measuring unit 10 and a flow velocity value calculation to be described later. It functions as various means such as means 20, reference voltage setting means 25, temperature deriving means 27, temperature setting means 32, and the like. Hereinafter, a detailed configuration of each unit will be described.

制御装置50が機能する伝播時間計測手段10は、一対の送受信器6の夫々に対する駆動パルスの送信及び受信信号の受信の状態を切り換える切換部11、上記切換部11を通じて上記送受信器6に超音波を発生させるための駆動パルスを出力する駆動部12、上記切換部11を通じて入力された送受信器6の受信信号を増幅させる増幅部13、上記増幅部13で増幅された受信信号を後述する基準電圧と比較して送受信器6の超音波の受信時点を判定する受信時点判定部14、上記受信時点判定部14の判定結果に基づいて一対の送受信器6間の超音波の伝播時間として計測する計時部15とからなる。   The propagation time measuring means 10 in which the control device 50 functions includes a switching unit 11 that switches between a transmission state of a driving pulse and a reception state of a reception signal for each of the pair of transceivers 6, and ultrasonic waves to the transceiver 6 through the switching unit 11. A driving unit 12 for outputting a driving pulse for generating a signal, an amplifying unit 13 for amplifying a received signal of the transceiver 6 inputted through the switching unit 11, and a reference voltage to be described later for the received signal amplified by the amplifying unit 13. The reception time determination unit 14 that determines the reception time of the ultrasonic waves of the transmitter / receiver 6 as compared with the time measurement that is measured as the propagation time of the ultrasonic waves between the pair of transmitters / receivers 6 based on the determination result of the reception time determination unit 14 Part 15.

上記切換部11は、一対の送受信器6のうち上流側の送受信器6aに駆動部12から入力された駆動パルスを送信すると共に、下流側の送受信器6bから受信した受信信号を増幅部13に出力する順方向伝播状態と、逆に、一対の送受信器6のうち下流側の送受信器6bに駆動部12から入力された駆動パルスを送信すると共に上流側の送受信器6aから受信した受信信号を増幅部13に出力する逆方向伝播状態とを切り換えるように構成されている。   The switching unit 11 transmits the drive pulse input from the drive unit 12 to the upstream side transmitter / receiver 6 a of the pair of transmitters / receivers 6, and receives the reception signal received from the downstream side transmitter / receiver 6 b to the amplification unit 13. In contrast to the forward propagation state to be output, conversely, the drive pulse input from the drive unit 12 is transmitted to the downstream transmitter / receiver 6b of the pair of transmitters / receivers 6, and the received signal received from the upstream transmitter / receiver 6a is transmitted. It is configured to switch the reverse propagation state output to the amplifying unit 13.

上記受信時点判定部14は、図2に示すように、増幅部13で増幅された受信信号が、後述する基準電圧設定手段25により設定された所定の基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点を求め、そのゼロクロス点から予め設定されている所定の遅れ時間分前の時点を、上記受信時点として判定するように構成されている。   As shown in FIG. 2, the reception time point determination unit 14 has a zero level immediately after the reception signal amplified by the amplification unit 13 reaches a predetermined reference voltage set by a reference voltage setting unit 25 described later. The zero cross point is determined, and a time point a predetermined delay time before the zero cross point is determined as the reception time point.

そして、上記計時部15は、タイマ28で計測される時間を参照しながら駆動部12で駆動パルスを出力した送信時点から受信時点判定部14で判定した受信時点までの時間を、一対の送受信器6間の超音波の伝播時間として計測するように構成されている。   Then, the time measuring unit 15 refers to the time from the transmission time when the driving pulse is output by the driving unit 12 to the reception time determined by the reception time determining unit 14 while referring to the time measured by the timer 28. It is configured to measure the propagation time of ultrasonic waves between the six.

そして、制御装置50は、上記切換部11を上記順方向伝搬状態と上記逆方向伝搬状態とを切り換えることで、上記計時部15において、測定流路2を流れるガスgの流れ方向に沿った順方向で超音波が一対の送受信器6間を伝播する順方向伝播時間t1と、測定流路2を流れるガスgの流れ方向に沿った上記順方向とは逆の逆方向で超音波が一対の送受信器6間を伝播する逆方向伝播時間t2とを計測するように構成されている。   Then, the control device 50 switches the switching unit 11 between the forward propagation state and the backward propagation state, so that the timer unit 15 in the forward direction along the flow direction of the gas g flowing through the measurement flow channel 2. The ultrasonic wave is transmitted in a direction opposite to the forward direction along the flow direction of the gas g flowing through the measurement flow path 2 and the forward propagation time t1 in which the ultrasonic wave propagates between the pair of transceivers 6 in the direction. It is configured to measure the backward propagation time t2 that propagates between the transceivers 6.

