JP5094664B2 - 受動光網システムおよびその運用方法 - Google Patents

受動光網システムおよびその運用方法 Download PDF

Info

Publication number
JP5094664B2
JP5094664B2 JP2008247083A JP2008247083A JP5094664B2 JP 5094664 B2 JP5094664 B2 JP 5094664B2 JP 2008247083 A JP2008247083 A JP 2008247083A JP 2008247083 A JP2008247083 A JP 2008247083A JP 5094664 B2 JP5094664 B2 JP 5094664B2
Authority
JP
Japan
Prior art keywords
signal
transmitted
slave stations
master station
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247083A
Other languages
English (en)
Other versions
JP2010081278A (ja
Inventor
徹 加沢
祐輔 矢島
太志 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008247083A priority Critical patent/JP5094664B2/ja
Priority to US12/388,104 priority patent/US8184976B2/en
Priority to CN200910008308.XA priority patent/CN101686421B/zh
Publication of JP2010081278A publication Critical patent/JP2010081278A/ja
Application granted granted Critical
Publication of JP5094664B2 publication Critical patent/JP5094664B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、複数の加入者接続装置が光伝送回線を共有する受動光網システム(Passive Optical Network System:以下PONと称する)に関する。
PONは、一般的に1台の局側装置(Optical Line Terminator:以下OLTと称する)と複数の加入者側装置(Optical Network Unit:以下ONUと称する)から成り、ONUに接続されたデータ端末(Personal Computer:以下PCと称する)やIP電話機等の端末からの信号を光信号に変換し、支線光ファイバを介してOLT向けて送出する。各ONUからの支線光ファイバは光スプリッタにより結合され、光信号はこの光スプリッタと接続した基幹光ファイバ上に光学(時分割)多重されてOLTに到達する。
複数のONUの夫々は、国際電気通信連合(ITU−T)の勧告G984.1の8章と9章に規定されたOLTとONUとの距離範囲内で、任意の位置に設置できる。すなわち、OLTと各ONUとの間の光信号の伝送遅延がONU毎に異なるので、この伝送遅延を考慮しないと各ONUから出力される光信号同士が基幹光ファイバ上で衝突・干渉する可能性がある。このため、ITU−T勧告G984.3の10章に規定されたレンジングという技術を用いて各ONUがOLTと等距離に設置されて見えるように各ONUからの出力信号の遅延を調整する。さらに、ITU−T勧告983.4で規定された動的帯域制御(Dynamic Bandwidth Allocation:以下DBAと称する)という技術を用いて、OLTが各ユーザからの要求に応じて出来るだけ多くのONUに信号を出力する帯域を割り当て、その送信タイミングを指示(以下、グラント指示、もしくは、単にグラントと称する)することで、各ONUからOLTへの光信号が基幹光ファイバ上で衝突・干渉しないようにしている。
各ONUからOLTに送信される信号は、上り信号と呼ばれ、プリアンブルやデリミタを含むオーバヘッド(バーストオーバヘッドとも称される固定長のオーバヘッド)と可変長のペイロード信号とを含むバーストデータで構成された可変長パケット(以下、単にパケットと称することもある)である。また、各パケットの直前には、前に送信されたパケットとの衝突防止のためのガードタイムが設定される。一方、OLTから各ONUに送信される信号は、下り信号と呼ばれ、フレーム同期パタンとPLOAMとグラント指示ならびにフレームペイロードから構成された125μ秒のフレーム信号である。
OLTのグラント指示は、US Bandwidth MAPと称される領域を用いて各ONUの上り信号送信許可タイミングを指定するもので、各ONUでの上り信号の送信開始を指定するStart値と送信終了を指定するEnd値を備えており、それぞれバイト単位の指定が行われる。このEnd値と次の上り信号のStart値の間は無信号領域であり、上記ガードタイムに対応する。尚、個々のONUにはTCONT(Transmission CONTainer)と呼ばれる複数の帯域割り当て単位が割り付け可能であり、例えば、同一ONU内に収容されるサービス毎での帯域制御を行うことができる。そして、上記Start値とEnd値の指定はTCONT毎に行われる。また、これらの値をグラント値と称することもある。
上記勧告で既定されたGPONと呼ばれるPONでは、GEM(GPON Encapsulation Method)パケットと呼ばれる可変長パケットが各ONUからOLTに送信される。このGEMパケットは、GEMヘッダと呼ばれる5バイトのヘッダが付加され、送信信号の長さと、フローラベルと、後述するフラグメンテーションと呼ばれる処理の有無を示すフラグが格納される。
上記ITU−Tの勧告では、OLTがONUに対するグラント指示を125μ秒の周期で指示することが規定されている。すなわち、OLTは125μ秒周期で指定したONUにグラントを送信し、該指定されたONUは、グラントに従って光ファイバを時分割で共有しながらデータをOLTに送信する。OLTが先に述べたDBAを125μ秒周期で実施すれば、全ONU(あるいは全TCONT)の夫々に割り当てた帯域をそのままグラント値としてグラントで通知し、全ONUが該グラントに従って信号を出力することが出来る。しかし、実際のPONにおけるDBAは125μ秒周期では行なわれず、例えば、0.5m秒や1m秒といった、グラント指示の周期よりも長い周期で行なわれる構成が殆どである。この理由は、インターネットアクセスなどのデータ通信ではμ秒単位のレスポンス時間が求められないので、数十MIPS程度の演算処理量の大きくないプロセッサが0.5m秒や1m秒程度の時間を費やして演算量の大きいDBAを行っても充分な帯域割り当てが出来て運用できるためである。すなわち、DBAをグラント周期より大きい周期で実施することが許容されているためである。
OLTは、DBAで125μ秒のフレーム境界に跨る4から8フレーム程度のマルチフレームの期間内で全ONU(TCONT)に送信を許可するデータの長さを決めて行く。このため、OLTから各ONUへグラントを与える段階で、OLTは、DBAで決定したデータ長を125μ秒単位の複数のフレームに分割して各フレーム内でのグラント値として指定する処理を行なう。すなわち、あるONUに対するグラント値がフレーム境界に跨って割り当てられる場合が生じることがある。この場合の処理は、ITU−Tの勧告G984.3の8.3.2章に規定されているフラグメンテーションと呼ばれるメカニズムにより実行され、該ONUからの信号の2つのフレームへの分割(グラント指示)が発生する。
同規定では、OLTがDBAによりあるONU(TCONT)に与えた長さのデータを複数の125μ秒フレームに分割する場合、分割されたフレームでグラント指示された後のパケットにもGEMヘッダが付加されることが決められている。もともとのDBAでは、OLTが各ONUに割り当てるデータ長に、先で述べたようにパケットの最初に必ず付加される1つ(5バイト)のGEMヘッダの長さが考慮されているが、分割されたパケットに付加しなければならないGEMヘッダの長さは考慮されない。このため、あるONUに与えるグラントが複数の125μ秒フレームに分割されると、規定により後の125μ秒フレームに入るパケットに付加されたGEMヘッダの分だけ、本来そのONUが送信できたはずの信号のデータ数が減ることになる。
ITU−T勧告G984.1 ITU−T勧告G984.3 ITU−T勧告G983.4
