JP5092811B2 - Foamed cosmetics - Google Patents

Foamed cosmetics Download PDF

Info

Publication number
JP5092811B2
JP5092811B2 JP2008057531A JP2008057531A JP5092811B2 JP 5092811 B2 JP5092811 B2 JP 5092811B2 JP 2008057531 A JP2008057531 A JP 2008057531A JP 2008057531 A JP2008057531 A JP 2008057531A JP 5092811 B2 JP5092811 B2 JP 5092811B2
Authority
JP
Japan
Prior art keywords
foaming agent
expandable microcapsule
thermally expandable
foamed
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008057531A
Other languages
Japanese (ja)
Other versions
JP2009214315A (en
Inventor
正幸 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2008057531A priority Critical patent/JP5092811B2/en
Publication of JP2009214315A publication Critical patent/JP2009214315A/en
Application granted granted Critical
Publication of JP5092811B2 publication Critical patent/JP5092811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、新規な発泡化粧材に関する。特に、高倍率に発泡させても優れた圧縮回復性を保ち、保存時の製品自体の自重、あるいは施工時ローラー押さえによるへこみあるいは施工後の置き跡による潰れに対して回復可能であり、かつエンボスによる意匠性が損なわれない発泡化粧材に関するものであり、建築物の内装材等として有用である。   The present invention relates to a novel foamed decorative material. In particular, it retains excellent compression recovery even when foamed at a high magnification, and can recover from the weight of the product itself during storage, dents due to roller pressing during construction, or crushing due to traces after installation, and embossing It is related to a foamed decorative material that does not impair the design properties of the material, and is useful as an interior material of a building.

従来、エチレン・ビニルエステル系共重合体含有水性エマルジョン、熱膨張性マイクロカプセル発泡剤及び無機フィラーからなる発泡化粧材用樹脂組成物が特許文献1に開示されている。
しかしながら、本発明者らが、上記公開公報に記載の技術を使用し、6.0〜8.0倍の高発泡倍率化粧材について検討したところ、圧縮回復性が十分ではないという問題が明らかになった。圧縮回復性とは、壁紙として使用した場合、保存時の壁紙製品自体の自重、あるいは施工時ローラー押さえによるへこみあるいは施工後の置き跡による潰れの回復性のことを表す。
特開2003−13396号公報
Conventionally, Patent Document 1 discloses a resin composition for foamed decorative materials comprising an aqueous emulsion containing an ethylene / vinyl ester copolymer, a thermally expandable microcapsule foaming agent, and an inorganic filler.
However, when the present inventors examined the high foaming ratio decorative material of 6.0 to 8.0 times using the technique described in the above-mentioned publication, the problem that the compression recovery property is not sufficient is apparent. became. When used as wallpaper, the compression recovery property represents the weight of the wallpaper product itself at the time of storage, or the recovery from crushing due to dents due to roller pressing during construction or after placement after construction.
JP 2003-13396 A

本発明は、従来の技術における上記のような問題点に着目してなされたもので、その課題とするところは、高倍率に発泡させた時の圧縮回復性に優れており、保存時の製品自体の自重、あるいは施工時ローラー押さえによるへこみあるいは施工後の置き跡による潰れに対して回復可能であり、かつエンボスによる意匠性が損なわれない発泡化粧材を提供することにある。   The present invention has been made paying attention to the above-mentioned problems in the prior art, and the problem is that the product is excellent in compression recovery when foamed at a high magnification, and is a product at the time of storage. An object of the present invention is to provide a foamed cosmetic material that can recover against its own weight, or a dent caused by pressing a roller during construction or crushing caused by a placement mark after construction, and that does not impair the design properties due to embossing.

請求項1に記載の発明は、少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材であって、該熱膨張性マイクロカプセル発泡剤は熱膨張性マイクロカプセル発泡剤aと熱膨張性マイクロカプセル発泡剤bの2種からなり、
熱膨張性マイクロカプセル発泡剤aは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.03〜0.10μmであり、
熱膨張性マイクロカプセル発泡剤bは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.10〜0.25μmである、
ことを特徴とする発泡化粧材である。
The invention according to claim 1 is a foamed decorative material obtained by heating and foaming a resin composition containing at least an aqueous emulsion resin, a thermally expandable microcapsule foaming agent, and an inorganic filler, and the thermally expandable material. The microcapsule foaming agent is composed of two kinds of a thermally expandable microcapsule foaming agent a and a thermally expandable microcapsule foaming agent b.
The heat-expandable microcapsule foaming agent a has an average particle diameter of 5 to 35 μm, an included gas amount of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.03 to 0.10 μm.
The heat-expandable microcapsule foaming agent b has an average particle diameter of 5 to 35 μm, an amount of encapsulated gas of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.10 to 0.25 μm.
This is a foamed decorative material.

請求項2に記載の発明は、前記水性エマルジョン系樹脂が固形分で100重量部に対して、前記熱膨張性マイクロカプセル発泡剤aおよび前記熱膨張性マイクロカプセル発泡剤bとを合計で2〜30重量部、前記無機フィラーを20〜200重量部含有することを特徴とする請求項1に記載の発泡化粧材である。   According to a second aspect of the present invention, there is a total of 2 to 2 of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b with respect to 100 parts by weight of the aqueous emulsion resin. The foamed decorative material according to claim 1, comprising 30 parts by weight and 20 to 200 parts by weight of the inorganic filler.

請求項3に記載の発明は、前記熱膨張性マイクロカプセル発泡剤aと前記熱膨張性マイクロカプセル発泡剤bとの含有比率a/bが8/2〜2/8であることを特徴とする請求項1または2のいずれかに記載の発泡化粧材である。   The invention according to claim 3 is characterized in that the content ratio a / b of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b is 8/2 to 2/8. It is a foaming cosmetic material in any one of Claim 1 or 2.

請求項4に記載の発明は、請求項に記載の少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材の表面に、エンボス版を押圧して凹凸模様を形成してなることを特徴とする発泡化粧材である。 The invention according to claim 4 is a surface of a foamed cosmetic material obtained by heating and foaming a resin composition containing at least the aqueous emulsion resin according to claim 1 , a thermally expandable microcapsule foaming agent, and an inorganic filler. Further, it is a foamed decorative material formed by pressing an embossed plate to form an uneven pattern .