制御装置50が機能する流速値演算手段20は、上記伝搬時間計測手段10の計測結果に基づいて、測定流路2を流れるガスgの流速に関する流速値を導出するように構成されており、その流速値の導出方法について、以下に説明を加える。   The flow velocity value calculation means 20 in which the control device 50 functions is configured to derive a flow velocity value related to the flow velocity of the gas g flowing through the measurement flow path 2 based on the measurement result of the propagation time measurement means 10. The method for deriving the flow velocity value will be described below.

一対の送受信器6間の対向方向に沿ったガスgの瞬時流速をv’とし、測定流路2の流れ方向に沿った瞬時流速をvとし、これら対向方向と流れ方向とがなす角度をθとし、一対の送受信器6間の距離をLとし、ガスg内の音速をCとすると、上記伝搬時間計測手段10で計測される順方向伝播時間t1と逆方向伝播時間t2とは、次式に示すように表すことができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
The instantaneous flow velocity of the gas g along the facing direction between the pair of transceivers 6 is denoted by v ′, the instantaneous flow velocity along the flow direction of the measurement flow path 2 is denoted by v, and the angle between the facing direction and the flow direction is θ. Assuming that the distance between the pair of transceivers 6 is L and the sound velocity in the gas g is C, the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring means 10 are as follows: As shown in FIG.
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)

そして、これらの式から、瞬時流速vは、次式に示すように、順方向伝播時間t1、逆方向伝播時間t2、距離Lのみで求められる関数となる。
v=L・(1/t1−1/t2)/(2・cosθ)
From these equations, the instantaneous flow velocity v is a function obtained only from the forward propagation time t1, the backward propagation time t2, and the distance L as shown in the following equation.
v = L · (1 / t1-1 / t2) / (2 · cos θ)

よって、流速値演算手段20は、伝播時間計測手段10により計測された順方向伝播時間t1と逆方向伝播時間t2とから、上記の関数を用いて、測定流路2を流れるガスgの瞬時流速vを導出し、その瞬時流速v自身、又は、その瞬時流速vに測定流路2の断面積を乗じて求めた瞬時流量、又は、単位時間における瞬時流量を時間積分して求めた単位時間あたりの流量等を、上記流速値として導出する。
また、制御装置50は、このように導出した流速値を表示又は記憶したり、外部に出力することができる。
Therefore, the flow velocity value calculating means 20 uses the above function to calculate the instantaneous flow velocity of the gas g flowing through the measurement flow path 2 from the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring means 10. per unit time obtained by deriving v and calculating the instantaneous flow rate v itself, or the instantaneous flow rate v obtained by multiplying the instantaneous flow rate v by the cross-sectional area of the measurement flow path 2 or the instantaneous flow rate per unit time. Is derived as the flow velocity value.
Further, the control device 50 can display or store the flow velocity value derived in this way or output it to the outside.

次に、本装置の特徴構成について説明する。
上記増幅部13は、送受信器6の増幅後の受信信号の強さを安定させるために、切換部11を通じて入力された送受信器6の受信信号を、予め設定された設定電圧を最大とするものに増幅させる増幅手段として構成されている。
そして、超音波を受信した送受信器6の受信信号(増幅部13の出力)は、図2に示すように、振幅が次第に増大した後に減衰するような波形を有し、超音波の送受信時での送受信器6の温度の変化により、その受信信号の波形が変化するので、上記受信時点判定部14により、送受信器6の超音波の受信時点を、送受信器6の受信信号と基準電圧との比較により判定するにあたり、基準電圧を所定の値とすると、その基準電圧を越える受信信号の波が、所定のターゲット波ではなくなってしまい、結果、上記受信時点を正確に判定できなくなる場合がある。
Next, the characteristic configuration of this apparatus will be described.
The amplifying unit 13 maximizes the preset set voltage for the received signal of the transmitter / receiver 6 input through the switching unit 11 in order to stabilize the strength of the received signal after the amplifier 6 amplifies. It is comprised as an amplification means to amplify.
The received signal of the transmitter / receiver 6 that has received the ultrasonic wave (the output of the amplifying unit 13) has a waveform that attenuates after the amplitude gradually increases, as shown in FIG. Since the waveform of the received signal changes due to the temperature change of the transmitter / receiver 6, the reception time determination unit 14 determines the reception time of the ultrasonic wave of the transmitter / receiver 6 between the received signal of the transmitter / receiver 6 and the reference voltage. In determining by comparison, if the reference voltage is set to a predetermined value, the wave of the received signal exceeding the reference voltage is not the predetermined target wave, and as a result, the reception time point may not be determined accurately.

