JP5094951B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP5094951B2
JP5094951B2 JP2010271347A JP2010271347A JP5094951B2 JP 5094951 B2 JP5094951 B2 JP 5094951B2 JP 2010271347 A JP2010271347 A JP 2010271347A JP 2010271347 A JP2010271347 A JP 2010271347A JP 5094951 B2 JP5094951 B2 JP 5094951B2
Authority
JP
Japan
Prior art keywords
lens
led
liquid crystal
display device
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010271347A
Other languages
English (en)
Other versions
JP2011095759A (ja
Inventor
好文 關口
郁夫 檜山
恒典 山本
浩規 金子
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Liquid Crystal Display Co Ltd
Original Assignee
Panasonic Liquid Crystal Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Liquid Crystal Display Co Ltd filed Critical Panasonic Liquid Crystal Display Co Ltd
Priority to JP2010271347A priority Critical patent/JP5094951B2/ja
Publication of JP2011095759A publication Critical patent/JP2011095759A/ja
Application granted granted Critical
Publication of JP5094951B2 publication Critical patent/JP5094951B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

本発明は、TV,モニター等の表示装置に係り、光を均一に液晶パネルに照射する照明装置を用いた液晶表示装置に関する。
発光ダイオード(LEDと呼ぶことにする。)とレンズからなるLEDパッケージとしては、文献1及び2に開示されるものがある。
文献1の内容は、「本体を備えたレンズであって、該本体は、該本体の長さ方向に沿って延びる中心軸と、光源に結合するための第1面と、鋸歯状レンズ部であって、該鋸歯状レンズ部から発せられた光の大部分が前記本体の前記中心軸に概して垂直となるように、前記光源から発せられた光を屈折させる鋸歯状レンズ部と、該鋸歯状レンズ部に接続されたじょうご形状レンズ部であって、該じょうご形状レンズ部から発せられた光の大部分が前記本体の前記中心軸に概して垂直となるように、前記光源から発せられた光を反射させるじょうご形状レンズ部と、を備えたレンズ」に関するものである。
文献3は、LEDとレンズからなるLEDパッケージを用いた照明装置をバックライトとして用いた液晶表示装置に関連する文献である。
文献4は、冷陰極間ランプ(CCFL)バックライトにおいて、ランプとランプの間に反射板を置いて、動画性能を向上させる技術であるが、点光源である発光ダイオード(LED)に関して言及していない。
特開2003−8068号公報 特開2003−8081号公報 アール ウエスト,“ハイ ブライトネス ダイレクト エルイーディーバックライト フォー エルシーディー−ティービー”,エス・アイ・ディ03ダイジェスト,pp1262−1265(R. West,“High Brightness Direct LED Backlightfor LCD-TV”,SID03 DIGEST,pp1262−1265) ティ.シガ 他3名,“アダプティブ ダイミング テクニック ウィズ オプティカリィ アイソレイテッド ランプ グループス”,エス・アイ・ディ05ダイジェスト,pp992-pp995 (T. Shiga,“Adaptive Dimming Technique with Optically Isolated Lamp Groups”,SID05 DIGEST,pp992-pp995)
課題を説明するための図を図2に示す。LEDパッケージ2が設置されている設置面をx−y面とし、x−y面に垂直な方向をz方向と呼ぶことにする。図2は、レンズ1のx−z面に関する断面図である。レンズはz軸に関して回転対称である。LEDパッケージ2は1個のLEDとレンズ1から構成され、レンズにはじょうご形状の部位(じょうご部100と呼ぶことにする。)が存在する。LEDパッケージ2としては、配線等の図示されていない部材が存在するが、説明を簡単にするために図示していない。
文献1から3に記載の技術は、レンズ形状として、何れの場合も図2に示すようなじょうご部100を含む。じょうご部100は、全内部反射(TIR)表面としてデザインされる。このTIR表面は、光がz軸に対してできるだけ90度に近い角度でレンズ1から出射するように光を反射させる。光線RAYはLEDからの出射光を光線追跡した例である。
レンズ1を安価に作製するには射出成型を行うのが良い。しかしながら、じょうご部100が型を引き抜く際の引っ掛かりとなるために、1つの型で成型することは難しい。したがって、じょうご部とそれより下のレンズ部を別々に作製し、その後、2つを貼りあわせるか、複数の型を用いて一体成型するかの何れかとなる。何れの場合も、型を複数用いて作るために製作コストが高くなるという課題がある。また、複数の型を用いて一体成型する場合は、レンズ形状を作る精度を得ることが難しいという課題もある。
上記従来技術は、製造方法に及ぼす影響まで考慮されていないために、コストが高くなり、製造精度が低くなるという課題があった。
本発明の目的は、低コストで作製可能、且つ、光を均一に液晶パネルに照射する照明装置を用いた液晶表示装置を提供することにある。
課題を解決するために、LEDとレンズから構成されるLEDパッケージを複数個有し、前記LEDパッケージを平面状に集合させて大面積化した照明装置において、前記LEDパッケージは、少なくても4個以上のLEDを有し、且つ、少なくても赤色を発光するLEDと緑色を発光するLEDと青色を発光するLEDを有し、前記LEDパッケージ内の少なくても2個のLEDは、レンズの中心に関して対称的な位置に配置され、且つ、前記2個のLEDが同じ色であるようにしたものである。
課題を解決するために、LEDとレンズから構成されるLEDパッケージを複数個有し、前記LEDパッケージを平面状に集合させて大面積化した照明装置において、前記LEDパッケージは、少なくても赤色を発光するLEDと緑色を発光するLEDと青色を発光するLEDを有し、LEDパッケージ内のLEDの配置が異なるLEDパッケージが、少なくても2種類以上存在するようにしたものである。