請求項1に記載の発明は、少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材であって、該熱膨張性マイクロカプセル発泡剤は熱膨張性マイクロカプセル発泡剤aと熱膨張性マイクロカプセル発泡剤bの2種からなり、
熱膨張性マイクロカプセル発泡剤aは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.03〜0.10μmであり、
熱膨張性マイクロカプセル発泡剤bは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.10〜0.25μmである、
ことを特徴とする発泡化粧材である。
請求項1の発明より、高倍率に発泡させた時の圧縮回復性に優れ、かつエンボスによる意匠性が損なわれない発泡化粧材を提供することが可能となる。熱膨張性マイクロカプセル発泡剤を使用した発泡化粧材の圧縮回復性、エンボス再現性は、発泡後の熱膨張性マイクロカプセル発泡剤のシェル膜厚に大きく左右される。シェル膜厚が厚いほどシェル内部に内包ガスを閉じ込めておく能力が高いために圧縮回復性が優れ、薄いほど内包ガスが抜けやすくなるために圧縮回復性が劣る傾向にある。また、シェル膜厚が厚いほどエンボス時の反発を受けやすいためにエンボス再現性が劣り、薄いほどエンボスが入りやすいためにエンボス再現性が優れる傾向にある。そのため、圧縮回復性とエンボス再現性の両方を同時に付与させることは困難であった。そこで本発明者らが思考錯誤した結果、シェル膜厚の厚い熱膨張性マイクロカプセル発泡剤とシェル膜厚の薄い熱膨張性マイクロカプセル発泡剤を混合させることで、圧縮回復性とエンボス再現性の両方に優れた発泡化粧材を作製することに成功した。シェル膜厚の異なる2種の熱膨張性マイクロカプセル発泡剤を混合させることにより、シェル膜厚の厚い熱膨張性マイクロカプセル発泡剤が優れた圧縮回復性を付与し、シェル膜厚の薄い熱膨張性マイクロカプセル発泡剤が優れたエンボス再現性を付与させるためである。
The invention according to claim 1 is a foamed decorative material obtained by heating and foaming a resin composition containing at least an aqueous emulsion resin, a thermally expandable microcapsule foaming agent, and an inorganic filler, and the thermally expandable material. The microcapsule foaming agent is composed of two kinds of a thermally expandable microcapsule foaming agent a and a thermally expandable microcapsule foaming agent b.
The heat-expandable microcapsule foaming agent a has an average particle diameter of 5 to 35 μm, an included gas amount of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.03 to 0.10 μm.
The heat-expandable microcapsule foaming agent b has an average particle diameter of 5 to 35 μm, an amount of encapsulated gas of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.10 to 0.25 μm.
This is a foamed decorative material.
According to the invention of claim 1, it is possible to provide a foamed decorative material that is excellent in compression recovery property when foamed at a high magnification and that does not impair the design properties by embossing. The compression recovery property and embossing reproducibility of the foamed cosmetic material using the thermally expandable microcapsule foaming agent greatly depend on the shell film thickness of the thermally expandable microcapsule foaming agent after foaming. The thicker the shell film, the higher the ability to confine the encapsulated gas inside the shell, and the better the compression recovery. The thinner the gas, the easier the escape of the encapsulated gas, and the more likely the compression recoverability tends to be inferior. Further, the thicker the shell film, the easier it is to be repelled during embossing, so the embossing reproducibility is inferior. The thinner the embossing is, the better the embossing reproducibility tends to be. For this reason, it has been difficult to simultaneously impart both compression recovery and emboss reproducibility. Therefore, as a result of the thoughts and errors of the present inventors, mixing the thermally expandable microcapsule foaming agent with a thick shell film and the thermally expandable microcapsule foaming agent with a thin shell film makes it possible to improve compression recovery and emboss reproducibility. Succeeded in producing a foamed cosmetic material excellent in both. By mixing two types of thermally expandable microcapsule foaming agents with different shell film thickness, the thermally expandable microcapsule foaming agent with a thick shell film gives excellent compression recovery and the thermal expansion with a thin shell film thickness. This is because the microcapsule foaming agent imparts excellent emboss reproducibility.

請求項2に記載の発明は、前記水性エマルジョン系樹脂が固形分で100重量部に対して、前記熱膨張性マイクロカプセル発泡剤aおよび前記熱膨張性マイクロカプセル発泡剤bとを合計で2〜30重量部、前記無機フィラーを20〜200重量部含有することを特徴とする請求項1に記載の発泡化粧材である。熱膨張性マイクロカプセル発泡剤aおよび熱膨張性マイクロカプセル発泡剤bとを合計で2〜30重量部、無機フィラーを20〜200重量部含有することにより、高発泡で、かつ強度等の性能に優れた発泡化粧材を提供することが可能となる。熱膨張性マイクロカプセル発泡剤a、bの合計が2重量部より少ない場合には発泡性が低下する傾向があり、30重量部より多い場合には機械的強度が低下する傾向にあることから好ましくない。また、無機フィラーが20重量部より少ない場合には難燃性が低下する傾向にあり、200重量部より多い場合には発泡性、機械的強度及び耐ひび割れ性が低下する傾向にあることから好ましくない。 According to a second aspect of the present invention, there is a total of 2 to 2 of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b with respect to 100 parts by weight of the aqueous emulsion resin. The foamed decorative material according to claim 1, comprising 30 parts by weight and 20 to 200 parts by weight of the inorganic filler. By containing 2 to 30 parts by weight of the total of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b and 20 to 200 parts by weight of the inorganic filler, high foaming and high performance such as strength can be achieved. It becomes possible to provide an excellent foamed decorative material. When the total of the thermally expandable microcapsule foaming agents a and b is less than 2 parts by weight, the foamability tends to decrease, and when it exceeds 30 parts by weight, the mechanical strength tends to decrease. Absent. Further, when the inorganic filler is less than 20 parts by weight, the flame retardancy tends to decrease, and when it exceeds 200 parts by weight, the foamability, mechanical strength, and crack resistance tend to decrease. Absent.

請求項3に前記熱膨張性マイクロカプセル発泡剤aと前記熱膨張性マイクロカプセル発泡剤bとの含有比率a/bが8/2〜2/8であることを特徴とする請求項1または2のいずれかに記載の発泡化粧材である。熱膨張性マイクロカプセル発泡剤aと熱膨張性マイクロカプセル発泡剤bとの含有比率a/bが8/2〜2/8であることにより、高倍率に発泡させた時の圧縮回復性に優れ、かつエンボスによる意匠性が損なわれない発泡化粧材を提供することが可能となる。熱膨張性マイクロカプセル発泡剤aの比率がa/b=8/2を超えると圧縮回復性が低下する傾向にあるため好ましくなく、a/b=2/8より少ないとエンボス再現性が劣る傾向にあるため好ましくない。 The content ratio a / b between the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b in claim 3 is 8/2 to 2/8. The foamed decorative material according to any one of the above. Excellent content of compression recovery when foamed at a high magnification because the content ratio a / b of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b is 8/2 to 2/8. In addition, it is possible to provide a foamed decorative material in which the design by embossing is not impaired. If the ratio of the heat-expandable microcapsule foaming agent a exceeds a / b = 8/2, the compression recovery property tends to decrease. Therefore, it is not preferable.

請求項4に記載の発明は、請求項に記載の少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材の表面に、エンボス版を押圧して凹凸模様を形成してなることを特徴とする発泡化粧材である。エンボス加工を施すことにより、凹凸模様を施し意匠性を付与させた発泡化粧材を提供することができる。 The invention according to claim 4 is a surface of a foamed cosmetic material obtained by heating and foaming a resin composition containing at least the aqueous emulsion resin according to claim 1 , a thermally expandable microcapsule foaming agent, and an inorganic filler. Further, it is a foamed decorative material formed by pressing an embossed plate to form an uneven pattern . By applying embossing, it is possible to provide a foamed decorative material having a concavo-convex pattern and design characteristics.

