JP5094214B2 - Method for producing alumina sintered body - Google Patents

Method for producing alumina sintered body Download PDF

Info

Publication number
JP5094214B2
JP5094214B2 JP2007141785A JP2007141785A JP5094214B2 JP 5094214 B2 JP5094214 B2 JP 5094214B2 JP 2007141785 A JP2007141785 A JP 2007141785A JP 2007141785 A JP2007141785 A JP 2007141785A JP 5094214 B2 JP5094214 B2 JP 5094214B2
Authority
JP
Japan
Prior art keywords
alumina
sintered body
mold
slurry
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007141785A
Other languages
Japanese (ja)
Other versions
JP2008050251A (en
Inventor
誠 大崎
洋光 三島
康人 村元
明雄 福飯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007141785A priority Critical patent/JP5094214B2/en
Publication of JP2008050251A publication Critical patent/JP2008050251A/en
Application granted granted Critical
Publication of JP5094214B2 publication Critical patent/JP5094214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、アルミナ質焼結体中のアルミナ結晶粒子の配向性に関し、アルミナ結晶粒子の配向性を少なくし、焼成によって均一に収縮することが可能なアルミナ質焼結体の製造方法に関するものである。
The present invention relates to the orientation of the alumina crystal particles in the alumina sintered body, to reduce the orientation of the alumina crystal particles relates to the production how uniformly possible to shrink an alumina sintered body by firing Is.

従来から、セラミックスは多くの分野で利用されている。特にセラミックスの中でもアルミナ質焼結体は、他のセラミックスよりも比較的安価で得られ、優れた機械的,熱的,電気的特性および高い耐食性を有していることから、各産業分野で使用されているのが現状である。   Conventionally, ceramics are used in many fields. Among the ceramics, alumina-based sintered bodies are used in various industrial fields because they are obtained at a lower cost than other ceramics and have excellent mechanical, thermal, and electrical properties and high corrosion resistance. This is the current situation.

このアルミナ質焼結体の用途としては、小さな半導体用部品から大きな耐火物や半導体・液晶製造装置用部品まで様々なものがあり、セラミックメーカー各社では、製品の大きさに合わせて各種の製造方法にてアルミナ質焼結体を製品として製造している。   This alumina sintered body can be used for various applications ranging from small semiconductor parts to large refractories and semiconductor / liquid crystal manufacturing equipment parts. Alumina sintered body is manufactured as a product.

ところが、アルミナ質焼結体の1次原料粒子は、一般的に高いアスペクト比を有した扁平状粒子であるため、製造方法によってはその1次原料粒子が部分的に配向性を生じやすく、1次原料粒子に部分的な配向性が生じると、同じ焼結体内部で焼成工程での収縮方向や収縮率に差が生じる。このような収縮方向や収縮率に差が生じると、製品の大小を問わず、焼結体に内部応力が発生し、この内部応力が焼結体の強度を超えたり、また構造的に弱い部分に集中したりして、焼結体に亀裂や破損を生じるという問題があった。さらに、このアルミナ結晶粒子の配向性は、製品各部でその方向性にバラツキを持って発生することが多く、配向性を持った部分とそうでない部分、あるいは別の配向性を持った部分の間の収縮方向や収縮率の差が原因で内部応力が発生し、これにより焼結体に亀裂や破損を生じるという問題があった。特に、鋳込み成形法を用いて製造した製品については、アルミナ1次原料とバインダと分散剤と溶媒とを混合してスラリー化し、このスラリーを成形型に流し込むため、スラリーの流れに沿ってアルミナ結晶粒子が配向性を生じやすく、これが焼結体内部の応力発生の原因となり、その結果、焼結体に亀裂や破損が発生して製品が製造できないという問題があった。   However, since the primary raw material particles of the alumina sintered body are generally flat particles having a high aspect ratio, the primary raw material particles are likely to be partially oriented depending on the production method. When partial orientation occurs in the next raw material particles, a difference occurs in the shrinkage direction and shrinkage rate in the firing step within the same sintered body. If there is a difference between the shrinkage direction and shrinkage rate, internal stresses are generated in the sintered body, regardless of the size of the product, and this internal stress exceeds the strength of the sintered body or is structurally weak. There is a problem that the sintered body is cracked or broken. Furthermore, the orientation of the alumina crystal particles often occurs with a variation in the directionality of each part of the product, and between the part with orientation and the part with no orientation or the part with another orientation. Due to the difference in shrinkage direction and shrinkage rate, internal stress was generated, which caused a problem that the sintered body was cracked or broken. In particular, for products manufactured using the casting method, alumina primary materials, a binder, a dispersant, and a solvent are mixed to form a slurry, and this slurry is poured into a mold, so that alumina crystals are produced along the slurry flow. The particles are likely to be oriented, which causes the generation of stress inside the sintered body. As a result, there is a problem in that the sintered body is cracked or broken and the product cannot be manufactured.

この問題に対し、各セラミックメーカーでは、結晶粒子に配向性を生じさせないような製法や、逆に結晶粒子に配向性を持たせて製品内で収縮方向を一定にするという手法を用い、内部応力の発生を抑制あるいは制御し、アルミナ質焼結体に亀裂や破損が発生することを防止しようとしていた。   In response to this problem, each ceramic manufacturer uses a manufacturing method that does not cause the crystal grains to be oriented, and conversely, the crystal grains are oriented so that the direction of shrinkage is constant within the product. In order to prevent or control the generation of cracks, the alumina sintered body is prevented from being cracked or broken.

例えば、特許文献1には、α−アルミナ原料を単体あるいは一成分として含有するセラミックス焼結体用成形体であって、成形体表面のX線回折測定することにより得られるピーク強度を用いてI104/(I104+I030)として算出されるα−アルミナの結晶配向率が0.5〜0.8であり、α−アルミナ粒子が不規則に配列しており、成形体密度が最終的に得られる焼結体の理論密度に対して40%以上であるセラミックス焼結体用成形体が開示されており、その実施例には配向率=I006/I110の値が0.8〜1.2であるβ−アルミナ質焼結体の例が開示されている。そして、この発明によれば、成形体中のα−アルミナの粒子配向を所定の範囲になるように制御しているため、これを焼成しても焼成過程の影響はほとんどなく、焼成後の焼結体も粒子配向しにくくなる効果が得られることが開示されている。
特開平9−255413号公報
For example, Patent Document 1 discloses a molded body for a sintered ceramic body that contains an α-alumina raw material as a single element or as a component, and uses the peak intensity obtained by X-ray diffraction measurement of the surface of the molded body. Sintering in which α-alumina crystal orientation ratio calculated as 104 / (I 104 + I 030 ) is 0.5 to 0.8, α-alumina particles are irregularly arranged, and a compact density is finally obtained. A molded body for a sintered ceramic body having a density of 40% or more with respect to the theoretical density of the body is disclosed. In the examples, β-alumina having an orientation ratio = I 006 / I 110 of 0.8 to 1.2 An example of a sintered body is disclosed. And according to this invention, since the particle orientation of α-alumina in the molded body is controlled to be within a predetermined range, even if this is fired, there is almost no influence of the firing process, and the firing after firing is not affected. It is disclosed that the effect of making it difficult to orient the particles is also obtained.
JP-A-9-255413

しかしながら、特許文献1に記載の発明では、β−アルミナ質焼結体のX線回折チャート上の(006)面と(110)面とのピーク強度比から求められる配向率(I006/I110)が0.8〜1.2と高く、β−アルミナ質焼結体中では、c軸である(006)面へ多くのアルミナ結晶粒子が配向した状態となっている。このようなβ−アルミナ質焼結体では、前述のように、c軸方向の収縮とc軸に直角方向の収縮との収縮率に差を生じ、これが焼結体中で内部応力となって、構造的に応力集中の起こりやすい部分に作用し、焼結体に亀裂や破損を生じる可能性が高い。さらには、この配向率の値は、数値上では(006)面と(110)面とに配向するアルミナ結晶粒子の割合を表しているに過ぎず、実際には焼結体各部において配向率にバラツキがあり、これによっても応力が発生し、亀裂や破損の原因となり得る。 However, in the invention described in Patent Document 1, the orientation ratio (I 006 / I 110 ) determined from the peak intensity ratio between the (006) plane and the (110) plane on the X-ray diffraction chart of the β-alumina sintered body. ) Is as high as 0.8 to 1.2, and in the β-alumina sintered body, many alumina crystal grains are oriented to the (006) plane which is the c-axis. In such a β-alumina sintered body, as described above, there is a difference in the shrinkage rate between the shrinkage in the c-axis direction and the shrinkage in the direction perpendicular to the c-axis, and this becomes an internal stress in the sintered body. It acts on the part where stress concentration tends to occur structurally, and there is a high possibility that the sintered body will crack or break. Furthermore, the value of this orientation rate is merely a ratio of the alumina crystal particles oriented in the (006) plane and the (110) plane in terms of numerical values, and actually the orientation rate in each part of the sintered body. There is variation, which also generates stress, which can cause cracks and breakage.

また、特許文献1に記載の発明は長さが140mmで厚みが2.4mm程度の寸法の小型のβ−アルミナ質焼結体を製造する場合にのみ適用できるものであり、このような小型の焼結体ではアルミナ結晶粒子が配向することによって焼結体各部に生じる内部応力が小さく、焼結体の亀裂や破損の原因となりにくい。従って、β−アルミナ質焼結体のX線回折チャート上の(006)面と(110)面とのピーク強度比から求められる配向率(I006/I110)を0.8〜1.2と非常に高い値にしても亀裂や破損を生じにくいものと考えられる。しかしながら、この特許文献1に開示された配向率の範囲を、長さが1mを超えるようなアルミナ質焼結体に適用しようとすると、アルミナ結晶粒子の配向により各部に生じた内部応力差が極めて大きくなり、焼結体に亀裂や破損を生じてしまうという問題が発生する。 The invention described in Patent Document 1 is applicable only to the production of a small β-alumina sintered body having a length of 140 mm and a thickness of about 2.4 mm. In the bonded body, the internal stress generated in each part of the sintered body due to the orientation of the alumina crystal particles is small, and the sintered body is less likely to cause cracks or breakage. Therefore, the orientation ratio (I 006 / I 110 ) determined from the peak intensity ratio between the (006) plane and the (110) plane on the X-ray diffraction chart of the β-alumina sintered body is as high as 0.8 to 1.2. Even if it is a value, it is considered that cracks and breakage are less likely to occur. However, if the orientation ratio range disclosed in Patent Document 1 is applied to an alumina sintered body having a length exceeding 1 m, the internal stress difference generated in each part due to the orientation of the alumina crystal particles is extremely large. A problem arises that the sintered body is cracked or broken.

さらに、その他の方法として磁力を付与しながら成形を実施し、アルミナ結晶粒子の配向性を制御する方法も考えられるが、このような方法では、複雑かつ大型形状のアルミナ製品の製造は困難であり、内部に亀裂や破損を生じさせる原因となる内部応力を発生させる配向性を持たないアルミナ質焼結体が望まれていた。   Further, as another method, a method of controlling the orientation of the alumina crystal particles by performing molding while applying a magnetic force is conceivable. However, with such a method, it is difficult to manufacture a complex and large-sized alumina product. There has been a demand for an alumina sintered body having no orientation that generates internal stress that causes cracks and breakage inside.

本発明は、上記課題を解決すべく案出されたものであり、大型化が進められているセラミック部材である半導体または液晶製造装置用ステージ部材に好適な、亀裂や破損を生じさせる内部応力の発生の少ないアルミナ質焼結体の製造方法、特に鋳込み成形法を用いた製造方法を提供することを目的とする。
The present invention has been devised to solve the above problems, and is suitable for a semiconductor or liquid crystal manufacturing apparatus stage member which is a ceramic member whose size is being increased. method for producing a generator less alumina sintered body, and to provide a manufacturing method particularly using a casting molding method.

本発明のアルミナ質焼結体の製造方法は、中央部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110が0.02〜0.07の範囲内であるアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、スラリーを非吸液
性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状
態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、α−アルミナ質成形体を焼成することを特徴とするものである。
In the method for producing an alumina sintered body of the present invention, the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane in the X-ray diffraction chart of the surface and the cross section of the central portion is in the range of 0.02 to 0.07. And a primary raw material particle of α-alumina having an average particle size of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0, an emulsion binder, and a dispersant. Mixing with a solvent, α-alumina primary raw material particles have a particle volume fraction of 25 to 45% by volume , solidified or curable, and a slurry with a viscosity of 0.02 to 0.5 Pa · s. Pour into a liquid mold, heat the mold to 50 to 100 ° C., destroy the emulsion state of the binder to produce a solidified body, take out the solidified body from the mold and heat it. An α-alumina molded body obtained by evaporating and curing the solvent component After obtaining, it is characterized in firing the α- alumina formed body.

また、本発明のアルミナ質焼結体の製造方法は、端部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110が0.02〜0.5の範囲内である、棒状,筒状,板状,柱状等の長尺物のアルミナ質焼結体の製造方法
であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5
Pa・sのスラリーとし、スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃
に加熱して、前記バインダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形
体を得た後、α−アルミナ質成形体を焼成することを特徴とするものである。
In addition, in the method for producing an alumina sintered body of the present invention, the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane in the X-ray diffraction chart of the surface and cross section of the end is 0.02 to 0.5. Is a method for producing a long-sized alumina sintered body having a rod-like shape, a cylindrical shape, a plate-like shape, a column-like shape, etc., in which the average particle size is 0.5 to 2.0 μm and the particle size ratio is 1.5 to 2.0 Α-alumina primary raw material particles, a binder in an emulsion state, a dispersant, and a solvent are mixed so that the particle volume fraction of the α-alumina primary raw material particles is 25 to 45% by volume , and is solidified or curable. And the viscosity is 0.02 to 0.5
The slurry is Pa · s , and the slurry is poured into a non-liquid-absorbing mold, and the mold is 50 to 100 ° C.
To obtain an α-alumina molded body by destroying the emulsion state of the binder to produce a solidified body, removing the solidified body from the mold and heating to evaporate and cure the solvent component. Thereafter, the α-alumina shaped body is fired.