課題を解決するために、一対の基板と、前記一対の基板間に挟持された液晶層と、前記液晶層に所定のタイミングで画像データに対応した電圧を印加するための信号配線及び走査配線と、前記信号配線と走査配線との交差部に接続された複数のアクティブ素子と、前記アクティブ素子により駆動される画素と、を有する液晶パネルと、前記液晶パネルに光を照射するバックライトとして、LEDとレンズから構成されるLEDパッケージを複数個有し、前記LEDパッケージを平面状に集合させて大面積化した照明装置と、を有する液晶表示装置において、液晶パネルに概ね平行な平面において、液晶パネルにおいて走査配線が延びている方向と概ね平行な方向を列方向とし、該列方向と概ね垂直な方向を行方向とした場合に、LEDパッケージを集合させているバックライトの底面を、2分割以上する複数の領域を設け、個々、または、複数個の領域毎にLEDを駆動する手段と、LEDパッケージにおいて、列方向のレンズの幅と行方向のレンズの幅が異なるレンズと、を備えるようにしたものである。
課題を解決するために、一対の基板と、前記一対の基板間に挟持された液晶層と、前記液晶層に所定のタイミングで画像データに対応した電圧を印加するための信号配線及び走査配線と、前記信号配線と走査配線との交差部に接続された複数のアクティブ素子と、前記アクティブ素子により駆動される画素と、を有する液晶パネルと、前記液晶パネルに光を照射するバックライトとして、LEDとレンズから構成されるLEDパッケージを複数個有し、前記LEDパッケージを平面状に集合させて大面積化した照明装置と、を有する液晶表示装置において、液晶パネルに平行な平面において、液晶パネルにおいて走査配線が延びている方向と概ね平行な方向を列方向とし、該列方向と概ね垂直な方向を行方向とした場合に、LEDパッケージを集合させているバックライトの底面を、2分割以上する複数の領域を設け、個々、または、複数個の領域毎にLEDを駆動する手段と、LEDパッケージにおいて、レンズの幅が方位によって異なる部分を有するレンズと、を備えるようにしたものである。
なお、本発明は、特許請求の範囲に記載された構成及び後述する実施の形態に開示される構成に限定されるもではなく。本発明の技術思想を逸脱することなく種々の変更が可能であることは言うまでもない。
低コストで、光を均一に液晶パネルに照射する効果を奏する。
本発明に係る実施例1の照明装置を説明するための図である。 本発明により解決される課題を説明するための図である。 本発明に係る実施例1の照明装置を説明するための図である。 本発明に係る実施例2の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例2の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例3の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例4の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例4の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例5の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例5の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例6の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例7の照明装置及び液晶表示装置を説明するための図である。 本発明に係る実施例7の照明装置及び液晶表示装置を説明するための図である。
以下、図面を用いて、本発明の実施例を説明する。
本発明の実施例1について説明する。図1(a)は、赤,青,緑のLED(図中において、それぞれLEDR,LEDB,LEDGと符号が付いている。)とレンズ1からなるLEDパッケージ2で、緑のLEDが2個含まれている場合を示している。中心付近に赤と青のLEDを配置し、赤と青よりも中心から遠い位置に緑のLEDは配置され、2個の緑のLEDは中心からの距離が等しく、且つ、中心を通る直線上に配置されている。つまり、前記2個のLEDは中心に関して対称的な位置に配置されている。LEDパッケージ2が設置されている設置面をx−y面とし、x−y面に垂直で、光を出射して照明を行う方向をz方向と呼ぶことにする。図1(a)は、x−z面に関する断面図である。レンズはz軸に関して回転対称である。
1個のLEDだけをLEDパッケージ内に含んで、赤の光を出射するLEDパッケージと青の光を出射するLEDパッケージと緑の光を出射するLEDパッケージを照明装置内に配置して白い光を照射する場合に比べて、赤,青,緑の3個のLEDを含むLEDパッケージを用いる場合の方がレンズの数が少ないために、材料を少なくすることができ、廃棄物を低減することが可能となる。
しかしながら、図1(b)のように、単純に赤,青,緑のLEDを1個ずつ配置した構成にすると、レンズの中心に配置したLEDから出射される光に関しては、x−y面において等方的にレンズから出射されるが、中心に配置できない2個のLEDから出射される光に関しては非等方的な出射となる。これは、レンズ形状がレンズの中心にあるLEDを点光源と考えて設計されるためである。
LEDパッケージ内のLEDの色が異なるために、レンズからの出射分布が大きく異なると、色が混色せず、色が不均一になる。特に両端に配置されるLEDに関しては、中心からのLEDの位置がずれる方向が逆となるため、出射分布の偏る方向が逆となり、色を不均一にする大きな要因となっている。この問題は、レンズに対して3個のLEDが十分に小さく、点光源と見なせるように、レンズを大きくすることで回避することが可能であるが、レンズを大きくすると、その分だけ照明装置の厚みが大きくなるという課題がある。
図1(a)に示すような構成にすることで、この課題を解決することが可能となる。2個の緑のLEDを中心に関して対称的な配置とすることで、お互いの中心からのずれによる出射光の分布の変化を補償し合うことができ、非等方的な出射分布を等方的な出射分布へと改善することが可能となる。本効果は、同じ色のLEDをレンズの中心に関して、概ね対称な配置とすることで得ることができる。つまり、厳密に対称な位置に配置しないと効果を得られないわけではない。極端に言えば、LEDとレンズの中心を結ぶ直線に垂直な直線で、x−y面を2分割した時に、当該LEDが配置されている領域と異なる領域に当該LEDと同じ色のLEDを配置することでも、補償効果は働く。
さらに、前記2つの緑のLEDを、赤と青のLEDよりも、中心からの距離が遠い位置に配置することで、出射分布を補償し合うことができない赤と青のLEDを中心に近づけることが可能となり、色を混色することが容易になる。
本実施例で緑のLEDを補償するためのLEDとした理由は、緑のLEDは電力効率が低く、十分な輝度を得るためには、他の色よりも多くのLEDが有る方が望ましいためである。
さらに、レンズの中心を赤と青のLED間の中心に置くことで、レンズの中心と赤及び青のLED間の距離を小さくすることができる。LEDを近づけられる最小の間隔をLGとした場合、レンズの中心と赤及び青のLED間の距離は、LG/2となる。図1(b)に示す場合は、レンズの中心と端のLEDとの距離は、(中心のLEDの大きさの半分の長さ)+LGとなる。
また、緑のLEDは補償することが可能ではあるけれども、レンズの中心に近い方が好ましい。最も単純な構成でレンズの中心3に全てのLEDを近づける構成を図3(a)に示す。図3(a)は、リードフレームを用いたLEDの実装例である。リードフレームを用いる場合、一列にLEDを配置するのが最も簡単な構成である。また、全てのLED間の間隔を最小間隔LGとすることで、レンズの中心3から最も遠い距離にある2つのLEDを対称な配置とし、且つ、LEDパッケージ内のLEDをレンズの中心に最も近づけることが可能な配置となっている。0.1〜0.3mm程度はLEDの位置が、等間隔な配置からずれても上述した補償効果は有効である。