本発明の化粧材の一例について説明する。図1に本発明の発泡化粧材の層構成の一例について示す。本発明の発泡化粧材の一例を挙げると、図1に示す様に、支持体となる適宜の基材1の表面上に、熱膨張性マイクロカプセル発泡剤22、23及び無機フィラー24が水性エマルジョン系樹脂21中に混合分散された樹脂組成物からなる発泡樹脂層2を具備して構成されるものである。また、上記発泡樹脂層は必要に応じて2層以上の多層から構成されていてもよい。   An example of the decorative material of the present invention will be described. FIG. 1 shows an example of the layer structure of the foamed decorative material of the present invention. As an example of the foamed decorative material of the present invention, as shown in FIG. 1, thermally expandable microcapsule foaming agents 22 and 23 and an inorganic filler 24 are aqueous emulsions on the surface of an appropriate base material 1 serving as a support. A foamed resin layer 2 made of a resin composition mixed and dispersed in a resin 21 is provided. Moreover, the said foamed resin layer may be comprised from the multilayer of 2 or more layers as needed.

基材1は、本発明の化粧材の基材となるものであって、材質は特に限定されず、例えば紙、織布、不織布等、透湿性で好ましくは可撓性のシート状態であれば何であっても良い。壁紙の場合には、いわゆる壁紙用裏打紙を好適に使用することができる。   The base material 1 is a base material for the decorative material of the present invention, and the material is not particularly limited. For example, paper, woven fabric, non-woven fabric, etc. are moisture permeable and preferably in a flexible sheet state. Anything is ok. In the case of wallpaper, so-called wallpaper backing paper can be suitably used.

発泡樹脂層2は、前記基材1上に設けられ、水性エマルジョン系樹脂21中に熱膨張性マイクロカプセル発泡剤22、23及び無機フィラー24が混合分散されて構成されるものである。必要に応じて、着色剤、分散剤、ブロッキング防止剤、消泡剤、増粘剤、紫外線吸収剤、光安定剤、酸化防止剤、艶消剤、滑剤、減摩剤、帯電防止剤、抗菌剤、防黴剤等の種々の添加剤を加えてもよい。
また、発泡樹脂層は必要に応じて2層以上の多層構成でもよく、このとき、層によって樹脂組成物の配合を変更してもよい。
The foamed resin layer 2 is provided on the substrate 1 and is configured by mixing and dispersing thermally expandable microcapsule foaming agents 22 and 23 and an inorganic filler 24 in an aqueous emulsion resin 21. Colorants, dispersants, antiblocking agents, antifoaming agents, thickeners, UV absorbers, light stabilizers, antioxidants, matting agents, lubricants, antifriction agents, antistatic agents, antibacterials as necessary Various additives such as agents and fungicides may be added.
Further, the foamed resin layer may have a multilayer structure of two or more layers as necessary, and at this time, the composition of the resin composition may be changed depending on the layer.

水性エマルジョン系樹脂21には、熱可塑性合成樹脂であるものを使用することが望ましい。熱可塑性合成樹脂として具体的には、例えば、酢酸ビニル系樹脂、エチレン−ビニルエステル系共重合体、アクリル系樹脂、エチレン−(メタ)アクリル酸エステル系共重合体、ポリウレタン系樹脂、ポリエステル系樹脂、エポキシ系樹脂、シリコーン系樹脂、ポリブテン系樹脂、ポリブタジエン系樹脂、スチレン−ブタジエン系共重合体等を挙げることができ、これらの2種以上の共重合体又は混合物を有効成分として含有していてもよい。 The aqueous emulsion resin 21 is preferably a thermoplastic synthetic resin. Specific examples of the thermoplastic synthetic resin include, for example, vinyl acetate resin, ethylene-vinyl ester copolymer, acrylic resin, ethylene- (meth) acrylic ester copolymer, polyurethane resin, and polyester resin. , Epoxy resins, silicone resins, polybutene resins, polybutadiene resins, styrene-butadiene copolymers, etc., and these two or more types of copolymers or mixtures are contained as active ingredients. Also good.

熱膨張性マイクロカプセル発泡剤22及び23に使用される重合性モノマーとしては、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、塩化ビニリデン、酢酸ビニル、及びメチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、β―カルボキシエチルアクリレートなどの(メタ)アクリル酸エステル、スチレン、α−メチルスチレン、クロロスチレンなど、スチレン系モノマー、アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド、ブタジエン等が挙げられる。これらの重合性モノマーは単独で、あるいは2種類以上を組み合わせて使用することができる。その組み合わせとしては、ポリマーの軟化温度、耐熱性、耐薬品性等、あらゆる用途に応じて選択することができる。例えば、塩化ビニリデンを含む共重合体、及びニトリル系モノマーを含む共重合体はガスバリヤー性に優れ、また特許第2131557号にも示されているように、ニトリル系モノマーを80重量%以上含む共重合体では耐熱性、耐薬品性に優れている。   Examples of the polymerizable monomer used for the thermally expandable microcapsule blowing agents 22 and 23 include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile, acrylic acid, methacrylic acid, itaconic acid, maleic acid, Fumaric acid, citraconic acid, vinylidene chloride, vinyl acetate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, isobornyl (meta ) (Meth) acrylate such as acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, β-carboxyethyl acrylate, styrene, α-methylstyrene, chlorostyrene, etc. Emissions monomers, acrylamide, substituted acrylamides, methacrylamides, substituted methacrylamides, butadiene and the like. These polymerizable monomers can be used alone or in combination of two or more. The combination can be selected according to all uses such as the softening temperature, heat resistance, and chemical resistance of the polymer. For example, a copolymer containing vinylidene chloride and a copolymer containing a nitrile monomer are excellent in gas barrier properties, and as shown in Japanese Patent No. 2131557, a copolymer containing 80% by weight or more of a nitrile monomer. The polymer is excellent in heat resistance and chemical resistance.

必要に応じて、架橋剤を添加することも可能である。例えば、ジビニルベンゼン、ジメタクリル酸エチレングリコール、ジメタクリル酸トリエチレングリコール、トリアクリルホルマール、トリメタクリル酸トリメチロールプロパン、メタクリル酸アリル、ジメタクリル酸1,3−ブチルグリコール、トリアリルイソシアネート等があげられるが、これらに限定されるものではない。 A cross-linking agent can be added as necessary. Examples include divinylbenzene, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, triacryl formal, trimethylolpropane trimethacrylate, allyl methacrylate, 1,3-butyl glycol dimethacrylate, triallyl isocyanate, and the like. However, it is not limited to these.