そこで、本装置は、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出するために、図1に示すように、送受信器6の温度を導出する温度導出手段27と、送受信器6の温度を調整する温度調整手段としてのヒータ33と、温度導出手段27による導出結果に基づいてヒータ33を制御して、送受信器6の温度を設定温度範囲内に設定する温度設定手段32と、を備えており、これらの詳細構成について以下に説明する。   In view of this, the present apparatus can be simplified and reduced in cost, and in order to quickly and accurately derive the flow velocity value, as shown in FIG. 1, the temperature deriving means 27 for deriving the temperature of the transceiver 6 and the transceiver A heater 33 as temperature adjusting means for adjusting the temperature of 6, and a temperature setting means 32 for setting the temperature of the transceiver 6 within a set temperature range by controlling the heater 33 based on the result derived by the temperature deriving means 27. These detailed configurations will be described below.

増幅手段としての増幅部13に入力された、送受信器6における増幅前の受信信号のピーク電圧を計測する上記ピーク電圧計測手段26を備え、上記温度導出手段27は、上記ピーク電圧計測手段26により計測されたピーク電圧に基づいて、送受信器6の温度を導出するように構成されている。   The peak voltage measuring means 26 for measuring the peak voltage of the received signal before amplification in the transceiver 6 input to the amplifying unit 13 as the amplifying means is provided. The temperature deriving means 27 is provided by the peak voltage measuring means 26. Based on the measured peak voltage, the temperature of the transmitter / receiver 6 is derived.

即ち、送受信器6の温度が低いほど上記ピーク電圧が低下することを利用し、その送受信器6の温度と、送受信器6の受信信号のピーク電圧との相関関係を予め実験等により求めておくことができる。
また、上記ピーク電圧計測手段26は、上記伝播時間計測手段10による伝搬時間の計測に先立って、一方側の送受信器6に駆動部12から入力された駆動パルスを送信して他方側の送受信器6から受信した増幅前の受信信号の最大電圧を上記ピーク電圧として計測する。
That is, by utilizing the fact that the peak voltage decreases as the temperature of the transmitter / receiver 6 decreases, the correlation between the temperature of the transmitter / receiver 6 and the peak voltage of the received signal of the transmitter / receiver 6 is obtained in advance by experiments or the like. be able to.
Prior to the measurement of the propagation time by the propagation time measurement means 10, the peak voltage measurement means 26 transmits the drive pulse input from the drive unit 12 to the transceiver 6 on one side and transmits the transmitter / receiver on the other side. The maximum voltage of the received signal received from 6 before amplification is measured as the peak voltage.

そして、上記温度導出手段27は、上記予め求めておいた送受信器6の温度と当該ピーク電圧との相関関係を参照して、上記ピーク電圧計測手段26により導出した受信信号のピーク電圧から、上記送受信器6の温度を導出することができる。   Then, the temperature deriving unit 27 refers to the correlation between the temperature of the transmitter / receiver 6 and the peak voltage obtained in advance, and uses the peak voltage of the received signal derived by the peak voltage measuring unit 26 to calculate the temperature. The temperature of the transceiver 6 can be derived.

上記温度設定手段32は、上記温度導出手段27により導出された送受信器6の温度が設定温度範囲を下回る場合には、当該温度を設定温度範囲内に設定すべく、上記ヒータ33を作動させるように構成されている。
当該構成により、送受信器6の温度が、設定温度範囲内に維持されるので受信信号の波形の変化が防止される。
よって、上記伝搬時間計測手段10の受信時点判定部14で受信信号における受信時点を判定するために使用される基準電圧が、上記基準電圧設定手段25により所定の値に適宜設定されるので、受信信号において最初に上記基準電圧を超える波が略確実に受信時点から特定番目のターゲット波となり、そのターゲット波における受信信号が基準電圧に到達した時点を基準に、ゼロクロス点及び受信時点が正確に判定され、正確な伝搬時間が計測されることになる。
When the temperature of the transceiver 6 derived by the temperature deriving unit 27 is below the set temperature range, the temperature setting unit 32 operates the heater 33 to set the temperature within the set temperature range. It is configured.
With this configuration, since the temperature of the transmitter / receiver 6 is maintained within the set temperature range, a change in the waveform of the received signal is prevented.
Therefore, the reference voltage used for determining the reception time point in the reception signal by the reception time point determination unit 14 of the propagation time measuring means 10 is appropriately set to a predetermined value by the reference voltage setting means 25. The first wave in the signal that exceeds the reference voltage is almost certainly the specific target wave from the reception time, and the zero-cross point and the reception time are accurately determined based on the time when the received signal in the target wave reaches the reference voltage. Therefore, an accurate propagation time is measured.