また、レンズの中心にLEDを、最も近づけるという意味では、サブマウント6を用いて、サブマウント6上に配線を形成することで、図3(b)に示すような実装をすることも可能である。この場合も、レンズの中心3に関して、緑のLEDは対称な位置に配置する。
また、出射光量の大きいLEDを中央に配置して、両側に出射光量の小さいLEDを配置する構成も考えられる。または、電力効率の高いLEDを中央に配置し、電力効率の低いLEDを2個ずつ両側に配置することも考えられる。または、輝度への影響が小さい青いLEDを中央に1つ配置し、その両側に他の色のLEDを2個ずつ配置することが考えられる。図3(c)及び(d)は、LEDパッケージ内に5個のLEDを含む場合を示しており、輝度への影響が少ない青色のLEDを中央に配置し、その他のLEDを同じ色はレンズの中心に関して対称となるように配置している場合を示している。この場合は、複数のLEDを配置することで、1個のパッケージから得られる光量が大きくなるので、LEDパッケージの数を減らすことが可能となる。つまり、材料低減による廃棄物低減及び、加工コストを低くすることができる。
図3において、補償を行う色のLEDは緑とは限らないが、緑のLEDは効率が低いために、LEDパッケージに複数個含むようにし、補償を行うLEDとするのが望ましい。
また、補償を行う色以外のLEDの配置に関しては、配置と色の関係を特に規定するものではない。例えば、図3において、赤と青のLEDの位置を交換しても構わない。
図4を用いて、本発明の実施例2について説明する。図4(a)は、赤,青,緑のLED(図中において、それぞれLEDR,LEDB,LEDGと符号が付いている。)とレンズ1からなるLEDパッケージ2で、緑のLEDが2個含まれている場合を示している。中心付近に赤と青のLEDを配置し、赤と青よりも中心から遠い位置に緑のLEDは配置され、2個の緑のLEDは中心からの距離が等しく、且つ、中心を通る直線上に配置されている。
LEDパッケージ2が設置されている設置面をx−y面とし、x−y面に垂直で、光を出射して照明を行う方向をz方向と呼ぶことにする。図4(a)は、x−z面に関する断面図である。レンズはz軸に関して回転対称である。
本実施例において、図中のz軸は、LEDパッケージが設置されている設置面に垂直でレンズの中心を通る中心軸となっている。また、レンズ形状は、レンズの中心からレンズ表面までの距離を動径(MOVING RADIUS)とし、中心軸からの角度を極角(POLAR ANGLE)とした場合に、殆どの極角の範囲(概ね極角0°から80°)で、極角が大きくなるにつれて動径が大きくなるレンズ形状となっている。極角が80°以上では、動径は一定となっている。したがって、極角が大きくなるにつれて、動径が小さくなる領域がないという形状である。
図に示されるレンズは、光の出射角度が、極角45°よりも大きな角度に多くの光を出射するレンズである。図4(b)に、出射強度と出射角度の関係を示す。出射角度は中心軸からx軸方向への極角を正の角度とし、x軸の負方向を負の角度としている。横軸は、レンズからの出射角度で単位は度である。縦軸は立体角当りの光束である。出射角度45°から80°において強度が強くなっている。
実施例1では、赤,青,緑のLEDを含むLEDパッケージにおいて、LEDの配置をレンズの中心に関して対称とする構成及び、LEDをレンズ中心に集合させる構成をとることにより、レンズからの出射分布を接地面内において等方的にすることで、色の均一化を図った。
図4(a)で示されるレンズを用いることで、レンズから出射される光の大部分を面内方向(極角が大きい方向45°〜90°)に出射し、面内で均一化を図ることが可能となるので、照明装置から光が出射される前に、照明装置内で、さらなる均一化を図ることが可能となる。
図4(a)に示すレンズは、極角が大きくなるにつれて、動径が小さくなる領域がないという形状であるために、射出成型工程において、金型をレンズからz方向に剥がす際に、金型が引っかかる部分が無い(例えば、極角60°〜90°の領域で動径が徐々に小さくなると、その領域が金型を抜く際の引っかかりとなる。)。そのために複数の金型を使う必要が無く、一つの金型で成型できるために、金型の精度を高くすることが可能で、且つ、工程が簡単で早く作ることが可能となるために製造コストが安くなるとともに、製造に消費されるエネルギーを低減することが可能となる。また、製造精度の問題で、数百μm程度の誤差ができ、極角が大きくなるにつれて、動径が小さくなることもあるが、数百μm程度の凸凹のために、金型を複数にする必要はない。したがって、数百μmの誤差を無視した場合において、極角が大きくなるに従って、動径が小さくなる領域が存在しなければ、金型を複数にする必要はない。
レンズの中心に凹みが存在する理由は次の通りである。極角0°から概ねレンズを構成する物質の空気に対する臨界角θc(通常の樹脂でレンズを作る場合、38°〜46°)において、出射角度を大きくするためには、図4(a)に示すように、レンズ表面の法線(NORMAL VECTOR) を、xが正の位置にレンズ表面がある場合は、法線ベクトルのx成分が負となる方向に傾け、xが負の位置にレンズ表面がある場合は、法線ベクトルのx成分が正となる方向に傾ける。そのため、xが正の位置にあるレンズ表面の各面素は、x方向に進むにつれてz軸方向に移り、xが負の位置にあるレンズ表面の各面素は、−x方向に進むにつれてz軸方向に移るためである。つまり、各面素における接線のz軸成分が正となるためである。
前記レンズにおいて、極角が大きくなるにつれて動径が大きくなる領域に、レンズを構成する物質の空気に対する臨界角度θc(レンズの屈折率をNmとした場合、臨界角度θcは、Nm×sin(θc) =1で与えられる。)と等しい角度の極角が含まれる理由を図4(c)を用いて説明する。臨界角度付近のLEDからの出射光を面内方向(極角90°方向)にレンズにて出射するには、臨界角度方向のレンズ表面の法線方向を概ねz軸と平行にする必要がある。この場合、レンズ表面の接線のz軸成分は殆どゼロとなり、x成分が1に近い値を持つ。したがって、レンズ表面の面素が、x方向に進むにつれてx軸と概ね平行に移動し、そのために、動径が延びる。以上の理由により、臨界角度付近では、極角が大きくなるにつれて動径が大きくなる。
さらに、本実施例で上述したレンズ形状は、特に、LEDの配置のレンズ中心からのずれに敏感である。したがって、本レンズ形状においては、実施例1で説明したLED配置構成が、特に重要になる。その理由を、図5を用いて説明する。
図5に、屈折率1.5 のレンズにおいて、レンズ表面の法線に対して角度θinで光が入射したときの、空気中への出射角度θout を示す。横軸,縦軸ともに単位は度(deg) である。図を見ると分かるように、出射角度θout が60°から90°にかけて、入射角度θinが大きくなるにしたがって、急峻にθout が大きくなっている。つまり、これは微分値dθout /dθinが大きくなっていることを意味し、出射角度が60°よりも大きくなる領域では、入射角度のずれ、つまり、LEDの中心からのずれに対して出射角度θout が大きく変化するようになるということを意味している。
したがって、本実施例で上述した、大きな出射角度(45°〜90°)に、多くの光を出射させるレンズ形状の場合、LEDがレンズ中心からずれた場合に、出射分布が大きく変化するので、実施例1で説明したLED配置構成が特に重要になる。