さらに、本発明のアルミナ質焼結体の製造方法は、中央部の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110がいずれも0.02〜0.07の範囲内であるアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、スラリーを非吸液性の成形型
へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状態を破壊さ
せて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、α−アルミナ質成形体を焼成することを特徴とするものである。
Furthermore, the method for producing an alumina sintered body of the present invention is based on the X-ray diffraction chart (006) of the center surface, the first cross section perpendicular to the surface, and the second cross section perpendicular to the surface and the first cross section. ) Plane and (110) plane peak intensity ratio I 006 / I 110 are both in the range of 0.02 to 0.07, and the average particle size is 0.5 to 2.0 μm. Α-alumina primary raw material particles having a particle size ratio of 1.5 to 2.0, an emulsion binder, a dispersant, and a solvent are mixed, and the particle volume fraction of the α-alumina primary raw material particles is 25 to 45 vol%. and then, in the solidifying or curing, viscosity and slurry 0.02~0.5Pa · s, the slurry is injected into the non-absorbent mold, heating the forming die to 50 to 100 ° C., the binder The emulsion state is broken to produce a solidified body, and the solidified form from the mold After obtaining the solvent component is evaporated cured α- alumina molded article by heating is taken out, and is characterized in firing the α- alumina formed body.

また、本発明のアルミナ質焼結体の製造方法は、端部の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110がいずれも0.02〜0.5の範囲内である
、棒状,筒状,板状,柱状等の長尺物のアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリー
とし、スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バ
インダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、α−アルミナ質成形体を焼成することを特徴とするものである。
Further, the method for producing an alumina sintered body of the present invention is based on the X-ray diffraction chart of the end surface, the first cross section perpendicular to the surface, and the second cross section perpendicular to the surface and the first cross section (006). ) Plane and (110) plane peak intensity ratio I 006 / I 110 are all in the range of 0.02 to 0.5. A production method comprising mixing α-alumina primary raw material particles having an average particle size of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0, an emulsion binder, a dispersant, and a solvent; The alumina primary raw material particle volume fraction is 25-45% by volume , solidified or curable, and the viscosity is 0.02-0.5 Pa · s , and the slurry is poured into a non-absorbing mold, The mold is heated to 50 to 100 ° C. to destroy the emulsion state of the binder and solidify. The solidified body is taken out from the mold and heated to evaporate and cure the solvent component to obtain an α-alumina molded body, and then the α-alumina molded body is fired. It is.

また、本発明のアルミナ質焼結体の製造方法は、上記いずれかの構成において、前記成形型の内面の少なくとも1面を、10mm以上の幅および1500mm以上の長さを有するものとすることを特徴とするものである。
In the method for producing an alumina sintered body according to the present invention, in any one of the above structures, at least one of the inner surfaces of the mold has a width of 10 mm or more and a length of 1500 mm or more. It is a feature.

本発明のアルミナ質焼結体の製造方法によれば、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、このスラリーを非吸液
性の成形型へ注入し、成形型を50〜100℃に加熱して、バインダのエマルジョン状態を破
壊させて固化体を作製し、成形型から固化体を取り出して加熱して溶媒成分を蒸発硬化さ
せてα−アルミナ質成形体を得た後、これを焼成することにより、スラリー中の原料粒子間の間隔を拡げて粒子間のファンデルワールス力等の相互作用を低減させることができ、かつスラリー粘度を低下させ、スラリー注入時にスラリーに作用するせん断応力を小さくすることが可能となる。これにより、スラリーを注入する際に、スラリーの流れ方向に沿って生じる粒子の配向性を抑制し、焼成工程において収縮率に差が発生するのを抑制できるので、内部応力がアルミナ質焼結体内部の応力集中しやすい箇所に集中して亀裂や破損が発生することを効果的に防止することができる。また、この製造方法により、アルミナ質焼結体をアルミナ結晶粒子の配向性を抑制したものにできる。
According to the method for producing an alumina sintered body of the present invention, α-alumina primary raw material particles having an average particle diameter of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0, an emulsion binder, and a dispersant Mixing with a solvent, α-alumina primary raw material particles have a particle volume fraction of 25 to 45% by volume , solidified or curable, and a slurry with a viscosity of 0.02 to 0.5 Pa · s. It is poured into a liquid-absorbing mold, the mold is heated to 50 to 100 ° C., the binder emulsion state is broken to produce a solidified body, the solidified body is taken out from the mold and heated to remove the solvent component. After the α-alumina molded body is obtained by evaporating and curing, the space between the raw material particles in the slurry can be expanded to reduce the interaction such as van der Waals force between the particles. And when the slurry viscosity is lowered and the slurry is injected Shear stress acting on the slurry becomes possible to reduce. Thereby, when injecting the slurry, the orientation of particles generated along the flow direction of the slurry can be suppressed, and the difference in shrinkage rate can be suppressed in the firing process, so that the internal stress is the alumina sintered body. It is possible to effectively prevent the occurrence of cracks and breakage by concentrating on the portion where stress is easily concentrated inside. Moreover, this manufacturing method can make the alumina sintered body suppress the orientation of the alumina crystal particles.

また、本発明のアルミナ質焼結体の製造方法によれば、スラリーが注入される成形型の内面の少なくとも1面を、10mm以上の幅および1500mm以上の長さを有するものとするときには、従来の製造方法では成形体は得られても焼成後の焼結体には亀裂や破損が生じて製品とすることができなかったような大型のアルミナ質焼結体を製造することが可能となる。   Further, according to the method for producing an alumina sintered body of the present invention, when at least one surface of the inner surface of the molding die into which the slurry is injected has a width of 10 mm or more and a length of 1500 mm or more, In this production method, it is possible to produce a large-sized alumina sintered body that cannot be formed into a product due to cracks or breakage in the sintered body after firing even though a molded body is obtained. .

以下、本発明を実施するための最良の形態について詳細を説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

アルミナ質焼結体は、他のセラミックスよりも優れた機械的,熱的,電気的特性および高い耐食性を有しながら比較的安価に得られることから、製品の大きさに合わせた各種製造方法にて製造され、種々の産業分野で使用されている。ところが、アルミナ質焼結体の作製に用いられるα−アルミナ1次原料粒子は、高いアスペクト比を有した扁平状であり、製造方法によっては、α−アルミナ1次原料粒子の配向が成形体の焼成工程において収縮方向や収縮率の差を発生させ、これによってアルミナ質焼結体に内部応力が生じ、応力集中しやすい部分に亀裂や破損を生じることがある。例えば、粉末プレス成形法であれば、高いアスペクト比を有した扁平状のα−アルミナ1次原料粒子であってもランダムに成形型に充填されて圧縮成形されるので、原料粒子の配向は顕著ではなく、焼結体において亀裂や破損は少ないが、粉末プレス成形法では、今般要求されている長さが1mを超えるような大型製品を得ることは難しい。これに対し、大型製品に対応可能な成形法として、鋳込み成形法がある。   Alumina sintered compacts can be obtained at a relatively low cost while having superior mechanical, thermal, and electrical properties and high corrosion resistance compared to other ceramics. And is used in various industrial fields. However, the α-alumina primary raw material particles used for the production of the alumina sintered body are flat with a high aspect ratio, and depending on the production method, the orientation of the α-alumina primary raw material particles may be In the firing process, a difference in shrinkage direction and shrinkage rate is generated, which may cause internal stress in the alumina sintered body, and may cause cracks or breakage in portions where stress is likely to concentrate. For example, in the case of a powder press molding method, even flat α-alumina primary raw material particles having a high aspect ratio are randomly filled in a mold and subjected to compression molding, so the orientation of the raw material particles is remarkable. However, although there are few cracks and breakages in the sintered body, it is difficult to obtain a large product having a length exceeding 1 m, which is currently required, by the powder press molding method. On the other hand, there is a cast molding method as a molding method capable of dealing with large products.

しかしながら、鋳込み成形法のうち非吸液性の成形型を用いる鋳込み成形法は、非吸液性の成形型に固化性もしくは硬化性のスラリーを充填し、これを加熱することにより固化もしくは硬化させて乾燥してセラミック成形体を得る成形法であるが、この非吸液性の成形型へスラリーを充填する際には、充填の仕方や充填直後に成形型の内壁にスラリーが当たることによって様々なスラリーの流れが生じる。このとき、高いアスペクト比を有した扁平状のα−アルミナ1次原料粒子は、この様々なスラリーの流れに沿って部分的に様々な方向に原料粒子が配列する。そして、このように部分的に様々な方向を向いたα−アルミナ1次原料粒子の配列が生じたまま、スラリーを固化もしくは硬化させ、乾燥してセラミック成形体とし、さらに焼成してアルミナ質焼結体を得ようとすると、アルミナ質焼結体内部で様々な方向性を持った内部応力が発生し、この内部応力によってアルミナ質焼結体の結晶粒子の結合の弱い部分に亀裂や破損を生じることとなる。   However, the casting molding method using a non-liquid-absorbing mold among the casting molding methods is to solidify or harden by filling a non-liquid-absorbing mold with a solidifying or curable slurry and heating it. It is a molding method to obtain a ceramic molded body by drying, but when filling the slurry into this non-liquid-absorbing mold, there are various methods depending on the filling method and the slurry hits the inner wall of the mold immediately after filling. A smooth slurry flow occurs. At this time, the flat α-alumina primary raw material particles having a high aspect ratio are partially arranged in various directions along the flow of the various slurries. Then, with the α-alumina primary raw material particle array partially oriented in various directions as described above, the slurry is solidified or cured, dried to form a ceramic formed body, and further fired to obtain an alumina-based sintered body. When trying to obtain a bonded body, internal stresses with various orientations are generated inside the alumina sintered body, and this internal stress causes cracks and breaks in the weakly bonded parts of the alumina sintered body. Will occur.

この傾向は、アルミナ質焼結体の大きさが大きければ大きいほど顕著になり、半導体または液晶製造装置用ステージ部材等に用いるような大型のアルミナ質焼結体では特に亀裂や破損が生じやすい。   This tendency becomes more prominent as the size of the alumina sintered body is larger, and cracks and breakage are particularly likely to occur in a large alumina sintered body used for a semiconductor or a stage member for a liquid crystal manufacturing apparatus.

したがって、鋳込み成形法によるα−アルミナ質焼結体の作製においては、スラリー中のα−アルミナ1次原料粒子のスラリーの流れに沿った配列を極力少なくし、焼成後の焼結体の結晶粒子の配向性をある範囲内とする必要がある。ここで、α−アルミナ質焼結体の結晶粒子の配向性を確認するには、α−アルミナ質焼結体の表面または断面をX線回折測定し、そのX線回折チャートの各結晶面のピーク強度から、どの方向にアルミナ結晶粒子が配向しているかを確認することが可能である。   Therefore, in the production of the α-alumina sintered body by the casting method, the arrangement of the α-alumina primary raw material particles in the slurry along the flow of the slurry is reduced as much as possible, and the sintered sintered crystal particles It is necessary to make the orientation of a certain range. Here, in order to confirm the orientation of the crystal grains of the α-alumina sintered body, the surface or cross section of the α-alumina sintered body is measured by X-ray diffraction, and each crystal plane of the X-ray diffraction chart is measured. From the peak intensity, it is possible to confirm in which direction the alumina crystal particles are oriented.

この結晶面は、ミラー指数にて表される。このミラー指数は、結晶面がa軸,b軸,c軸のどの軸に交わるかを(006)というふうに丸括弧の中の3つの整数で表示するものであり、この3つの整数は左からa軸,b軸,c軸にそれぞれ対応し、交わる軸を正の整数(1以上の整数)で表している。よって、(006)はc軸に交わる面に、(110)はa軸とb軸とに交わる面に結晶が配向していることを表しており、結晶面の交わる軸の異なる(006)面と(110)面とを確認することにより、焼結体中の結晶粒子の配向性を確認できる。   This crystal plane is represented by the Miller index. This Miller index indicates which axis of the a-axis, b-axis, and c-axis intersects with three integers in parentheses such as (006). To a-axis, b-axis, and c-axis, and the intersecting axes are represented by positive integers (an integer of 1 or more). Therefore, (006) indicates that the crystal is oriented on the plane that intersects the c-axis, and (110) indicates that the crystal is oriented on the plane that intersects the a-axis and the b-axis. And (110) plane can be confirmed to confirm the orientation of crystal grains in the sintered body.

図1は、本発明の製造方法により作製したα−アルミナ質焼結体のX線回折測定結果の一例を示すX線回折チャートである。図1の縦軸はピーク強度を示し、横軸は回折角度を示している。このチャートにおいて、(006)面結晶ピークは回折角度(2θ)=41°〜42°間に存在し、(110)面結晶ピークは回折角度(2θ)=37°〜38°間に存在している。
FIG. 1 is an X-ray diffraction chart showing an example of an X-ray diffraction measurement result of an α-alumina sintered body produced by the production method of the present invention. The vertical axis in FIG. 1 indicates the peak intensity, and the horizontal axis indicates the diffraction angle. In this chart, the (006) plane crystal peak exists between diffraction angles (2θ) = 41 ° to 42 °, and the (110) plane crystal peak exists between diffraction angles (2θ) = 37 ° to 38 °. Yes.

本発明者らは、この図1に示すX線回折チャートの(006)面結晶ピーク強度と(110)面結晶ピーク強度との関係から、α−アルミナ質焼結体の中央部の表面および断面のX線回折における(006)面と(110)面とのピーク強度比I006/I110の値が0.02〜0.07の範囲であることにより、アルミナ質焼結体中に亀裂や破損が生じる内部応力の発生の有無を間接的に認識できて、良好なアルミナ質焼結体が得られることを見出したのである。なお、α−アルミナ質焼結体の中央部とは、板状体の場合、長さ方向の中心線と幅方向の中心線とが交わる位置の近傍のことをいう。 From the relationship between the (006) plane crystal peak intensity and the (110) plane crystal peak intensity of the X-ray diffraction chart shown in FIG. 1, the present inventors have determined the surface and cross section of the central portion of the α-alumina sintered body. In the X-ray diffraction, the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane is in the range of 0.02 to 0.07, so that cracks and breakage occur in the alumina sintered body. It was found that the presence or absence of stress can be recognized indirectly and a good alumina sintered body can be obtained. In the case of a plate-like body, the central portion of the α-alumina sintered body refers to the vicinity of the position where the center line in the length direction and the center line in the width direction intersect.