例えば、OLTに最大64台接続された各ONUの夫々に32台のVoIPサービスが収容され、個々のVoIPサービスに前記のTCONTを対応させて帯域割当(DBA)を行う場合、OLTは、2048個のTCONTの夫々に対してVoIPサービスの帯域割当を実行することになる。ここで、各VoIPサービスが256kbit/秒の上り通信帯域を必要としている場合であれば、OLTが0.5m秒周期でDBAを実行すると、256kbit/秒×0.5m秒÷8=16バイトを各TCONTに与える必要がある。しかも、OLTは最初に必ず付加される1つ(5バイト)のGEMヘッダを考慮してDABを行なうので、各TCONTに16+5=21バイトのデータの送信許可を与える。0.5m秒毎に21バイトのデータを送信するということは、21×8÷0.5m秒÷1000=336kbit/秒の帯域を各TCONTが消費することであり、2048個のVoIPサービスが同時に使用されていれば、PON全体で336kbit/秒×2048=688.128Mbit/秒の帯域が消費されることになる。
各ONUからOLTへの上り信号の速度が1.24416Gbit/秒(以降、約1.2Gbit/秒と略す場合もある)とすると、グラント指示周期である125μ秒で送信できるデータの数は、1.24416Gbit/秒×125μ秒÷8=19440バイトである。上記21バイトのデータは、1つのグラント指示周期のデータ長である19440バイトに十分収まる長さであるが、運悪くこの21バイトがグラント指示周期の125μ秒フレームの境界に配置されると、フラグメンテーションと呼ばれるメカニズムにより、該21バイトのデータが2つの上りフレームへ分割されるという現象が発生する。このメカニズムによると、例えば、21バイトのデータが、最初のフレームに15バイト、次のフレームに6バイトと分割されることになる。この場合、最初の15バイトは、GEMヘッダ5バイトと10バイトのペイロードからなり、次の6バイトは、規定で分割によって付加しなければならないGEMヘッダ5バイトとペイロード1バイトのパケットになる。したがって、DBAによって21バイトの信号長が割り当てられても、実質的に送信されるペイロード部分は10+1=11バイトにしかならず、256kbit/秒の必要帯域を満たす16バイトのデータに対し約31%のデータが未送信となり通信品質に大きな影響を及ぼす。
上りフレームへの各ONU(TCONT)からの信号の配置はDBA周期毎に毎回異なるものであるから、特定の上り信号が複数の125μ秒フレームの境界に跨り、この結果としてフラグメンテーションが発生するか否かを事前に知る事は出来ない。もし全TCONTからのデータに対してフラグメンテーションが発生する可能性があることを想定して、さらに追加されるGEMヘッダの5バイトを考慮した余分なグラント長を全てのTCONT信号にあらかじめ割り当てておけば、フラグメンテーションが発生した場合も、先に説明したようなデータの未送信が発生せず通信品質の劣化は避けられる。しかし、このために必要な帯域は、1つのTCONT当り(21+5)×8÷0.5m秒÷1000=416kbit/秒となり、PON全体では416kbit/秒×2048=851.986Mbit/秒の帯域が消費されるため、大きな帯域の無駄が発生することになる。
本発明の目的は、VoIPデータのような扱うデータ長が小さい端末を多数収容するPONにおいて、フラグメンテーションが発生しても品質劣化を発生させず、かつ帯域の無駄を極力抑えることができるOLTやONUおよびPONと、その運用方法(帯域割り当て方法)を提供することにある。
上記課題を解決するために、本発明のPONでは、フラグメンテーションが発生すると、これにより増やさなければならない送信データ量を把握した上で、この増分も考慮した帯域の割当てを行う構成としたものである。
すなわち、親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、複数の子局の要求に基づき親局が複数の子局の夫々から親局に送信する信号の量とタイミングとを決め、複数の子局からの信号を記光ファイバ網で多重して親局が受信する受動光網システムの親局に、複数の子局の要求に基づき送信許可する信号の量を第1の周期毎に決める帯域制御部と、この決定された信号の量に基づき、複数の第2の周期の何れかで信号を送信する子局の送信タイミングを決める送信タイミング制御部と、信号を複数の第2の周期に分割して送信させる場合、分割処理で付加すべき信号の量に基づき送信タイミング制御部を制御して、許可した信号を第1の周期内で送信させる制御部とを備える構成としたものである。

尚、上記の制御部を、分割に伴い付加すべき信号により送信許可した信号の一部を送信できなくなると、次の第1の周期内でこの送信できなかった信号も送信させる構成としても構わない。
PONにおいて、特に100kbit/秒程度の小さい帯域を多数のTCONTに割り当てる時に発生しやすいフラグメンテーションによる割当帯域減少をなくし、通信品質の劣化を防止できるようになる。
以下、図面を用いて本発明のPONの構成と動作をITU−T勧告G984で規定されたGPONの構成と動作を例にとり説明する。
図1は、本発明のPONを用いた光アクセス網の構成例を示す網構成図である。
PON19は、光スプリッタ12、通信事業者等の局舎に設置される局側装置であるOLT1、OLT1と光スプリッタ12を接続する基幹光ファイバ17−1、それぞれの加入者宅内やその近くに設置される加入者側装置である複数のONU10(10−0〜10−63)、光スプリッタ12と複数のONU10の夫々を接続する複数の支線ファイバ17−2から構成される。OLT1は、基幹光ファイバ17−1と光スプリッタ12および支線光ファイバ17−2を介して、最大64台のONU10と接続可能である。また、複数のONU10の夫々には、VoIP通信を行う電話15やPC14等のユーザ端末が接続される。PON19は、OLT1を介して公衆電話通信網(Public Switched Telephone Network:以下PSTNと称する)やインターネット18に接続されて、これら上位網との間でデータを送受信する。
図1には3台のONU10が示されている。OLT1から各ONU10への下り信号11には、各ONU10宛の信号が時分割多重されていて全ONUに同報される。各ONU10は、信号11を受信して、自分宛の信号であるか否かを判定し、さらに自分宛の信号であった場合には信号のあて先に基づいて、電話15やPC14に信号を配信する。一方、ONU10からOLT1への上り方向では、ONU10−0からの信号a、ONU10−1からの信号b、ONU10−63からの信号n、等各ONU10からの信号が光スプリッタ12を介して基幹光ファイバ17−1上で光学時分割多重された信号16となりOLT1に到達する。尚、OLT1は、後述するDBAによって、どのタイミングにどのONU10からの信号を受信するかが判っている構成である。具体的には、各ONU10に信号を出力するタイミングを指示し、該タイミングでONU10から受信した信号を識別して処理を行う構成である。
図2は、OLTからONUへの光信号(下り信号)の構成例を示すフレーム構成図である。下り信号(以下、下りフレーム、もしくは、単にフレームと称することがある)は、ITU−T勧告G984.3に規定されたように、フレーム同期パタン20、PLOAM21、グラント指示22、フレームペイロード23から構成される。フレームペイロード23には、OLT1から各ONU10へ向かうユーザ信号が格納される。グラント指示22は、各ONU10の上り信号送信タイミング(グラント)を指示するもので、より詳細には、各ONU10の内部でのユーザ信号制御単位であるTCONT毎にグラントを指示するものである。同図は、図1で示した構成に対応した一構成例を示したもので、ONU10−0を制御するためのTCONT0用信号24、ONU−1を制御するためのTCONT1用信号25、ONU10−63を制御するためのTCONTn用信号26を示している。尚、これらのTCONT用信号は、TCONTを識別するためのTCONT ID27、信号の送信開始タイミングを示すStrat28と送信終了タイミングを示すEnd29とで構成される。尚、Start28とEnd29はバイト単位で指定される。OLT1は、各ONU10に周期的にグラント指示22を含む上りデータの送信を許可するメッセージを送信し、各TCONTにどれだけの上り通信帯域を使用すれば良いかを指示する。このStart28とEnd29は、OLT1がグラント指示を送信する各周期の中で、どのタイミングでデータの送信を開始して終了すれば良いかを示す情報である。尚、End29の代わりに、送信すべきデータのデータ長を指定し、Start28のタイミングから指定されたデータ長だけデータを送信するように指示しても良い。
図3は、ONUからOLTへの光信号(上り信号)の構成例を示す信号構成図である。上り信号(以下、GEMパケット、もしくは、単にパケットと称することがある)は、プリアンブル30とデリミタ31からなる固定長のバーストオーバヘッド36、ならびに、PLOAM31とキュー長33からなる制御信号および5バイトのGEMヘッダ34と可変長のGEMペイロード35からなるバーストデータ37とで構成される可変長のパケットである。上述したStart28は、PLOAM32の開始位置、すなわちバーストデータ37の開始位置を指示しており、End値29はGEMペイロード35(バーストデータ27)の終了位置を示している。ガードタイム38は、GEMペイロード34の終了位置から次のパケットのプリアンブル30の開始位置までの無信号区間で、各ONU10から送信されるパケットの基幹光ファイバ17−1上での衝突や干渉を防ぐために、ITU−T勧告G984.3で規定された長さの無信号区間がとられる。したがって、各ONU10(あるいはTCONT)から送信されるバーストデータ37の間には、ガードタイム38やプリアンブル領域30とデリミタ領域31が介在するため、前のバーストデータ37のEnd29と次のバーストデータ37のStrat28との間には数バイトの間隔が生じる。