本実施例は、領域毎にLEDを駆動し、あるタイミングにおいて領域毎に発光させたり、消灯させたりして、液晶表示装置の画質を改善することを考慮に入れた液晶表示装置用バックライトとしての照明装置の発明に関する。
領域毎に、画像データを変更し液晶パネルの透過率を上げ、一方で照明装置の対応する領域の明るさを下げ低消費電力化を図ったり、実効的なコントラストを上げたり、などをして画質を改善する。また、1行または複数の行からなる領域毎に、順次、点灯消灯行うスクロールBL方式により動画質の改善を図る。このような場合には、照明装置の任意の領域毎に均一に発光させることが重要な課題となる。つまり、実施例2ではバックライト面内方向にできるだけ多くの光を出射し、バックライト面全体で均一化をしたが、本実施例においては、領域毎の均一化が課題となる。特に、本実施例は、領域毎に均一に発光させることを実現する照明装置に関する。
図6を用いて、本発明の実施例3について説明する。図6(a)は、液晶表示装置11の構成例で、照明装置7,拡散板8,光学シート9,液晶パネル10から構成されている。光学シート9は、光を拡散及び集光させるためのシートであり、拡散シート,BEF,DBEFなど複数枚あることもある。照明装置7を所謂、液晶表示装置のバックライトとして用いている。
図6(b)は、液晶パネルの構成例を示している。信号配線駆動回路13は信号配線12を駆動し、走査配線駆動回路15は走査配線14を駆動し、信号配線と走査配線の交差部にはアクティブ素子としての薄膜トランジスタ16が接続されている。走査配線はスイッチとしての役割を果たす薄膜トランジスタのオン・オフを制御し、信号配線は所望の電圧を各画素の液晶に与える。液晶は電気的には、薄膜トランジスタに接続される画素電極18と対向電極19間に形成される容量(液晶容量17)で表される。
図6(c)は、LEDパッケージ2を平面状に集合させて大面積化した照明装置7の構成例である。前記LEDパッケージ2はLEDとレンズ1から構成される。但し、前記LEDパッケージは放熱部材,サブマウント等、その他の部材も含むことがあるが、説明を簡単化するために記載していない。
図6(c)の照明装置は、4個の領域を設け、4個の領域毎にLEDを駆動する手段を設けている。走査配線14が延びている方向と概ね平行な方向である列方向に配置されているLEDパッケージ2を、リードフレーム4を用いて電気的に直列に接続し、制御信号BLC1〜4を用いてLED制御スイッチ21を駆動し、各行において直列に接続されるLEDパッケージ2を行毎に駆動する。
LED電源回路20は、各行のLEDに電力を供給する回路で、電源電圧VDHとグランドGNDから、各行に供給する電圧を生成し供給している。LEDパッケージ2に含まれるLEDが複数ある場合、例えば、赤,青,緑の3個の場合には、前記LED電源回路20は、3個の電圧を供給し、リードフレーム4も各行毎に3本となり、各色毎に直列に接続される。各行におけるLED制御スイッチ21も3個となる。色毎にLED制御スイッチを制御する場合は、制御信号も3倍となる。行毎にLEDの点灯及び消灯を順次行い、点灯または、消灯位置をスクロールすることで動画質を改善する。
LEDパッケージ2を構成するレンズ1形状は、列方向のレンズの幅と行方向のレンズの幅が異なるレンズ形状であり、前記LEDパッケージが属する領域が列方向に長いので、列方向で均一化を計るために、列方向のレンズの幅が行方向のレンズの幅よりも長いレンズ形状となっている。
実施例2で説明したように、出射角度を大きくして均一化を図るレンズは、LEDからの光がレンズ表面に入射する角度が大きくなるにつれて動径が大きくなるので、出射角度を大きくする方向のレンズの幅も大きくなる。したがって、領域の幅が大きい方向におけるレンズの幅も大きくなる。列方向と行方向の幅の比は、バックライト及び領域の大きさ、形状等に依存するが、幅が長い方のレンズ幅が18mm程度の場合、幅が短い方のレンズ幅は17mmから10mm程度となることが多い。
また、種々のレンズ形状の組み合わせが考えられる。図7(a)〜(d)に、その例を示す。説明を分かり易くするために、任意のタイミングで同時に駆動されるLEDパッケージ2を線で囲み領域22とした。図示されるLEDパッケージ2及び2′の形状はレンズ形状を反映している。図7においては、LEDパッケージ2は、ある方向に長いレンズ形状を持つレンズで、LEDパッケージ2′は、全ての方向で直径が概ね等しいレンズ形状を持つレンズである。
図7(a)及び(b)は、領域の幅が長いほうにレンズの幅も長くしてあり、領域の幅が長いほうに、出射角度の大きな光を出射するレンズ形状となっている。
図7(c)及び(d)は、ある方向に長いレンズ形状を持つレンズと、全ての方向で直径が概ね等しいレンズ形状を持つレンズが領域内に含まれており、長いレンズ形状を持つレンズは、領域の長いほうのレンズ幅が長くなっている。方位によってレンズ幅が異なるレンズとレンズ幅が等方的なレンズを組み合わせることで、任意の形状の領域を均一にすることができる。
実施例1では、赤,青,緑のLEDを含むLEDパッケージにおいて、LEDの配置をレンズの中心に関して対称とする構成及び、LEDをレンズ中心に集合させる構成をとることにより、レンズからの出射分布を接地面内において等方的にすることで、色の均一化を図った。本実施例においても、レンズからの光の出射角度を大きくして、領域面内で均一化を図るだけでなく、LEDの配置も考慮した均一化を行うことは重要である。
LEDパッケージにLEDが1つしか含まれない場合は、赤,青,緑のLEDをそれぞれ有する3個のLEDパッケージを近くに配置するのが好ましく、図8(a)のような配置が、長い領域の均一化には良い。図中LED1〜3は、それぞれ異なる色のLEDを示している。この配置は、領域22と領域22′は、時間的に発光するタイミングは異なるが、発光タイミングのずれが十分に短い時間であれば、隣接する領域間の異なる色も混色することを利用した配置である。この配置例において、各領域の連立する3個のLEDパッケージの中心のLEDパッケージ(図ではLED2)のレンズ形状は両端のLEDパッケージのレンズ形状と異なっても良い。前記連立する3個のLEDパッケージの両端のLEDパッケージは隣接する四方のLEDパッケージと色が異なっている。また、図8(b)のように一列で配置しても良い。
また、複数のLEDが1つのパッケージに含まれる場合は、次のような種々の配置が考えられる。
図9(a)は、緑のLEDを2個、赤,青のLEDをそれぞれ1個ずつ含む場合である。領域の長い方に、レンズ形状も長くなっており、領域が長い方向に沿ってLEDも配置されている。また、各LEDパッケージにおいて、レンズの中心に関して、緑のLEDが対称的な配置となっている。これは、領域の長い方向の均一性を高めるために、領域の長い方向における緑のLED光のレンズからの出射分布を補償して対称的な出射分布とするための配置となっている。一列に配置することで、リードフレーム(図9には図示なし)を用いて簡単に接続できる構成ともなっている。
図9(b)から(d)も同様に、領域の長い方向における緑のLED光のレンズからの出射分布を補償して対称的な出射分布とするための配置となっている。簡単のため、図中の矢印の方向を領域の長い方向とする。図9(d)の場合は、LEDが1個のLEDパッケージに5個含まれる場合を示している。
図9において、補償を行う色のLEDは緑とは限らないが、緑のLEDは効率が低いために、LEDパッケージに2個含むようにし、補償を行うLEDとするのが望ましい。また、補償を行う色以外のLEDの配置に関しては、配置と色の関係を規定するものではない。例えば、図9において、赤と青のLEDの位置を交換しても構わない。
