JPH0477342A - Ceramic product and its raw material - Google Patents
Ceramic product and its raw materialInfo
- Publication number
- JPH0477342A JPH0477342A JP2185302A JP18530290A JPH0477342A JP H0477342 A JPH0477342 A JP H0477342A JP 2185302 A JP2185302 A JP 2185302A JP 18530290 A JP18530290 A JP 18530290A JP H0477342 A JPH0477342 A JP H0477342A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- spherical powder
- raw material
- spherical
- ceramic product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 32
- 239000002994 raw material Substances 0.000 title claims abstract description 27
- 239000000843 powder Substances 0.000 claims abstract description 95
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052863 mullite Inorganic materials 0.000 claims abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000000654 additive Substances 0.000 claims abstract description 4
- 238000010304 firing Methods 0.000 claims description 18
- 238000000465 moulding Methods 0.000 claims description 12
- 238000010298 pulverizing process Methods 0.000 claims 1
- 230000000996 additive effect Effects 0.000 abstract 1
- 230000008602 contraction Effects 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 11
- 238000002156 mixing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005056 compaction Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、例えば電子・電気製品や機械製品に用いられ
るセラミックス製品の原料及びこの原料を用いて構成さ
れたセラミックス製品に関するものである。The present invention relates to raw materials for ceramic products used, for example, in electronic/electrical products and mechanical products, and to ceramic products constructed using this raw material.
例えば電子・電気製品(部品)や機械製品(部品)に用
いられるセラミックス製品は、−船釣には、原料となる
セラミックス粉末に所定の添加物やバインダを混合した
後、その製品の形状、寸法、特性などに応じてプレス成
形、押出成形、テープ成形といった各種の成形法により
成形される。
そして、この後、製品の形状仕様に基づき切断、研削、
プレス加工などが施され、このようにして得られたいわ
ゆるグリーン成形体を焼成した後、所定の形状・寸法調
整の仕上げ加工することにより、目的のセラミックス製
品が製造されている。For example, ceramic products used in electronic/electrical products (parts) and mechanical products (parts) are manufactured by mixing the raw material ceramic powder with specified additives and binders, and then creating the shape and size of the product. It is molded by various molding methods such as press molding, extrusion molding, and tape molding depending on the characteristics. After this, cutting, grinding, and
The so-called green molded body obtained in this way is fired, and then finished to adjust the shape and dimensions to a desired shape, thereby producing the desired ceramic product.
ところで、グリーン成形体の焼成に際しては、初期にバ
インダ等の有機物が除去され、中〜後期にかけてセラミ
ック粉末が焼結する。そして、バインダ類が除去された
成形体中の空隙率は一般に30〜60%であり、この為
焼成時に焼きしまりによる寸法収縮が発生する。
この焼成による寸法収縮は等友釣であることが成形加工
を簡便にする為に望ましいものである。
そして、近年、開発が進められている球状の原料粉末を
用いると、グリーン成形体の密度が高密度化し、焼成収
縮が小さく、等友釣になることから、セラミックス製品
の原料として球状の粉末が注目を浴びている。
尚、セラミックス製品の原料粉末が非球状であると、成
形により配向が生じ、成形体組織に異方性が生じ、焼成
収縮は等友釣でなくなる。
しかしながら、本発明者の研究によれば、球状粉末を用
いて成形したグリーン成形体は脆く、柔軟性が乏しく、
このため加工や取り扱いに際して欠けの発生しやすいこ
とが判って来た。
又、グリーンシートのプレス加工、焼成脱脂工程では、
グリーンシートの密度が高すぎない方が有利であるが、
原料粉末として球状粉末を用いると、成形体の密度が高
くなりすぎる問題点も有る。
そこで、本発明の第1の目的は、焼成時に焼きしまりに
よる寸法収縮に異方性が少ない、すなわち焼成による寸
法収縮が等友釣である技術を提供することである。
本発明の第2の目的は、加工や取り扱いに際して欠けの
発生しにくい技術を提供することである。
本発明の第3の目的は、成形体の密度が高くなりすぎな
い技術を提供することである。By the way, when firing a green molded body, organic substances such as binders are removed in the early stage, and ceramic powder is sintered in the middle to late stages. The porosity of the molded body from which binders have been removed is generally 30 to 60%, and therefore dimensional shrinkage due to compaction occurs during firing. It is desirable that the dimensional shrinkage due to firing be uniform in order to simplify the molding process. Using spherical raw material powder, which has been developed in recent years, increases the density of the green molded body, reduces firing shrinkage, and produces an even balance, so spherical powder is attracting attention as a raw material for ceramic products. is bathed in Note that if the raw material powder of the ceramic product is non-spherical, orientation will occur during molding, anisotropy will occur in the structure of the molded product, and firing shrinkage will not be equal. However, according to the research of the present inventor, green molded bodies molded using spherical powder are brittle and have poor flexibility.