図4は、PONの動作例を示すシーケンス図で、DBA動作および周期と、該DBAの結果に基づくグラント動作および周期の関係を示すものである。
OLT1は、周期125μ秒のグラント周期毎にグラント指示22を含む送信許可メッセージ40を各ONU10−1〜10−3に向けて送信する。この送信許可メッセージ40には、各ONUのTCONTが備えた送信キューに溜まっている送信待ちデータ量の報告を要求する情報(Request report)も含まれている。各ONU10は、グラント指示22のStart28とEnd29によって指定されたタイムスロットで送信キューに溜まったデータを送信するとともに、送信待ちのデータ量を上りメッセージ41(図3で示したパケット)に含まれるキュー長33を用いてOLT1に報告する(Report)。
OLT1は、予め定めた周期で各ONU10から受けた報告(送信待ちデータ量)に基づき、各ONU(TCONT)にどれだけのデータ量の送信を許可するかを決定するDBA42,43を行う。具体的には、送信待ちデータ量と各ユーザとの契約に基づき、各TCONTに次回の送信で送信許可するデータ量を決定する。このDBAは、先にも述べた理由により、125μ秒のグラント周期45〜48毎に行なう必要はなく、複数のグラント周期に対しまとめてDBAを行う構成である。本実施例では、4グラント周期(0・5m秒)に1回の割合でDBAを行う構成とした。1回のDBA42で全TCONTに送信許可するデータ量が決まるので、OLT1は、複数のグラント周期45〜48のいずれかのグラント周期において、全TCONTに決定したデータ量を送信させるように、各グラント周期でデータを送信させるTCONTとそのデータ送信Start28とEnd29を決める。このStart28とEnd29とが、グラント指示22を含む送信許可メッセージ40により各ONU10−1〜10−3に向けて送信され(Grant)、各ONU10−1〜10−3は、このグラントに従ったタイミングでデータをOLT1に送信する。尚、以降の実施例の説明でも、DBA周期が0.5m秒でグラント周期が125μ秒のPONで説明を行うが、DBA周期とグラント周期としては。これ以外の値を取っても良い。
図5は、PONの動作例を示す説明図で、本発明によるフラグメンテーション処理を実施しない従来のPONの動作を説明するもので、DBA動作でのデータ量決定と、該決定結果をグラントへ反映させた場合の様子を説明するものである。本説明では、#0〜4095の4096個のTCONTに対し0.5m秒周期でDBAを行い、決定された送信データ量を該DBA周期に含まれる4個の125μ秒グラント周期中にグラントによって割り当てる様子を示したものである。ここで、上り信号の速度が約1.2Gbit/秒とすれば、DBA周期で送信できるデータ長は77760バイトで、グラント周期で送信できるデータ長は19440バイトである。
以下の説明では、OLTがDBAによって、TCONT#0に4980バイトのデータ50の送信を許可し、TCONT#1〜#2047にはデータの送信を許可せず、さらに、TCONT#2048〜#4095には21バイトのデータ51〜59の送信を許可した場合を例に挙げ説明する。尚、許可されたデータ量には、図3で示した5バイトのGEMヘッダが含まれている。しかし、グラント周期は125μ秒であるため、OLT1はTCONT#0〜#4096に対して19440バイト毎にグラントを与えてデータの送信タイミングを指示しなければならない。本説明のOLTは、TCONTの順番にグラントを与えるようにしたので、グラント周期の第1周期でTCONT#0にデータ60(DBAで決めたデータ50が入る)、TCONT#2048にデータ61(DBAで決めたデータ51が入る)のグラントを与え、以降第1周期内のデータ領域をTCONTの番号が若い順に埋めるようTCONT#2485迄グラントを与えていく。そして第1周期の端にかかるTCONT#2048に決定されたデータ52については、複数のグラント周期に跨るため、フラグメンテーション処理により、TCONT#2048に対して第1周期の残りでデータ62、第2周期中に第1周期で遅れなかった残りのデータを含むデータ63をグラントとして与えるようにした。以下も同様に、OLT1は、TCONT#3076に対してもフラグメンテーション処理を行い、グラントの第2周期の残り一部でデータ66(データ55の一部)、第3周期でデータ67(データ55の残り)のグラントを与える。
同図の例では、TCONT#2486とTCONT#3076にTCONTのデータがグラント周期の境界にまたがり複数のデータに分割されるフラグメンテーションという事象を起こしている。例えば、TCONT#2486のデータ52については、グラント時にデータ62とデータ63の2つに分割されてTCONT#2486から送信され、TCONT#3076のデータ55については、グラント時にデータ66とデータ67の2つに分割されている。先に説明したように、GPONでは、フラグメンテーションによってデータが複数のグラント周期に跨って分割されると、各グラント周期のデータにはGEMヘッダ(図3:34)という5バイトのヘッダを付加しなければならない。同図では、グラント時の部分に表示したパケットの先頭の黒塗り部がGEMヘッダで残りの白抜き部がGEMペイロード(図3:35)のを示しており、分割されたTCONT#2486のデータ62とデータ63の夫々には規定に従ったGEMヘッダが付加されてしまう。従来のPONでは、OLTがデータの最初に1個GEMヘッダを付加する前提でDBAを行い各ONUに送信を許可するデータ長を決めており、上記データのフラグメンテーションは想定していない。このため、OLTはDBAでTCONT#2486で16バイトのデータを送信させたい場合、この16バイトにGEMヘッダ5バイトを付加した21バイトを送信許可するデータ長として決定する。しかし、同図のようにフラグメンテーションで第1のグラント周期に15バイト,第2のグラント周期に残りの6バイトと分けられた場合、第2のグラント周期で与えたれた6バイトのうち5バイトは新たに付加するGEMヘッダに使われてしまい、肝心なデータは1バイトしか送れない。すなわち、DBAでGEMヘッダ5バイトとデータ16バイトの合計21バイトの信号送信が決定されても、フラグメンテーションが生じるとGEMヘッダ5バイト分のデータが送信できず、16バイトのうち11バイトのデータしか送信できず通信品質が劣化するという現象が発生する。
もちろん、後述するように、この送信出来なかった5バイトのデータを次のDBA周期で処理する構成にすれば送信可能である。しかし、データの送信遅延が大きくなってしまうので、VoIP等のリアルタイム性を要求されるケースでは通信品質の点から使ってもらえないということも起こりうる。
フラグメンテーション発生が予測されるTCONTに対してGEMヘッダ追加を考慮した帯域をDBAで与えることが考えられるが、一般のDBAは、各ONUから通知されるキュー長情報に基づいてDBA周期毎に各TCONTに送信を許可するデータ長が変更される。すなわち、どのTCONTにフラグメンテーションが発生するかを事前に予測することは困難であり、DBA周期毎にフラグメンテーションの判定する必要がある。
このため本発明のPONにおいて、OLT1は、DBAで決められたあるTCONTの送信許可がグラント周期を跨りフラグメントが発生するような場合、後のグラント周期のデータに付加しなければならないGEMヘッダの5バイトを加算して該TCONTへ送信許可を与えるように構成したものである。以下、更に図面を用いて本発明のPON,OLTの構成と動作、ならびに、その運用方法(帯域割り当て方法)を詳細に説明する。
図6は、本発明のPONで用いるOLTの構成例を示すブロック構成図である。
OLT1は、装置全体の動作を管理する制御ボード603と、ネットワークに接続されて信号の送受信を行う複数のネットワークインタフェースボード600〜602とで構成した。ここで、制御ボード603は、CPU608とメモリ609とを備え、HUB610を介して各ネットワークインタフェースボード600〜602制御する。また、ネットワークインタフェースボード600〜602の夫々は、ONU10との間で光信号の送受信を行う光信号IF(インタフェース)部606と、インターネット等の上位網18との間で信号の送受信を行う網IF(インタフェース)部607と、ONU10と上位網18との間での信号の送受信に必要な処理を行うCPU604とメモリ605を備えた。以下で説明する各種の動作・運用方法は、メモリ605に格納されたプログラムをCPU604が実行するものである。もちろん、これらの機能を必要に応じて各処理に特化した専用のハードウェア(LSI等)により処理を実行しても良い。また、OLT1のハードウェア構成は、上記説明に限られることなく適宜必要に応じて様々な実装が行われて良い。
図7は、OLTに備えたネットワークインタフェースボードの構成例を示すブロック構成図である。