一般に、スクロールBL方式にて動画質を向上させる場合には、ある行の画素に接続される走査配線を走査するタイミングと当該画素の領域に光を照射するバックライトの点灯または消灯のタイミングを制御するために、行毎または、複数の行毎にLEDを制御する。そのために、領域の長い方向が、列方向(走査配線が延びている方向)となる。したがって、スクロールBL方式を行う場合は、LEDの配置は列方向と概ね平行な線上で対称的な配置をとるか、または、列方向と垂直な線上で対称的な配置をとるかの何れかが望ましい。領域の長い方の均一性を高める場合は、LEDの配置を列方向と概ね平行な線上で対称となるように配置すれば良いし、リードフレームを配線に用いる場合は、リードフレームを走査配線と平行に配線することを考えれば、LEDは列方向と垂直な線上で対称的な配置をとる方が、リードフレームを曲げるという加工をしないで済み、バックライト製造工程簡略化による歩留まり向上及び製造に要するエネルギー低減という点で良い。
また、特に領域の幅が短いために、LEDパッケージから領域端までの距離が短く、均一化が難しい場合は、LEDパッケージ内のLEDの均一化に有利な配置を、領域の幅の短い方向に対する配置としても良い。その様な場合は、図9(a)から(c)のLEDの配置を、レンズの向きはそのままで、90°回転した配置となる。
また、さらに、隣接する領域間において、時間的に発光するタイミングは異なるが、発光タイミングのずれが十分に短い時間であれば、隣接する領域間の異なる色も混色することを利用した配置を図10(a)から(d)に示す。
図10(a)の配置は、LEDパッケージにおいて、LEDを一列に配置させ、隣接する領域において、中央に配置される2個のLEDの位置を反転させている。このようにすることによって、隣接する領域22と領域22′間に生じる色の不均一性を改善している。
図10(b)及び(c)の配置は、4個の第1から第4のLED(LED1〜4)を含むLEDパッケージにおいて、同じ色の第1及び2のLEDは対称的に配置したままで、第3及び第4のLEDを、領域内の隣接するLEDパッケージ間でLED配置を反転させ、隣接する領域間でのLEDパッケージ内のLED配置を等しくすることで、色の不均一性を改善している。
図10(d)の配置は、第1から3のLEDをLEDパッケージに含み、隣接する領域間でLEDパッケージ内の第1と第3のLEDの配置を反転することで、隣接する領域間での色の不均一性を改善している。
上述した図10に示されるような、LEDパッケージとLEDの配置の関係は、特に、領域を設け、領域毎にLEDを駆動したり、スクロールBLをする場合にのみ有効な発明ではなく、領域がない通常の場合でも、その効果を奏する。
また、上述した図10に示されるような、LEDパッケージとLEDの配置の関係は、直径が方位によって変わらないレンズ形状の場合でも効果を奏する。図11にその一例を示す。
ここで、領域とは、個々のLED、または、複数個のLEDの集合を、個々または、集合毎に制御することが可能な手段を備え、それら個々または集合を含む領域を領域と呼んでいる。
例えば、図6では、照明装置7を、それぞれの部分が4段直列接続されたLEDパッケージの集合を含むように、行方向に4分割した部分を領域と呼んでいる。
本実施例は、LEDパッケージのみならず、バックライトフレームの形状等を工夫することにより、動画特性を向上させつつ、領域毎に均一化を図ることに関する。
図12(a)〜(e)を用いて説明する。スクロールBL方式で動画性能を向上させるために、バックライトを行方向に3分割した場合を考える。列方向のLEDは直列に接続され、各領域毎にLEDを制御する場合について説明する。
図12(a)はバックライトを、光が出射される方向(液晶パネルを配置する側)から見た図である。側面反射板23は、LEDパッケージ2から出た光を列方向に反射する形状をしている。その形状とは、レンズの中心を通り列方向に平行な線B1と側面反射板の端部EDGEまでの距離が、レンズの中心での距離D1より、隣接するLEDパッケージ2間の中点での距離D2の方が大きくなる形状である。ここで、側面反射板の端部EDGEとは、フレームの平らな部分から、側面反射板が立ち上がる部分のことを指す。また、なだらかに側面反射部が立ち上がっている場合は、側面反射板の高さの1/10の高さとなる部分を側面反射板の端部とする。図中RAYは、簡単な光線追跡例である。側面反射板は鉄のフレーム24を加工して作った形状に白色の反射シートを貼り付けても良く、樹脂をフレームの材料として用い、切削もしくは射出成型等の加工によって形状を作っても良い。この際樹脂は白色樹脂であることが望ましい。
線分A1からA1′までの断面図を図12(b)及び図12(c)に示す。図12(b)は、側面反射板23の断面が長方形の場合の図である。この場合の立体的なワイヤーフレーム図を図12(d)に示す。図12(d)に記載されているA2からA5の断面は、図12(a)中のA2からA5の断面に対応する。
図12(c)は、側面反射板23の断面が概ね三角形または、台形である場合の図である。この場合の立体的なワイヤーフレーム図を図12(e)に示す。図12(e)に記載されているA2からA5の断面は、図12(a)中のA2からA5の断面に対応する。
側面反射板の断面が、図12(b)に示される長方形の断面の場合の方が、図12(c)に示される三角形または、台形の断面の場合の方よりも、面内方向に光を反射する効果が大きい。
側面反射板の断面が、図12(c)に示される三角形または、台形の断面の場合の方が、図12(b)に示される長方形の断面の場合の方よりも、照明装置を点灯した場合に、側面反射板によるムラが見え難い(または、ムラが発生し難い。)。
側面反射板の端部EDGEの形状は、二等辺三角形が周期的に繰り返される三角波のような形状でも良く、楕円または円の弧が周期的に繰り返される形状でも良い。これらの形状の例を図13に示す。図13(a)は、二等辺三角形が周期的に繰り返されている場合で、図13(b)は、楕円の弧が周期的に繰り返されている場合である。
本実施例は、LEDからレンズへの光取り出し効率を改善し、且つ、均一化を図ることに関する。
LEDの屈折率は、色によって異なるが、2.2から3.8程度であり、レンズを形成する一般的な樹脂の屈折率は1.5 程度である。そのために、LEDとレンズとの界面で全反射がおこり、LEDで発光した光の一部がLED内に閉じ込められ、損失となる。この課題に対しては、LEDを封止するために使用する樹脂の屈折率を1.6から2.2程度の高いものとし、その樹脂に重ねてレンズを配置することでLEDからの光取り出し効率を改善することが可能となる。
図14を用いて説明する。図14は、レンズの中心を含むLEDパッケージのある断面である。バックライトの出射方向をz方向とし、バックライト面内のある方向をx方向としている。4個のLED(LEDR,LEDG,LEDB)が高屈折率の部材で封止されている。高屈折率部材25は、樹脂若しくは高屈折率微粒子である酸化チタン等を含む樹脂などである。したがって、高屈折率微粒子が均一に混ざらない場合など、樹脂内部で屈折率に分布を持つこともある。高屈折率な物質を含む材料(媒体)を高屈折率部材としている。言うまでも無く、特に混合物の入っていない材料で材料自体が高屈折率なもので形成された物も高屈折率部材と呼ぶ。高屈折率部材25の外側にレンズ形状を持つ樹脂が装着されている。ここではレンズ形状を持つ樹脂部をレンズ1と呼ぶことにする。レンズ1と高屈折率部材25との境界26の形状は、原点(図中x−z面の原点、以下、レンズの中心と呼ぶこともある。)に中心のある半円である。