α−アルミナ質焼結体の中央部の表面および断面のピーク強度比I006/I110の値が0.02未満である場合には、α−アルミナ質焼結体中の結晶粒子がc軸以外の方向に良好に分散した状態となっているが、このような状態では、α−アルミナ1次原料粒子が高いアスペクト比を有した扁平状であるために配向を持った部分と比較して、粒子同士の接触面積が小さくなる。このように接触面積が小さくなると、粒子同士の接触部にネックといわれるくびれた部分ができ、焼結するためのこのネックの発達に多くの熱エネルギーを必要とするため、より高温で焼成するか、あるいは焼結助剤成分を添加して焼結性を高めなければ、α−アルミナ質焼結体を高密度化しにくくなる。よって、実際には、若干c軸へアルミナ結晶粒子を配向させた焼結体とする方がα−アルミナ質焼結体の高密度化および高強度化の観点からすると良い。 When the value of the peak intensity ratio I 006 / I 110 of the surface and cross section of the central portion of the α-alumina sintered body is less than 0.02, the crystal particles in the α-alumina sintered body are other than the c-axis. In such a state, the α-alumina primary raw material particles are in a flat shape having a high aspect ratio, so that the particles are compared with the portion having an orientation. The contact area between them becomes small. When the contact area is reduced in this way, a constricted part called a neck is formed at the contact part between the particles, and a lot of heat energy is required for the development of this neck for sintering. Alternatively, unless the sintering aid component is added to enhance the sinterability, it is difficult to increase the density of the α-alumina sintered body. Therefore, in practice, it is better to use a sintered body in which the alumina crystal particles are slightly oriented on the c-axis from the viewpoint of increasing the density and strength of the α-alumina sintered body.

また、α−アルミナ質焼結体の中央部の表面および断面のピーク強度比I006/I110の値が0.07を超える場合には、α−アルミナ質焼結体中に(006)面への著しい結晶粒子の配向が生じていることとなり、このように(006)面へのアルミナ結晶粒子の配向性が強くなると、別の配向を持った部分と比較して、収縮する方向や収縮率等の焼成時の収縮挙動が異なる。これにより、α−アルミナ質焼結体内部の収縮挙動の異なる部分の境界部に応力が発生する。そして、この応力発生部は、特に焼結体が大型である程、部分的に多数存在し、これら応力発生部の応力が特に焼結体の応力集中しやすい部分に集中する結果、その焼結体に亀裂や破損を生じてしまうこととなる。 Moreover, when the value of the peak intensity ratio I 006 / I 110 of the surface and the cross section of the central portion of the α-alumina sintered body exceeds 0.07, the (006) plane in the α-alumina sintered body is obtained. This means that significant crystal grain orientation has occurred. Thus, when the orientation of alumina crystal grains to the (006) plane becomes stronger, the shrinkage direction, shrinkage rate, etc., compared with a portion having another orientation. The shrinkage behavior during firing is different. As a result, a stress is generated at the boundary portion of the portion having different shrinkage behavior inside the α-alumina sintered body. And this stress generation part exists in large numbers, especially as the sintered body is large, and as a result of the stress of these stress generation parts being concentrated particularly in the stress-concentrated part of the sintered body, The body will be cracked and damaged.

なお、アルミナ質焼結体や、その他のセラミック材料からなる多結晶体については、その粉末をX線回折測定し、各結晶面に相当するピーク強度の比率を示したJCPDS(Joint Committee on Powder Diffraction Standards)カードがあり、このJCPDSカードとの対比で一般的には各ピークの存在する結晶面を同定していく。   In addition, with respect to a polycrystalline body made of an alumina sintered body or other ceramic material, the powder was subjected to X-ray diffraction measurement, and JCPDS (Joint Committee on Powder Diffraction) showing the ratio of peak intensity corresponding to each crystal plane. Standards) card, and in comparison with the JCPDS card, generally the crystal plane where each peak exists is identified.

さらに、X線回折測定には、市販のX線回折装置を用いれば良く、これら装置による0°〜90°の測定範囲から得られた測定結果をX線回折チャートに表し、まずJCPDSカードを用いて、チャート上に表示された各ピークの結晶相の同定を実施する。その後、α−アルミナの結晶ピークのみについて(006)面や(110)面等の結晶面を特定し、(006)面と(110)面とのピーク強度値を確認した後、ピーク強度比I006/I110の値を算出すれば良い。このようにして、α−アルミナ質焼結体の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とについても同様の手法を用いてピーク強度比I006/I110の値を算出すれば良い。 Furthermore, a commercially available X-ray diffractometer may be used for the X-ray diffraction measurement, and the measurement results obtained from the measurement range of 0 ° to 90 ° by these devices are shown on the X-ray diffraction chart, and firstly, a JCPDS card is used. Then, the crystal phase of each peak displayed on the chart is identified. Then, after identifying crystal planes such as the (006) plane and the (110) plane only for the crystal peak of α-alumina and confirming the peak intensity values of the (006) plane and the (110) plane, the peak intensity ratio I A value of 006 / I 110 may be calculated. In this way, the peak intensity ratio I 006 is also used for the surface of the α-alumina sintered body, the first cross section perpendicular to the surface, and the second cross section perpendicular to the surface and the first cross section using the same method. The value of / I 110 may be calculated.

また、特に鋳込み成形法にて棒状,筒状,板状,柱状等の長尺物のα−アルミナ質焼結体を製造する場合には、焼結体の端部で、I006/I110の値が大きくなる傾向があるために、端部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比が0.02〜0.5の範囲内であることが重要である。焼結体の端部でI006/I110の値が大きくなる理由については明らかではないが、鋳込み成形法では非吸水性の成形型にスラリーを充填する際に用いる充填口付近で特にスラリーに圧力がかかり、スラリー中のアルミナ原料粒子が配向しやすく、また充填口と対向する端部では成形型に流れ込んだスラリーが端部の成形型の壁面に激しく衝突し、衝突の際の衝撃力がスラリーに加わるためスラリー中のアルミナ原料粒子に衝撃力が作用し配向しやすくなるためと考えられる。なお、焼結体の端部とは、端面を含み端面から20mm程の範囲をいう。 In particular, when a long α-alumina sintered body such as a rod, cylinder, plate or column is manufactured by a casting method, I 006 / I 110 is formed at the end of the sintered body. Therefore, it is important that the peak intensity ratio between the (006) plane and the (110) plane in the X-ray diffraction chart of the end surface and the cross section is in the range of 0.02 to 0.5. is there. The reason why the value of I 006 / I 110 increases at the end of the sintered body is not clear, but in the casting method, the slurry is used particularly in the vicinity of the filling port used when the slurry is filled in the non-water-absorbing mold. Pressure is applied, the alumina raw material particles in the slurry are easily oriented, and the slurry that has flowed into the mold at the end facing the filling port violently collides with the wall of the mold at the end, and the impact force during the collision is It is considered that since it is added to the slurry, an impact force acts on the alumina raw material particles in the slurry to facilitate orientation. In addition, the edge part of a sintered compact means the range about 20 mm from an end surface including an end surface.

棒状,筒状,板状,柱状等の長尺物のα−アルミナ質焼結体の端部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110が0.02〜0.5の範囲内であれば、特に結晶粒子が配向しやすい1m以上の長さを有する長尺物の端部の結晶粒子の配向が不規則になり、焼成工程において発生する端部の収縮率差を抑制できる。よって、収縮率差により発生する長尺物の内部応力の発生を抑制することができ、この内部応力が原因と考えられる長尺物の焼成工程後の亀裂や破損の発生を防止することができるので、良好なアルミナ質焼結体を得ることができる。 Peak intensity ratio I between the (006) plane and the (110) plane in the X-ray diffraction chart of the surface and cross section of the end of the long α-alumina sintered body such as a rod, cylinder, plate or column If 006 / I 110 is in the range of 0.02 to 0.5, the orientation of the crystal grains at the end of a long object having a length of 1 m or more in which the crystal grains are particularly easily oriented becomes irregular and occurs in the firing process. It is possible to suppress a difference in shrinkage rate between the end portions. Therefore, it is possible to suppress the occurrence of internal stress of the long object generated due to the difference in shrinkage rate, and it is possible to prevent the occurrence of cracks and breakage after the firing process of the long object considered to be caused by this internal stress. Therefore, a good alumina sintered body can be obtained.

これに対し、I006/I110の値が0.02未満である場合には、前述の中央部の場合と同様にα−アルミナ質焼結体中の結晶粒子がc軸以外の方向に良好に分散した状態となっているが、このような状態では、α−アルミナ1次原料粒子が高いアスペクト比を有した扁平状であるために配向を持った部分と比較して、粒子同士の接触面積が小さくなる。このように接触面積が小さくなると、粒子同士の接触部にネックといわれるくびれた部分ができ、焼結するためのこのネックの発達に多くの熱エネルギーを必要とするため、より高温で焼成するか、あるいは焼結助剤成分を添加して焼結性を高めなければα−アルミナ質焼結体を高密度化しにくくなるので好ましくない。またI006/I110の値が0.5を超える場合には、中央部の場合と同様に(006)面への著しい結晶粒子の配向が生じていることとなる。このように(006)面へのアルミナ結晶粒子の配向が強くなると、他の配向を持った部分と比較して、収縮する方向や収縮率等の焼成時の収縮挙動が異なる。これにより、α−アルミナ質焼結体中の収縮挙動の異なる部分の境界部に応力が発生し、これが特に焼結体の応力集中しやすい部分や低強度の部分に作用すると焼結体に亀裂や破損を生じることとなり好ましくない。 On the other hand, when the value of I 006 / I 110 is less than 0.02, the crystal particles in the α-alumina sintered body are well dispersed in the direction other than the c-axis as in the case of the central portion described above. However, in such a state, the α-alumina primary raw material particles have a flat shape with a high aspect ratio, so that the contact area between the particles is larger than that of the oriented portion. Get smaller. When the contact area is reduced in this way, a constricted part called a neck is formed at the contact part between the particles, and a lot of heat energy is required for the development of this neck for sintering. Alternatively, unless the sintering aid component is added to enhance the sinterability, it is difficult to increase the density of the α-alumina sintered body. When the value of I 006 / I 110 exceeds 0.5, significant crystal grain orientation to the (006) plane occurs as in the case of the central portion. Thus, when the orientation of the alumina crystal particles to the (006) plane becomes stronger, the shrinkage behavior during firing, such as the shrinking direction and shrinkage rate, differs from that of the portion having other orientations. As a result, stress is generated at the boundary portion of the α-alumina sintered body where the shrinkage behavior is different, and if this acts on the stress-concentrated part or the low-strength part of the sintered body, the sintered body will crack. It will cause damage and damage.

ここで、α−アルミナ質焼結体の中央部と長尺物の端部とでI006/I110の値の上限値に差が生じる理由としては、中央部でI006/I110の値が大きくなって発生する応力は、中央部を除く他の部分に広い範囲で作用するため、上限値の設定を低くして亀裂や破損の発生を抑制することが必要となる。これに対して端部は中央部より結晶粒子の配向性が大きくなる傾向にあるが、端部に発生する応力は、端部と接する狭い範囲にのみ作用するため、中央部ほどに上限値の設定を低くしなくても亀裂や破損の発生を抑制できるためと考えられる。 Here, the reason why the upper limit of the value of I 006 / I 110 is different between the central portion of the α-alumina sintered body and the end portion of the long object is that the value of I 006 / I 110 in the central portion. Since the stress generated by increasing acts on other parts except the central part in a wide range, it is necessary to reduce the setting of the upper limit value to suppress the occurrence of cracks and breakage. On the other hand, the orientation of the crystal grains tends to be larger at the end than at the center, but the stress generated at the end acts only in a narrow range in contact with the end. This is because cracks and breakage can be suppressed without lowering the setting.

また、本発明の製造方法により作製したα−アルミナ質焼結体(以下、単に本発明のα−アルミナ質焼結体ともいう)の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110 いずれも0.02〜0.07の範囲内である。
In addition, the surface of an α-alumina sintered body produced by the production method of the present invention (hereinafter also simply referred to as the α-alumina sintered body of the present invention) , a first cross section perpendicular to the surface, the surface and the first 1 peak intensity of the X-ray diffraction chart of the vertical second section to the cross section (006) plane and the (110) plane ratio I 006 / I 110 is Ru der range of 0.02 to 0.07 both.

ここで、α−アルミナ質焼結体の表面とは、焼成直後の焼結体表面ならびに加工後の表面を示し、表面に垂直な第1断面とは、焼成直後または加工後の焼結体表面に垂直な断面を示し、また表面および第1断面に垂直な第2断面とは、焼成直後または加工後の表面および第1断面に垂直な面を示す。   Here, the surface of the α-alumina sintered body indicates the surface of the sintered body immediately after firing and the surface after processing, and the first cross section perpendicular to the surface is the surface of the sintered body immediately after firing or after processing. And a second cross section perpendicular to the surface and the first cross section refers to a surface immediately after firing or after processing and a plane perpendicular to the first cross section.

これらの面のX線回折チャートから、ピーク強度比I006/I110の値を算出し、3つの面の値がいずれも0.02〜0.07の範囲内であるものとすれば、いずれの面においてもアルミナ結晶粒子の配向性が良好であるといえる。特に各部にアルミナ結晶粒子の配向がなく、均質なものが求められる大型の厚肉製品を製造した場合に、内部応力が部分的に作用して生じる亀裂や破損の発生を防止することができる。 If the value of the peak intensity ratio I 006 / I 110 is calculated from the X-ray diffraction charts of these surfaces and the values of the three surfaces are all in the range of 0.02 to 0.07, It can be said that the orientation of the alumina crystal particles is good. In particular, when a large-sized thick product requiring no uniform orientation of alumina crystal particles in each part and requiring a uniform product is produced, it is possible to prevent the occurrence of cracks and breakage caused by partial application of internal stress.