下りデータバッファ701は、上位網18から網IF部607を介して受信したデータを一時的に蓄える。下り信号処理部702は、上位網18からの光信号をONU10に中継するために必要な処理を行う。E/O変換部703は、電気信号を光信号に変換して、光信号IF部606を介してONUに光信号(下り信号)を送信する。O/E変換部704は、ONU10から光信号IF部606を介して受信した光信号を電気信号に変換する。上り信号処理部705は、ONU10からの信号を上位網18に中継するために必要な処理を行う。上りデータバッファ706は、上位網18へ網IF部607を介して送信するデータを一時的に蓄える。制御部700は、上述した各機能ブロックと接続され、複数のONU10と通信(監視・制御等)を行うための必要な各種処理を実行したり、上位網18とONU10との間の信号を中継する機能を有する。
DBA処理部707は、あらかじめ定められたDBA周期毎(本実施例では0.5m秒周期)に、該周期内でOLTが収容した複数のONU10(TCONT)の夫々にどれだけの通信帯域を割り当てるかを決定する動的帯域割当処理を行なう。この通信帯域は、1つのDBA周期中に送信できる総バイト長内で、どれだけのバイト長を各ONU10(TCONT)割り当てるかを示している。レンジング処理部708は、OLT1がONU10とのデータ送受信に先立って、各ONUに距離測定に関するレンジング信号を送信し、当該信号に対する返答を受信するまでの時間を測定することでOLT1と各ONU10との間の距離を測定し、各ONU10からOLT1への信号が衝突・干渉しないよう送信する信号の遅延時間を調整する。OLT1が送信遅延時間を各ONU10に通知すると、各ONU10は、OLT1からDBAで指定されたデータの送信を許可されたタイミング(グラント)に通知された送信遅延時間を加えてデータを送信する。データ送信許可部709は、DBA処理部707が決定した各ONU10へ許可する送信データのバイト長に基づき、各ONU10があるグラント周期においてデータ送信を開始すべきタイミングStart(図2:28)と送信を終了すべきタイミングEnd(図2:29)とをそれぞれバイト長で決定する。すなわち、グラントを指示する。記憶部710は、制御部700の処理に必要な情報を記憶するメモリである。尚、制御部700は、PONに備えた監視制御部(例えば、PCで構成した保守端末)と通信を行い、予め制御に必要な制御パラメータ(例えば、ONUの加入条件、契約トラヒック等)を制御部に設定しておいたり、保守者の要求に基づいて監視情報(例えば、障害発生状況や各ONUへの送信許可データ量等)を受信したりする構成とした。
図8は、OLTに備えた制御部の構成と動作例を説明する説明図である。
DBA処理部707は、上り信号に含まれるキュー長(図3:33)から各ONU10が保持する送信待ちデータ量(キュー長報告)を受信する。また、DBA処理部707には、ONUに許可可能なデータ量に関するパラメータが契約に基づき設定(固定帯域設定他)されている。DBA処理部707は、受信した送信待ちデータ量と契約で設定された通信帯域パラメータに基づいて、DBA周期毎に各ONU10に送信を許可するデータ量(通信帯域)をバイト長で決定し、各ONUのTCONT識別子であるTCONT−IDと割り当てたバイト長を対応付けた割当バイト長テーブル802を作成して記憶部710に格納する(図8:(1))。このテーブル802の構成例を図9に示す。割当てバイト長テーブル802は、TCONTの識別子であるTCONT−ID901と、DBAでTCONTに割り当てたバイト長902と、割当帯域種別903の情報を有する構成とした。ここで、割当帯域種別903とは、各TCONTに割り当てる帯域が、ONU10から通知されたキュー長に基づいてDBA周期毎に動的に割り当てられるのか、監視制御部からの帯域設定情報に基づいてキュー長にかかわらず固定的に割り当てられるかの区分を示すものである。
データ送信許可部709に備えた送信タイミング決定部801は、割当てバイト長テーブル802の内容を読み出して(図8:(2))、各TCONTに割り当てたバイト長902に対応するタイムスロットをグラント周期毎に割り当て、TCONT−IDと各グラント周期内に割り当てたバイト長を対応付けた送信タイミングテーブル803を作成して記憶部710に格納する(図8:(3))。ここで、データ送信許可部709に備えたフラグメンテーション検出部800が、あるTCONTに割り当てたバイト長のデータを複数のグラント周期のタイムスロットに分割して割り当てるフラグメンテーションの発生を検出すると、フラグメンテーションにより分割された後半のデータに新たに付加するGEMヘッダの長さ5バイト分のバイト長の加算を行うよう送信タイミング決定部801に指示し、該送信タイミング決定部801が加算後のバイト数に基づきタイムスロットの割り当てを行う構成である。また、送信タイミング決定部801は、作成した送信タイミングテーブル803の内容に従って、グラント指示22を含む送信許可メッセージを各ONU10に送信してデータの送信タイミングを通知する。このテーブル803の構成例を図10に示す。送信タイミングテーブル803は、TCONTの識別子であるTCONT−ID901と、あるグラント周期内でのデータ送信開始タイミングStart28を格納するStartエリア1002とデータ送信終了タイミングEnd29を格納するEndエリア1003を有する構成とした。
図11は、本発明のPONの動作例を示す説明図で、OLT1によってTCONTのデータ送信タイミングが割り当てられる様子を説明するものである。なお、同図ではグラント周期の第1周期および第2周期に跨る部分を拡大表示し、詳細に説明している。
同図でも、先の図5で示した状況と同様に、TCONT#2486に割り当てたデータを送信する際にフラグメントが発生してグラントの第1周期および第2周期に分割して割り当てられている。本発明では、先に説明したように、フラグメント発生に伴い追加する必要のあるGEMヘッダの5バイトを考慮した21+5=26バイトをTCONTに割り当てたバイト長として送信タイミング決定部801がグラントの割り当てを行うものである。すなわち、先に説明した従来のPONと同じ状況(図5参照)において本発明を適用した場合、OLT1は、DBAでTCONT#2486に21バイトを送信許可するデータ長52として決定する(図9:TCONT−IDが2486のバイト長参照)。しかし、OLT1では、フラグメンテーション検出部800がフラグメンテーションを検出したので、送信タイミング決定部801は、第1のグラント周期に15バイトのデータ62を与え、第2のグラント周期に残りの26−15=11バイトで新たに付加されたGEMヘッダを含むデータ63を与えるように動作する(図10:第1周期最後のTCONT−IDが2486および第2周期最初のTCONT−IDが2486のStartとEndの値参照)。したがって、本発明によれば、従来のPONのようにフラグメントによって16バイトのうち11バイトのデータしか送信できないという状態は発生せず、全16バイトのデータが確実に送れるので通信品質が劣化が発生しない。
更に図面を用いて本発明のPONの構成と動作について詳細に説明する。
図12は、OLT1の制御部700の動作例を示す動作フロー図である。
先ず、制御部700のデータ送信許可部709は、DBA周期内で各ONU10のTCONTからの送信待ちのデータ量であるキュー長(図3:22、図4:Report)を受信し(1201)すると、このキュー長と予め監視制御部から設定された契約パラメータの値に基づいて、次の0.5m秒のDBA周期において各ONU10のTCONTに送信を許可するデータ量をバイト長で決定(DBA処理)して、当該バイト長を記憶部710の割当てバイト長テーブル802に格納する(1202)。
次に、データ送信許可部709は、割当てバイト長テーブル802に格納されたバイト長(図9:902)を参照し、各TCONTに対してグラント周期内でデータを送信させるタイムスロットの決定を行い、送信タイミングテーブル803の値を生成する。この時、フラグメンテーション検出部800が各TCONTのフラグメンテーションの有無を検出し、フラグメンテーションが発生するTCONTについては、フラグメンテーションによる分割後のパケットに新たに付加するGEMヘッダの5バイトを加算したバイト長に基づき、送信タイミング決定部801がグラント周期内でデータを送信させるタイムスロットの決定(送信タイミングまたはグラント決定)を行い送信タイミングテーブル803の値を生成する(1203)。
そして、送信タイミング決定部801は、決定した内容に従って、グラント指示22(US Bandwidth MAP)を含む送信許可メッセージを各ONU10に送信してデータの送信タイミングを通知する(1204)。
図13も制御部の動作例を示す動作フロー図で、図12のステップ1203の構成例を詳細に説明するものである。すなわち、同図は、割当バイト長テーブル802(図9)を読み出し、各TCONTに対してデータを送信させるタイムスロットの決定を行い、送信タイミングテーブル803(図10)を生成する動作例を詳細に示すものである。