熱膨張性マイクロカプセル発泡剤のシェル(発泡剤の外壁)は上記成分に適宜重合開始剤を配合することにより、調整される。重合開始剤としては過酸化物やアゾ化合物等、公知の重合開始剤を用いることができる。例えば、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド、ラウリルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t−ブチルパーオキサイド、2,2´−アゾビス(2,4−ジメチルバレロニトリル)等があげられるが、これらに限定されるものではない。好適には、使用する重合性モノマーに可溶な油溶性の重合開始剤が使用される。 The shell of the thermally expandable microcapsule foaming agent (outer wall of the foaming agent) is adjusted by appropriately blending the above components with a polymerization initiator. Known polymerization initiators such as peroxides and azo compounds can be used as the polymerization initiator. Examples include azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, diisopropyl peroxydicarbonate, t-butyl peroxide, 2,2′-azobis (2,4-dimethylvaleronitrile), and the like. It is not limited to these. Preferably, an oil-soluble polymerization initiator soluble in the polymerizable monomer to be used is used.

熱膨張性マイクロカプセル発泡剤に包含される内包ガスはシェルの軟化点以下でガス状になる物質であり、公知の物が使用される。例えば、プロパン、プロピレン、ブテン、ノルマルブタン、イソブタン、イソペンタン、ネオペンタン、ノルマルペンタン、シクロペンタン、ヘキサン、ヘプタン、石油エーテル、オクタン、イソオクタン、デカン等の低沸点液体が挙げられる。好適には、イソブタン、ノルマルブタン、ノルマルペンタン、イソペンタン、シクロペンタン、石油エーテル等の低沸点液体を単独、もしくは2種類以上を混合して使用される。 The encapsulated gas included in the thermally expandable microcapsule foaming agent is a substance that becomes gaseous at or below the softening point of the shell, and known materials are used. Examples thereof include low boiling point liquids such as propane, propylene, butene, normal butane, isobutane, isopentane, neopentane, normal pentane, cyclopentane, hexane, heptane, petroleum ether, octane, isooctane and decane. Preferably, low-boiling-point liquids such as isobutane, normal butane, normal pentane, isopentane, cyclopentane, and petroleum ether are used alone or in admixture of two or more.

本発明に使用する熱膨張性マイクロカプセル発泡剤は、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.03〜0.10μmの熱膨張性中空球体である熱膨張性マイクロカプセル発泡剤a22と、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.10〜0.25μmの熱膨張性中空球体である熱膨張性マイクロカプセル発泡剤b23とを混合して用いる。 The heat-expandable microcapsule foaming agent used in the present invention has an average particle diameter of 5 to 35 μm, an encapsulated gas amount of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.03 to 0.10 μm. Thermally expandable microcapsule foaming agent a22 which is a thermally expandable hollow sphere, the average particle diameter of the original granules is 5 to 35 μm, the amount of encapsulated gas is 10 to 35%, and the shell film thickness at the time of maximum foaming is 0.10 to 0 A 25 μm thermally expandable hollow sphere, which is a thermally expandable microcapsule foaming agent b23, is mixed and used.

発泡剤の原粒の平均粒子径が5μm未満のものは発泡後のシェル層の厚みが薄くなり圧縮回復性が劣る傾向があり好ましくない。平均粒子径35μm以上のものは発泡化粧材の表面性が劣る傾向になるので好ましくない。また、内包ガス量が10%未満であると発泡剤の発泡倍率が小さくなる傾向およびエンボス不良になる傾向なので好ましくなく、35%以上であると発泡剤が膨張しすぎて発泡後のシェル層が薄くなり圧縮回復性が低下する方向なので好ましくない。 A foaming agent having an average particle size of less than 5 μm is not preferred because the shell layer after foaming becomes thin and the compression recovery property tends to be poor. Those having an average particle diameter of 35 μm or more are not preferable because the surface properties of the foamed decorative material tend to be inferior. Further, if the amount of encapsulated gas is less than 10%, the expansion ratio of the foaming agent tends to be small and embossing tends to be unfavorable, and if it is 35% or more, the foaming agent expands too much to form a shell layer after foaming. It is not preferable because it becomes thinner and the compression recovery property is lowered.

また発泡した時のシェル膜厚が0.03μm以下のものは壁紙の圧縮回復性が低下する傾向になり好ましくなく、発泡した時のシェル膜厚が0.25μm以上のものは壁紙のエンボスによる意匠性が劣る傾向なので好ましくない。最大発泡時のシェル膜厚が0.03〜0.10μmの熱膨張性中空球体である熱膨張性マイクロカプセル発泡剤aと最大発泡時のシェル膜厚が0.10〜0.25μmの熱膨張性中空球体である熱膨張性マイクロカプセル発泡剤bとを混合して用いることにより、高倍率に発泡させた時の圧縮回復性に優れ、かつエンボスによる意匠性が損なわれない発泡化粧材を提供することが可能となる。熱膨張性マイクロカプセル発泡剤を使用した発泡化粧材の圧縮回復性、エンボス再現性は、発泡後の熱膨張性マイクロカプセル発泡剤のシェル膜厚に大きく左右される。シェル膜厚が厚いほどシェル内部に内包ガスを閉じ込めておく能力が高いために圧縮回復性が優れ、薄いほど内包ガスが抜けやすくなるために圧縮回復性が劣る傾向にある。また、シェル膜厚が厚いほどエンボス時の反発を受けやすいためにエンボス再現性が劣り、薄いほどエンボスが入りやすいためにエンボス再現性が優れる傾向にある。そのため、圧縮回復性とエンボス再現性の両方を同時に付与させることは困難であった。
そこで本発明者らが思考錯誤した結果、シェル膜厚の厚い熱膨張性マイクロカプセル発泡剤とシェル膜厚の薄い熱膨張性マイクロカプセル発泡剤を混合させることで、圧縮回復性とエンボス再現性の両方に優れた発泡化粧材を作製することに成功した。シェル膜厚の異なる2種の熱膨張性マイクロカプセル発泡剤を混合させることにより、シェル膜厚の厚い熱膨張性マイクロカプセル発泡剤が優れた圧縮回復性を付与し、シェル膜厚の薄い熱膨張性マイクロカプセル発泡剤が優れたエンボス再現性を付与させるためである。
In addition, when the foamed shell film thickness is 0.03 μm or less, the compression recovery property of the wallpaper tends to be lowered, and when the foamed shell film thickness is 0.25 μm or more, the wallpaper is embossed. It is not preferable because the tendency is inferior. Thermally expandable microcapsule foaming agent a which is a thermally expandable hollow sphere having a shell film thickness of 0.03 to 0.10 μm at the time of maximum foaming and thermal expansion of a shell film thickness of 0.10 to 0.25 μm at the time of maximum foaming A foamed cosmetic material that is excellent in compression recovery when foamed at a high magnification and does not impair the design by embossing by mixing with the thermally expandable microcapsule foaming agent b, which is a porous hollow sphere It becomes possible to do. The compression recovery property and embossing reproducibility of the foamed cosmetic material using the thermally expandable microcapsule foaming agent greatly depend on the shell film thickness of the thermally expandable microcapsule foaming agent after foaming. The thicker the shell film, the higher the ability to confine the encapsulated gas inside the shell, and the better the compression recovery. The thinner the gas, the easier the escape of the encapsulated gas, and the more likely the compression recoverability tends to be inferior. Further, the thicker the shell film, the easier it is to be repelled during embossing, so the embossing reproducibility is inferior. The thinner the embossing is, the better the embossing reproducibility tends to be. For this reason, it has been difficult to simultaneously impart both compression recovery and emboss reproducibility.
Therefore, as a result of the thoughts and errors of the present inventors, mixing the thermally expandable microcapsule foaming agent with a thick shell film and the thermally expandable microcapsule foaming agent with a thin shell film makes it possible to improve compression recovery and emboss reproducibility. Succeeded in producing a foamed cosmetic material excellent in both. By mixing two types of thermally expandable microcapsule foaming agents with different shell film thickness, the thermally expandable microcapsule foaming agent with a thick shell film gives excellent compression recovery and the thermal expansion with a thin shell film thickness. This is because the microcapsule foaming agent imparts excellent emboss reproducibility.