ここで、設定温度範囲とは、その範囲内で送受信器6の温度が変化したとしても、送受信器6における受信信号の波形が略一定であって、上記受信時点判定部14が、上記受信時点を判定する際に温度の変化による影響を略受けない温度範囲をいう。
例えば、送受信器6の温度が、20℃〜60℃の範囲内であれば、受信信号の波形が略一定で、温度による影響を略受けないことから当該温度範囲を上記設定温度範囲とすることができる。
Here, the set temperature range means that even if the temperature of the transmitter / receiver 6 changes within the range, the waveform of the received signal in the transmitter / receiver 6 is substantially constant, and the reception time point determination unit 14 determines the reception time point. Is a temperature range that is substantially unaffected by changes in temperature.
For example, if the temperature of the transmitter / receiver 6 is within a range of 20 ° C. to 60 ° C., the waveform of the received signal is substantially constant and is not substantially affected by temperature, so that the temperature range is set as the set temperature range. Can do.

また、本装置において、上記ヒータ33は、上記上流側空間3に設置されているので、測定流路2内に設置された送受信器6の温度を上記設定温度範囲内にまで迅速に上昇させることができ、上記流速値を導出するまでの待ち時間を短縮することができる。   Further, in the present apparatus, since the heater 33 is installed in the upstream space 3, the temperature of the transmitter / receiver 6 installed in the measurement channel 2 can be quickly raised to the set temperature range. The waiting time until the flow velocity value is derived can be shortened.

更に、温度設定手段32は、送受信器6の温度が、上記設定温度範囲を下回っている場合に、ヒータ33を作動させ、送受信器6の温度を上記設定温度範囲の下限値(例えば20℃)に設定するように構成されている。これにより、上記流速値を導出するまでの待ち時間を短縮させつつ、温度上昇に必要なエネルギーを節減することができる。   Further, the temperature setting means 32 operates the heater 33 when the temperature of the transceiver 6 is below the set temperature range, and sets the temperature of the transmitter / receiver 6 to the lower limit value (for example, 20 ° C.) of the set temperature range. Is configured to set to Thereby, the energy required for temperature rise can be reduced while shortening the waiting time until the flow velocity value is derived.

なお、基準電圧設定手段25は、上記受信時点を正確に判定することができるように適宜、基準電圧を設定する手段である。本実施形態においては、受信信号を、増幅部13により設定電圧を最大とするものに増幅しているため、基準電圧は、上記設定電圧に対応して適宜設定することができる。   The reference voltage setting means 25 is a means for appropriately setting a reference voltage so that the reception time can be accurately determined. In the present embodiment, since the received signal is amplified by the amplifying unit 13 so as to maximize the set voltage, the reference voltage can be appropriately set corresponding to the set voltage.

次に、本装置を用いて、実際に、流速値を導出するフローを図3に基づいて説明する。   Next, a flow for actually deriving a flow velocity value using this apparatus will be described with reference to FIG.

まず、制御装置50におけるピーク電圧計測手段26が、伝播時間計測手段10による伝搬時間の計測に先立って、増幅前の受信信号の最大電圧をピーク電圧として計測する(ステップ#1)。   First, prior to the measurement of the propagation time by the propagation time measuring means 10, the peak voltage measuring means 26 in the control device 50 measures the maximum voltage of the received signal before amplification as the peak voltage (step # 1).

次に、制御装置50における温度導出手段27が、予め求めておいた送受信器6の温度とピーク電圧との相関関係を参照して、当該相関関係とピーク電圧計測手段26により計測されたピーク電圧とから送受信器6の温度を導出する(ステップ#2)。   Next, the temperature deriving means 27 in the control device 50 refers to the correlation between the temperature of the transceiver 6 and the peak voltage obtained in advance, and the correlation and the peak voltage measured by the peak voltage measuring means 26 are measured. Then, the temperature of the transceiver 6 is derived (step # 2).