本実施例の送信タイミング決定部801は、TCONT−IDの若い順序でDBA周期内にデータを詰めていくように送信タイミングを決める構成とした。したがって、TCONT−IDが0のTCONTから制御を始める(1301)。
まず、送信タイミングテーブル803を参照して、バーストオーバヘッド(図3:36)とガードタイム(図3:38)の長さを加算した値を1つ前のTCONTに与えたEnd値に加算してTCONTのStart値を生成する。ここで加算する値は、PONで予め決めてある固定値であり、本実施例では12バイトとした。このStart値は送信タイミングテーブル803に格納される(1302)。尚、TCONTが各グラント周期の先頭に来るものであると、このStart値は1つ前のTCONTのEnd値に12バイトを加算した値ではなく、グラント周期の先頭である0バイトの値に12バイトを加算した12となる。
次に、送信タイミング決定部801は、生成したStrat値に、割当バイト長テーブル802をから得たバイト長902を加算してEnd値を生成する(1303)。そして、グラント周期内での残りバイト数を計算する(1304)。具体的には、生成したEnd値からグラント周期で送信できるデータの数を減算する。本実施例の場合は、先にも示したように上り信号の速度が約1.2Gbit/秒なので、125μ秒のグラント周期内で送信できるデータの数は19440バイトとなる。この値は、PONの固定値で、使用する信号の速度とグラント周期の選び方で値は変わるものである。
続いて、フラグメンテーション検出部800は、フラグメンテーションの有無を検出する。具体的には、ステップ1304で計算した残りバイト数が所定の値以下かどうかを判定する(1305)。残りバイト数が正の数であれば、グラント周期(フレーム)の境界19440バイトを越えておりフラグメンテーションが発生すると判定できる。この場合、以下の処理により送信タイミング決定部801は、フラグメンテーションで追加するGEMヘッダの5バイトを加算したバイト長で送信タイミングの決定をやり直す。また、上記判定で残りバイト数が0又は負の値であればフラグメンテーションは発生しないので次の処理に進む。
送信タイミング決定のやり直し手順は以下の通りである。まず、計算中のTCONTに対するEnd値をグラント周期で送信できるデータの数である19440に設定する(1306)。これで、フラグメンテーションによって分割されたパケットの最初のパケット送信タイミングが決定する。続いて、分割されたパケットの残りデータの送信タイミングを決定する。具体的には、残りデータは次のグラント周期の先頭で送るように送信タイミングが決められるので、送信タイミングテーブル803の次グラント周期に対応して同じICONT−IDのエントリーを生成し(先に説明した例であれば、TCONT−IDが2486のものを生成し)、そのStart値をグラント周期の最初のTCONTに与える値とする。本実施例であれば、先に説明したように、Start値を12とする(1307)。そして、同エントリーのEnd値をStart値+TCONTで分割された後の残りデータのバイト数+新たに付加するGEMヘッダ長の5バイトとして生成する(1308)。すなわち、ここでフラグメンテーションによる付加GEMヘッダ分の5バイトの加算が完了する。
その後、送信タイミングを計算したTCONTが最後のTCONTであるかを判定し(1309)、最後であれば送信タイミングテーブル803の生成処理を終了し、最後でなければTCONT−IDを1つ加算して(1310)、再び上記処理を行う。
上記動作を図9〜図11でも示したTCONTを例にとって説明すると、TCONT#2485のEnd値が19413なので、この値に12バイトを加算した19426をTCONT#2486のStart値として生成する。続いて、割り当てバイト長テーブル802に格納されたTCONT#2486のバイト長は21バイトであるので、この21を加算したEnd値は19447と計算される。ここで残りバイトを計算すると、残りバイト=19447−19440=7バイトと正の値であり、TCONT#2486のデータ送信時にフラグメンテーションが発生すると判定される。したがって、分割するパケットでグラント第1周期で送信する先のパケットのEnd値を19440とする。さらに、分割したパケットの後のパケットをグラント第2周期で送るように、送信タイミングテーブル803中のグラント第2周期にもう1つTCONT#2486のエントリーを生成し、Start値に12を設定する。そしてEnd値としては、Start値の12にTCONT2486で送り残したバイト数の6とGEMヘッダの5バイトを加算した23を生成する。こうしてグラント第1周期で15バイト、グラント第2周期で11バイトの26バイトの割り当てが完了し、フラグメンテーションが発生しても元のデータ16バイトが送信できるようになった。
なお、従来のPONのフラグメンテーションのやり方では、TCONT#3076でもグラント第2周期と第3周期に跨ってフラグメンテーションが発生していたが、本発明のPONでは、フラグメンテーションが発生せずにTCONT#3076のエントリーはグラント第3周期にのみ存在する構成になる。この理由は以下の通りである。TCONT#2486へ5バイトの加算を行った結果、続くTCONTへの割り当てバイトが順次シフトしている。このため、TCONT#3075のEnd値が19427になっている。この時点で、グラント第2周期には19440−19427=13バイトの領域しか残されていない。Endの後には、先に説明したように12バイトのバーストオーバヘッドとガードタイムを設けなければならず、これらを考慮すると残りは1バイトであり5バイトのGEMヘッダすら遅れない。したがって、グラント第2周期の残り13バイトは空き領域とし、TCONT#3076の送信タイミングはグラント第3周期から割り当てを行っている。すなわち、本発明のPONでは、図13のステップ1305で負の値が検出されても、バイト数が所定の値(本実施例なら12+5の17)以下であると、フラグメンテーションを行なわずに該TCONTの送信タイミングを次のグラント周期に遅らせるように構成した。
本発明によれば、従来のPONのようにDBAで決められた送信データの一部がフラグメントによって発生するGEMヘッダの影響で送信できない、あるいは、次のDBA周期まで待たされて遅延が発生する等の影響による通信品質劣化が発生しない。
上記実施例では、データ送信許可部709が送信タイミングテーブル803を作成中にフラグメンテ―ションの有無を判定し、同じDBA周期内でフラグメンテーションによって付加しなければならないGEMヘッダ分の5バイトを加算していた。一方、代案としては、フラグメンテーションに伴うバイト数の加算を行わずに送信タイミングの割り当て(グラント発行)を行い、該グラントに基づく上り信号の受信時にOLTないしONUがフラグメンテーションに伴い送信できなかったデータのバイト数を検出し、次のDBA周期で前回のDBA周期で送れなかったデータを送る方法も考えられる。この場合、先にも説明したように、データの遅延が発生するが、リアルタイム性を求められないサービスであれば、以下で説明する構成や制御方法でも構わない。
以下では、図5で説明した状態と同じ状態に別の実施例を適用する場合の構成と動作を説明する。
最初のDBA周期で送信が許可されたTCONT#2486のデータ量は16バイトのデータにGEMヘッダの5バイトを加えた21バイトである。これがフラグメンテーションによって、グラント第1周期に15バイト(GEMヘッダ5バイトとデータ10バイト)とグラント第2周期に6バイト(GEMヘッダ5バイトとデータ1バイト)に分割され、このDBA周期で送信できなかったデータがGEMヘッダ分の5バイト発生する。本発明のOLTでは、次のDBA周期において、本来このDBA周期で送信すべきTCONT#2486の21バイト(GEMヘッダ5バイトとデータ16バイト)に加え、前のDBA周期で送れなかった5バイトのデータもGEMヘッダつけたTCONT#2486のパケットとして送信を許可する構成としたものである。すなわち、GEMヘッダ5バイトとデータ5バイトからなる10バイトのパケットを次のDBA周期で送るようにしたものである。
図14は、本実施例で使用した割当バイト長テーブルの別の構成例を示すメモリ構成図である。先に説明したメモリ構成図(図9)との違いは、前のDBA周期でフラグメンテーションによって送信できなかったデータも今回のDBA周期で送信できるように該送信できなかったデータとGEMヘッダを考慮した加算バイト1601も記憶させた点である。具体的には、GEMヘッダ5バイトと前のDBA周期で送信できなかったデータ5バイトからなる10バイトで、前回のDBA周期においてフラグメンテーションが発生したTCONTであるTCONT#2486とTCONT#3076に加算バイトが入る。尚、前回のDBA周期で送信できなかったデータ(5バイト)を今回のDBA周期で本来送るべきデータは別のパケットとて扱われるべきものである。このため、送信できなかったデータ送るには、該データ用のGEMヘッダ(5バイト)が別途必要になるため、加算バイトが10バイトになる。