For this reason, it has been found that chipping is likely to occur during processing and handling. In addition, in the green sheet press processing and baking degreasing process,
It is advantageous if the density of the green sheet is not too high,
When spherical powder is used as the raw material powder, there is also the problem that the density of the compact becomes too high. Therefore, a first object of the present invention is to provide a technique in which dimensional shrinkage due to compaction during firing has little anisotropy, that is, dimensional shrinkage due to firing is uniform. A second object of the present invention is to provide a technique that prevents chipping during processing and handling. A third object of the present invention is to provide a technique that prevents the density of a molded article from becoming too high.
上記本発明の目的は、焼成して得られるセラミックス製
品の原料であって、この原料は非球状の粉末と球状の粉
末とを含むものであり、しかも前記非球状粉末/球状粉
末が2/8〜8/2(重量比)であることを特徴とする
セラミックス製品原料によって達成される。
又、2/8〜8/2(重量比)となるよう配合した非球
状粉末と球状粉末、バインダ並びに所定の添加物の混合
物が、成形、焼成されてなることを特徴とするセラミッ
クス製品によって達成される。
すなわち、上記本発明によって、焼成収縮が等友釣で、
強度があるグリーン成形体が得られ、形状、寸法精度の
高い機械部品セラミックス又は電子・電気部品セラミッ
クスといったセラミックス製品が簡便に、かつ、歩留り
良く製造できる。
尚、上記の発明において、原料粉末としてはアルミナや
ムライト質を挙げることができ、そして非球状の粉末は
例えば球状の粉末を粉砕することによっても得られる。
以下、本発明をさらに詳しく詳述する。
本発明者は、各種セラミックス製品の原料となる球状粉
末と非球状粉末とを用いてグリーン成形体を作製し、こ
のグリーン成形体の特性について鋭意研究を押し進めて
行った結果、球状粉末と非球状粉末との配合割合が特定
の割合であった場合には、従来の欠点が解決されるに至
ることを見出した。
すなわち、セラミックス製品の原料となる球状の粉末と
非球状の粉末との混合割合を変え、各種の成形方法によ
りグリーン成形体を作製し、その特性について研究して
いた初期の段階にあっては、球状の粉末に対して非球状
の粉末を増加させて行くと、焼成時の収縮が等友釣なも
のから異方性の大きなものに変化して行くと予想されて
いた。
しかしながら、セラミックス製品の原料となる球状の粉
末と非球状の粉末との混合割合を変えて実験を試みたと
ころ、非球状の粉末がかなりの量になるまで混合されて
いても、実際には、実質上問題となるような等方収縮性
が失われていないことが判明したのである。
しかも、非球状の粉末が一定量以上混合されていると、
成形体の強度は向上することも判明した。
又、セラミックス製品の原料となる球状の粉末と非球状
の粉末との混合割合を変えることで、成形体の密度の制
御も簡単に行えるようになる。
ところで、球状の粉末と非球状の粉末とを特定の割合で
混合した原料を用いて作製したグリーン成形体の特性が
改良される理由につき、本発明者は次のように考えてい
る。
すなわち、非球状の粉末が用いられた場合、成形の際に
成形治具より力を受け、粉末粒子は安定する方向に整列
、いわゆる配向が起きる。
そして、原料粉末が配向したグリーン成形体では、配向
方向と非配向方向とで空隙率、空隙形状が異なる為、焼
成の収縮率が異なるようになる。
これに対して、非球状の粉末に球状の粉末を分散させて
いると、球状の粉末に接する非球状の粉末及び近傍の非
球状の粉末の配向は妨げられるようになる。尚、球状の
粉末と非球状の粉末の混合状態にあっても、球状の粉末
の量が少なすぎる状態では、成形による粉末粒子の配向
が一部妨げられるものの、配向は残っている。
そして、球状の粉末の混合割合がある特定の値になると
、球状の粉末により配向が乱されたランダム領域が重な
り合い、配向領域がなくなり、このような原料粉末を用
いて成形したグリーン成形体には焼成収縮の異方性がな
くなると考えられなのである。
又、グリーン成形体の強度はバインダの結合力によるも
のと考えられる。この結合力についてさらに詳しく考察
してみると、バインダ分子同士の結合力とバインダ分子
と粉体との結合力によって構成されていると考えられる
。又、結合力は濡れ、親和性の観点より、一般に、バイ
ンダ分子と粉体との結合力はバインダ分子同士の結合力
より弱い。
従って、割れや欠けは、バインダ分子と粉体との界面で
発生すると考えられる。
又、バインダ分子と粉体との結合の強さは、単位重量中
の界面面積、すなわち粉体の比表面積の増加につれて増
大することが判って来た。
ところで、球状の粉末は比表面積が小さい為、非球状の
粉末に比べて結合力の弱いことが予想される。そして、
球状の粉末を原料として成形したグリーン成形体は密度
が高く、粉体粒子同士の距離が短い為、非球状の粉末を
原料として成形したグリーン成形体と同じ断面積で比べ
ると、結合力の弱い界面が多く、結合力の強いバインダ
層が少ない、それ故、非球状の粉末を分散混合すること
により、比表面積を増し、界面結合力を増大させると同
時にグリーン密度を低下させ、結合力の強いバインダ層
を増加させる二重の効果により、グリーン成形体の強度
が急速に向上したものと考えられるのである。
尚、本発明で粉末の球状とは、その外形が数学的な厳密
な意味での球を指すものではなく、当業界で一般的に考
えられている球状のものであれば良く、例えば液滴を噴
霧焙焼することで得られる粉末は球状のものと考えて良
い。
そして、これら粉末の大きさは、球状の粉末の平均粒径
が例えば1μ−より小さくなると、凝集が起き易く、非
球状の粉末と混合した際の異方性改善効果が弱くなる傾
向にあることから、球状の粉末は約1μ―より大きいこ
とが望ましい。
又、非球状の粉末は、その比表面積が例えば2m 2
/ gより小さいとグリーン成形体の強度向上効果が弱
くなり、逆に、10+s”7gを越えると異方性が起き
易くなる傾向にあるから、非球状の粉末は比表面積が2
〜10+*”7gであるものが望ましい。
又、本発明の球状の粉末及び非球状の粉末は、同成分で
あっても異種成分であっても良い。
又、球状の粉末及び非球状の粉末は、2種以上の成分か