ここで、原粒とは発泡前の熱膨張性マイクロカプセル発泡剤のことを意味し、この原粒の平均粒子径は日機装製マイクロトラック粒度分析計で測定できる。また、この原粒の内包ガス量の測定は、発泡剤に有機溶剤を添加し球体外壁を膨潤させ高温で破壊しこの揮発成分から水分を差し引いたものを内包量(%)とする。 Here, the primary particle means a thermally expandable microcapsule foaming agent before foaming, and the average particle size of this primary particle can be measured with a Nikkiso Microtrac particle size analyzer. In addition, the measurement of the amount of encapsulated gas in the original granules is defined as the amount of encapsulated material (%) obtained by adding an organic solvent to the foaming agent to swell the outer wall of the sphere, destroying it at high temperature, and subtracting moisture from this volatile component.

また最大発泡時のシェル膜厚とは水性エマルジョン(A)のうち特に熱流動中点が130℃〜150℃でトルエン不溶分が15%以下のエチレン酢酸ビニル共重合体含有水性エマルジョンで、かつ該共重合体中におけるエチレン含有量が15〜20%である水性エマルジョン(A´)を用いて測定する。測定方法としては水性エマルジョン(A´)と炭酸カルシウムと熱膨張性中空球体をドライ比で水性エマルジョン(A´):炭酸カルシウム:熱膨張性マイクロカプセル発泡剤=100:80:10に配合し、所定の発泡条件である180℃×30秒で発泡させた時を最大発泡とする。最大発泡時のシェル層は発泡前の原粒のシェルの膜厚から最大発泡時の発泡倍率でシェル層膜厚を以下に示すように数学的に算出した。なお、原粒のシェル膜厚は原粒の断面をレーザー顕微鏡で観察しシェル膜厚を測定した。 In addition, the shell film thickness at the time of maximum foaming is an aqueous emulsion containing an ethylene vinyl acetate copolymer having a heat flow midpoint of 130 ° C. to 150 ° C. and a toluene insoluble content of 15% or less among the aqueous emulsion (A), and It measures using the aqueous | water-based emulsion (A ') whose ethylene content in a copolymer is 15-20%. As a measurement method, an aqueous emulsion (A ′), calcium carbonate, and thermally expandable hollow spheres are blended in a dry ratio to an aqueous emulsion (A ′): calcium carbonate: thermally expandable microcapsule foaming agent = 100: 80: 10, When foaming is performed at 180 ° C. for 30 seconds, which is a predetermined foaming condition, the maximum foaming is set. The shell layer thickness at the time of maximum foaming was mathematically calculated from the thickness of the shell of the original grain before foaming by the foaming ratio at the time of maximum foaming as shown below. The shell thickness of the original grains was measured by observing the cross section of the original grains with a laser microscope.

(シェル膜厚の算出方法)
まず、発泡後の熱膨張性マイクロカプセル発泡剤粒子の比重dを求める。
=(熱膨張性マイクロカプセル発泡剤を添加した発泡化粧材の発泡後の重量−熱膨張性マイクロカプセル発泡剤を添加していない発泡化粧材の重量)/(熱膨張性マイクロカプセル発泡剤を添加した発泡化粧材の発泡後の体積−熱膨張性マイクロカプセル発泡剤を添加していない発泡化粧材の体積)によって算出される。
次に、発泡後の粒子の半径r、体積V及び重量Wを求める。
=r×(d/d(1/3)によって算出される。
ここで、rは発泡前の粒子の半径、dは発泡前の粒子の比重である。
=4/3×π×r によって算出される。
=d×Vによって算出される。
そして、発泡後のシェルの重量W、体積Vを求める。
=W−W×Y/100によって算出される。
ここで、Yは内包量(%)である。
=W/dによって算出される。
ここで、dはシェルの比重である。
さらに、発泡後の粒子内の内包ガス充填部の半径rをもとめる。
=(r −3×V/4π)(1/3)によって算出される。
そして、発泡後のシェルの半径、つまりシェル膜厚rを求める。
=r−r=r×(d/d(1/3)−(r −3×V/4π)(1/3)によって算出される。
以上がシェル膜厚の算出方法である。
(Calculation method of shell film thickness)
First, the specific gravity d 2 of the thermally expandable microcapsule foaming agent particles after foaming is determined.
d 2 = (weight after foaming of foamed cosmetic material to which thermally expandable microcapsule foaming agent is added−weight of foamed cosmetic material to which thermally expandable microcapsule foaming agent is not added) / (thermally expandable microcapsule foaming agent) The volume after foaming of the foamed cosmetic material to which is added-the volume of the foamed cosmetic material to which no thermally expandable microcapsule foaming agent is added.
Next, the radius r 2 , volume V 2 and weight W 2 of the particles after foaming are determined.
It is calculated by r 2 = r 1 × (d 1 / d 2 ) (1/3) .
Here, r 1 is the radius of the particles before foaming, and d 1 is the specific gravity of the particles before foaming.
Calculated by V 2 = 4/3 × π × r 2 3
Calculated as W 2 = d 2 × V 2 .
Then, the weight W 3 and volume V 3 of the shell after foaming are obtained.
Calculated as W 3 = W 2 −W 2 × Y / 100.
Here, Y is the amount of inclusion (%).
Calculated as V 3 = W 3 / d 3 .
Here, d 3 is the specific gravity of the shell.
Further, the radius r 4 of the encapsulated gas filling part in the particles after foaming is obtained.
r 4 = (r 2 3 −3 × V 3 / 4π) (1/3) .
Then, the radius of the shell after foaming, that is, the shell film thickness r 3 is obtained.
r 3 = r 2 −r 4 = r 1 × (d 1 / d 2 ) (1/3) − (r 2 3 −3 × V 3 / 4π) (1/3) .
The above is the calculation method of the shell film thickness.