この3つの面のピーク強度比I006/I110の値が0.02未満である場合には、アルミナ結晶粒子に配向が少なく、また、アルミナ結晶粒子の配向性のバラツキも少ない点では良好であるものの、α−アルミナ1次原料粒子が高いアスペクト比を有した扁平状であるために配向を持った部分と比較して、原料粒子同士の接触面積が小さくなる。このように接触面積が小さくなると、より高温で焼成するか、あるいは焼結助剤成分を添加して焼結性を高めなければα−アルミナ質焼結体をアルミナ結晶粒子の配向性のバラツキなく一様に高密度化しにくくなるために好ましくない。また、ピーク強度比I006/I110の値が0.07を超える場合には、α−アルミナ質焼結体中に(006)面への著しい結晶粒子の配向が生じていることとなり、このように(006)面へのアルミナ結晶粒子の配向が強くなると、他の配向を持った部分と比較して焼成時の収縮挙動が異なり、α−アルミナ質焼結体の内部に応力が発生して、この応力がもとで焼結体に亀裂や破損を生じてしまうこととなる。また、α−アルミナ質焼結体中の(006)面へのアルミナ結晶粒子の配向が、α−アルミナ質焼結体の各部にバラツキを持って存在していることとなり、部分的な亀裂や破損だけでなく、表面と断面との配向性の違いや、部分的に配向している部分同士の間に生じる応力による亀裂や破損を生じやすい。 When the value of the peak intensity ratio I 006 / I 110 of these three faces is less than 0.02, it is good in that the orientation of the alumina crystal particles is small and the variation in the orientation of the alumina crystal particles is small. Since the α-alumina primary raw material particles have a flat shape with a high aspect ratio, the contact area between the raw material particles is smaller than that of the oriented portion. When the contact area is reduced in this way, the α-alumina sintered body is not changed in the orientation of the alumina crystal particles unless firing is performed at a higher temperature or the sintering property is not increased by adding a sintering aid component. This is not preferable because it is difficult to increase the density uniformly. In addition, when the value of the peak intensity ratio I 006 / I 110 exceeds 0.07, significant crystal grain orientation to the (006) plane has occurred in the α-alumina sintered body. When the orientation of the alumina crystal particles to the (006) plane becomes stronger, the shrinkage behavior at the time of firing differs compared to the portion having other orientation, and stress is generated inside the α-alumina sintered body, This stress will cause cracks and breakage in the sintered body. In addition, the orientation of the alumina crystal particles to the (006) plane in the α-alumina sintered body is present with variation in each part of the α-alumina sintered body, Not only breakage, but also a difference in orientation between the surface and the cross section, and a crack or breakage due to stress generated between the partially oriented portions is likely to occur.

さらに、本発明のα−アルミナ質焼結体は、中央部の表面および断面のピーク強度比I006/I110の値の最大値と最小値との差が0.05以内であることが好ましい。この差の算出方法は、前述のように各結晶面のピーク強度比I006/I110の値を算出し、その最大値と最小値との差を求めればよい。この最大値と最小値との差が0.05を超える場合には、焼結体内で(006)面への配向のバラツキが部分的に大きく、このバラツキが原因でアルミナ質焼結体に内部応力が発生し、この内部応力がアルミナ質焼結体の強度を超えると最終的なα−アルミナ質焼結体としてのアルミナ質焼結体に亀裂や破損を生じてしまうこととなる。 Furthermore, in the α-alumina sintered body of the present invention, it is preferable that the difference between the maximum value and the minimum value of the peak intensity ratio I 006 / I 110 of the surface and cross section of the central portion is within 0.05. This difference may be calculated by calculating the value of the peak intensity ratio I 006 / I 110 of each crystal plane as described above and obtaining the difference between the maximum value and the minimum value. When the difference between the maximum value and the minimum value exceeds 0.05, the variation in orientation to the (006) plane is partially large in the sintered body, and internal stress is applied to the alumina sintered body due to this variation. When this internal stress exceeds the strength of the alumina sintered body, the alumina sintered body as the final α-alumina sintered body will be cracked or damaged.

また、本発明のα−アルミナ質焼結体は、棒状,筒状,板状,柱状等の長尺物のα−アルミナ質焼結体であって、端部の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110がいずれも0.02〜0.5の範囲内であることが重要である。この範囲内であれば、特に結晶粒子が配向しやすく収縮率のバラツキが生じやすい長尺物の端部において、前述の中央部の場合と同様に表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのいずれの面においてもアルミナ結晶粒子の配向性が良好で、各部にアルミナ結晶粒子の配向がなく、より均質な長尺物のα−アルミナ質焼結体とすることができ、亀裂や破損の発生のないものとすることができる。I006/I110の値が0.02未満である場合には、前述の中央部の場合と同様にアルミナ結晶粒子に配向が少なく、またアルミナ結晶粒子の配向のバラツキも少ない点では良好であるものの、α−アルミナ1次原料粒子が高いアスペクト比を有した扁平状であるために配向を持って配列した場合と比較して、原料粒子同士の接触面積が小さくなる。このように接触面積が小さくなると、粒子同士の接触部にネックといわれるくびれた部分ができ、焼結するためのこのネックの発達に多くの熱エネルギーを必要とするため、より高温で焼成するか、あるいは焼結助剤成分を添加して焼結性を高めなければα−アルミナ質焼結体を高密度化しにくくなるので好ましくない。また、I006/I110の値が0.5を超える場合には、α−アルミナ質焼結体中に(006)面への著しい結晶粒子の配向が生じていることとなり、このように(006)面へのアルミナ結晶粒子の配向が強くなると、別の配向を持った部分と比較して焼成時の収縮挙動が異なり、α−アルミナ質焼結体の内部に応力が発生して、この応力がもとで焼結体に亀裂や破損を生じてしまうこととなる。また、α−アルミナ質焼結体中の(006)面へのアルミナ結晶粒子の配向が、α−アルミナ質焼結体の各部にバラツキを持って存在していることとなり、部分的な亀裂や破損だけでなく、表面と断面との配向性の違いや、部分的に配向している部分同士の間に生じる応力による亀裂や破損を生じやすい。 The α-alumina sintered body of the present invention is a long α-alumina sintered body having a rod-like shape, a cylindrical shape, a plate-like shape, a column-like shape, and the surface of the end portion and a surface perpendicular to the surface. The peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane in the X-ray diffraction chart of the first cross section and the second cross section perpendicular to the surface and the first cross section is in the range of 0.02 to 0.5. It is important to be within. Within this range, particularly at the end of the elongated object in which the crystal grains are easily oriented and the shrinkage rate is likely to vary, the surface and the first cross section perpendicular to the surface, as in the case of the above-mentioned central part, The orientation of the alumina crystal particles is good on both the surface and the second cross section perpendicular to the first cross section, and there is no orientation of the alumina crystal particles in each part. It can be a ligated body and can be free from cracks and breakage. When the value of I 006 / I 110 is less than 0.02, it is good in that the orientation of the alumina crystal particles is small and the orientation variation of the alumina crystal particles is small as in the case of the central portion described above. Since the α-alumina primary raw material particles have a flat shape with a high aspect ratio, the contact area between the raw material particles is smaller than when the α-alumina primary raw material particles are arranged with orientation. When the contact area is reduced in this way, a constricted part called a neck is formed at the contact part between the particles, and a lot of heat energy is required for the development of this neck for sintering. Alternatively, unless the sintering aid component is added to enhance the sinterability, it is difficult to increase the density of the α-alumina sintered body. When the value of I 006 / I 110 exceeds 0.5, significant crystal grain orientation to the (006) plane occurs in the α-alumina sintered body, and thus (006) When the orientation of the alumina crystal particles on the surface becomes stronger, the shrinkage behavior during firing differs compared to the portion with another orientation, and stress is generated inside the α-alumina sintered body, and this stress is Originally, the sintered body will be cracked or damaged. In addition, the orientation of the alumina crystal particles to the (006) plane in the α-alumina sintered body is present with variation in each part of the α-alumina sintered body, Not only breakage, but also a difference in orientation between the surface and the cross section, and a crack or breakage due to stress generated between the partially oriented portions is likely to occur.

また、本発明のα−アルミナ質焼結体は、スピネル結晶を含有していることが好ましい。スピネル結晶(MgAl)は、もともとアルミナ1次原料粉体に不可避不純物として含有されているMg成分や焼結助剤として添加するMg成分が、焼成においてAl成分と反応して酸化物となり形成されるものであり、主にα−アルミナ質焼結体の結晶粒界に存在している。アルミナ結晶粒子に著しい配向を生じ、内部応力が発生した場合には、この内部応力がα−アルミナ質焼結体の粒界に作用するため、まず一部の粒界に部分的に亀裂が生じる。そして、その部分から亀裂が粒界に伝搬する粒界破壊が起き、これが最終的にα−アルミナ質焼結体の亀裂や破損となる。これに対し、本発明のα−アルミナ質焼結体のように粒界にスピネル結晶を形成させれば、スピネル結晶は、主に粒界に独立して存在しているため、その存在により、粒界から粒界への亀裂の伝搬を阻止することが可能であり、亀裂や破損の発生をより効果的に防止することが可能となる。 Moreover, it is preferable that the α-alumina sintered body of the present invention contains a spinel crystal. The spinel crystal (MgAl 2 O 4 ) is an oxide that reacts with the Al component during firing when the Mg component originally contained as an inevitable impurity in the alumina primary raw material powder and the Mg component added as a sintering aid. It is formed and exists mainly at the grain boundaries of the α-alumina sintered body. When significant orientation occurs in the alumina crystal grains and internal stress is generated, this internal stress acts on the grain boundaries of the α-alumina sintered body, so first, some of the grain boundaries are cracked. . And the grain-boundary fracture which a crack propagates from the part to a grain boundary occurs, and this finally becomes the crack and breakage of the α-alumina sintered body. On the other hand, if a spinel crystal is formed at the grain boundary as in the α-alumina sintered body of the present invention, the spinel crystal mainly exists independently at the grain boundary. Propagation of cracks from grain boundaries to grain boundaries can be prevented, and cracks and breakage can be more effectively prevented.

さらに、本発明のα−アルミナ質焼結体は、純度を90%以上、密度を3.8g/cm以上とすることが好ましい。90%未満の低純度では、α−アルミナ質焼結体中にアルミナ結晶粒子の配向が生じて、焼結体の亀裂や破損に繋がる内部応力が発生した場合に、アルミナ結晶の粒界に存在する不純物層がこの内部応力の影響を緩和し、亀裂や破損が発生しにくくなる。従って、純度が90%未満のものに、アルミナ結晶粒子の配向によって焼結体に生じる内部応力による亀裂や破損の発生の問題は少なく、結晶粒子の配向性の制御の必要性は少なくなる。よって本発明は、純度が90%以上のα−アルミナ質焼結体に好適である。また、密度が3.8g/cm未満の焼結体では、焼結体中に多くの空孔が存在することとなる。この空孔が、前述のスピネル結晶と同様に、焼結体に発生する亀裂の伝搬を防止するために、亀裂や破損が発生しにくくなる。従って、密度が3.8g/cm未満のものにアルミナ結晶粒子の配向によって焼結体に生じる応力による亀裂や破損の発生の問題は少なく、結晶粒子の配向性の制御の必要性も少ない。よって本発明は、密度が3.8g/cm以上のα−アルミナ質焼結体に好適に用いられる。 Furthermore, the α-alumina sintered body of the present invention preferably has a purity of 90% or more and a density of 3.8 g / cm 3 or more. When the purity is less than 90%, the orientation of alumina crystal particles occurs in the α-alumina sintered body, and internal stress that leads to cracking or breakage of the sintered body occurs. The impurity layer that relaxes mitigates the influence of this internal stress and makes it difficult for cracks and breakage to occur. Accordingly, the problem of cracks and breakage due to internal stress generated in the sintered body due to the orientation of the alumina crystal particles is less than that having a purity of less than 90%, and the necessity for controlling the orientation of the crystal particles is reduced. Therefore, the present invention is suitable for an α-alumina sintered body having a purity of 90% or more. Further, in the sintered body having a density of less than 3.8 g / cm 3 , many voids exist in the sintered body. Like the above-mentioned spinel crystal, the voids prevent cracks and breakage from occurring in order to prevent propagation of cracks occurring in the sintered body. Therefore, there is little problem of cracking or breakage due to stress generated in the sintered body due to the orientation of the alumina crystal particles when the density is less than 3.8 g / cm 3, and there is little need to control the orientation of the crystal particles. Therefore, the present invention is suitably used for an α-alumina sintered body having a density of 3.8 g / cm 3 or more.

次に、本発明のアルミナ質焼結体の製造方法について詳細を説明する。   Next, the manufacturing method of the alumina sintered body of the present invention will be described in detail.

本発明のα−アルミナ質焼結体の製造方法は、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とした固化性もしくは硬化性のスラリーとし、このスラリーを非吸液性の成形型へ注入してα−アルミナ質成形体を得た後、このα−アルミナ質成形体を焼成することを特徴とする鋳込み成形法(ゲルキャスティング法)である。なお、焼結助剤としては、一般的なセラミックスの製造に用いられるマグネシア(MgO),シリカ(SiO),カルシア(CaO)を加えればよい。 The production method of the α-alumina sintered body of the present invention comprises α-alumina primary raw material particles having an average particle size of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0, a binder, a dispersant, and a solvent. By mixing, a solidified or curable slurry having a particle volume fraction of α-alumina primary raw material particles of 25 to 45% by volume is injected, and this slurry is poured into a non-liquid-absorbing mold. This is a casting molding method (gel casting method) characterized by firing the α-alumina molded body after obtaining a quality molded body. As a sintering aid, magnesia (MgO), silica (SiO 2 ), and calcia (CaO) used for general ceramic production may be added.