そして、制御装置50における温度設定手段32が、送受信器6の温度が設定温度範囲の下限値(例えば20℃)よりも高いかどうかを確認して(ステップ#3)、当該温度が設定温度範囲の下限値よりも高い場合には、温度設定手段32がヒータ33を停止して(ステップ#4)上記流速値を導出し(ステップ#5)、送受信器6の温度が設定温度範囲の下限値よりも高くない場合には、温度設定手段32がヒータ33を作動して(ステップ#6)、再度上記ステップ#1〜#3の処理を実行する。よって、ステップ#3で送受信器6の温度を設定温度範囲の下限値よりも高いと判定されてから、上記ステップ#5で上記流速値が導出されることになる。   And the temperature setting means 32 in the control apparatus 50 confirms whether the temperature of the transmitter / receiver 6 is higher than the lower limit (for example, 20 degreeC) of a setting temperature range (step # 3), and the said temperature is a setting temperature range. If the temperature is higher than the lower limit value, the temperature setting means 32 stops the heater 33 (step # 4), derives the flow velocity value (step # 5), and the temperature of the transceiver 6 is the lower limit value of the set temperature range. If not, the temperature setting means 32 activates the heater 33 (step # 6) and executes the above steps # 1 to # 3 again. Therefore, after determining that the temperature of the transmitter / receiver 6 is higher than the lower limit value of the set temperature range in step # 3, the flow velocity value is derived in step # 5.

したがって、本装置においては、送受信器6の温度が、所定の設定温度範囲の下限値よりも高くなってから、流速値を導出するための伝播時間の計測が行われることになる。よって、基準電圧を所定の値としても、受信信号において最初に上記基準電圧を超える波が略確実に受信時点から特定番目のターゲット波となり、そのターゲット波における受信信号が基準電圧に到達した時点を基準に、ゼロクロス点及び受信時点が正確に判定され、正確な伝搬時間が計測されることになり、正確な流速値を導出することができる。   Therefore, in the present apparatus, the propagation time is measured for deriving the flow velocity value after the temperature of the transmitter / receiver 6 becomes higher than the lower limit value of the predetermined set temperature range. Therefore, even when the reference voltage is set to a predetermined value, the wave that first exceeds the reference voltage in the received signal is almost certainly the specific target wave from the reception time, and the time when the received signal in the target wave reaches the reference voltage. The zero crossing point and the reception time point are accurately determined based on the reference, the accurate propagation time is measured, and an accurate flow velocity value can be derived.

〔別実施形態〕
(1)
上記実施の形態では、上記温度導出手段27を、送受信器6の受信信号のピーク電圧に基づいて送受信器6の温度を導出するように構成したが、別に、以下のように構成することもできる。
[Another embodiment]
(1)
In the above embodiment, the temperature deriving unit 27 is configured to derive the temperature of the transmitter / receiver 6 based on the peak voltage of the received signal of the transmitter / receiver 6, but can be configured as follows. .

即ち、図4に示す本装置は、伝播時間計測手段10の計測結果に基づいて測定流路2における音速を導出する音速演算手段30を備え、制御装置51が機能する温度導出手段31は、その音速に基づいて送受信器6の温度を導出するように構成されている。なお、送受信器6は測定流路2内に設置されているので、送受信器6の温度は測定流路2における温度になるとする。
なお、図4に示す本装置の説明において、図1に示す本装置と同様の構成については、同じ符号を付すことで、説明を割愛する。
That is, this apparatus shown in FIG. 4 includes a sound speed calculation means 30 for deriving the sound speed in the measurement flow path 2 based on the measurement result of the propagation time measurement means 10, and the temperature deriving means 31 that the control device 51 functions is The temperature of the transmitter / receiver 6 is derived based on the speed of sound. Since the transmitter / receiver 6 is installed in the measurement channel 2, the temperature of the transmitter / receiver 6 is assumed to be the temperature in the measurement channel 2.
In the description of the apparatus shown in FIG. 4, the same components as those of the apparatus shown in FIG.

測定流路2における音速Cは、次式に示すように、送受信器6の温度Thの関数となるので、その音速Cを求めれば、送受信器6の温度Thを求めることができる。
C=C1+C2・Th
但し、C1,C2は定数。
Since the sound velocity C in the measurement channel 2 is a function of the temperature Th of the transmitter / receiver 6 as shown in the following equation, if the sound velocity C is determined, the temperature Th of the transmitter / receiver 6 can be determined.
C = C1 + C2 · Th
However, C1 and C2 are constants.