本発明の組成物における熱膨張性マイクロカプセル発泡剤a、bの合計の含有量としては、通常、水性エマルジョン系樹脂100重量部(固形分)あたり2〜30重量部、好ましくは5〜15重量部である。熱膨張性マイクロカプセル発泡剤が2重量部より少ない場合には発泡性が不足する傾向があり、30重量部より多い場合には機械的強度が低下する傾向にあることから好ましくない。 The total content of the thermally expandable microcapsule foaming agents a and b in the composition of the present invention is usually 2 to 30 parts by weight, preferably 5 to 15 parts by weight per 100 parts by weight (solid content) of the aqueous emulsion resin. Part. When the thermally expandable microcapsule foaming agent is less than 2 parts by weight, the foamability tends to be insufficient, and when it is more than 30 parts by weight, the mechanical strength tends to decrease, such being undesirable.

熱膨張性マイクロカプセル発泡剤a、bの含有量の比率としては、熱膨張性マイクロカプセル発泡剤a/熱膨張性マイクロカプセル発泡剤b=8/2〜2/8、好ましくは6/4〜4/6である。熱膨張性マイクロカプセル発泡剤aの比率がa/b=8/2を超えると圧縮回復性が低下する傾向にあり好ましくなく、a/b=2/8より少ないとエンボスによる意匠性が劣る傾向なので好ましくない。 The ratio of the contents of the thermally expandable microcapsule foaming agents a and b is as follows: thermal expandable microcapsule foaming agent a / thermally expandable microcapsule foaming agent b = 8/2 to 2/8, preferably 6/4 to 4/6. If the ratio of the thermally expandable microcapsule foaming agent a exceeds a / b = 8/2, the compression recovery property tends to be unfavorable, and if it is less than a / b = 2/8, the design properties due to embossing tend to be inferior. So it is not preferable.

無機フィラー24としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化バリウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸バリウム、水酸化第一鉄、塩基性炭酸亜鉛、塩基性炭酸鉛、珪砂、クレー、タルク、シリカ類、二酸化チタン、珪酸マグネシウム等が挙げられる。中でも、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウムが好適である。 Examples of the inorganic filler 24 include aluminum hydroxide, magnesium hydroxide, barium hydroxide, calcium carbonate, magnesium carbonate, calcium sulfate, barium sulfate, ferrous hydroxide, basic zinc carbonate, basic lead carbonate, silica sand, clay , Talc, silicas, titanium dioxide, magnesium silicate and the like. Among these, aluminum hydroxide, magnesium hydroxide, calcium carbonate, and magnesium carbonate are preferable.

樹脂組成物における無機フィラー24の含有量としては、通常、水性エマルジョン系樹脂100重量部(固形分)あたり20〜200重量部、好ましくは50〜150重量部である。20重量部以下の場合には、難燃性が低下する傾向にあり、200重量部以上の場合には発泡性、機械的強度および耐ひび割れ性に劣る傾向にあることから好ましくない。 The content of the inorganic filler 24 in the resin composition is usually 20 to 200 parts by weight, preferably 50 to 150 parts by weight, per 100 parts by weight (solid content) of the aqueous emulsion resin. In the case of 20 parts by weight or less, the flame retardancy tends to be lowered, and in the case of 200 parts by weight or more, it tends to be inferior in foamability, mechanical strength, and crack resistance, which is not preferable.

以下、本発明の化粧材製造方法の一例について説明する。 Hereinafter, an example of the cosmetic material manufacturing method of the present invention will be described.

まず、発泡樹脂層2を構成する樹脂組成物を配合する。このとき、熱膨張性マイクロカプセル発泡剤22、23の合計の含有量としては、水性エマルジョン系樹脂100重量部(固形分)あたり2〜30重量部であることが好ましい。 First, the resin composition which comprises the foamed resin layer 2 is mix | blended. At this time, the total content of the thermally expandable microcapsule foaming agents 22 and 23 is preferably 2 to 30 parts by weight per 100 parts by weight (solid content) of the aqueous emulsion resin.

次に、配合した樹脂組成物を基材1上に塗工し、発泡樹脂層21を形成する。樹脂組成物の塗工方法としては、例えばナイフコート法、ノズルコート法、ダイコート法、リップコート法、コンマコート法、グラビアコート法、ロータリースクリーンコート法、リバースロールコート法等の塗工方法を挙げられる。 Next, the blended resin composition is applied onto the substrate 1 to form the foamed resin layer 21. Examples of the coating method for the resin composition include coating methods such as knife coating, nozzle coating, die coating, lip coating, comma coating, gravure coating, rotary screen coating, and reverse roll coating. It is done.

発泡樹脂層2を構成する層は、2層以上の多層から構成される場合、下層から上層へ向かって1層ずつ順次塗工形成しても良いし、多層塗工装置を用いて全層を同時に塗工形成しても良い。前者の場合には、より下側の層を乾燥固化した後により上側の層を塗工形成しても良いが、より下側の層を乾燥させずに湿潤状態においてより上側の層を塗工形成すると、各層間が相溶して層間密着性に優れる。 When the layer constituting the foamed resin layer 2 is composed of two or more layers, it may be formed by coating one layer at a time from the lower layer to the upper layer, or all layers may be formed using a multilayer coating device. The coating may be formed at the same time. In the former case, the lower layer may be formed by drying and solidifying the lower layer, but the upper layer may be applied in a wet state without drying the lower layer. When formed, the respective layers are compatible with each other and have excellent interlayer adhesion.

発泡樹脂層2を構成する各層の厚さは特に限定されず、目的とする用途や要求特性に応じて適宜決定すればよい。例えば、壁紙として使用する場合、発泡樹脂層2の乾燥後の塗布量は50〜300g/m、更に好ましくは100〜250g/m程度とすることが好ましい。 The thickness of each layer constituting the foamed resin layer 2 is not particularly limited, and may be appropriately determined according to the intended use and required characteristics. For example, when used as wallpaper, the coating amount of the foamed resin layer 2 after drying is preferably about 50 to 300 g / m 2 , more preferably about 100 to 250 g / m 2 .

次に、基材1上に塗工した発泡樹脂層2の乾燥を行う。発泡性樹脂組成物の塗布後の乾燥方法としては、例えば熱風乾燥法、赤外線照射乾燥法、真空乾燥法等の、従来公知の各種の乾燥方法から選ばれる1種の単独又は2種以上を組み合わせた方法を用いることができる。 Next, the foamed resin layer 2 coated on the substrate 1 is dried. As a drying method after application of the foamable resin composition, for example, one kind selected from various conventionally known drying methods such as a hot air drying method, an infrared irradiation drying method, a vacuum drying method or the like, or a combination of two or more kinds is used. Can be used.

乾燥温度は、発泡性樹脂組成物の発泡開始温度を越えない範囲であることが必要である。特に、発泡樹脂組成物が水性エマルジョン系樹脂を主成分とする場合には、水の沸点を越えない90〜95℃の範囲であることが最も好ましい。このとき、発泡樹脂層2はゲル状となることもある。 The drying temperature needs to be in a range not exceeding the foaming start temperature of the foamable resin composition. In particular, when the foamed resin composition has an aqueous emulsion resin as a main component, it is most preferably in the range of 90 to 95 ° C. not exceeding the boiling point of water. At this time, the foamed resin layer 2 may be gelled.