レンズは、原点に点光源があるとして設計されるために、境界26で屈折が起こるとレンズから出射される光が所定の方向に出射しないという課題がある。図14で示した様に、境界26の形状を半円にすることで原点付近から出射される光は、ほとんど屈折しなくなるので、前記課題を解決できる。レンズがバックライト面内で等方的な形状である場合は、断面形状は半円であるので、境界26の立体的な形状は半球面形状となる。
但し、LEDパッケージの形状,生産方法に関連して、極角(z軸からの角度)が大きい領域(70〜90度)では、境界26の形状が円にならない場合もあるが、レンズを積極的に利用して光を制御する角度範囲で円弧の形状であれば問題ない。つまり、境界の一部が円弧の形状であれば効果を奏する。具体的な角度は、極角0から50度程度の角度範囲でレンズを積極的に利用する。50度より大きな角度にLEDから出射する光は、境界やレンズ形状が円から極端に異なる形状でなければ、LEDからの出射角度が元々大きいので、光を遠方に出射することが可能となる。また、境界面は凸凹の少ない鏡面仕立てにすることが望ましい。それは、境界面での無用な散乱を抑えるためである。
次に、製造方法に関して説明する。製造方法は、少なくても次の2通りが挙げられる。1つは、高屈折率部材でLEDを封止する際に、高屈折率部材を射出成型し、その後、別途作製したレンズを接着するか、または当該高屈折率部材上に直接レンズを射出成型するとういう方法である。別途作製したレンズを接着するとき、接着剤の屈折率は、レンズの屈折率と同程度もしくは高いことが望ましい。これは接着剤からレンズに光が透過する際に、無用な屈折または全反射が起こることを抑制するためである。具体的には、1.5 程度の屈折率が望ましい。
2つめは、図15を用いて説明する。初めにレンズを射出成型にて作製しておく。当該レンズの出射面28を空気との界面側とし、入射面29を高屈折率部材25との境界側とした場合に、出射面から入射面まで貫通する穴27を開けておく。レンズをバックライトに配置したあとで、当該穴27から高屈折率部材を封入し、レンズの入射面を型として成型するという方法である。
実施例5では、レンズの中心を含むLEDパッケージのある断面における高屈折率部材25とレンズ1との境界26の形状を円とすることで、境界26での不要な屈折を低減することでレンズからの光の出射分布を所定の分布とすることを可能とした。本実施例では、境界26の形状も光を制御する面として活用することに関して説明する。
図16は、図14と同様にレンズの中心を含むLEDパッケージのある断面を示している。図中の符号等は図14と同じものを示す。断面における境界26の形状は、円ではなく、x=0の付近で凹みのある形状となっている。このような形状とすることで、高屈折率部材25からレンズ1に入射する光が境界26で屈折して面内方向(極角が大きい方向45°〜90°)に出射されるようになる。この光を再度、レンズ1の出射面で面内方向に屈折することで、より多くの光を面内方向に出射することが可能となる。特に、屈折面を2つにすることで、1つの屈折面では限界の有ったLEDから極角0°〜45°程度に出射される光を面内方向に効率よく出射することが可能となる。このような出射特性を発揮する境界26の形状としては、次のようなものが挙げられる。
レンズの中心を含むLEDパッケージのある断面において、レンズ1の中心付近の境界に凹部が存在する境界形状であること。
レンズの中心を含むLEDパッケージのある断面において、レンズ1の中心から境界までの距離を内動径とし、LEDパッケージが設置されている設置面に垂直でレンズ1の中心を通る中心軸からの角度を極角とした場合に、極角が大きくなるに従って、内動径が大きくなる領域が存在する境界形状であること。
前記境界において、殆どの極角において、極角が大きくなるに従って、内動径が小さくなる領域が存在しないこと。
前記境界において、極角が大きくなるに従って内動径が大きくなる領域に、高屈折率部材25を構成する物質のレンズ1を構成する部材に対する臨界角度と等しい角度の極角が含まれること。具体的な前記臨界角度は、38度から60度程度である。
また、具体的には、例えば、レンズの中心を含むLEDパッケージのある断面における境界及びレンズ形状をx軸方向に長軸があり、z軸方向に短軸がある楕円の弧としても良い。
実施例6では、境界26の形状も光を制御する面として活用することに関したもので、特に面内方向に光を出射して均一化を図るものだった。実施例7では、照明装置の任意の領域毎に均一化をすることと、レンズ形状を小さくし材料低減による廃棄物低減を実現する技術に関して説明する。
図17は、図14と同様にレンズの中心を含むLEDパッケージのある断面を示している。図中の符号等は図14と同じものを示す。断面における境界26の形状は、楕円形状でz軸方向が長軸であり、x軸方向が短軸であることを特徴としている。このような形状は、実施例6で説明したLEDパッケージよりも狭い領域に多くの光を照射することになるが、所定の領域毎に均一化するのに有利な構成である。また、レンズ形状を小さくし、材料低減による廃棄物低減の効果も奏する。LEDから出射され、境界で屈折した光の多くは、レンズの出射面の狭い範囲(極角0から45°程度の範囲)に照射されるために、レンズ形状は前記狭い範囲で作り込めば良いために、レンズ形状を小さくできる。
また、照明装置の任意の領域毎に均一化をすることにあたって、特に、スクロールBL方式を行うために列方向で均一化をする場合に、図18に示すような構成が考えられる。x方向は列方向に平行な方向で、y方向は行方向に平行な方向である。図18(a)に示されるレンズの中心を含むLEDパッケージの断面は、x−z面に含まれる断面である。図18(b)に示されるレンズの中心を含むLEDパッケージの断面は、y−z面に含まれる断面である。当該LEDパッケージの形状は異方的である。x方向(列方向)は、面内方向に多くの光を出射するレンズ1及び境界形状26である。y方向(列方向)には、全ての角度(極角)に均等に光を出射するレンズ1及び境界形状26である。この様な形状にすることで、列方向で均一化することが容易となる。また、図18(a)は、レンズ1の中心付近の境界26に凹部が存在する形状であるが、例えば、境界26及びレンズ1の形状をx軸方向に長軸があり、y軸方向に短軸があり、x軸を回転軸とした回転楕円体としても良い。
1…レンズ、2…LEDパッケージ、3…レンズの中心、4…リードフレーム、5…ワイヤ、6…サブマウント、7…照明装置、8…拡散板、9…光学シート、10…液晶パネル、11…液晶表示装置、12…信号配線、13…信号配線駆動回路、14…走査配線、15…走査配線駆動回路、16…薄膜トランジスタ(TFT)、17…液晶容量、18…画素電極、19…対向電極、20…LED電源回路、21…LED制御スイッチ、22…領域、100…じょうご部、101…パッケージベース、23…側面反射板、24…フレーム、25…高屈折率部材、26…高屈折率部材とレンズの境界、27…レンズ穴、28…出射面、29…入射面。

Claims (27)

  1. 一対の基板と、前記一対の基板間に挟持された液晶層と、前記液晶層に所定のタイミングで画像データに対応した電圧を印加するための信号配線及び走査配線と、前記信号配線と走査配線との交差部に接続された複数のアクティブ素子と、前記アクティブ素子により駆動される画素と、を有する液晶パネルと、
    前記液晶パネルに光を照射するバックライトとして、LEDとレンズから構成されるLEDパッケージを複数個有し、前記LEDパッケージを平面状に集合させて大面積化した照明装置と、を有する液晶表示装置において、