ら構成されてもよい。The object of the present invention is to provide a raw material for ceramic products obtained by firing, which raw material contains a non-spherical powder and a spherical powder, and furthermore, the non-spherical powder/spherical powder is 2/8 This is achieved using a ceramic product raw material characterized by a weight ratio of ~8/2 (weight ratio). Furthermore, this can be achieved by a ceramic product that is formed by molding and firing a mixture of non-spherical powder, spherical powder, binder, and predetermined additives in a ratio of 2/8 to 8/2 (weight ratio). be done. That is, according to the present invention, the firing shrinkage is uniform,
A strong green molded body can be obtained, and ceramic products such as mechanical component ceramics or electronic/electrical component ceramics with high shape and dimensional accuracy can be manufactured easily and with a high yield. In the above invention, raw material powders include alumina and mullite, and non-spherical powders can also be obtained, for example, by crushing spherical powders. The present invention will be described in more detail below. The present inventor produced a green molded body using spherical powder and non-spherical powder, which are raw materials for various ceramic products, and conducted intensive research on the characteristics of this green molded body. It has been found that the conventional drawbacks can be solved if the blending ratio with the powder is a specific ratio. In other words, in the early stages of research on the characteristics of green molded bodies by changing the mixing ratio of spherical powder and non-spherical powder, which are the raw materials for ceramic products, and using various molding methods. It was predicted that as the amount of non-spherical powder increases relative to the spherical powder, the shrinkage during firing will change from isotropic to highly anisotropic. However, when we experimented with changing the mixing ratio of spherical powder and non-spherical powder, which are the raw materials for ceramic products, we found that even though a considerable amount of non-spherical powder was mixed, It was found that there was no loss of isotropic shrinkage, which would be a substantial problem. Moreover, if more than a certain amount of non-spherical powder is mixed,
It was also found that the strength of the molded body was improved. Furthermore, by changing the mixing ratio of spherical powder and non-spherical powder, which are raw materials for ceramic products, the density of the molded body can be easily controlled. By the way, the inventor of the present invention thinks as follows about the reason why the characteristics of a green molded body produced using a raw material that is a mixture of spherical powder and non-spherical powder in a specific ratio are improved. That is, when non-spherical powder is used, a force is applied from a molding jig during molding, and the powder particles are aligned in a stable direction, so-called orientation. In a green molded body in which the raw material powder is oriented, the porosity and the shape of the pores are different between the oriented direction and the non-oriented direction, so that the shrinkage rate during firing will be different. On the other hand, if spherical powder is dispersed in non-spherical powder, the orientation of the non-spherical powder in contact with the spherical powder and