ここで、α−アルミナ1次原料粒子の平均粒径を0.5〜2.0μmの範囲とするのは、0.5μm未満の平均粒径では、原料粒子の粒径が細かく、粉体の全表面積(比表面積)が大きくなり、スラリーを作製する際に用いる溶媒,バインダ,分散剤の量を多くしなければスラリーの良好な流動性を確保できなくなるからである。溶媒,バインダ,分散剤は焼成で焼失する成分であり、これらの量が多ければ、乾燥,焼成時の収縮率が大きくなり、成形体や焼結体が変形や破損を生じやすくなるために好ましくない。また、2.0μmを超える平均粒径では、焼結しにくく緻密化が困難となるために好ましくない。   Here, the average particle size of the α-alumina primary raw material particles is in the range of 0.5 to 2.0 μm because the average particle size of less than 0.5 μm has a fine particle size and the total surface area of the powder (ratio) This is because the surface area) becomes large, and good fluidity of the slurry cannot be ensured unless the amount of solvent, binder and dispersant used in preparing the slurry is increased. Solvents, binders, and dispersants are components that burn out during firing, and a large amount of these is preferable because the shrinkage rate during drying and firing increases, and the molded body and sintered body tend to be deformed and damaged. Absent. On the other hand, an average particle size exceeding 2.0 μm is not preferable because it is difficult to sinter and it becomes difficult to densify.

また、ここでα−アルミナ1次原料粒子の粒形比率とは、α−アルミナ1次原料のSEM(走査型電子顕微鏡)写真を撮影し、そのSEM写真像から任意に10個の粒子を選択し、各々の粒子の最大長を長軸Lとし、この長軸Lと垂直方向にある最大長を短軸SとしてL/Sの値を算出し、これを平均した値である。そして、この粒形比率を1.5〜2.0の範囲内とするのは、粒形比率が2.0を超えるとスラリーの流れに沿って粒子が配向しやすく好ましくないからである。また、粒子の配向の抑制には球状の粒子すなわち粒形比率が1のものを用いるのが好ましいが、粒形比率が1のものは現実的には得られにくく、また原料単価が著しく高くなる。そのため、安価に得られる粒形比率の下限値としては、1.5程度が限界といえる。   In addition, the particle size ratio of the α-alumina primary raw material particles is taken as an SEM (scanning electron microscope) photograph of the α-alumina primary raw material, and 10 particles are arbitrarily selected from the SEM photographic image. The maximum length of each particle is taken as the major axis L, the maximum length in the direction perpendicular to the major axis L is taken as the minor axis S, and the L / S value is calculated and averaged. The reason why the particle size ratio is in the range of 1.5 to 2.0 is that when the particle shape ratio exceeds 2.0, it is not preferable that the particles are easily oriented along the flow of the slurry. In addition, it is preferable to use spherical particles, that is, particles having a particle size ratio of 1 to suppress the orientation of the particles, but particles having a particle shape ratio of 1 are difficult to obtain in practice, and the raw material unit price is extremely high. . Therefore, it can be said that the lower limit of the particle shape ratio obtained at low cost is about 1.5.

さらに、このスラリーを構成する溶媒としては、水系および有機系のいずれを用いることも可能である。有機系の溶媒を用いる場合には、パラフィン,イソパラフィン,トルエン,キシレン,石油,エーテル等を用いることが可能である。しかしながら、スラリーの取り扱いや乾燥工程における安全性を考慮すれば、水を溶媒として用いるのがより好適である。なお、溶媒の添加量としては、α−アルミナ1次原料100質量%に対し、10〜30質量%の範囲内とするのが好適である。   Furthermore, as the solvent constituting the slurry, either an aqueous system or an organic system can be used. When an organic solvent is used, paraffin, isoparaffin, toluene, xylene, petroleum, ether, or the like can be used. However, considering the safety in the handling of the slurry and the drying process, it is more preferable to use water as the solvent. The addition amount of the solvent is preferably in the range of 10 to 30% by mass with respect to 100% by mass of the α-alumina primary raw material.

また、バインダとしては、スラリーの固化または硬化のために、エマルジョン状態のバインダを用いる。エマルジョン状態のバインダとしては、スチレン,ブタジエン,イソブレン,(メタ)アクリロニトリル,アクリルアミド,エチレン,酢酸ビニル,アクリル樹脂等より得られる種々の共重合体や不飽和カルボン酸またはジカルボン酸等との多元共重合体を用いることが可能である。なお、バインダの添加量としては、α−アルミナ1次原料100質量%に対し10〜30質量%の範囲内とするのが好適である。   As the binder, an emulsion binder is used for solidifying or curing the slurry. The binder in the emulsion state includes various copolymers obtained from styrene, butadiene, isobrene, (meth) acrylonitrile, acrylamide, ethylene, vinyl acetate, acrylic resin, etc., and multi-copolymers with unsaturated carboxylic acids or dicarboxylic acids. Coalescence can be used. In addition, as addition amount of a binder, it is suitable to set it as the inside of the range of 10-30 mass% with respect to 100 mass% of alpha-alumina primary raw materials.

また、分散剤としては、非イオン性化合物,アニオン性化合物,カチオン性化合物を用いることが可能であり、これら1種以上の分散剤を同時に使用することも可能である。分散剤は、原料粒子間の界面張力を下げ、濡れ性を改良したり、粒子表面の電荷をコントロールしたり、粒子表面に厚く安定した吸着層を形成できるため、粒子間のファンデルワールス力に勝る斥力が付与され、原料粒子のスラリー中での自由度向上に寄与できるという効果が発揮されるものと考えられる。本発明では、この分散剤の効果により、α−アルミナ1次原料粒子のスラリー内での移動自由度を向上できるため、焼成後にアルミナ結晶粒子の配向が起こらない形に制御できる。なお、分散剤の添加量としては、α−アルミナ1次原料100質量%に対し、0.01〜1質量%の範囲内で添加するのが好適である。   Moreover, as a dispersing agent, it is possible to use a nonionic compound, an anionic compound, and a cationic compound, and it is also possible to use these 1 or more types of dispersing agents simultaneously. The dispersant lowers the interfacial tension between the raw particles, improves wettability, controls the charge on the particle surface, and forms a thick and stable adsorption layer on the particle surface, thus reducing the van der Waals force between the particles. It is thought that the effect of being able to contribute to the improvement in the freedom degree in the slurry of the raw material particle | grains is provided with the repulsive force which prevails. In the present invention, due to the effect of the dispersant, the degree of freedom of movement of the α-alumina primary raw material particles in the slurry can be improved, so that the orientation of the alumina crystal particles does not occur after firing. In addition, as addition amount of a dispersing agent, it is suitable to add within the range of 0.01-1 mass% with respect to 100 mass% of alpha-alumina primary raw materials.

また、スラリー中のα−アルミナ1次原料粒子の粒子体積分率を25〜45体積%としたのは、25体積%未満であると、スラリー中の粒子が少なすぎ、スラリーを固化もしくは硬化させ、成形型から取り出して乾燥する際に、乾燥工程における収縮が大きくなり、成形体の変形が大きくなってしまうために好ましくない。一方、45体積%を超えると、スラリー中での原料粒子間の距離が短くなり、原料粒子のスラリー中での移動自由度が著しく低下する。このため、スラリーを成形型へ充填する際に、スラリーの流れに沿って原料粒子が配向しやすく、さらに隣り合う原料粒子が互いに影響しあい、これにファンデルワールス力も手伝って、配向した原料粒子近辺の他の原料粒子も同方向に粒子配向しやすくなることが考えられるために好ましくない。   In addition, the particle volume fraction of the α-alumina primary raw material particles in the slurry is 25 to 45% by volume. If it is less than 25% by volume, there are too few particles in the slurry and the slurry is solidified or cured. When the resin is taken out from the mold and dried, the shrinkage in the drying process increases, and the deformation of the molded body increases, which is not preferable. On the other hand, when it exceeds 45 volume%, the distance between the raw material particles in the slurry is shortened, and the freedom of movement of the raw material particles in the slurry is remarkably reduced. For this reason, when the slurry is filled into the mold, the raw material particles are easily oriented along the flow of the slurry, and adjacent raw material particles influence each other, and the van der Waals force also helps, in the vicinity of the oriented raw material particles. Other raw material particles are not preferable because it is considered that the particles are likely to be oriented in the same direction.

このように、分散剤の働きと粒子体積分率のコントロールとにより、α−アルミナ1次原料粒子は、焼成後のアルミナ結晶粒子の配向のもととなるスラリーの流れに沿った粒子配列を起こすことがなくなるので、このようなスラリーを用いてα−アルミナ質焼結体を製造すれば、アルミナ結晶粒子の配向が抑制された製品を製造可能である。   As described above, the α-alumina primary raw material particles cause the particle arrangement along the flow of the slurry that becomes the orientation of the alumina crystal particles after firing by the function of the dispersant and the control of the particle volume fraction. Therefore, if an α-alumina sintered body is produced using such a slurry, a product in which the orientation of the alumina crystal particles is suppressed can be produced.

さらに、スラリーはその粘度を0.02〜0.5Pa・sとすることが好ましい。このスラリー粘度はスラリー中の粒子体積分率に左右されやすく、その他にも溶媒,バインダ,分散剤の含有量に左右されやすく、これらを適正範囲内に調整する必要がある。スラリー粘度が0.02Pa・sより低いものは、溶媒等の量が多くなり、成形型への粒子体積分率が低下し、成形体を高密度化させることが困難になる。また、スラリー固化後の乾燥工程における乾燥収縮が大きくなるために乾燥後の成形体に亀裂や破損が生じやすくなる。0.5Pa・sより高いとスラリーを非吸液性の成形型に充填しにくくなるばかりか、スラリーを成形型に充填する際に、充填されたスラリーが成形型内の各部分で流れ性が均一化しにくく、アルミナ結晶粒子の配向が起こりやすく好ましくない。   Furthermore, the viscosity of the slurry is preferably 0.02 to 0.5 Pa · s. This slurry viscosity is easily influenced by the particle volume fraction in the slurry, and is also easily influenced by the contents of the solvent, binder and dispersant, and these must be adjusted within an appropriate range. When the slurry viscosity is lower than 0.02 Pa · s, the amount of solvent or the like increases, the particle volume fraction in the mold decreases, and it becomes difficult to increase the density of the molded body. Moreover, since the drying shrinkage in the drying process after solidification of the slurry becomes large, the molded article after drying tends to be cracked or damaged. If it is higher than 0.5 Pa · s, not only will it be difficult to fill the slurry into the non-absorbing mold, but also when the slurry is filled into the mold, the filled slurry will have a uniform flow in each part of the mold. This is not preferred because the orientation of the alumina crystal particles is likely to occur.

また、本発明のアルミナ質焼結体の製造方法では、スラリーを注入する成形型として非吸液性の成形型を用いる。成形型が非吸液性であれば、従来の鋳込み成形法で用いていた吸液性の型を使用する場合に起こっていた目詰まり等の問題もなく、成形型の寿命が延びる。非吸液性の成形型の材質としては、金属,樹脂,木材等、非吸液性の特性を有していればどのような材質のものでも使用可能である。特に本発明の製造方法では、寸法精度やスラリーを固化させた後の固化体の取り出しやすさ、および加熱時の熱伝導性の点から、金属製の成形型を用いるのがより好適である。具体的な金属製成形型の材質としては、アルミニウム,アルミニウム合金,チタン,チタン合金,マグネシウム合金等が、軽量で充分な強度,耐熱製を有しているために良い。   In the method for producing an alumina sintered body of the present invention, a non-liquid-absorbing mold is used as a mold for injecting slurry. If the mold is non-liquid-absorbing, there is no problem such as clogging that occurs when using the liquid-absorbing mold used in the conventional casting molding method, and the life of the mold is extended. As the material of the non-liquid-absorbing mold, any material can be used as long as it has non-liquid-absorbing characteristics, such as metal, resin, and wood. In particular, in the production method of the present invention, it is more preferable to use a metal mold from the viewpoint of dimensional accuracy, ease of taking out the solidified body after solidifying the slurry, and thermal conductivity during heating. As specific metal mold materials, aluminum, an aluminum alloy, titanium, a titanium alloy, a magnesium alloy, and the like are good because they are lightweight and have sufficient strength and heat resistance.

さらに、本発明のアルミナ質焼結体およびその製造方法は、特に大型製品において有効であることは既に述べたが、その大型製品を成形型のサイズで表すと、その内面の少なくとも1面が10mm以上の幅および1500mm以上の長さを有するものに適用した場合に特に有効である。   Furthermore, it has already been described that the alumina sintered body and the method for producing the same of the present invention are particularly effective for large products. However, when the large products are represented by the size of a mold, at least one of the inner surfaces is 10 mm. This is particularly effective when applied to a material having the above width and a length of 1500 mm or more.

また、本発明のアルミナ質焼結体の製造方法に用いるスラリーは、固化性もしくは硬化性を有している。この固化性もしくは硬化性のスラリーを用いて、非吸液性の成形型内でスラリーを固化させる場合には、成形型を50〜100℃に加熱して成形型内のスラリーを温度変化させ、分散剤の作用によりエマルジョン状態のバインダのエマルジョン状態を破壊させる。エマルジョン状態が破壊されると、バインダ同士やバインダと原料粒子とがファンデルワールス力や水素結合により結びつき、溶媒を含んだ形で寒天状に固化する。固化後、成形型から固化体を取り出し、120〜200℃で固化体を加熱する。これにより、固化体から溶媒成分が蒸発して硬化し、セラミック成形体となる。   Moreover, the slurry used for the manufacturing method of the alumina sintered body of this invention has a solidification property or sclerosis | hardenability. When solidifying the slurry in a non-liquid-absorbing mold using this solidifying or curable slurry, the mold is heated to 50 to 100 ° C. to change the temperature of the slurry in the mold, The emulsion state of the binder in the emulsion state is broken by the action of the dispersant. When the emulsion state is destroyed, the binders or the binder and the raw material particles are combined by van der Waals force or hydrogen bond, and solidified into an agar-like form containing a solvent. After solidification, the solidified body is taken out from the mold, and the solidified body is heated at 120 to 200 ° C. Thereby, a solvent component evaporates from a solidified body, and it hardens | cures, and becomes a ceramic molded body.