次に、必要に応じて発泡樹脂層2に絵柄模様3を印刷する。発泡樹脂層2の表面に水性インキを使用して、例えばグラビア印刷法、オフセット印刷法、スクリーン印刷法等にて適宜の絵柄模様3を印刷形成してもよい。 Next, the pattern 3 is printed on the foamed resin layer 2 as necessary. An appropriate pattern 3 may be printed and formed on the surface of the foamed resin layer 2 by using, for example, a gravure printing method, an offset printing method, a screen printing method, or the like.

発泡樹脂層2の発泡のための加熱方法としては、熱風加熱法又は赤外線加熱法、若しくはその併用などを用いることができる。加熱温度や加熱時間は、発泡樹脂層2を構成する樹脂組成物の主体となる水性エマルジョン系樹脂の溶融粘度特性と、樹脂組成物に添加された発泡剤の発泡温度特性とによって決定される。例えば、水性エマルジョン系樹脂に熱膨張性マイクロカプセル発泡剤を添加した樹脂組成物を使用する場合の一般的な条件は、加熱温度140〜200℃、加熱時間20〜80秒の範囲である。 As a heating method for foaming the foamed resin layer 2, a hot air heating method, an infrared heating method, or a combination thereof can be used. The heating temperature and the heating time are determined by the melt viscosity characteristics of the aqueous emulsion resin that is the main component of the resin composition constituting the foamed resin layer 2 and the foaming temperature characteristics of the foaming agent added to the resin composition. For example, general conditions when using a resin composition in which a thermally expandable microcapsule foaming agent is added to an aqueous emulsion resin are a heating temperature of 140 to 200 ° C. and a heating time of 20 to 80 seconds.

また、発泡樹脂層2の表面に凹凸模様4を形成してもよい。形成法としては、加熱発泡後、発泡した発泡樹脂層2の表面にエンボス版を押圧するメカニカルエンボス法が挙げられる。 Further, the uneven pattern 4 may be formed on the surface of the foamed resin layer 2. Examples of the forming method include a mechanical embossing method in which an embossed plate is pressed against the surface of the foamed resin layer 2 after heating and foaming.

以下に本発明の実施例を具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Examples of the present invention will be specifically described below. The present invention is not limited to these examples.

<実施例1〜3>
熱膨張性マイクロカプセル発泡剤の平均粒子径、原粒のシェル膜厚、内包ガス量、最大発泡倍率および最大発泡時のシェル膜厚を表1に示す。
<Examples 1-3>
Table 1 shows the average particle diameter of the thermally expandable microcapsule foaming agent, the shell film thickness of the original granules, the amount of encapsulated gas, the maximum expansion ratio, and the shell film thickness at the time of maximum expansion.

Figure 0005092811
Figure 0005092811

坪量100g/mの一般紙基材上に、下記表2の実施例で示される樹脂組成物を、目付量(乾燥後の塗布量)150g/mに塗工して、発泡樹脂層2を形成した。続いて、乾燥炉にて乾燥温度を90℃、時間1分にて乾燥を行った。さらに、この発泡樹脂層2上に水性インキを用いてグラビア印刷にて絵柄模様3を印刷した。最後に、発泡炉にて加熱温度を180℃、時間30秒にて発泡し、メカニカルエンボス法にてエンボスを行い、凹凸模様4を形成した。以上より発泡化粧材を得ることが出来た。 On a general paper substrate having a basis weight of 100 g / m 2, the resin composition shown in the examples in Table 2 below is applied to a basis weight (coating amount after drying) of 150 g / m 2 to obtain a foamed resin layer. 2 was formed. Subsequently, drying was performed in a drying furnace at a drying temperature of 90 ° C. for 1 minute. Further, a pattern 3 was printed on the foamed resin layer 2 by gravure printing using water-based ink. Finally, foaming was performed in a foaming furnace at a heating temperature of 180 ° C. for 30 seconds, and embossing was performed by a mechanical embossing method to form a concavo-convex pattern 4. From the above, a foamed decorative material could be obtained.

<比較例1〜4>
樹脂組成物を表2に記載の通り変更して実施例と同様に比較例1〜4の発泡化粧材を作製した。
<Comparative Examples 1-4>
The foamed decorative materials of Comparative Examples 1 to 4 were prepared in the same manner as in the Examples by changing the resin composition as described in Table 2.

実施例1〜3及び比較例1〜4で得られた発泡化粧材について、後記する方法で発泡倍率、圧縮回復性、エンボス性について評価した。その結果を表2に示す。   About the foaming decorative material obtained in Examples 1-3 and Comparative Examples 1-4, foaming magnification, compression recovery property, and embossing property were evaluated by the method to be described later. The results are shown in Table 2.

(発泡倍率)
発泡前の乾燥発泡樹脂層の厚さ(a)を測定し、これを初期値とした。次に、発泡炉にて発泡した後の発泡化粧材の発泡樹脂層厚さ(b)を測定し、(b)/(a)を発泡倍率として算出した。
(Foaming ratio)
The thickness (a) of the dried foamed resin layer before foaming was measured and used as the initial value. Next, the foamed resin layer thickness (b) of the foamed decorative material after foaming in the foaming furnace was measured, and (b) / (a) was calculated as the foaming ratio.

(圧縮回復率)
作製した発泡化粧材を2cm×2cmの大きさに裁断し、圧縮前の試験片の厚み(c)を測定し、これを初期値とした。次に、1000gの分銅を試験片の上に乗せ250g/cmの圧力で圧縮した。24時間放置した後、分銅を除いて解圧し、さらに24時間放置した後、試験片の厚み(d)を測定し、(d)×100/(c)を圧縮回復率として算出した。
(Compression recovery rate)
The produced foamed decorative material was cut into a size of 2 cm × 2 cm, the thickness (c) of the test piece before compression was measured, and this was taken as the initial value. Next, 1000 g of weight was placed on the test piece and compressed at a pressure of 250 g / cm 2 . After standing for 24 hours, the weight was removed and the pressure was released. After standing for another 24 hours, the thickness (d) of the test piece was measured, and (d) × 100 / (c) was calculated as the compression recovery rate.

(エンボス性)
作製した発泡化粧材に対してメカニカルエンボスを実施し、エンボス版の版柄の再現性が特に良好なものを○、良好なものを△、エンボス版の再現性不良のものを×として評価した。
(Embossing)
Mechanical embossing was carried out on the produced foamed decorative material, and evaluation was given as ○ when the reproducibility of the pattern of the embossed plate was particularly good, Δ when it was good, and × when the reproducibility of the embossed plate was poor.

本発明の発泡化粧材の樹脂組成及び評価結果を表2に示す。 Table 2 shows the resin composition and evaluation results of the foamed decorative material of the present invention.