the non-spherical powder in the vicinity will be hindered. Note that even in a mixed state of spherical powder and non-spherical powder, if the amount of spherical powder is too small, the orientation of the powder particles during molding is partially hindered, but the orientation remains. When the mixing ratio of the spherical powder reaches a certain value, the random regions whose orientation is disturbed by the spherical powder overlap, and there is no oriented region, and the green molded body formed using such raw material powder This is thought to eliminate the anisotropy of firing shrinkage. Further, it is thought that the strength of the green molded body is due to the binding force of the binder. When this bonding force is considered in more detail, it is considered that it is composed of the bonding force between the binder molecules and the bonding force between the binder molecules and the powder. In addition, from the viewpoint of wettability and affinity, the bonding force between binder molecules and powder is generally weaker than the bonding force between binder molecules. Therefore, cracks and chips are considered to occur at the interface between the binder molecules and the powder. It has also been found that the strength of the bond between binder molecules and powder increases as the interfacial area per unit weight, that is, the specific surface area of the powder increases. Incidentally, since spherical powder has a small specific surface area, it is expected that the binding force will be weaker than that of non-spherical powder. and,
Green compacts made from spherical powder have a high density and the distance between the powder particles is short, so they have weaker bonding strength when compared to green compacts made from non-spherical powder at the same cross-sectional area. There are many interfaces and few binder layers with strong bonding force. Therefore, by dispersing and mixing non-spherical powder, the specific surface area is increased and the interfacial bonding force is increased. At the same time, the green density is reduced and the bonding force is strong. It is thought that the strength of the green molded product was rapidly improved due to the double effect of increasing the number of binder layers. In the present invention, the spherical shape of the powder does not mean that the outer shape is a sphere in the strict mathematical sense. The powder obtained by spray roasting can be considered to be spherical. Regarding the size of these powders, if the average particle size of the spherical powder is smaller than 1μ, for example, agglomeration tends to occur, and the anisotropy improvement effect when mixed with non-spherical powder tends to be weakened. Therefore, it is desirable that the spherical powder be larger than about 1 micron. Further, the specific surface area of the non-spherical powder is, for example, 2 m 2
/ g, the effect of improving the strength of the green molded body will be weakened, and conversely, if it exceeds 10+s''7g, anisotropy tends to occur, so non-spherical powder has a specific surface area of 2
It is desirable that the powder weighs ~10+*''7g. Also, the spherical powder and non-spherical powder of the present invention may have the same components or may have different components. may be composed of two or more components.