その後、この成形体を焼成炉にて1550〜1700℃の最高温度で焼成することにより、本発明のα−アルミナ質焼結体を得ることができる。得られたα−アルミナ質焼結体については、必要に応じて研削加工を施し、所定形状に加工することができる。   Thereafter, this molded body is fired at a maximum temperature of 1550 to 1700 ° C. in a firing furnace, whereby the α-alumina sintered body of the present invention can be obtained. About the obtained (alpha) -alumina sintered compact, it can grind as needed and can be processed into a predetermined shape.

このようにして製造された本発明のα−アルミナ質焼結体は、様々な製品に適用可能である。特に近年、大型製品の要求の高い半導体または液晶製造装置分野において、従来は小さいサイズのものを係合して大型化に対応していた、例えば長さ2m以上もあるような半導体または液晶製造装置用ステージ部材を、本発明のα−アルミナ質焼結体の製造方法を用いることにより、一体的に亀裂や破損等の欠陥もなく製造することが可能であり、より高品質な半導体,液晶の製造に貢献することが可能となる。   The α-alumina sintered body of the present invention thus produced can be applied to various products. Particularly in recent years, in the field of semiconductor or liquid crystal manufacturing equipment where there is a high demand for large-sized products, a semiconductor or liquid crystal manufacturing apparatus having a length of 2 m or more, for example, which has been conventionally adapted to increase in size by engaging a small size. By using the method for producing an α-alumina sintered body according to the present invention, it is possible to produce a stage member integrally without any defects such as cracks and breakage. It is possible to contribute to manufacturing.

以上、本発明の実施の形態の例について説明したが、本発明の要旨を逸脱しない範囲であれば種々の改良や変更を施したものにも適用することができることは言うまでもない。特にα−アルミナ質焼結体の形状に関し、半導体または液晶製造装置用ステージ部材以外の用途に適合した大型かつ複雑形状のものにも適用すれば、アルミナ結晶粒子の配向性を焼結体中に亀裂や破損に繋がる内部応力の発生のないものにすることが可能であるために、良好な製品製造が可能である。   As mentioned above, although the example of embodiment of this invention was demonstrated, it cannot be overemphasized that it can apply also to what gave the various improvement and change, if it is a range which does not deviate from the summary of this invention. In particular, regarding the shape of the α-alumina sintered body, the orientation of the alumina crystal particles can be incorporated into the sintered body if it is applied to a large and complicated shape suitable for applications other than the semiconductor or liquid crystal manufacturing apparatus stage member. Since it is possible to eliminate the occurrence of internal stress that leads to cracks and breakage, good product production is possible.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

(実施例1)
鋳込み成形法(ゲルキャスティング法)による本発明のα−アルミナ質焼結体の製造において、粒形比率の影響を確認する試験を実施した。
Example 1
In the production of the α-alumina sintered body of the present invention by a casting method (gel casting method), a test for confirming the influence of the particle shape ratio was performed.

まず、粒形比率の影響を確認するために、表1に示す粒形比率を有する、純度が99%で平均粒径が1μmの市販のα−アルミナ1次原料5種類を用意した。なお、粒形比率が1.5未満のアルミナ1次原料は原料単価が著しく高いため、粒形比率が1.5以上のものを用意した。   First, in order to confirm the influence of the particle shape ratio, five commercially available α-alumina primary raw materials having a particle shape ratio shown in Table 1 and having a purity of 99% and an average particle diameter of 1 μm were prepared. In addition, since the alumina primary raw material with a particle size ratio of less than 1.5 has a remarkably high raw material unit price, a material with a particle shape ratio of 1.5 or more was prepared.

次に、5種類のα−アルミナ1次原料のそれぞれに、α−アルミナ原料100質量%に対し、溶媒を15質量%,バインダを15質量%,分散剤を0.5質量%,架橋剤を0.5質量%と焼結助剤とを所定量加え、万能混合攪拌機に投入して混合し、5種類の成形用スラリーを作製した。ここで、溶媒としては水を用い、バインダとしてはアクリル樹脂系のエマルジョンバインダを使用した。また、分散剤としては非イオン性,アニオン性,カチオン性化合物を所定の割合にて混合したものを用い、これにバインダに合わせてアクリル樹脂系の架橋剤を加えた。さらに、スラリー中の粒子体積分率については35体積%とし、スラリー粘度は市販のE型粘度計にての測定で0.1Pa・sであった。   Next, for each of the five types of α-alumina primary materials, the solvent is 15% by mass, the binder is 15% by mass, the dispersant is 0.5% by mass, and the crosslinking agent is 0.5% by mass with respect to 100% by mass of the α-alumina raw material. % And a sintering aid were added in a predetermined amount and charged into a universal mixing stirrer and mixed to prepare five types of molding slurries. Here, water was used as the solvent, and an acrylic resin emulsion binder was used as the binder. Further, as the dispersant, a mixture of nonionic, anionic, and cationic compounds in a predetermined ratio was used, and an acrylic resin-based crosslinking agent was added thereto in accordance with the binder. Furthermore, the particle volume fraction in the slurry was 35% by volume, and the slurry viscosity was 0.1 Pa · s as measured with a commercially available E-type viscometer.

次に、このスラリーを成形型に充填した。成形型としては、幅が200mm,長さが1000mm,厚さが30mmの長尺板を成形できる寸法の成形型を用い、成形型の端部に設けられたスラリー充填口からスラリーを充填した。充填後、スラリー充填口からスラリーが流出しないように充填口を閉塞した後、成形型を70℃に加熱し、スラリーを固化(ゲル化)させた。そして固化した固化体を成形型より取り出し、大型乾燥機に投入して乾燥し、溶媒を蒸発させて成形体とした。   Next, this slurry was filled in a mold. As the mold, a mold having a dimension capable of forming a long plate having a width of 200 mm, a length of 1000 mm, and a thickness of 30 mm was used, and the slurry was filled from a slurry filling port provided at an end of the mold. After filling, the filling port was closed so that the slurry did not flow out of the slurry filling port, and then the mold was heated to 70 ° C. to solidify (gelate) the slurry. Then, the solidified solid body was taken out from the mold, put into a large dryer and dried, and the solvent was evaporated to obtain a molded body.

しかる後、この成形体を焼成炉内で1650℃の最高温度で焼成し、研削加工を施して、幅が150mm,長さが750mm,厚さが20mmのα−アルミナ質焼結体の試料No.1〜5を製造した。   Thereafter, this compact is fired at a maximum temperature of 1650 ° C. in a firing furnace, and subjected to grinding, and sample No. of an α-alumina sintered body having a width of 150 mm, a length of 750 mm, and a thickness of 20 mm. . 1-5 were manufactured.

次に、このα−アルミナ質焼結体の表面または断面における亀裂や破損の有無を確認するために、各試料を大型水槽に貯留されたカラーチェック液中に浸漬した。浸漬に際しては、α−アルミナ質焼結体を2分割して、その断面を確認できるようにした。焼結体の表面や断面に亀裂や破損があれば、その部位にカラーチェック液が染み込み、目視で亀裂や破損の有無を確認できる。   Next, in order to confirm the presence or absence of cracks or breakage in the surface or cross section of the α-alumina sintered body, each sample was immersed in a color check solution stored in a large water tank. At the time of immersion, the α-alumina sintered body was divided into two so that the cross section could be confirmed. If there is a crack or breakage on the surface or cross section of the sintered body, the color check solution will soak into that part and the presence or absence of cracks or breakage can be confirmed visually.

次に、洗浄液を使って、α−アルミナ質焼結体の表面に付いたカラーチェック液を充分に洗い流した後、乾燥し、α−アルミナ質焼結体の中央部の表面および断面のX線回折測定を実施し、そのX線回折チャートから(006)面と(110)面とのピーク強度比I006/I110を算出した。 Next, the color check solution attached to the surface of the α-alumina sintered body is thoroughly washed out using the cleaning liquid, and then dried, and the surface of the central portion of the α-alumina sintered body and the X-ray of the cross section are cross-sectioned. Diffraction measurement was performed, and the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane was calculated from the X-ray diffraction chart.

これら外観検査の結果およびX線回折チャートからのピーク強度比I006/I110の算出結果を表1に示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
Table 1 shows the results of these appearance inspections and the calculation results of the peak intensity ratio I 006 / I 110 from the X-ray diffraction chart. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表1に示すように、本発明の範囲外である試料No.4については、粒形比率が2.1と大きいために、I006/I110の値が0.08と高い。このため、α−アルミナ質焼結体中に内部応力が発生し、これが原因で、外観検査で焼結体中央部の表面や断面に微細な亀裂が多く確認された。 As shown in Table 1, Sample No. which is outside the scope of the present invention. For No. 4, the value of I 006 / I 110 is as high as 0.08 because the particle shape ratio is as large as 2.1. For this reason, internal stress was generated in the α-alumina sintered body, and this caused many fine cracks in the surface and cross section of the central portion of the sintered body.

さらに、試料No.5は粒形比率が2.5と大きいために、試料No.4よりも大きな亀裂によりα−アルミナ質焼結体に破損が生じていた。   Furthermore, sample no. No. 5 has a large particle shape ratio of 2.5. The α-alumina sintered body was damaged by a crack larger than 4.

これらと比較して、本発明の範囲内の試料No.1〜3については、α−アルミナ質焼結体の表面または断面に亀裂や破損がなく、良好であることが確認された。   Compared with these, sample No. within the scope of the present invention. About 1-3, it was confirmed that there is no crack or breakage in the surface or cross section of the α-alumina sintered body and it is good.

(実施例2)
次に、実施例1と同様に異なる粒径比率を有する5種類のα−アルミナ1次原料を用い、同様の製造方法にて長さが1000mmで断面の1辺が200mmの正方形である柱状体のα−アルミナ質焼結体を製造した。
(Example 2)
Next, five types of α-alumina primary raw materials having different particle size ratios as in Example 1 were used, and a columnar body having a square shape with a length of 1000 mm and a cross section of 200 mm by the same manufacturing method. An α-alumina sintered body was produced.

そして柱状体のα−アルミナ質焼結体を大型水槽に貯留されたカラーチェック液中に浸漬し、特にその端部に亀裂や破損の有無を確認した。また、端面から10mmの部分で2分割して再びカラーチェック液中に浸漬して端部の内部の亀裂や破損の有無の確認を行なった。   Then, the columnar α-alumina sintered body was immersed in a color check solution stored in a large water tank, and the presence or absence of cracks or breakage was particularly confirmed at the end. Further, it was divided into two at a portion of 10 mm from the end face, and dipped again in the color check solution to confirm the presence or absence of cracks or damage inside the end part.

次に、柱状体のα−アルミナ質焼結体の端部から切断された厚さ10mmの分割試料の表面および断面のX線回折測定を実施し、そのX線回折チャートから(006)面と(110)面とのピーク強度比I006/I110を算出した。 Next, X-ray diffraction measurement was performed on the surface and cross section of a 10 mm-thick divided sample cut from the end of the columnar α-alumina sintered body. From the X-ray diffraction chart, the (006) plane and The peak intensity ratio I 006 / I 110 with the (110) plane was calculated.

これら外観検査の結果およびX線回折チャートからのピーク強度比I006/I110の算出結果を表1に示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
Table 1 shows the results of these appearance inspections and the calculation results of the peak intensity ratio I 006 / I 110 from the X-ray diffraction chart. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表2に示すように、本発明の範囲外である試料No.9については、粒径比率が2.1と大きいためにI006/I110の値が高い。このため、α−アルミナ質焼結体中に内部応力が発生し、この内部応力が原因でα−アルミナ質焼結体の端部の表面や断面に微細な亀裂が外観検査で多く確認され、実施例1と同様の傾向を示すことが分かった。 As shown in Table 2, Sample No. which is outside the scope of the present invention. For No. 9, since the particle size ratio is as large as 2.1, the value of I 006 / I 110 is high. For this reason, internal stress is generated in the α-alumina sintered body, and due to this internal stress, many fine cracks are confirmed in the surface and cross section of the end portion of the α-alumina sintered body by the appearance inspection, It turned out that the same tendency as Example 1 is shown.

さらに試料No.10は粒径比率が2.5と大きいために、試料No.9よりも大きな亀裂が端部に生じることが確認され、これも実施例1の中央部と同様の傾向を示していることが確認された。   Furthermore, sample no. 10 has a large particle size ratio of 2.5. It was confirmed that a crack larger than 9 occurred in the end portion, and it was confirmed that this also showed the same tendency as that in the central portion of Example 1.

これらと比較して、本発明範囲内の試料No.6〜8については、α−アルミナ質焼結体の端部の表面または断面に亀裂や破損がないことが確認された。   Compared with these, sample No. within the scope of the present invention. About 6-8, it was confirmed that there is no crack or damage in the surface or cross section of the edge part of (alpha) -alumina sintered compact.

(実施例3)
次に、実施例1と同様に異なる粒径比率を有する5種類のα−アルミナ1次原料を用い、より大型製品の製造を実施した。製造方法としては、実施例1と同様であり異なる点は、用いる成形型の幅が600mm,長さが3000mm,厚さが70mmであり、最終的なα−アルミナ質焼結体の形状が、幅が450mm,長さが2300mm,厚さが50mmの長尺板状体という点である。これらの長尺板状体を試料No.11〜15とした。
(Example 3)
Next, a larger product was manufactured using five kinds of α-alumina primary raw materials having different particle size ratios as in Example 1. As a manufacturing method, it is the same as that of Example 1, and the difference is that the mold used has a width of 600 mm, a length of 3000 mm, and a thickness of 70 mm, and the final α-alumina sintered body has a shape of This is a long plate-like body having a width of 450 mm, a length of 2300 mm, and a thickness of 50 mm. These long plate-like bodies are referred to as Sample No. 11-15.

また、α−アルミナ質焼結体製造後のX線回折測定については、試料No.11〜15の焼結体をまず、表面に垂直に長さ方向で分割してこの表面に垂直な断面を第1断面とし、さらに表面および第1断面に垂直に分割してこの断面を第2断面とした。その次に、これらの試料について、表面,第1断面,第2断面をX線回折測定し、そのX線回折チャートからピーク強度比I006/I110の値を算出した。 For the X-ray diffraction measurement after production of the α-alumina sintered body, Sample No. First, the sintered bodies of 11 to 15 are divided in the length direction perpendicular to the surface to make the cross section perpendicular to the surface the first cross section, and further divided perpendicularly to the surface and the first cross section to make this cross section the second cross section. A cross section. Next, for these samples, the surface, the first cross section, and the second cross section were measured by X-ray diffraction, and the value of the peak intensity ratio I 006 / I 110 was calculated from the X-ray diffraction chart.