Figure 0005092811
Figure 0005092811

以上詳細に説明した様に、本発明の発泡化粧材は、高倍率に発泡させても優れた圧縮回復性を保ち、保存時の製品自体の自重、あるいは施工時ローラー押さえによるへこみあるいは施工後の置き跡による潰れに対して回復可能であり、かつエンボスによる意匠性が損なわれない発泡化粧材に関するものであり、建築物の内装材等として有用である。
As explained in detail above, the foamed cosmetic material of the present invention maintains excellent compression recovery even when foamed at a high magnification, the weight of the product itself at the time of storage, or a dent due to roller pressing during construction or after construction The present invention relates to a foamed decorative material that is recoverable against crushing caused by placement marks and that does not impair the design properties of embossing, and is useful as an interior material for buildings.

本発明の化粧材の実施の形態を示す模式断面図である。It is a schematic cross section which shows embodiment of the decorative material of this invention.

符号の説明Explanation of symbols

1 基材
2 発泡樹脂層
21 水性エマルジョン系樹脂
22 熱膨張性マイクロカプセル発泡剤a
23 熱膨張性マイクロカプセル発泡剤b
24 無機フィラー
3 絵柄印刷層
4 エンボス凹凸模様
1 Base material
2 Foamed resin layer 21 Aqueous emulsion resin 22 Thermally expandable microcapsule foaming agent a
23 Thermally expandable microcapsule foaming agent b
24 Inorganic filler 3 Pattern printing layer 4 Embossed uneven pattern

Claims (4)

少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材であって、該熱膨張性マイクロカプセル発泡剤は熱膨張性マイクロカプセル発泡剤aと熱膨張性マイクロカプセル発泡剤bの2種からなり、
熱膨張性マイクロカプセル発泡剤aは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.03〜0.10μmであり、
熱膨張性マイクロカプセル発泡剤bは、原粒の平均粒子径が5〜35μm、内包ガス量が10〜35%、最大発泡時のシェル膜厚が0.10〜0.25μmである、
ことを特徴とする発泡化粧材。
A foaming cosmetic material obtained by heating and foaming a resin composition containing at least an aqueous emulsion resin, a thermally expandable microcapsule foaming agent, and an inorganic filler, wherein the thermally expandable microcapsule foaming agent is a thermally expandable microcapsule. Consists of two types of capsule foaming agent a and thermally expandable microcapsule foaming agent b,
The heat-expandable microcapsule foaming agent a has an average particle diameter of 5 to 35 μm, an included gas amount of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.03 to 0.10 μm.
The heat-expandable microcapsule foaming agent b has an average particle diameter of 5 to 35 μm, an amount of encapsulated gas of 10 to 35%, and a shell film thickness at the time of maximum foaming of 0.10 to 0.25 μm.
A foamed decorative material characterized by that.
前記水性エマルジョン系樹脂が固形分で100重量部に対して、前記熱膨張性マイクロカプセル発泡剤aおよび前記熱膨張性マイクロカプセル発泡剤bとを合計で2〜30重量部、前記無機フィラーを20〜200重量部含有することを特徴とする請求項1に記載の発泡化粧材。 The total amount of the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b is 2 to 30 parts by weight with respect to 100 parts by weight of the aqueous emulsion resin, and the inorganic filler is 20 parts by weight. The foamed decorative material according to claim 1, further comprising -200 parts by weight. 前記熱膨張性マイクロカプセル発泡剤aと前記熱膨張性マイクロカプセル発泡剤bとの含有比率a/bが8/2〜2/8であることを特徴とする請求項1または2のいずれかに記載の発泡化粧材。 The content ratio a / b between the thermally expandable microcapsule foaming agent a and the thermally expandable microcapsule foaming agent b is 8/2 to 2/8. The foamed cosmetic material described. 請求項に記載の少なくとも水性エマルジョン系樹脂、熱膨張性マイクロカプセル発泡剤、および、無機フィラーを含有する樹脂組成物を加熱発泡してなる発泡化粧材の表面に、エンボス版を押圧して凹凸模様を形成してなることを特徴とする発泡化粧材。 An embossed plate is pressed against the surface of a foamed decorative material obtained by heating and foaming a resin composition containing at least the aqueous emulsion resin according to claim 1 , a thermally expandable microcapsule foaming agent, and an inorganic filler. A foamed decorative material characterized by forming a pattern .
JP2008057531A 2008-03-07 2008-03-07 Foamed cosmetics Active JP5092811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057531A JP5092811B2 (en) 2008-03-07 2008-03-07 Foamed cosmetics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057531A JP5092811B2 (en) 2008-03-07 2008-03-07 Foamed cosmetics

Publications (2)

Publication Number Publication Date
JP2009214315A JP2009214315A (en) 2009-09-24
JP5092811B2 true JP5092811B2 (en) 2012-12-05

Family

ID=41186730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057531A Active JP5092811B2 (en) 2008-03-07 2008-03-07 Foamed cosmetics

Country Status (1)

Country Link
JP (1) JP5092811B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5247645B2 (en) * 2009-09-30 2013-07-24 大日本印刷株式会社 Adhesive wallpaper and wallpaper construction method
JP5505403B2 (en) * 2011-12-12 2014-05-28 大日本印刷株式会社 Adhesive wallpaper and adhesive composition for wallpaper
JP2018069714A (en) * 2016-11-04 2018-05-10 凸版印刷株式会社 Foam wall paper raw material
JP7336827B2 (en) * 2017-03-02 2023-09-01 凸版印刷株式会社 wallpaper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937669B2 (en) * 2006-08-03 2012-05-23 凸版印刷株式会社 Resin composition for foam sheet and foam sheet

Also Published As

Publication number Publication date
JP2009214315A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP4362474B2 (en) Thermally expandable microspheres, method for producing the same and method for using the same
ES2605418T3 (en) Microspheres
US7252882B2 (en) Thermally foamable microsphere and production process thereof
JP5092811B2 (en) Foamed cosmetics
JP5699428B2 (en) Foam wallpaper
JP6068979B2 (en) Organic polymer particles, paper coating compositions, and methods
US6780820B2 (en) Thermosensitive recording material
JP2002067068A (en) Method of manufacturing decorative material
JP2010216054A (en) Foamed wallpaper
JP2010149024A (en) Method of manufacturing microcapsule, microcapsule and optical sheet and skin material
JP4937669B2 (en) Resin composition for foam sheet and foam sheet
JP5211834B2 (en) Aqueous resin emulsion composition, foamed decorative material and method for producing the same
JP2013067070A (en) Non-slip sheet
JP4348948B2 (en) Method for producing hygroscopic material
JP7027703B2 (en) Wood grain design wallpaper
JP2009096108A (en) Decorative material
JP4582288B2 (en) Moisture absorption and desorption material
JP2004042520A (en) Plasticizer-resistant multilayered foamed decorative material
JP5358074B2 (en) Microcapsule, resin composition for coating film formation, coating film and method for producing microcapsule
JP4752530B2 (en) Cosmetic material manufacturing method and cosmetic material
JP4114401B2 (en) Flame-retardant moisture-absorbing and releasing foam cosmetic material and method for producing the same
JP3667269B2 (en) Aqueous emulsion resin composition and foamed wallpaper using the same
JPS62184191A (en) Production of dew condensation preventing wallpaper having embossed pattern
JP4165267B2 (en) Foamed cosmetics
JP3428218B2 (en) Decorative paper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250