    液晶パネルに概ね平行な平面において、液晶パネルにおいて走査配線が延びている方向と概ね平行な方向を列方向とし、該列方向と概ね垂直な方向を行方向とした場合に、
    LEDパッケージを集合させているバックライトの底面を、2分割以上する複数の領域を設け、個々、または、複数個の領域毎にLEDを駆動する手段と、
    LEDパッケージにおいて、列方向のレンズの幅と行方向のレンズの幅が異なるレンズと、を備え、前記レンズにおける幅は、前記列方向と前記行方向のうちのいずれかの方向で他方の方向よりも長くなり、
    前記レンズは、中心付近に凹部が存在するレンズ形状であって、
    前記レンズにおいて、レンズの中心からレンズ表面までの距離を動径とし、LEDパッケージが設置されている設置面に垂直でレンズの中心を通る中心軸からの角度を極角とした場合に、前記中心軸を含む前記いずれかの方向の断面では、極角0°から80°で、極角が大きくなるにつれて動径が大きくなり、
    前記レンズを備えた前記LEDパッケージが属する領域は、前記いずれかの方向で前記他方の方向よりも長くなる、
    ことを特徴とする液晶表示装置。
  2. LEDパッケージにおいて、前記LEDパッケージが属する領域が列方向に長い場合には、列方向のレンズの幅が行方向のレンズの幅よりも長いレンズを備え、
    前記LEDパッケージが属する領域が行方向に長い場合には、列方向のレンズの幅が行方向のレンズの幅よりも短いレンズを備えることを特徴とする請求項に記載の液晶表示装置。
  3. LEDパッケージにおいて、レンズの直径が方位によらず一定である前記レンズとは別のレンズと、を備えることを特徴とする請求項に記載の液晶表示装置。
  4. LEDパッケージを集合させているバックライトの底面を、少なくても行方向において2分割以上する複数の領域を設け、個々、または、複数個の領域毎にLEDを駆動する手段と、
    LEDパッケージにおいて、列方向のレンズの幅が行方向のレンズの幅に比べて長い前記レンズと、を備えることを特徴とする請求項に記載の液晶表示装置。
  5. 列方向に存在する複数のLEDパッケージを電気的に直列に接続し、前記接続された複数のLEDパッケージ毎にLEDを駆動する手段を備えることを特徴とする請求項1またはに記載の液晶表示装置。
  6. 前記LEDパッケージを、バックライトの底面にマトリックス状に配置し、行毎または複数の行毎にLEDを駆動する手段を備えることを特徴とする請求項1またはに記載の液晶表示装置。
  7. 前記LEDパッケージは、少なくても赤色を発光するLEDと緑色を発光するLEDと青色を発光するLEDを有することを特徴とする請求項1からのいずれかに記載の液晶表示装置。
  8. 前記LEDパッケージは、少なくても4個以上のLEDを有し、且つ、少なくても赤色を発光するLEDと緑色を発光するLEDと青色を発光するLEDを有し、
    前記LEDパッケージ内の少なくても2個のLEDは、レンズの中心に関して対称的な位置に配置され、且つ、前記2個のLEDが同じ色であることを特徴とする請求項1からのいずれかに記載の液晶表示装置。
  9. 前記LEDパッケージにおいて、全てのLEDは、1列に配置されることを特徴とする請求項に記載の液晶表示装置。
  10. 前記LEDパッケージにおいて、レンズの中心に関して対称的な位置に配置される少なくても1組のLEDが、中心から最も遠い距離にある2つのLEDであることを特徴とする請求項に記載の液晶表示装置。
  11. 前記LEDパッケージに含まれるLEDの数が4個であり、中心から最も遠い距離にある2つのLEDが緑のLEDであることを特徴とする請求項10に記載の液晶表示装置。
  12. 前記LEDパッケージに含まれるLEDの数が5個であり、1個のLEDをレンズの中心に配置し、その他のLEDを2個ずつの2個の組とし、それぞれの組毎にレンズの中心に関してLEDを対称的に配置し、且つ、それぞれの組を構成するLEDの色を組毎に等しくし、2組のうちの1組を緑のLEDの組とすることを特徴とする請求項に記載の液晶表示装置。
  13. 前記LEDパッケージにおいて、レンズの中心に関して対称的な位置に配置される少なくても1組のLEDが、列方向と概ね平行な線上に配置されることを特徴とする請求項から12のいずれかに記載の液晶表示装置。
  14. LEDパッケージが設置されている設置面からレンズ表面までの距離が、レンズの中心部よりも、長い領域が存在するレンズ形状であることを特徴とする請求項1から13のいずれかに記載の液晶表示装置。
  15. 前記レンズにおいて、少なくとも列方向と概ね平行方向の中心軸を含む断面において、極角が大きくなるに従って動径が大きくなる領域が存在するレンズ形状を有することを特徴とする請求項14に記載の液晶表示装置。
  16. 前記LEDパッケージは、少なくても赤色を発光するLEDと緑色を発光するLEDと青色を発光するLEDを有し、
    LEDパッケージ内のLEDの配置が異なるLEDパッケージが、少なくても2種類以上存在することを特徴とする請求項に記載の液晶表示装置。
  17. 前記LEDパッケージは、複数のLEDを有し、前記LEDパッケージにおいて、全てのLEDは、1列に配置され、前記走査配線が延びている方向と概ね垂直な線上に配置されることを特徴とする請求項に記載の液晶表示装置。
  18. 前記LEDパッケージにおいて、レンズの中心に関して対称的な位置に配置される少なくても1組のLEDが、列方向と概ね垂直な線上に配置されることを特徴とする請求項に記載の液晶表示装置。
  19. 前記LEDパッケージにおいて、全てのLEDは、1列に配置され、列方向と概ね平行な線上に配置されることを特徴とする請求項に記載の液晶表示装置。
  20. 前記LEDパッケージにおいて、全てのLEDは、1列に配置され、列方向と概ね垂直な線上に配置されることを特徴とする請求項またはに記載の液晶表示装置。
  21. LEDパッケージを集合させているバックライトの底面を、行方向に2分割以上する複数の領域を設け、領域毎にLEDを駆動する手段と、領域と該領域に隣接する領域の間の一部若しくは全てに、LEDパッケージからの光を、当該LEDパッケージが含まれる領域に反射する側面反射板を有することを特徴とする請求項に記載の液晶表示装置。
  22. LEDパッケージが配置されているフレームの平らな部分から側面反射板が立ち上がる部分のことを前記側面反射板の端部とした場合に、概ねレンズの中心を通り列方向に平行な直線と、側面反射板の端部の各点から該直線に垂線を引いたときの各点と該直線までの距離が、レンズの中心での距離より、隣接するLEDパッケージ間の中点での距離の方が大きくなる形状であることを特徴とする請求項21に記載の液晶表示装置。
  23. 側面反射板の端部の形状に複数の二等辺三角形が含まれることを特徴とする請求項22に記載の液晶表示装置。
  24. 側面反射板の端部の形状に複数の楕円の弧が含まれることを特徴とする請求項22に記載の液晶表示装置。
  25. 側面反射板の端部の形状に複数の円弧が含まれることを特徴とする請求項22に記載の液晶表示装置。
  26. 側面反射板の断面形状が、細くなる部分を有することを特徴とする請求項21に記載の液晶表示装置。
  27. 側面反射板の断面形状が、フレーム側に比べて拡散板に近い方が細くなることを特徴とする請求項21に記載の液晶表示装置。