さらに、外観検査については、この分割した試料をカラーチェック液に浸漬して、実施例1と同様に、表面または断面に亀裂や破損等がないかの確認を行なった。   Further, for the appearance inspection, the divided sample was immersed in a color check solution, and as in Example 1, it was confirmed whether the surface or the cross section was free from cracks or breakage.

表3に試料No.11〜15のピーク強度比I006/I110の値および外観検査の結果を示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
In Table 3, sample No. The values of the peak intensity ratio I 006 / I 110 of 11 to 15 and the results of the appearance inspection are shown. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表3に示す結果によれば、試料No.14については、実施例1と同様に、外観検査で表面,第1断面,第2断面のそれぞれに亀裂が発生していた。また、ピーク強度比I006/I110の値についても、表面と第2断面とにおいては良好な値を示すものの、第1断面において0.08と本発明の範囲外の値を示していた。これは、この面にスラリーの流れ方向に沿ったα−アルミナ1次原料粒子の配列が起こり、それが焼結体のアルミナ結晶粒子の配向性を引き起こし、この面と他の面との収縮方向や収縮率の差が焼結体内部に応力を発生させたため、亀裂の発生に繋がったものと考えられる。 According to the results shown in Table 3, Sample No. As for Example 14, as in Example 1, cracks occurred on the surface, the first cross section, and the second cross section in the appearance inspection. The peak intensity ratio I 006 / I 110 also showed a good value on the surface and the second cross section, but 0.08 on the first cross section, a value outside the range of the present invention. This is because arrangement of α-alumina primary raw material particles along the flow direction of the slurry occurs on this surface, which causes the orientation of the alumina crystal particles of the sintered body, and the shrinkage direction between this surface and the other surface. It is considered that the difference in shrinkage rate caused stress in the sintered body, which led to the occurrence of cracks.

また、試料No.15についても、特に第2断面に大きなアルミナ結晶粒子の配向が確認されたが、試料No.14と比較して、亀裂だけでなく焼結体の破損が生じていた。これは、試料No.15については、ピーク強度比I006/I110の値の最大値と最小値との差をとると0.29もの大きな値を示していたために、焼結体中に破損に至るような特に大きな内部応力が発生したものと考えられる。 Sample No. Regarding No. 15, the orientation of large alumina crystal particles was confirmed especially in the second cross section. Compared to 14, not only cracks but also damage to the sintered body occurred. This is the sample No. For No. 15, the difference between the maximum value and the minimum value of the peak intensity ratio I 006 / I 110 showed a large value of 0.29. Therefore, particularly large internal stress that would cause breakage in the sintered body Is considered to have occurred.

これらと比較して、本発明の試料No.11〜13については、α−アルミナ質焼結体の表面,第1断面,第2断面に亀裂や破損の発生はなく、良好な焼結体が得られることが確認された。このことから、α−アルミナ1次原料粒子の粒形比率は、α−アルミナ質焼結体のアルミナ結晶粒子の配向性に大きな影響を与えると言える。   Compared with these, sample No. About 11-13, it was confirmed that there is no generation | occurrence | production of a crack and damage in the surface, 1st cross section, and 2nd cross section of (alpha) -alumina sintered compact, and a favorable sintered compact is obtained. From this, it can be said that the particle shape ratio of the α-alumina primary raw material particles has a great influence on the orientation of the alumina crystal particles of the α-alumina sintered body.

(実施例4)
次に、実施例1と同様に異なる5種類の粒形比率を有するα−アルミナ1次原料を用い、実施例1と同様の製造方法にて、外径が300mm,内径が15mm,長さが2000mmの円筒体のα−アルミナ質焼結体をそれぞれ製造し、試料No.16〜20とした。
Example 4
Next, α-alumina primary raw materials having five different particle shape ratios as in Example 1 were used, and the outer diameter was 300 mm, the inner diameter was 15 mm, and the length was the same as in Example 1. A 2000-mm cylindrical α-alumina sintered body was produced. 16-20.

そして、円筒体のα−アルミナ質焼結体を端部から10mmの部分で表面に垂直に分割し、この断面を第1断面とした。さらに表面および第1断面に垂直に分割し、その断面を第2断面とした。   Then, the cylindrical α-alumina sintered body was divided perpendicularly to the surface at a portion 10 mm from the end, and this cross section was defined as a first cross section. Further, the surface and the first cross section were divided vertically, and the cross section was defined as the second cross section.

次に、この試料の表面,第1断面,第2断面についてX線回折測定を実施し、その回折チャートから端部のピーク強度比I006/I110の値を算出した。 Next, X-ray diffraction measurement was performed on the surface, first cross section, and second cross section of the sample, and the value of the peak intensity ratio I 006 / I 110 at the end was calculated from the diffraction chart.

さらに、外観検査については、分割した試料をカラーチェック液に浸漬して、実施例1と同様に、表面または断面に亀裂や破損の有無の確認を行なった。

Figure 0005094214
Further, for the appearance inspection, the divided samples were immersed in a color check solution, and in the same manner as in Example 1, the presence or absence of cracks or breakage was confirmed on the surface or the cross section.
Figure 0005094214

表4に示す結果によれば、本発明の範囲外の試料No.19については、粒形比率が2.1と大きいために、第2断面のピーク強度比I006/I110の値が0.56と高い。このため、焼結体中に大きな内部応力が生じると考えられる。さらに、表面,第1断面,第2断面のI006/I110の値のバラツキが大きく、最大値と最小値の差が0.55と高い。この影響により、焼結時の収縮率差も大きく、外観検査で端部に微細な亀裂が多数見られた。 According to the results shown in Table 4, sample No. For 19, since the particle shape ratio is as large as 2.1, the value of the peak intensity ratio I 006 / I 110 in the second cross section is as high as 0.56. For this reason, it is thought that a big internal stress arises in a sintered compact. Furthermore, the variation of the value of I 006 / I 110 on the surface, the first cross section, and the second cross section is large, and the difference between the maximum value and the minimum value is as high as 0.55. Due to this influence, the difference in shrinkage rate during sintering was large, and many fine cracks were observed at the end portion in the appearance inspection.

また、本発明の範囲外の試料No.20については、試料No.19よりもI006/I110の最大値が大きく、かつ最小値と最大値との差が0.95と大きいために、外観検査において、微細な亀裂のみならず円筒体の端部に破損が見られる結果となった。 In addition, sample No. outside the scope of the present invention. For sample 20, sample no. Since the maximum value of I 006 / I 110 is larger than 19 and the difference between the minimum value and the maximum value is as large as 0.95, not only fine cracks but also damage to the ends of the cylindrical body are observed in appearance inspection As a result.

これらと比較して、本発明の範囲内の試料No.16〜18については、外観検査で円筒体の端部に亀裂や破損は見られなかった。   Compared with these, sample No. within the scope of the present invention. In the case of 16 to 18, no crack or breakage was observed at the end of the cylindrical body in the appearance inspection.

(実施例5)
次に、実施例1の試料No.1と同様のα−アルミナ1次原料および成形型を用いて、スラリー中の粒子体積分率の影響を確認する試験を実施した。
(Example 5)
Next, sample no. Using the same α-alumina primary raw material and mold as in No. 1, a test for confirming the influence of the particle volume fraction in the slurry was conducted.

試験は、実施例1と同様の製造方法を用いて実施し、スラリー中のα−アルミナ1次原料の含有量のみ種々変更して、粒子体積分率を表5に示すように調整した。   The test was carried out using the same production method as in Example 1, and the particle volume fraction was adjusted as shown in Table 5 by changing only the content of the α-alumina primary raw material in the slurry.

また、焼成後のα−アルミナ焼結体のX線回折測定は、実施例1と同様の方法にて実施し、X線回折チャートから、(006)面と(110)面とのピーク強度比I006/I110を算出した。 Further, the X-ray diffraction measurement of the sintered α-alumina sintered body was carried out in the same manner as in Example 1. From the X-ray diffraction chart, the peak intensity ratio between the (006) plane and the (110) plane was measured. I 006 / I 110 was calculated.

さらに、外観検査も実施例1と同様の方法にて実施し、それらの結果を表5に示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
Further, the appearance inspection was also performed in the same manner as in Example 1, and the results are shown in Table 5. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表5に示す結果によれば、本発明の範囲外の試料No.21については、その表面または断面のピーク強度比I006/I110の値は範囲内であるものの、粒子体積分率が小さすぎるために、その分溶媒やバインダ,分散剤,架橋剤の焼失に伴う変形量が大きく、焼結体の表面の一部に亀裂が生じていた。また、粒子体積分率が小さすぎ、アルミナ粒子同士の接触面積が小さいため焼結しにくく、このため、他の試料と比較して焼結体の密度が低くなり、このような密度では、機械的特性が低下しているものと考えられる。 According to the results shown in Table 5, sample nos. As for No. 21, although the value of the peak intensity ratio I 006 / I 110 of the surface or cross section is within the range, the particle volume fraction is too small, so that the solvent, the binder, the dispersant, and the crosslinking agent are burned out. The accompanying deformation amount was large, and a crack was generated on a part of the surface of the sintered body. In addition, since the particle volume fraction is too small and the contact area between the alumina particles is small, it is difficult to sinter. For this reason, the sintered body has a lower density than other samples. It is thought that the physical characteristics have deteriorated.

また、本発明の範囲外の試料No.27については、焼結体表面と断面のアルミナ結晶粒子の配向性の差が大きく、また、断面に特にc軸へのアルミナ結晶粒子の配向が認められる。このため、焼結体には亀裂の発生が見られ、破損にまで至っていた。これは、スラリー中の粒子体積分率が高く、スラリー中での粒子の自由度が極端に少ないために焼結体の一部にアルミナ結晶粒子の配向性が生じ、α−アルミナ質焼結体中に亀裂や破損に繋がるような大きな内部応力を生むアルミナ結晶粒子の配向性が生じたものと考えられる。   In addition, sample No. outside the scope of the present invention. Regarding No. 27, the difference in the orientation of the alumina crystal particles between the sintered body surface and the cross section is large, and the orientation of the alumina crystal particles particularly in the c-axis is recognized in the cross section. For this reason, generation | occurrence | production of the crack was seen in the sintered compact and it has reached to the damage. This is because the particle volume fraction in the slurry is high and the degree of freedom of the particles in the slurry is extremely small, so that the orientation of the alumina crystal particles occurs in a part of the sintered body, and the α-alumina sintered body It is considered that the orientation of the alumina crystal particles that generate a large internal stress that leads to cracks and breakage occurred.

これらと比較して、本発明の範囲内の試料No.22〜26については、亀裂や破損もなく、良好なα−アルミナ質焼結体を製造可能であることが確認された。   Compared with these, sample No. within the scope of the present invention. For 22 to 26, it was confirmed that a good α-alumina sintered body could be produced without cracks or breakage.

(実施例6)
次に、実施例5よりもさらに大型製品を製造して、スラリー中の粒子体積分率の影響を確認する試験を実施した。
(Example 6)
Next, a larger product than Example 5 was manufactured, and a test for confirming the influence of the particle volume fraction in the slurry was performed.

試験は、実施例5と同様の方法にてα−アルミナ質焼結体の製造を実施し、スラリーを充填する成形型のみ、実施例3で用いた大型の成形型を用いて実施した。   In the test, the α-alumina sintered body was produced by the same method as in Example 5, and only the molding die filled with the slurry was used using the large molding die used in Example 3.

また、評価方法についても実施例5とほぼ同様の方法を用いたが、α−アルミナ質焼結体のX線回折測定面については、実施例3と同様の方法にて焼結体を分割し、表面,第1断面,第2断面について(006)面と(110)面のピーク強度比I006/I110を算出した。 The evaluation method used was almost the same as in Example 5. However, the X-ray diffraction measurement surface of the α-alumina sintered body was divided by the same method as in Example 3. The peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane was calculated for the surface, the first cross section, and the second cross section.

さらに、外観検査も実施例1と同様の方法にて実施し、それらの結果を表6に示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
Further, the appearance inspection was also performed in the same manner as in Example 1, and the results are shown in Table 6. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表6に示す結果によれば、本発明の範囲外の試料No.28,29については、実施例5の場合と同様にその表面または断面のピーク強度比I006/I110の値は範囲内であるものの、粒子体積分率が小さいために、その分溶媒やバインダ,分散剤,架橋剤の焼失に伴う変形量が大きく、焼結体の表面の一部に亀裂が生じた。また、粒子体積分率が小さすぎ、アルミナ粒子同士の接触面積が小さいため焼結しにくく、このため、他の試料と比較して焼結体の密度が低くなり、このような密度では、機械的特性が低下しているものと考えられる。 According to the results shown in Table 6, the sample No. For the samples 28 and 29, the value of the peak intensity ratio I 006 / I 110 of the surface or cross section is within the range as in the case of Example 5, but the particle volume fraction is small. The amount of deformation caused by burnout of the dispersant and the cross-linking agent was large, and cracks occurred on part of the surface of the sintered body. In addition, since the particle volume fraction is too small and the contact area between the alumina particles is small, it is difficult to sinter. For this reason, the sintered body has a lower density than other samples. It is thought that the physical characteristics have deteriorated.

また、本発明の範囲外の試料No.35については、表面の値と第2断面の値と最大値−最小値の値とは良好であるものの、第1断面のI006/I110の値が範囲外であり、このため焼結体に内部応力が生じ、亀裂が発生していた。 In addition, sample No. outside the scope of the present invention. As for 35, the surface value, the value of the second cross section, and the value of the maximum value-minimum value are good, but the value of I 006 / I 110 of the first cross section is out of the range. Internal stress was generated and cracks occurred.