そして、上記音速演算手段30は、次式に示すように、例えば直前に上記伝搬時間計測手段10により計測した順方向伝播時間t1と逆方向伝播時間t2とから音速Cを導出することができる。
t1=L/(C+v’)=L/(C+v・cosθ)
t2=L/(C−v’)=L/(C−v・cosθ)
C=L・(1/t1+1/t2)/(2・cosθ)
The sound speed calculation means 30 can derive the sound speed C from, for example, the forward propagation time t1 and the reverse propagation time t2 measured immediately before by the propagation time measurement means 10 as shown in the following equation.
t1 = L / (C + v ′) = L / (C + v · cos θ)
t2 = L / (Cv ′) = L / (Cv · cos θ)
C = L · (1 / t1 + 1 / t2) / (2 · cos θ)

そして、上記温度導出手段31は、上記音速演算手段30により導出した音速Cを、その音速Cと上記送受信器6の温度Thとの関数に代入して、送受信器6の温度Thを求めることができる。   The temperature deriving means 31 substitutes the sound speed C derived by the sound speed calculating means 30 into a function of the sound speed C and the temperature Th of the transmitter / receiver 6 to obtain the temperature Th of the transmitter / receiver 6. it can.

尚、当然、温度導出手段31は、送受信器6の近傍に設置した温度センサの出力により直接送受信器6の温度を導出するように構成しても構わない。   Of course, the temperature deriving means 31 may be configured to directly derive the temperature of the transceiver 6 from the output of a temperature sensor installed in the vicinity of the transceiver 6.

(2)
上記実施の形態では、受信時点判定部14が、上記増幅部13から増幅された後の受信信号が基準電圧に到達した時点の直後にゼロレベルとなったゼロクロス点から遅れ時間分前の時点を、上記受信時点として判定するように構成したが、例えば、上記受信信号が基準電圧に到達した時点や上記ゼロクロス点自身を上記受信時点として判定するなどのように、別の形態で、受信信号を基準電圧と比較して送受信器6の超音波の受信時点を判定するように構成することもできる。
(2)
In the above embodiment, the reception time point determination unit 14 determines the time point before the delay time from the zero cross point at which the reception signal after being amplified from the amplification unit 13 reaches the zero level immediately after reaching the reference voltage. The reception signal is determined in another form, for example, when the reception signal reaches a reference voltage or when the zero cross point itself is determined as the reception time. It can also be configured to determine the reception time of the ultrasonic wave of the transmitter / receiver 6 in comparison with the reference voltage.

(3)
上記実施の形態では、送受信器6の受信信号を、設定電圧を最大とするものに増幅させる増幅部13を設けたが、特に問題がなければ、この増幅部13を、受信信号を一定割合で増幅させるものに改変したり、増幅部13を省略しても、構わない。
また、このように増幅部を改変又は省略する場合には、基準電圧設定手段が、送受信器の受信信号のピーク電圧に対して所定の比率の電圧を、基準電圧として設定することができる。
(3)
In the above embodiment, the amplification unit 13 that amplifies the reception signal of the transmitter / receiver 6 so as to maximize the set voltage is provided. It does not matter if it is modified to be amplified or the amplifying unit 13 is omitted.
When the amplification unit is modified or omitted in this way, the reference voltage setting unit can set a voltage having a predetermined ratio with respect to the peak voltage of the reception signal of the transceiver as the reference voltage.

(4)
上記実施の形態では、測定流路2を流れる流体をガスgとしたが、当然、別の流体が流れる場合でも本願発明を適用することができる。
(4)
In the above embodiment, the fluid flowing in the measurement channel 2 is the gas g, but the present invention can naturally be applied even when another fluid flows.

(5)
上記実施の形態では、温度調整手段をヒータ33によって構成したが、送受信器6を加熱することができるものであれば、特に制限なく温度調整手段として用いることができる。例えば、抵抗加熱器などが挙げられる。又、温度調整手段を、高精度の温度調整を行うために、加熱と冷却との両方を行うように構成してもよい。
(5)
In the said embodiment, although the temperature adjustment means was comprised by the heater 33, if the transmitter / receiver 6 can be heated, it can be used as a temperature adjustment means without a restriction | limiting in particular. For example, a resistance heater etc. are mentioned. Further, the temperature adjusting means may be configured to perform both heating and cooling in order to perform temperature adjustment with high accuracy.

(6)
上記実施の形態では、温度調整手段を上流側空間3に設けたが、ガスgの流れ及び超音波の送受信を阻害しなければ、設置場所は特に制限されない。
(6)
In the above embodiment, the temperature adjusting means is provided in the upstream space 3, but the installation location is not particularly limited as long as the flow of the gas g and the transmission / reception of ultrasonic waves are not hindered.