【実施例1〜3及び比較例1〜3】
平均粒径3.2μ論の球状のムライト粉末Aと平均粒径
2.8μ輪の粉砕した電融ムライト粉末Bとを原料粉末
とし、乾式プレス用バインダと共に種々の割合でボール
ミルにて湿式混合した後、スプレードライヤにより乾燥
し、プレス成形機で1.5t/c+m2に加圧してグリ
ーン成形体とし、このグリーン成形体の嵩密度及び曲げ
強度を測定したので、その結果を表1に示す。
さらに、グリーン成形体を1680℃にて3時間焼成し
、この焼成体の嵩密度及び焼成収縮率を測定したので、
その結果を表1に示す。[Examples 1 to 3 and Comparative Examples 1 to 3] Spherical mullite powder A with an average particle size of 3.2 μm and pulverized electrofused mullite powder B with an average particle size of 2.8 μm were used as raw powders, and dry pressed. After wet-mixing with a binder in various proportions in a ball mill, it was dried in a spray dryer and pressurized to 1.5t/c+m2 in a press molding machine to form a green molded body.The bulk density and bending strength of this green molded body were The results are shown in Table 1. Furthermore, the green molded body was fired at 1680°C for 3 hours and the bulk density and firing shrinkage rate of this fired body were measured.
The results are shown in Table 1.
【実施例4.5及び比較例4.5】
平均粒径1.7μ偽の球状アルミナ粉末Aと平均粒径2
.2μ輪の非球状アルミナ粉末Bとの合計100重量部
に対して、平均粒径1.4μ−の粉砕したタルク粉末5
重量部を混合し、さらに押出成形用パインダを所定量だ
け混合して押出成形し、1.5mm厚の板状に成形し、
嵩密度及び引っ張り強度を測定したので、その結果を表
2に示す。
さらに、このグリーン成形体を1600℃にて2時間焼
成し、嵩密度及び焼成収縮率を測定したので、その結果
を表2に示す。[Example 4.5 and Comparative Example 4.5] False spherical alumina powder A with an average particle size of 1.7μ and an average particle size of 2
.. For a total of 100 parts by weight of 2μ rings of non-spherical alumina powder B, crushed talc powder 5 with an average particle size of 1.4μ
The weight parts were mixed, and a predetermined amount of extrusion molding binder was mixed and extruded to form a plate with a thickness of 1.5 mm.
The bulk density and tensile strength were measured and the results are shown in Table 2. Further, this green molded body was fired at 1600° C. for 2 hours, and the bulk density and firing shrinkage rate were measured, and the results are shown in Table 2.
【実施例6,7及び比較例6】
平均粒径5μ鎖の球状ムライト粉末を0.3%のMgO
と共に粉砕し、平均粒径が3.7μ−と2.1μ鋤の球
状粉末Aと一部粉砕された非球状の粉末Bとの混合粉末
とし、実施例1と同様に行ったので、その結果を表3に
示す。
尚、球状の粉末Aと非球状の粉末Bは、電子票微鏡によ
りその量を推定した。[Examples 6, 7 and Comparative Example 6] Spherical mullite powder with an average particle size of 5 μ chains was mixed with 0.3% MgO
A mixture of spherical powder A with an average particle size of 3.7μ and 2.1μ and partially crushed non-spherical powder B was prepared in the same manner as in Example 1, and the results were as follows. are shown in Table 3. The amounts of spherical powder A and non-spherical powder B were estimated using an electronic chart microscope.
本発明になるものは、焼成収縮が等友釣で、強度がある
グリーン成形体の得られることが判り、そして形状、寸
法精度の高い機械部品セラミ・ンクス又は電子部品セラ
ミックスといったセラミ・ンクス製品が簡便に、かつ、
歩留り良く製造できる特長を有する。
特許出願人 秩父セメント株式会社It has been found that the present invention provides a green molded body with equal firing shrinkage and strength, and it is easy to produce ceramic/ink products such as mechanical parts ceramic/electronic parts or electronic parts ceramics with high shape and dimensional accuracy. , and
It has the advantage of being able to be manufactured with high yield. Patent applicant Chichibu Cement Co., Ltd.