JP2010271347A 2005-11-11 2010-12-06 液晶表示装置 Active JP5094951B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271347A JP5094951B2 (ja) 2005-11-11 2010-12-06 液晶表示装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005326820 2005-11-11
JP2005326820 2005-11-11
JP2010271347A JP5094951B2 (ja) 2005-11-11 2010-12-06 液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006207336A Division JP4724618B2 (ja) 2005-11-11 2006-07-31 照明装置及びそれを用いた液晶表示装置

Publications (2)

Publication Number Publication Date
JP2011095759A JP2011095759A (ja) 2011-05-12
JP5094951B2 true JP5094951B2 (ja) 2012-12-12

Family

ID=44112635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271347A Active JP5094951B2 (ja) 2005-11-11 2010-12-06 液晶表示装置

Country Status (1)

Country Link
JP (1) JP5094951B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2856008B1 (en) * 2012-06-01 2017-12-13 Revolution Display, LLC Linear led lighting fixture with improved viewing angle
KR101524914B1 (ko) 2013-03-28 2015-06-01 엘지이노텍 주식회사 광확산 소자, 및 이를 갖는 발광소자 어레이 유닛
US9010951B2 (en) 2013-07-05 2015-04-21 Lg Innotek Co., Ltd. Optical lens, light emitting device, and display
CN115171549B (zh) * 2022-06-29 2023-12-22 上海勤宽科技有限公司 基于Mini LED的VR显示屏及VR设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104488A (ja) * 1992-09-17 1994-04-15 Rohm Co Ltd ドットマトリクス表示装置
JPH08237431A (ja) * 1995-02-24 1996-09-13 Canon Inc 画像読取装置及び光源ユニット
JP2001210122A (ja) * 2000-01-28 2001-08-03 Matsushita Electric Ind Co Ltd 照明装置、映像表示装置、映像表示装置の駆動方法、液晶表示パネル、液晶表示パネルの製造方法、液晶表示パネルの駆動方法、アレイ基板、表示装置、ビューファインダおよびビデオカメラ
JP2005086051A (ja) * 2003-09-10 2005-03-31 Toshiba Lighting & Technology Corp 発光装置
KR101085144B1 (ko) * 2004-04-29 2011-11-21 엘지디스플레이 주식회사 Led 램프 유닛
JP2005122121A (ja) * 2004-08-12 2005-05-12 Hitachi Ltd 液晶表示装置
DE102006002275A1 (de) * 2005-01-19 2006-07-20 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung
JP2007042511A (ja) * 2005-08-04 2007-02-15 Sharp Corp 面光源装置及びそれを備えた表示装置

Also Published As

Publication number Publication date
JP2011095759A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
JP4724618B2 (ja) 照明装置及びそれを用いた液晶表示装置
CN102478188B (zh) 背光单元和使用背光单元的显示装置
US7387422B2 (en) Light-guide plate, backlight assembly having the light-guide plate and display device having the backlight assembly
US8154688B2 (en) Planar light-emitting device and liquid crystal display apparatus
KR100695016B1 (ko) 백라이트 유닛과 이를 포함하는 액정표시장치
KR101255000B1 (ko) 일체형 광학판, 이를 갖는 백라이트 어셈블리 및액정표시장치
US10352530B2 (en) Lens, light emitting apparatus including the lens, and backlight unit including the apparatus
US9890921B2 (en) Optical element and backlight unit including the same
JP2007086784A (ja) 光学板、それの製造方法及びそれを有する表示装置
TW201305670A (zh) 發光裝置、照明裝置、及顯示裝置
KR102130517B1 (ko) 백라이트 유닛 및 이를 포함한 액정표시장치
TWI619989B (zh) 光學元件及具有其之顯示裝置
US20140226311A1 (en) Light emitting device and display device
US20150192275A1 (en) Display device and light emitting device
JP5094951B2 (ja) 液晶表示装置
TWI484262B (zh) 控制光通量之元件、顯示裝置以及光發射裝置
KR20080089909A (ko) 백라이트 유닛 및 이를 갖는 표시 장치
KR101417258B1 (ko) 광속 제어 부재 및 이를 포함하는 표시장치
KR101987430B1 (ko) 광속 제어 부재 및 이를 포함하는 표시장치
KR101996927B1 (ko) 광속 제어 부재 및 이를 포함하는 표시장치
US20070217225A1 (en) Light guide plate and backlight module using the same
KR101956046B1 (ko) 광속 제어 부재 및 이를 포함하는 표시장치
CN1716047A (zh) 平面光源装置
KR20130052470A (ko) 광속 제어 부재, 발광 장치 및 표시장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5094951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250