本発明に係る超音波式メータ装置は、測定流路を流れるガスなどの流体中の超音波の伝搬時間を計測し、当該伝搬時間から流体の流速や流量等の当該流速に関する流速値を導出する超音波式メータ装置であって、簡素化且つ低廉化が可能で、迅速且つ正確に流速値を導出することができるものとして有効に利用可能である。   The ultrasonic meter device according to the present invention measures the propagation time of an ultrasonic wave in a fluid such as a gas flowing through a measurement flow path, and derives a flow velocity value related to the flow velocity such as a fluid flow velocity and a flow rate from the propagation time. The ultrasonic meter device can be effectively used as a device that can be simplified and reduced in price and can quickly and accurately derive a flow velocity value.

実施形態の超音波式メータ装置の概略構成図Schematic configuration diagram of an ultrasonic meter device of an embodiment 受信信号の状態を示す図Diagram showing the state of the received signal 実施形態において流速値を導出する際のフロー図Flow chart for deriving flow velocity values in the embodiment 別実施形態の超音波式メータ装置の概略構成図Schematic configuration diagram of an ultrasonic meter device according to another embodiment

符号の説明Explanation of symbols

1:超音波式メータ装置
2:測定流路
6,6a,6b:超音波送受信器
10:伝播時間計測手段
13:増幅部(増幅手段)
14:受信時点判定部
20:流速値演算手段
25:基準電圧設定手段
26:ピーク電圧計測手段
27、31:温度導出手段
30:音速演算手段
32:温度設定手段
33:ヒータ(温度調整手段)
g:ガス(流体)
t1,t2:伝播時間
C:音速
1: Ultrasonic meter device 2: Measurement flow path 6, 6a, 6b: Ultrasonic transmitter / receiver 10: Propagation time measuring means 13: Amplifying unit (amplifying means)
14: reception time determination unit 20: flow velocity value calculating means 25: reference voltage setting means 26: peak voltage measuring means 27, 31: temperature deriving means 30: sonic speed calculating means 32: temperature setting means 33: heater (temperature adjusting means)
g: Gas (fluid)
t1, t2: propagation time C: speed of sound

Claims (7)

流体が流れる測定流路の上流側と下流側とに相互に超音波を送受信可能な一対の超音波送受信器を設置し、前記一対の超音波送受信器のうちの一方側から送信した超音波を他方側で受信して当該一対の超音波送受信器間の超音波の伝播時間を計測する伝播時間計測手段と、前記伝播時間計測手段の計測結果に基づいて前記測定流路を流れる流体の流速に関する流速値を導出する流速値演算手段とを備え、前記伝播時間計測手段が、前記超音波送受信器の超音波の受信時点を、当該超音波送受信器の受信信号と基準電圧との比較により判定するように構成された超音波式メータ装置であって、
前記超音波送受信器の温度を導出する温度導出手段と、
前記超音波送受信器の温度を調整する温度調整手段と、
前記温度導出手段による導出結果に基づいて前記温度調整手段を制御して、前記超音波送受信器の温度を設定温度範囲内に設定する温度設定手段を備えた超音波式メータ装置。
A pair of ultrasonic transceivers capable of mutually transmitting and receiving ultrasonic waves are installed on the upstream side and the downstream side of the measurement flow channel through which the fluid flows, and ultrasonic waves transmitted from one side of the pair of ultrasonic transceivers are transmitted. Propagation time measuring means for receiving on the other side and measuring the propagation time of ultrasonic waves between the pair of ultrasonic transceivers, and the flow rate of the fluid flowing through the measurement channel based on the measurement result of the propagation time measuring means A flow velocity value calculating means for deriving a flow velocity value, wherein the propagation time measuring means determines the reception time of the ultrasonic wave of the ultrasonic transceiver by comparing the received signal of the ultrasonic transceiver with a reference voltage. An ultrasonic meter device configured as follows:
Temperature deriving means for deriving the temperature of the ultrasonic transceiver;
Temperature adjusting means for adjusting the temperature of the ultrasonic transceiver;
An ultrasonic meter device comprising temperature setting means for controlling the temperature adjusting means based on a result derived by the temperature deriving means to set the temperature of the ultrasonic transceiver within a set temperature range.
前記温度調整手段として、前記超音波送受信器を加熱可能なヒータを備え、
前記温度設定手段が、前記温度導出手段により導出された前記超音波送受信器の温度が設定温度範囲を下回る場合に、前記ヒータを作動させる請求項1に記載の超音波式メータ装置。
As the temperature adjustment means, comprising a heater capable of heating the ultrasonic transceiver,
2. The ultrasonic meter device according to claim 1, wherein the temperature setting unit operates the heater when the temperature of the ultrasonic transmitter / receiver derived by the temperature deriving unit falls below a set temperature range.
前記温度設定手段が、前記超音波送受信器の温度を設定温度範囲の下限値に設定する請求項2に記載の超音波式メータ装置。   The ultrasonic meter device according to claim 2, wherein the temperature setting means sets the temperature of the ultrasonic transceiver to a lower limit value of a set temperature range. 前記超音波送受信器の受信信号のピーク電圧を計測するピーク電圧計測手段を備え、
前記温度導出手段が、前記ピーク電圧計測手段で計測したピーク電圧に基づいて前記超音波送受信器の温度を導出する請求項1〜3の何れか一項に記載の超音波式メータ装置。
Comprising a peak voltage measuring means for measuring a peak voltage of a reception signal of the ultrasonic transceiver;
The ultrasonic meter device according to any one of claims 1 to 3, wherein the temperature deriving unit derives the temperature of the ultrasonic transceiver based on a peak voltage measured by the peak voltage measuring unit.
前記伝播時間計測手段の計測結果に基づいて前記測定流路における音速を導出する音速演算手段を備え、
前記温度導出手段が、前記音速演算手段で導出した音速に基づいて前記超音波送受信器の温度を導出する請求項1〜3の何れか一項に記載の超音波式メータ装置。
A sound speed calculating means for deriving a sound speed in the measurement channel based on the measurement result of the propagation time measuring means;
The ultrasonic meter device according to any one of claims 1 to 3, wherein the temperature deriving unit derives the temperature of the ultrasonic transceiver based on the sound speed derived by the sound speed calculating unit.
前記超音波送受信器の受信信号を、設定電圧を最大とするものに増幅させる増幅手段を備えた請求項1〜5の何れか一項に記載の超音波式メータ装置。   The ultrasonic meter device according to any one of claims 1 to 5, further comprising an amplifying unit that amplifies a reception signal of the ultrasonic transceiver so as to maximize a set voltage. 前記超音波送受信器の受信信号のピーク電圧に対する所定比率の電圧に、前記基準電圧を設定する基準電圧設定手段を備える請求項1〜5の何れか一項に記載の超音波式メータ装置。   The ultrasonic meter device according to claim 1, further comprising a reference voltage setting unit that sets the reference voltage to a voltage having a predetermined ratio with respect to a peak voltage of a reception signal of the ultrasonic transceiver.
JP2006303144A 2006-11-08 2006-11-08 Ultrasonic type meter device Pending JP2008122102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303144A JP2008122102A (en) 2006-11-08 2006-11-08 Ultrasonic type meter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303144A JP2008122102A (en) 2006-11-08 2006-11-08 Ultrasonic type meter device