Claims (1)
、この原料は非球状の粉末と球状の粉末とを含むもので
あり、しかも前記非球状粉末/球状粉末が2/8〜8/
2(重量比)であることを特徴とするセラミックス製品
原料。 2 原料粉末がアルミナ及び/又はムライト質である特
許請求の範囲第1項記載のセラミックス製品原料。 3 非球状の粉末は球状の粉末を粉砕したものである特
許請求の範囲第1項又は第2項記載のセラミックス製品
原料。 4 2/8〜8/2(重量比)となるよう配合した非球
状粉末と球状粉末、バインダ並びに所定の添加物の混合
物が、成形、焼成されてなることを特徴とするセラミッ
クス製品。[Claims] 1. A raw material for a ceramic product obtained by firing, which includes a non-spherical powder and a spherical powder, and in which the non-spherical powder/spherical powder accounts for 2/8 ~8/
2 (weight ratio). 2. The ceramic product raw material according to claim 1, wherein the raw material powder is alumina and/or mullite. 3. The ceramic product raw material according to claim 1 or 2, wherein the non-spherical powder is obtained by pulverizing a spherical powder. 4. A ceramic product characterized by being formed by molding and firing a mixture of non-spherical powder, spherical powder, a binder, and predetermined additives blended so as to have a weight ratio of 2/8 to 8/2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2185302A JPH0477342A (en) | 1990-07-16 | 1990-07-16 | Ceramic product and its raw material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2185302A JPH0477342A (en) | 1990-07-16 | 1990-07-16 | Ceramic product and its raw material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0477342A true JPH0477342A (en) | 1992-03-11 |
Family
ID=16168481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2185302A Pending JPH0477342A (en) | 1990-07-16 | 1990-07-16 | Ceramic product and its raw material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0477342A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008050251A (en) * | 2006-07-27 | 2008-03-06 | Kyocera Corp | Alumina-based sintered compact, method for manufacturing the same, semiconductor using the sintered compact or stage member for liquid crystal manufacturing apparatus |
-
1990
- 1990-07-16 JP JP2185302A patent/JPH0477342A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008050251A (en) * | 2006-07-27 | 2008-03-06 | Kyocera Corp | Alumina-based sintered compact, method for manufacturing the same, semiconductor using the sintered compact or stage member for liquid crystal manufacturing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69902080T2 (en) | Process for the production of ceramic masses | |
US4175117A (en) | Production of ceramic powders for ferrite, spinel, titanate and garnet production | |
JPH0477342A (en) | Ceramic product and its raw material | |
JPH0515667B2 (en) | ||
KR20110032208A (en) | Method for producing sintered magnet | |
JP3105524B2 (en) | Manufacturing method of whiteware ceramic products | |
US6017839A (en) | Ceramic article | |
JP2882877B2 (en) | Zirconia porcelain and method for producing the same | |
JP2900118B2 (en) | Abrasion resistant alumina ceramics | |
RU2379257C1 (en) | Method for making alumina ceramic products | |
US5958311A (en) | Method of manufacturing a ceramic article | |
AU6595498A (en) | Process for preparing green bodies | |
JPH042648A (en) | Production of ceramics | |
JP4576007B2 (en) | Crushing / dispersing media and manufacturing method thereof | |
JPH0656506A (en) | Production of ceramic material and its molding using finely powdered fire-proofing oxide | |
JPS63151680A (en) | High-strength normal pressure-sintering silicon nitride sintered body and manufacture | |
JPS61256963A (en) | High strength alumina sintered body and manufacture | |
JPH0541587B2 (en) | ||
JPS63170254A (en) | Manufacture of ceramics | |
CA1083184A (en) | High density low porosity refractory product and process for making the same | |
JP3672598B2 (en) | Plastic molding slurry composition, method for producing the plastic molding slurry composition, plastic molding clay obtained by subjecting the plastic molding slurry composition to dehydration and kneading, and use of the plastic molding clay Molding method of plastic molded body, plastic molded body molded by the molding method, and dried plastic molded body obtained by drying the plastic molded body | |
JPH05301775A (en) | Member for pulverizer composed of silicon nitride-based sintered compact | |
JPS61117153A (en) | Manufacture of alumina sintered body | |
EP0758630B1 (en) | Slurry compositions for plastic molding purposes and products obtained thereof | |
JPH04300235A (en) | Production of ceramic body |