図15は、本実施例で使用した送信タイミングテーブルの別の構成例を示すメモリ構成図である。先に説明したメモリ構成図(図10)との違いは、前のDBA周期で送信できなかったデータを今回のDBA周期で送れるように割当てバイト長テーブル802‘に加算バイト1601も格納されているので、今回のDBA周期での各TCONTに対するグラント周期でのグラント発生においては、この加算バイトも考慮したグラントが生成され送信タイミングテーブル803に格納されるものである。具体的には、加算バイトに入れられた10バイトと今回のDBA周期で元々送られるべき21バイトの計31バイトがTCONT#2486に与えられ、この31バイトのデータに対して今回のDBA周期内でのグラント周期内でグラントが発行される構成である。
図16は、本発明のPONの別の動作例を示す説明図で、上記代案に基づくOLT1によってTCONTのデータ送信タイミングが割り当てられる様子を説明するものである。なお、同図でもグラント周期の第1周期および第2周期に跨る部分を拡大表示し、詳細に説明している。OLT1の制御部700の詳細動作は後述するが、図5に示した状態と同じ状態で本実施例のPONを用いた場合の動作を説明する。
先の実施例と同様に制御部700が割当てバイト長テーブル802‘を読みだして動作することで各TCONTに対するグラントの決定と送信タイミングテーブル803の生成が行なわれる。同図の例では、TCONT#2486の31バイト(図16:52’)については、グラント第1周期にStartが19426でEndが19440の16バイト(図16:TCONT#2468−1)、グラント第2周期にStartが12でEndが26の15バイト(図16:TCONT#2486−2)が割り当てられた。尚、グラント第1周期の16バイトには、前のDBAで送信できなかった5バイトのデータとGEMヘッダ5バイトからなる加算データ10バイト(図16:62‘−1)と、今回のDBAで送るべきデータ1バイトとGEMヘッダ5バイトからなる6バイトにフラグメンテーションで分割された最初のパケット(図16:62’−2)が入り、グラント第2周期の15バイトには、GEMヘッダ5バイトと10バイトのデータからなるフラグメンテーションで分割された後のパケット(図16:63‘)が入るように制御される。上記説明では、今回のDBA周期においてもTCONT#2486のデータについてフラグメンテーションが発生して、再度送信できないデータ5バイトが発生してしまう説明になったが、通常の運用においては、各ONU10(TCONT)からのキュー長33で示される送信待ちデータ量が動的に変わっていくので、同じTCONTであってもDBA周期が変わるとグラントが発生する位置も変わるので、複数のDBA周期で同じTCONTに連続してフラグメンテーションが発生してデータが遅れない状態が続くことは殆どなく実用上は問題ない。
図17は、OLT1の制御部700の別の動作例を示す動作フロー図で、上記代案を実行する場合の動作を示している。
先ず、制御部700のデータ送信許可部709は、DBA周期内で各ONU10のTCONTからの送信待ちのデータ量であるキュー長(図3:22、図4:Report)を受信し(1201)すると、このキュー長と予め監視制御部から設定された契約パラメータの値に基づいて、次の0.5m秒のDBA周期において各ONU10のTCONTに送信を許可するデータ量をバイト長で決定(DBA処理)して、当該バイト長を記憶部710の割当てバイト長テーブル802に格納する(1202)。
次に、フラグメンテーション検出部800は、後述する方法等を用いて、上り信号でのフラグメンテーション発生有無を判定する(1801)。ここで、フラグメンテーション発生時は、割当バイト長テーブル802‘のフラグメンテーション発生TCONTに対応した加算バイト長1601に10バイト(フラグメントで送信できない5バイトとGEMヘッダ5バイト)の値を格納する(1802)。
以後、データ送信許可部709は、割当てバイト長テーブル802に格納されたバイト長(図14のバイト長902と加算バイト長1601の合計)を参照し、各TCONTに対してグラント周期内でデータを送信させるタイムスロットの決定(グラント発行)を行い、送信タイミングテーブル803の値を生成する(1803)。このタイムスロットの決定は、図5で説明した動作と略同じで、先の実施例のようなフラグメンテーション発生に伴う同一DBA周期内での5バイト加算は行なわない。その代わりに割当てバイト長テーブル802‘に加算バイト長を格納して、次のDBA周期でこの加算バイトも考慮したグラントの発行を行なうものである。
そして、送信タイミング決定部801は、決定した内容に従って、グラント指示22(US Bandwidth MAP)を含む送信許可メッセージを各ONU10に送信してデータの送信タイミングを通知する(1204)。
図18は、本発明のPONが実施するフラグメンテーション判定処理の一例を示した動作フロー図である。
PONフレーム(図3:バーストデータ37)を受信すると(2001)、該フレームのヘッダ(図3:GEMヘッダ34)を参照する(2002)。ヘッダ内のペイロードタイプ情報から当該フレームがイーサネット(登録商標)フレームの途中なのか終了なのかが判断できるため、これによりフラグメント有無を判定する(2004)。具体的には、途中であればフラグメンテーション有と判定される。フラグメンテーション有りの場合、ヘッダ内のPort−ID情報を取得し(2005)、ID参照テーブル(図示せず)を参照し対応するTCONT IDを取得し(2006)、当該TCONT宛のグラントを加算する要求を行う(2007)。
図19もフラグメンテーション判定処理の別の実施例を示した動作フロー図である。
この方法は、各TCONTについてグラントを用いて割当てられたバイト長と、同じTCONTに属するイーサネットフレームの個数および総バイト長をOLT内部で上り信号からGEMヘッダを削除してイーサネットフレームを次段へ転送する際に計数し、これらの比較によりフラグメンテーションの発生をTCONT毎に判定するものである。
一例を挙げると、あるTCONTに0.5m秒周期で21バイトのグラントが与えられている場合、そのTCONTに属するイーサネットフレームの0.5ミリ秒周期内で計数されたイーサネットフレーム数が1で総バイト数が16バイトであると、16バイトからなる1つのイーサネットフレームに5バイトのGEMヘッダが付加され、21バイトのグラントによりフラグメントが発生せずに上り伝送が行われたと判断される。他方、同じく21バイトのグラントが与えられた場合でも、周期内で計数されたイーサネットフレーム数が2で計数されたイーサネットフレームの総バイト数が11バイトであれば、2つのイーサネットフレームにそれぞれ5バイトのGEMヘッダ(計10バイト)が付加されて、21バイトのグラントが2つにフラグメントされて与えられたことが判断できる。ここで、グラントで与えられた21バイト長から5バイト長のGEMヘッダ1個分および上記計数された11バイトのイーサネットフレームの総バイト数を引いた5バイトが不足している帯域である。この5バイトのイーサネット信号のための帯域を次回グラント発行の際に余分に与えるようにするものである。
具体的には、PONフレームを受信すると(2101)、イーサネットフレームの終端を行う(2102)。ここで、DBA周期内のイーサネットフレームのフレーム長を合計する(2103)。さらに、GEMヘッダ長5バイトを加算する(2104)。一方、グラントにより与えられた帯域のバイト数からステップ2104で求めたバイト数を引いた値を求める(2105)。この値がフラグメンテーションによって余分に使用された帯域なので、次回のDBA処理において、この値分のグラント加算要求を行う(2106)。
図22もフラグメンテーション判定処理の別の実施例を示した動作フロー図である。この例では、ONUが与えられたグラントに自データをマッピングしてOLTに送信する際に、発生したフラグメンテーションの回数を記憶する機能を有し、OLTはONUに記憶されているフラグメントの発生回数を読み出す機能を備えることで実現する。
ONU10は、OLT1からのキュー長送信要求を監視し(2201)、送信要求があった場合、送信待ちのデータ量に対応したキュー長(A)を取得する(2202)。本実施例では、ONU10にもフラグメンテーション判定部(図示せず)を備えてフラグメンテーションの発生回数(B)を取得し(2203)、キュー長加算部(図示せず)でキュー長情報として実際のキュー長Aにフラグメンテーション発生回数Bとヘッダ長の積を加算し(2204)、その値をPONフレーム生成部に通知する(2205)。OLTではONU10からの応答でフラグメンテーションの回数がわかるので、フラグメンテーションが発生していると、次のDBA周期でのフラグメンテーション発生に伴う不足バイトを送信するようグラントを発行する。