Publications (1)

Publication Number Publication Date
JP2008122102A true JP2008122102A (en) 2008-05-29

Family

ID=39507024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303144A Pending JP2008122102A (en) 2006-11-08 2006-11-08 Ultrasonic type meter device

Country Status (1)

Country Link
JP (1) JP2008122102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232297A (en) * 2010-04-30 2011-11-17 Kansai Electric Power Co Inc:The Ultrasonic flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232297A (en) * 2010-04-30 2011-11-17 Kansai Electric Power Co Inc:The Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
US20130167656A1 (en) Flow-rate measurement device
JP5796154B2 (en) Flow measuring device
JP2013210313A (en) Ultrasonic flowmeter
US9304022B2 (en) Flow rate measuring device
JP5173233B2 (en) Measuring device
JP2008122102A (en) Ultrasonic type meter device
JP5141613B2 (en) Ultrasonic flow meter
JP4926660B2 (en) Ultrasonic meter device
US10591330B2 (en) Flow rate measurement device
JP2005181268A (en) Ultrasonic flowmeter
US9212937B1 (en) Flow meter device
JP5097293B2 (en) Ultrasonic meter device
JP4572546B2 (en) Fluid flow measuring device
JP2000292233A (en) Flow-rate measuring apparatus
JP6101020B2 (en) Ultrasonic flow meter
JP2001317975A (en) Method and apparatus for ultrasonic flow velocity measurement
JP7203352B2 (en) ultrasonic flow meter
JP6064160B2 (en) Flow measuring device
CN109708729B (en) Automatic gain adjustment method for metering signal of ultrasonic meter and ultrasonic gas meter
JP4888464B2 (en) Flow measuring device
US9869572B2 (en) Semiconductor acoustic measurement device that determines the presence or absence of the second ultrasonic measurement
JP4059733B2 (en) Ultrasonic meter device
JP4765463B2 (en) Flow measuring device
JP4140095B2 (en) Ultrasonic current meter
WO2019049658A1 (en) Flow rate measuring device