また、試料No.36については、表面,第2断面の値が範囲外であり、さらにピーク強度比I006/I110の値の最大値と最小値との差が0.16と大きな差を示しているために、大型製品では特に焼結体中に破損に至るような大きな内部応力が発生するものと考えられる。 Sample No. For 36, the value of the surface and the second cross section is out of the range, and the difference between the maximum value and the minimum value of the peak intensity ratio I 006 / I 110 shows a large difference of 0.16. In the product, it is considered that a large internal stress is generated in the sintered body, which leads to breakage.

これらと比較して、本発明の範囲内である試料No.30〜34については、α−アルミナ質焼結体に亀裂や破損の発生なく、大型製品においても良好なα−アルミナ質焼結体を製造できることが確認される結果となった。   Compared with these, sample No. which is within the scope of the present invention. For 30 to 34, it was confirmed that a good α-alumina sintered body could be produced even in a large product without cracking or breakage in the α-alumina sintered body.

このことから、本発明の製造方法において、スラリー中の粒子体積分率は、α−アルミナ質焼結体のアルミナ結晶粒子の配向性に大きな影響を与えることが確認された。   From this, in the production method of the present invention, it was confirmed that the particle volume fraction in the slurry greatly affects the orientation of the alumina crystal particles of the α-alumina sintered body.

(実施例7)
次に、実施例1の試料No.1と同じ粒形比率を有するα−アルミナ1次原料の平均粒形を種々変更し、実施例5の試料No.24と同じスラリー中の粒子体積分率として、実施例5と同様の形状のα−アルミナ質焼結体を同じ製法にて製造した。
(Example 7)
Next, sample no. The average particle shape of the α-alumina primary raw material having the same particle shape ratio as that of Example 1 was variously changed. As the particle volume fraction in the same slurry as 24, an α-alumina sintered body having the same shape as in Example 5 was produced by the same production method.

なお、平均粒径の変更に伴うα−アルミナ質焼結体の変形を確認するため、定盤上で反り変形量を測定した。   In addition, in order to confirm the deformation | transformation of the alpha alumina sintered body accompanying the change of an average particle diameter, the curvature deformation amount was measured on the surface plate.

さらに、外観検査も実施例1と同様の方法にて実施し、それらの結果を表7に示す。なお、外観検査結果については、亀裂および破損の無かったものを良好として○、有ったものを不可として×で示した。

Figure 0005094214
Furthermore, the appearance inspection was also performed in the same manner as in Example 1, and the results are shown in Table 7. As for the appearance inspection results, those with no cracks and breakage were shown as good, and those with cracks were shown as bad.
Figure 0005094214

表7に示す結果によれば、本発明の範囲外の平均粒径のα−アルミナ1次原料を用いた試料No.37については、α−アルミナ質焼結体のアルミナ結晶粒子の配向性もなく、充分に緻密化されていたが、α−アルミナ質焼結体の反り変形量が大きく、α−アルミナ質焼結体表面に亀裂を生じた。   According to the results shown in Table 7, the sample No. using the α-alumina primary material having an average particle diameter outside the range of the present invention was used. As for 37, there was no orientation of the alumina crystal particles of the α-alumina sintered body, and it was sufficiently densified, but the warpage deformation amount of the α-alumina sintered body was large, and the α-alumina sintered body Cracks occurred on the body surface.

また、本発明の範囲外の試料No.42については、アルミナ結晶粒子の配向性もなく、変形量も小さいが、充分に緻密化することが困難であった。   In addition, sample No. outside the scope of the present invention. Regarding No. 42, although there was no orientation of the alumina crystal particles and the amount of deformation was small, it was difficult to sufficiently densify.

これらと比較して、本発明の範囲内の試料No.38〜41については、アルミナ結晶粒子の配向もなく、充分に緻密化され、変形量も少ないα−アルミナ質焼結体を製造可能であることが確認された。   Compared with these, sample No. within the scope of the present invention. As for 38 to 41, it was confirmed that it is possible to produce an α-alumina sintered body that is sufficiently densified and has a small amount of deformation without orientation of alumina crystal particles.

これらの試験結果から、小型のアルミナ質焼結体だけでなく、従来の製造方法では成形体は得られても焼成後の焼結体には亀裂や破損が生じて製品とすることができなかったような大型のアルミナ質焼結体を、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とバインダと分散剤と溶媒とを混合して、α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とした固化性もしくは硬化性のスラリーとし、このスラリーを非吸液性の成形型へ注入してα−アルミナ質成形体を得た後、α−アルミナ質成形体を焼成することにより製造することが可能であることが確認された。そして、このアルミナ質焼結体を半導体または液晶製造装置用ステージ部材に好適に用いることができるのである。   From these test results, not only small alumina sintered bodies but also molded bodies obtained with the conventional manufacturing method can not be made into products due to cracks and breakage in the sintered body after firing. A large-sized alumina sintered body is mixed with α-alumina primary raw material particles having an average particle size of 0.5 to 2.0 μm and a particle size ratio of 1.5 to 2.0, a binder, a dispersant, and a solvent. , Α-alumina primary raw material particles are solidified or curable slurry with a volume fraction of 25 to 45% by volume, and this slurry is poured into a non-liquid-absorbing mold to form an α-alumina molded body. After obtaining the above, it was confirmed that the α-alumina shaped body can be produced by firing. And this alumina sintered body can be used suitably for the stage member for semiconductor or a liquid crystal manufacturing apparatus.

本発明の製造方法により作製したα−アルミナ質焼結体のX線回折測定結果の一例を示すX線回折チャートである。It is an X-ray diffraction chart which shows an example of the X-ray-diffraction measurement result of the alpha-alumina sintered compact produced by the manufacturing method of this invention.

Claims (5)

中央部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110が0.02〜0.07の範囲内であるアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、前記α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、該スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、該α−アルミナ質成形体を焼成することを特徴とするアルミナ質焼結体の製造方法。 The alumina sintered body in which the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane in the X-ray diffraction chart of the center surface and cross section is in the range of 0.02 to 0.07. Α-alumina primary raw material particles having an average particle size of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0, an emulsion binder, a dispersant, a solvent, and a production method The α-alumina primary raw material particles have a volume fraction of 25 to 45% by volume , solidified or curable, and a slurry having a viscosity of 0.02 to 0.5 Pa · s , Is poured into a non-liquid-absorbing mold, the mold is heated to 50 to 100 ° C. to break the emulsion state of the binder to produce a solidified body, and the solidified body is taken out from the mold. The solvent component is evaporated and cured by heating, and α- After obtaining the alumina electrolyte molded body, method for manufacturing the alumina sintered body and firing the α- alumina formed body. 端部の表面および断面のX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110が0.02〜0.5の範囲内である、棒状,筒状,板状,柱状等の長尺物のアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、前記α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、該スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、該α−アルミナ質成形体を焼成することを特徴とするアルミナ質焼結体の製造方法。 In the X-ray diffraction chart of the end surface and cross section, the peak intensity ratio I 006 / I 110 between the (006) plane and the (110) plane is in the range of 0.02 to 0.5, rod-shaped, cylindrical, A method for producing a plate-like, columnar, etc. long alumina sintered body having an average particle size of 0.5 to 2.0 μm and a particle shape ratio of 1.5 to 2.0 Alumina primary raw material particles, an emulsion binder, a dispersant, and a solvent are mixed to make the volume fraction of the α-alumina primary raw material particles 25 to 45% by volume , solidifying or curable, and having a viscosity. Is made into a slurry of 0.02 to 0.5 Pa · s, the slurry is poured into a non-liquid-absorbing mold, and the mold is heated to 50 to 100 ° C. to destroy the emulsion state of the binder. A solidified body is prepared, and the solidified body is taken out from the mold and heated. After the serial solvent component was obtained evaporation cured α- alumina formed body, the manufacturing method of the alumina sintered body and firing the α- alumina formed body. 中央部の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110がいずれも0.02〜0.07の範囲内であるアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、前記α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、該スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、該α−アルミナ質成形体を焼成することを特徴と
するアルミナ質焼結体の製造方法。
Peak intensity ratio I 006 / of (006) plane and (110) plane in the X-ray diffraction chart of the central surface, the first cross section perpendicular to the surface, and the second cross section perpendicular to the surface and the first cross section I 110 is a method for producing an alumina sintered body in which all are in the range of 0.02 to 0.07, the average particle size is 0.5 to 2.0 μm, and the particle shape ratio is 1.5 to 2.0 in some by mixing the dispersing agent and a solvent with a binder of α- alumina primary raw material particles and an emulsion state, the particle volume fraction of the α- alumina primary raw material particles and 25 to 45 vol%, solidification Or a curable slurry having a viscosity of 0.02 to 0.5 Pa · s , injecting the slurry into a non-liquid-absorbing mold, and heating the mold to 50 to 100 ° C. A solidified body is produced by breaking the emulsion state of The solidified body is taken out and heated to evaporate and cure the solvent component to obtain an α-alumina molded body, and then the α-alumina molded body is fired. Method.
端部の表面と、表面に垂直な第1断面と、表面および第1断面に垂直な第2断面とのX線回折チャートにおける(006)面と(110)面とのピーク強度比I006/I110がいずれも0.02〜0.5の範囲内である、棒状,筒状,板状,柱状等の長尺物のアルミナ質焼結体の製造方法であって、平均粒径が0.5〜2.0μmであり粒形比率が1.5〜2.0であるα−アルミナ1次原料粒子とエマルジョン状態のバインダと分散剤と溶媒とを混合して、前記α−アルミナ1次原料粒子の粒子体積分率を25〜45体積%とし固化性もしくは硬化性で、粘度が0.02〜0.5Pa・sのスラリーとし、該スラリーを非吸液性の成形型へ注入し、該成形型を50〜100℃に加熱して、前記バインダのエマルジョン状態を破壊させて固化体を作製し、前記成形型から前記固化体を取り出して加熱して前記溶媒成分を蒸発硬化させてα−アルミナ質成形体を得た後、該α−アルミナ質成形体を焼成することを特徴とするアルミナ質焼結体の製造方法。 The peak intensity ratio I 006 / of the (006) plane and the (110) plane in the X-ray diffraction chart of the end surface, the first cross section perpendicular to the surface, and the second cross section perpendicular to the surface and the first cross section. I 110 is a method for producing an alumina sintered body having a long shape such as a rod, tube, plate, column, etc., each having an average particle size of 0. Α-alumina primary raw material particles having a particle size ratio of 1.5 to 2.0, a binder in a state of emulsion, a dispersant, and a solvent are mixed, and the α-alumina primary is mixed. The raw material particles have a particle volume fraction of 25 to 45% by volume , a solidified or curable slurry having a viscosity of 0.02 to 0.5 Pa · s , and the slurry is poured into a non-liquid-absorbing mold. The mold is heated to 50 to 100 ° C. to destroy the emulsion state of the binder. A solidified body is prepared, the solidified body is taken out from the mold and heated to evaporate and cure the solvent component to obtain an α-alumina molded body, and then the α-alumina molded body is fired. A method for producing an alumina sintered body. 前記成形型の内面の少なくとも1面を、10mm以上の幅および1500mm以上の長さを有するものとすることを特徴とする請求項1乃至請求項4のいずれかに記載のアルミナ質焼結体の製造方法。   The alumina sintered body according to any one of claims 1 to 4, wherein at least one of the inner surfaces of the mold has a width of 10 mm or more and a length of 1500 mm or more. Production method.
JP2007141785A 2006-07-27 2007-05-29 Method for producing alumina sintered body Active JP5094214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141785A JP5094214B2 (en) 2006-07-27 2007-05-29 Method for producing alumina sintered body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006205046 2006-07-27
JP2006205046 2006-07-27
JP2007141785A JP5094214B2 (en) 2006-07-27 2007-05-29 Method for producing alumina sintered body

Publications (2)

Publication Number Publication Date
JP2008050251A JP2008050251A (en) 2008-03-06
JP5094214B2 true JP5094214B2 (en) 2012-12-12

Family

ID=39234634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141785A Active JP5094214B2 (en) 2006-07-27 2007-05-29 Method for producing alumina sintered body

Country Status (1)

Country Link
JP (1) JP5094214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558892B2 (en) * 2010-03-31 2014-07-23 太平洋セメント株式会社 Alumina sintered body
WO2023245278A1 (en) * 2022-06-20 2023-12-28 Aem Technologies Inc. Process for production of monolith compacted alumina material for single crystal growth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477342A (en) * 1990-07-16 1992-03-11 Chichibu Cement Co Ltd Ceramic product and its raw material
JP4601314B2 (en) * 2004-03-29 2010-12-22 京セラ株式会社 Large structure manufacturing method

Also Published As

Publication number Publication date
JP2008050251A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US7628951B1 (en) Process for making ceramic insulation
DE69735116T2 (en) Hydraulic monolithic refractory containing a non-calzinc binder and consisting of hydrogenation-activatable alumina and magnesia
JP2010508231A (en) Compound for manufacturing heat-resistant materials
KR101184473B1 (en) Mix and refractory product having a high hydration resistance produced therefrom
JP5775112B2 (en) Cast body, castable composition, and production method thereof
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
JP5094214B2 (en) Method for producing alumina sintered body
JP5302562B2 (en) Metal melting crucible and method for producing the same
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
JP2008019144A (en) Manufacturing method of ceramic composite material containing zirconia
JP5036110B2 (en) Lightweight ceramic sintered body
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2009096697A (en) Alumina substrate for zeolite membrane, and method for producing the same
JP2007284314A (en) Corrosion resistant magnesia-based sintered compact, member for heat treatment formed from the same, and method for producing the sintered compact
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
Kandi et al. Effect of monomers content and their ratio on gelcasting of fused silica ceramics
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP2007230787A (en) Boron carbide sintered compact and protective member using the same
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
US5132072A (en) Molding method of ceramic body
JP6366976B2 (en) Heat treatment member made of porous ceramics
JP2007254276A (en) Alumina sintered compact, its manufacturing method, and liquid crystal manufacturing unit using them
TW201004895A (en) Composite material and method of manufacturing the same
JP3327883B2 (en) Refractories containing massive graphite
JP2007217260A (en) Porous refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3