上記代案の構成と動作によれば、フラグメンテーションがグラント周期を跨って発生する場合のみならず、TCONTからの上り信号のパケット長が変化したためにフラグメンテーションが発生する場合にも効果がある。一例を挙げると、VoIPでは、音声符号化方法や符号化周期が端末相互のネゴシエーションで変更されることが許されており、OLTが想定していたような16バイトのパケットがONUに収容された端末間のネゴシエーションによって32バイトに変更されると、もともと与えていた21バイトのグラント内に収容しきれず、フラグメンテーションが発生する場合があり得る。このような場合、最初に説明した実施例の構成と動作では、OLTが帯域を割り当てる際にグラント周期の跨りのみを監視しているため、上記要因のフラグメンテーションは検知できないが、後述した代案の構成と方法では、フラグメンテーションの検出と処理を、例えば(a)OLTが受信したGEMヘッダ内のペイロードタイプを参照する方法、(b)OLTが受信したペイロード長の合計値と与えたグラント長と比較する方法、(c)ONUがフラグメンテーションの発生を検出してOLTにキュー長を伝える際にGEMヘッダ長をフラグメンテーション回数分追加してレポートする方法によって行うことができる。したがって、上記要因によるフラグメンテーションの発生を検知して最適な帯域を与えることができる。
以上、図面を用いて詳細に説明したように、本発明のPONおよびその運用方法によれば、フラグメンテーションが発生しても帯域不足が発生しない、すなわち通信品質が劣化しない、ユーザに満足いく通信サービスを提供することができるようになる。
本発明のPONを用いた光アクセス網の構成例を示す網構成図。 OLTからONUへの光信号(下り信号)の構成例を示すフレーム構成図。 ONUからOLTへの光信号(上り信号)の構成例を示す信号構成図。 PONの動作例を示すシーケンス図。 PONの動作例を示した説明図。 本発明のOLTの構成例を示すブロック構成図。 同じく、OLTの一部詳細な構成例を示すブロック構成図。 同じく、制御部の構成と動作例を説明する説明図。 同じく、割当バイト長テーブルの構成例を示すメモリ構成図。 同じく、送信タイミングテーブルの構成例を示すメモリ構成図。 本発明のPONの動作例を示した説明図。 本発明のOLT制御部の動作例を示す動作フロー図。 同じく、タイムスロット割当て処理の動作例を示す動作フロー図。 本発明の割当バイト長テーブルの別の構成例を示すメモリ構成図。 同じく、送信タイミングテーブルの別の構成例を示すメモリ構成図。 同じく、本発明のPONの別の動作例を示した説明図。 同じく、本発明のOLT制御部の別の動作例を示す動作フロー図。 本発明のフラグメンテーション検出の一例を示す動作フロー図。 同じく、フラグメンテーション検出の別の例を示す動作フロー図。 同じく、フラグメンテーション検出の他の例を示す動作フロー図。
符号の説明
1 OLT
10 ONU
700 制御部
707 DBA処理部
709 データ送信許可部
800 フラグメント検出部
801 送信タイミング決定部
802 割当てバイト長テーブル
803 送信タイミングテーブル

Claims (14)

  1. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムであって、
    前記親局は、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決める帯域制御部と、
    前記決定された信号の量に基づき、前記第1の周期より短い複数の第2の周期の何れかで該信号を送信する子局の送信タイミングを決める送信タイミング制御部とを備え、
    前記親局の制御部は、前記信号を前記複数の第2の周期に分割して送信させる場合、該分割に伴い付加すべき信号の量に基づき、前記送信タイミング制御部を制御して、前記第1の周期内で前記許可した信号を送信することを特徴とする受動光網システム。
  2. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムであって、
    前記親局は、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決める帯域制御部と、
    前記決定された信号の量に基づき、前記第1の周期より短い複数の第2の周期の何れかで該信号を送信する子局の送信タイミングを決める送信タイミング制御部と、
    前記信号を前記複数の第2の周期に分割して送信させる場合、該分割に伴い付加すべき信号の量に基づき、前記送信タイミング制御部を制御して、前記許可した信号を前記第1の周期内で送信させる制御部とを備えたことを特徴とする受動光網システム。
  3. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムであって、
    前記親局は、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決める帯域制御部と、
    前記決定された信号の量に基づき、前記第1の周期より短い複数の第2の周期の何れかで該信号を送信する子局の送信タイミングを決める送信タイミング制御部とを備え、
    前記親局の制御部は、前記信号を前記複数の第2の周期に分割して送信させる場合、該分割に伴い付加すべき信号により前記送信許可した信号の一部を送信できなくなると、前記帯域制御部および前記送信タイミング制御部両者を制御して、次の第1の周期内で該送信できなかった信号も送信することを特徴とする受動光網システム。
  4. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムであって、
    前記親局は、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決める帯域制御部と、
    前記決定された信号の量に基づき、前記第1の周期より短い複数の第2の周期の何れかで該信号を送信する子局の送信タイミングを決める送信タイミング制御部とを備え、
    前記信号を前記複数の第2の周期に分割して送信させる場合、該分割に伴い付加すべき信号により前記送信許可した信号の一部を送信できなくなると、前記帯域制御部および前記送信タイミング制御部両者を制御して、次の第1の周期内で該送信できなかった信号も送信させる制御部とを備えたことを特徴とする受動光網システム。
  5. 上記制御部は、上記複数の子局の夫々に対して上記送信許可する信号の量と、該信号を送信するために決定した送信タイミングとを、少なくとも上記第1の周期の単位で格納する記憶部を備え、上記帯域制御部と送信タイミング制御部が該記憶部をアクセスして信号の送信を制御することを特徴とする請求項1乃至4いずれかに記載の受動光網システム。
  6. 上記制御部は、上記分割の発生を検出する分割検出部も備えたことを特徴とする請求項5に記載の受動光網システム。
  7. 上記制御部は、上記親局が決めた送信タイミングの長さと、上記複数の子局から受信した信号に含まれた所定の信号の長さを比較して、上記分割の発生を判定することを特徴とする請求項1乃至4のいずれかに記載の受動光網システム。
  8. 上記制御部は、上記複数の子局から受信した信号に含まれた所定の信号の内容に基づき上記分割の発生を判定することを特徴とする請求項1乃至4のいずれかに記載の受動光網システム。
  9. 上記複数の子局の夫々に上記分割の発生を検出する手段を備え、該検出手段の出力を上記親局の制御部に通知することを特徴とする請求項1乃至4のいずれかに記載の受動光網システム。
  10. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムの運用方法であって、
    前記親局により、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決め、
    前記第1の周期より短い複数の第2の周期で前記信号を分割して送信させる場合、該分割に伴い付加すべき信号の量に基づき、前記第1の周期内で前記許可した信号を送信するよう該複数の第2の周期での前記信号の送信タイミングを前記親局により決定することを特徴とする受動光網システムの運用方法。
  11. 親局と複数の子局とが光スプリッタおよび複数の光ファイバから成る光ファイバ網で接続され、前記複数の子局の要求に基づき前記親局が前記複数の子局の夫々から前記親局に送信する信号の量とタイミングとを決め、前記複数の子局からの信号を前記光ファイバ網で多重して前記親局が受信する受動光網システムの運用方法であって、
    前記親局により、前記複数の子局の要求に基づき該子局の夫々に送信許可する信号の量を第1の周期毎に決め、
    前記第1の周期より短い複数の第2の周期で前記信号を分割して送信させる場合、該分割に伴い付加すべき信号により前記送信許可した信号の一部が送信できなくなると、前記親局により、当該送信できない信号の一部を次の第1の周期で送信許可する信号に含めて前記次の第1の周期で送信許可する信号の量を決め、当該決定した信号の量に基づき、前記次の第1の周期内で前記許可した信号を送信するよう前記複数の第2の周期での前記信号の送信タイミングを決定することを特徴とする受動光網システムの運用方法。
  12. 上記親局が決めた送信タイミングの長さと、上記複数の子局から受信した信号に含まれた所定の信号の長さを比較して、上記分割の発生を判定することを特徴とする請求項10または11のいずれかに記載の受動光網システムの運用方法。
  13. 上記複数の子局から受信した信号に含まれた所定の信号の内容に基づき上記分割の発生を判定することを特徴とする請求項10または11いずれかに記載の受動光網システムの運用方法
  14. 上記複数の子局の夫々が上記分割の発生を検出すると、該検出を上記親局の制御部に通知することを特徴とする請求項10または11いずれかに記載の動光網システムの運用方法。
JP2008247083A 2008-09-26 2008-09-26 受動光網システムおよびその運用方法 Expired - Fee Related JP5094664B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008247083A JP5094664B2 (ja) 2008-09-26 2008-09-26 受動光網システムおよびその運用方法
US12/388,104 US8184976B2 (en) 2008-09-26 2009-02-18 Passive optical network system and operating method thereof
CN200910008308.XA CN101686421B (zh) 2008-09-26 2009-02-20 无源光网络系统及其应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247083A JP5094664B2 (ja) 2008-09-26 2008-09-26 受動光網システムおよびその運用方法

Publications (2)

Publication Number Publication Date
JP2010081278A JP2010081278A (ja) 2010-04-08
JP5094664B2 true JP5094664B2 (ja) 2012-12-12

Family

ID=42049328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247083A Expired - Fee Related JP5094664B2 (ja) 2008-09-26 2008-09-26 受動光網システムおよびその運用方法

Country Status (3)

Country Link
US (1) US8184976B2 (ja)
JP (1) JP5094664B2 (ja)
CN (1) CN101686421B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096969A1 (zh) * 2009-02-27 2010-09-02 华为技术有限公司 无源光网络中发送上行传送帧的方法及设备
CN101583056B (zh) * 2009-06-12 2012-10-03 华为技术有限公司 带宽处理方法、网络装置及网络系统
CN102075240B (zh) * 2009-11-24 2015-06-03 中兴通讯股份有限公司 一种无源光网络中光网络单元的测距方法及系统
CN102118659B (zh) * 2009-12-30 2015-01-28 中兴通讯股份有限公司 一种无源光网络中的节能方法和系统
CN102549975B (zh) * 2010-01-28 2015-05-20 三菱电机株式会社 带宽控制方法、通信系统以及通信装置
JP5411805B2 (ja) * 2010-05-24 2014-02-12 株式会社日立製作所 受動光網システム及び送信光制御方法、光多重終端装置及び光網終端装置
US8666247B2 (en) * 2010-08-25 2014-03-04 Ciena Corporation Bandwidth defragmentation systems and methods in optical networks
US20130142514A1 (en) * 2011-12-02 2013-06-06 Futurewei Technologies, Inc. Apparatus and Method of Identifying a Transit Node in a Unified Optical-Coaxial Network
CN112087678B (zh) * 2019-06-14 2023-08-18 中兴通讯股份有限公司 带宽的分配、带宽的检查方法及装置
CN112653938A (zh) * 2019-10-12 2021-04-13 中兴通讯股份有限公司 带宽请求的发送方法及装置、存储介质、电子装置
CN117221770A (zh) * 2019-10-15 2023-12-12 华为技术有限公司 业务信号处理方法及设备
CN113905292A (zh) * 2020-07-06 2022-01-07 华为技术有限公司 发送数据的方法及装置
EP4002862A1 (en) * 2020-11-12 2022-05-25 Nokia Solutions and Networks Oy An optical line terminal and an optical network unit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1983877A (zh) * 2004-04-14 2007-06-20 烽火通信科技股份有限公司 基于以太网无源光网络上行链路带宽动态分配方法和装置
JP4555124B2 (ja) * 2005-03-04 2010-09-29 日本電気通信システム株式会社 光アクセスネットワークにおける同期方法、光スイッチ装置、センタ装置、リモート装置、光アクセスシステム、光アクセスネットワーク、プログラム、及び記録媒体
JP4639175B2 (ja) * 2006-10-12 2011-02-23 株式会社日立製作所 伝送装置
JP4416005B2 (ja) * 2007-05-09 2010-02-17 株式会社日立製作所 Ponシステムにおける動的帯域割当方式

Also Published As

Publication number Publication date
US8184976B2 (en) 2012-05-22
CN101686421A (zh) 2010-03-31
JP2010081278A (ja) 2010-04-08
US20100080558A1 (en) 2010-04-01
CN101686421B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5094664B2 (ja) 受動光網システムおよびその運用方法
JP4416005B2 (ja) Ponシステムにおける動的帯域割当方式
JP5216656B2 (ja) 受動光網システムおよびその運用方法
KR100462477B1 (ko) 이더넷 pon에서의 다지점제어 프로토콜 처리장치
JP5285766B2 (ja) 光多重終端装置、受動光網システム、波長割当て方法
EP2975810B1 (en) Method and system for improving bandwidth allocation efficiency
KR100450771B1 (ko) 이더넷 pon에 있어서 상향 데이터 전송 제어 방법 및그 장치
WO2014178375A1 (ja) 親局装置、子局装置、光通信システム、制御装置および帯域割当方法
KR100651364B1 (ko) 기가 비트 이더넷 수동 광 가입자망에서의 전송대역폭할당 방법
JP2010219978A (ja) 光伝送路終端装置、受動光網システムおよび帯域割当方法
EP2953297B1 (en) Optical-wireless access system
JP2020503798A (ja) データ通信システム、光加入者線終端装置、およびベースバンド装置
KR100640464B1 (ko) Oam 패킷 데이터 전송 방법 및 이를 위한 컨트롤멀티플렉서를 포함하는 이더넷 수동형광가입자망
KR100786527B1 (ko) 수동광분기망에서 맥을 위한 승인 요청 방법
JP3698210B2 (ja) パケット通信システム及びパケット通信方法及びパケット通信プログラム及びパケット通信プログラムを記録した記録媒体
KR100566294B1 (ko) 기가비트 이더넷 수동 광 가입자망에서 동적 대역폭할당방법
JP4877483B2 (ja) 送信割当て方法及び装置
KR100758784B1 (ko) 수동광분기망의 광대역국사장치에서의 맥 스케줄링 장치및 그 방법
JP5487293B2 (ja) 受動光網システムおよびその運用方法
JP4934618B2 (ja) Ponシステムおよびフレーム転送装置
KR100719896B1 (ko) Epon 시스템에서 적응적 리미티드 동적 대역 할당방법
WO2022269853A1 (ja) 帯域割り当て装置、加入者線端局装置、及び帯域割り当て方法
WO2022137286A1 (ja) 通信システム、通信装置、通信方法及びプログラム
JP2018093439A (ja) 光通信システム、子ノード及び光通信方法
CN117857952A (zh) 一种面向fttr场景的级联型无源光网络架构、装置及介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees