JP2013067070A - Non-slip sheet - Google Patents

Non-slip sheet Download PDF

Info

Publication number
JP2013067070A
JP2013067070A JP2011206886A JP2011206886A JP2013067070A JP 2013067070 A JP2013067070 A JP 2013067070A JP 2011206886 A JP2011206886 A JP 2011206886A JP 2011206886 A JP2011206886 A JP 2011206886A JP 2013067070 A JP2013067070 A JP 2013067070A
Authority
JP
Japan
Prior art keywords
resin particles
slip sheet
expandable resin
slip
thermally expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011206886A
Other languages
Japanese (ja)
Inventor
Takao Masuda
敬生 増田
Nobuko Takahama
信子 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011206886A priority Critical patent/JP2013067070A/en
Publication of JP2013067070A publication Critical patent/JP2013067070A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a non-slip sheet that controls the occurrence of curling and has excellent nonslip performance.SOLUTION: In the non-slip sheet having a foam layer formed by expanding thermally expandable resin particles on a support, the foam layer is formed by thermally expanding the thermally expandable resin particles by heat calender treatment. It is subjected further to calender treatment, and the smoothness of the side of the foam layer measured by Parker Printsurf is made to be 0.5 μm or below.

Description

本発明は、支持体上に熱膨張性樹脂粒子を膨張させた発泡層を有する滑り止めシートに関する。詳しくは、カールの発生が少なく、優れた滑り止め性能を有する滑り止めシートに関する。   The present invention relates to an anti-slip sheet having a foamed layer obtained by expanding thermally expandable resin particles on a support. Specifically, the present invention relates to an anti-slip sheet that has less curling and has excellent anti-slip performance.

滑り止め性能を有するシート材料は、パレット・積荷の荷崩れ防止、精密機器等搬送時の滑動防止等のロジスティック分野で広く使用されており、最近では更に、食事用のランチョンマット、食器棚・商品棚等の滑り落下防止シート、パソコン用マウスパッド、自動車内における携帯電話・スマートフォン等小物類の滑り防止シート等、様々な分野へ用途拡大している。   Sheet material with anti-slip performance is widely used in logistic fields such as prevention of collapsing of pallets and loads, and prevention of slipping during transportation of precision equipment, etc. Applications are expanding to various fields such as anti-slip sheets for shelves, mouse pads for personal computers, and anti-slip sheets for small items such as mobile phones and smartphones in automobiles.

これら滑り止めシートは、通常支持体の少なくとも片方の面に弾性体層を設けて成り、弾性体層としては発泡層が多く用いられるが、未だ改善すべき欠点が多くある。例えば、特許文献1では、ウレタン系もしくはアクリル系の合成樹脂エマルジョン及び起泡剤を含む塗液を機械発泡させた後、支持体上に塗工乾燥させて発泡層を設ける方法が開示されている。しかし機械発泡による発泡層の形成は、滑り止め性能が不十分で、カールしやすい欠点がある。機械発泡以外に効率良く支持体上に発泡層を設ける手段としては、支持体上に熱膨張性樹脂粒子を含む塗液を塗工した後、加熱により熱膨張させて発泡層形成する方法がある。例えば特許文献2では、発泡開始温度が50〜230℃の熱膨張性樹脂粒子を含む塗液を、支持体上に塗工し110〜150℃にて2〜5分間乾燥発泡させる方法が開示されている。また特許文献3では、支持体上に熱膨張性樹脂粒子を含む塗液を塗工し、120℃下にて乾燥発泡させる方法、及び上記塗液をセパレータ上に塗工し60℃にて乾燥させた展開層を支持体に移着してセパレータを剥離し120℃下に発泡させる方法が開示されている。しかしこれら特許文献2、3のいずれの滑り止めシートもカール及び滑り止め性能の点で十分満足できるものではなく、改善が求められていた。   These anti-slip sheets are usually formed by providing an elastic layer on at least one surface of a support, and a foamed layer is often used as the elastic layer, but there are still many drawbacks to be improved. For example, Patent Document 1 discloses a method of providing a foamed layer by mechanically foaming a coating liquid containing a urethane-based or acrylic-based synthetic resin emulsion and a foaming agent and then coating and drying on a support. . However, the formation of the foamed layer by mechanical foaming has the disadvantage that the anti-slip performance is insufficient and the curling tends to occur. As a means for efficiently providing a foam layer on a support other than mechanical foaming, there is a method of forming a foam layer by applying a coating liquid containing thermally expandable resin particles on the support and then thermally expanding it by heating. . For example, Patent Document 2 discloses a method in which a coating liquid containing thermally expandable resin particles having a foaming start temperature of 50 to 230 ° C. is coated on a support and dried and foamed at 110 to 150 ° C. for 2 to 5 minutes. ing. In Patent Document 3, a coating liquid containing thermally expandable resin particles is coated on a support and dried and foamed at 120 ° C., and the coating liquid is coated on a separator and dried at 60 ° C. A method is disclosed in which the developed layer is transferred to a support, the separator is peeled off, and foamed at 120 ° C. However, any of the anti-slip sheets of Patent Documents 2 and 3 is not sufficiently satisfactory in terms of curl and anti-slip performance, and improvement has been demanded.

特開平8−317850号公報JP-A-8-317850 特開平8−290512号公報JP-A-8-290512 特開平11−105176号公報JP-A-11-105176

本発明の課題は、カールの発生が少なく、優れた滑り止め性能を有する滑り止めシートを提供することである。   An object of the present invention is to provide an anti-slip sheet that is less likely to curl and has excellent anti-slip performance.

(1)支持体上に熱膨張性樹脂粒子を膨張させた発泡層を有する滑り止めシートであって、該発泡層が、熱カレンダー処理にて該熱膨張性樹脂粒子を熱膨張させて形成したものであることを特徴とする滑り止めシート。
(2)上記発泡層が、熱カレンダー処理にて該熱膨張性樹脂粒子を熱膨張させた後、更にカレンダー処理を施すことにより形成したものであり、且つパーカープリントサーフにて測定される発泡層側の平滑度が0.5μm以下であることを特徴とする滑り止めシート。
(1) An anti-slip sheet having a foamed layer obtained by expanding thermally expandable resin particles on a support, and the foamed layer is formed by thermally expanding the thermally expandable resin particles by thermal calendaring. Non-slip sheet characterized by being a thing.
(2) The foamed layer is formed by subjecting the thermally expandable resin particles to thermal expansion by thermal calendering and further calendering, and is measured by Parker Print Surf. An anti-slip sheet having a side smoothness of 0.5 μm or less.

本発明によって、カール発生が少なく、優れた滑り止め性能を有する滑り止めシートを提供することができる。   According to the present invention, it is possible to provide a non-slip sheet having less anti-curling and excellent anti-slip performance.

本発明の滑り止めシートの断面図の例Example of sectional view of anti-slip sheet of the present invention 従来技術における滑り止めシートの断面図の例Example of sectional view of anti-slip sheet in the prior art

以下、本発明の内容を更に具体的に説明する。本発明の滑り止めシートは、支持体上に熱膨張性樹脂粒子を膨張させた発泡層を有する。かかる発泡層は支持体上の一方の面に有していれば良く、両面に有していても良い。   Hereinafter, the content of the present invention will be described more specifically. The anti-slip sheet of the present invention has a foam layer in which thermally expandable resin particles are expanded on a support. Such a foam layer may be provided on one side of the support, or may be provided on both sides.

本発明の滑り止めシートの断面図の例を図1に、従来技術における滑り止めシートの断面図の例を図2に示す。なお、これら断面図は発泡層を設けた滑り止めシートをイオンミリングにより切削処理した後、走査型電子顕微鏡にて倍率1000倍にて撮影した画像である。本発明の滑り止めシートが有する発泡層は、図1に示すように、膨張させた熱膨張性樹脂粒子で構成される多数の中空セルからなり、更に各セルの側面が蛇腹状の襞を複数有している。この側面の蛇腹構造と内部の広い空隙により、支持体に対して垂直方向に容易に伸縮し、これによりカール発生を抑制することができると推測される。更に、その伸縮可能で弾性に富んだ構造により、発泡層と滑り止め対象物の密着性が向上し優れた滑り止め性能を発揮する。   An example of a cross-sectional view of the anti-slip sheet of the present invention is shown in FIG. 1, and an example of a cross-sectional view of the anti-slip sheet in the prior art is shown in FIG. These cross-sectional views are images taken at a magnification of 1000 times with a scanning electron microscope after a non-slip sheet provided with a foam layer is cut by ion milling. As shown in FIG. 1, the foam layer of the anti-slip sheet of the present invention comprises a large number of hollow cells composed of expanded thermally expandable resin particles, and the side surfaces of each cell include a plurality of bellows-like ridges. Have. It is presumed that the bellows structure on the side surface and the wide gap inside can easily expand and contract in the direction perpendicular to the support, thereby suppressing the occurrence of curling. Further, the stretchable and elastic structure improves the adhesion between the foam layer and the non-slip object and exhibits excellent anti-slip performance.

本発明に係る発泡層は、熱膨張性樹脂粒子を含む塗液を支持体上に塗工・乾燥した後、熱カレンダー処理にて熱膨張性樹脂粒子を熱膨張させて形成する。熱膨張の方法として熱カレンダーを用いることにより、加熱と加圧を同時に行うことができ、熱膨張性樹脂粒子の熱膨張と発泡層の平坦化が同時に可能となるだけでなく、高温・短時間での加熱形成処理により、上記した蛇腹状の壁を有する中空セルが形成された発泡層を得ることができる。   The foamed layer according to the present invention is formed by coating and drying a coating liquid containing thermally expandable resin particles on a support and then thermally expanding the thermally expandable resin particles by a thermal calendar process. By using a thermal calendar as a thermal expansion method, heating and pressurization can be performed simultaneously, and not only thermal expansion of the thermally expandable resin particles and flattening of the foam layer can be performed simultaneously, but also high temperature and short time. The foamed layer in which the hollow cells having the bellows-like walls are formed can be obtained by the heat forming treatment in step (b).

本発明に係る熱カレンダー処理とは、熱膨張性樹脂粒子を有する層が塗設された支持体を、両方または片方が加熱された、金属ロール−金属ロール間もしくは金属ロール−弾性ロール間でニップして通すことで熱膨張させる方法である。金属ロールの加熱方式は、蒸気、電気等があり、本発明の効果の範囲においては特に限定はされないが、誘導発熱式のジャケットロールが好ましく用いられる。誘導発熱ジャケットロールは、温度調節の精度が高く加熱の均一性に優れるため、瞬間的な熱膨張に適している。特に温度誤差が1℃以内に制御されているものが好ましく用いられる。またロール表面はメッキ処理されていても良く、特に表面粗さが低く鏡面のものが好ましく用いられる。   The thermal calendering process according to the present invention refers to a support on which a layer having thermally expandable resin particles is coated, a nip between a metal roll and a metal roll or between a metal roll and an elastic roll, both or one of which is heated. It is a method of thermally expanding by passing through. The heating method of the metal roll includes steam, electricity, and the like, and is not particularly limited within the scope of the effect of the present invention, but an induction heating type jacket roll is preferably used. The induction heating jacket roll is suitable for instantaneous thermal expansion because it has high temperature control accuracy and excellent heating uniformity. In particular, those having a temperature error controlled within 1 ° C. are preferably used. The roll surface may be plated, and a mirror surface with a particularly low surface roughness is preferably used.

熱カレンダーの加圧条件は、線圧200N/cm以上が好ましく、600N/cm以上が特に好ましい。加圧条件をこの範囲とすることで熱膨張性樹脂粒子の垂直方向の膨張を抑えつつ十分に熱膨張させることができ、より弾性に富んだ発泡層が得られる。ロール加熱温度は、熱膨張性樹脂粒子の膨張開始温度により適宜選択されるが、150℃以上が好ましく、160〜180℃が特に好ましい。また熱カレンダー処理の効率を上げるために、ニップ前及び/またはニップ後に、支持体を熱ロールに抱角を持たせて熱ロールに巻き付けることで、熱ロールとの接触時間(接触長)を高めることができる。熱ロールとの接触時間は、熱ロールの加熱温度次第で任意に選択されるが、0.7〜5秒が特に好ましい。接触時間をこの範囲とすることで、生産性良く均一に熱膨張処理ができるだけでなく、カール防止、滑り止め性能の面でもより好ましい。更に熱カレンダー処理直前に、熱膨張が開始しない程度に予熱を加えることにより熱膨張の効率を向上させることもできる。   The pressure condition of the thermal calendar is preferably a linear pressure of 200 N / cm or more, and particularly preferably 600 N / cm or more. By setting the pressurizing condition within this range, the thermally expandable resin particles can be sufficiently thermally expanded while suppressing the expansion in the vertical direction, and a foam layer rich in elasticity can be obtained. The roll heating temperature is appropriately selected depending on the expansion start temperature of the thermally expandable resin particles, but is preferably 150 ° C. or higher, and particularly preferably 160 to 180 ° C. Further, in order to increase the efficiency of the heat calendar treatment, the contact time (contact length) with the heat roll is increased by winding the support body around the heat roll with a holding angle before and / or after the nip. be able to. The contact time with the hot roll is arbitrarily selected depending on the heating temperature of the hot roll, but 0.7 to 5 seconds is particularly preferable. By making the contact time within this range, not only can the thermal expansion treatment be performed uniformly with good productivity, but also in terms of curling prevention and anti-slip performance. Furthermore, the thermal expansion efficiency can be improved by applying preheating just before the thermal calendering process to such an extent that thermal expansion does not start.

本発明において発泡層は、上記の熱カレンダー処理の後、更にカレンダー処理を施し、且つパーカープリントサーフ平滑度を0.5μm以下にすることにより、その性能を更に向上させることができる。カレンダー処理としては、チルドニップカレンダー、ソフトニップカレンダー、スーパーカレンダー等があり、ニップ数は1以上であれば特に限定はされないが、ソフトニップカレンダーが特に好ましく用いられる。カレンダー処理の加圧条件は、本発明の効果の範囲において特に限定はされないが、線圧300〜2000N/cmが好ましく用いられる。加圧条件をこの範囲にすることで、熱膨張性樹脂粒子を潰さずに粒子側面に襞状を形成しやすく、発泡層の弾性を高めることができる。熱膨張後のカレンダー処理におけるカレンダーロールは、熱膨張がそれ以上進行しない温度で行われることが好ましい。具体的には、熱膨張性樹脂粒子の膨張開始温度よりも低い温度で、概ね常温〜100℃の範囲である。カレンダー処理にて熱膨張が進行しない条件であれば、熱カレンダーの余熱を持った状態でカレンダー処理を行っても良いし、熱膨張後一旦熱膨張性樹脂粒子を塗設した支持体を常温まで冷却した後カレンダー処理を行っても良い。特に発泡層が熱カレンダーの余熱を持った状態(40℃以上の温度)でカレンダー処理を行うことで発泡面の平坦性が向上し、とりわけ優れたカール防止性能を有した滑り止めシートを得ることができる。   In the present invention, the foamed layer can be further improved in performance by subjecting it to a calendering treatment after the thermal calendering treatment and making the Parker print surf smoothness 0.5 μm or less. As the calendar process, there are a chilled nip calender, a soft nip calender, a super calender, and the like. The number of nips is not particularly limited as long as it is 1 or more, but a soft nip calender is particularly preferably used. The pressurizing condition for the calendar treatment is not particularly limited within the scope of the effect of the present invention, but a linear pressure of 300 to 2000 N / cm is preferably used. By setting the pressurizing condition within this range, it is easy to form a bowl shape on the side surface of the particle without crushing the thermally expandable resin particles, and the elasticity of the foamed layer can be increased. The calender roll in the calendering after thermal expansion is preferably performed at a temperature at which thermal expansion does not proceed any further. Specifically, the temperature is lower than the expansion start temperature of the thermally expandable resin particles and is generally in the range of room temperature to 100 ° C. As long as the thermal expansion does not proceed in the calendar process, the calendar process may be performed with the residual heat of the thermal calendar, and after the thermal expansion, the support on which the thermally expandable resin particles are once coated is brought to room temperature. Calendar processing may be performed after cooling. In particular, by performing calendering in a state where the foam layer has the residual heat of a thermal calendar (temperature of 40 ° C. or higher), the flatness of the foam surface is improved, and in particular, an anti-slip sheet having excellent anti-curl performance is obtained. Can do.

上記の通り、本発明の滑り止めシートは、パーカープリントサーフにて測定される発泡層側の平滑度が0.5μm以下であることが好ましい。滑り止めシートにおいて、滑り止め対象物との密着性は非常に重要である。支持体として紙や不織布を用いた場合、支持体の密度や硬さのムラは、滑り止め対象物との圧接下において、密着性にムラを与えやすい。これら支持体の上に弾性に富んだ発泡層を設けることは、このムラを緩和し滑り止め対象物との密着性を向上させることに非常に有効であるが、その指標としてはパーカープリントサーフ平滑度(PPS平滑度)が好適である。本発明において、このPPS平滑度を0.5μm以下にすることで、発泡層と滑り止め対象物の密着性が高く、滑り止め性能に優れた滑り止めシートを得ることが可能となり、カールの発生も少なくなる。なお本発明で示すPPS平滑度は、ハードタイプのバッキングを用い、クランプ圧2000kPaにて測定される値である。   As described above, the anti-slip sheet of the present invention preferably has a smoothness on the foamed layer side of 0.5 μm or less as measured by Parker Print Surf. In the non-slip sheet, the adhesion with the anti-slip object is very important. When paper or non-woven fabric is used as the support, unevenness in density and hardness of the support tends to give unevenness to the adhesiveness under pressure contact with the non-slip object. Providing a foam layer rich in elasticity on these supports is very effective in alleviating this unevenness and improving the adhesion to non-slip objects, but the indicator is Parker Print Surf Smooth Degree (PPS smoothness) is preferred. In the present invention, by setting the PPS smoothness to 0.5 μm or less, it becomes possible to obtain a non-slip sheet having high adhesion between the foam layer and the anti-slip object and excellent anti-slip performance, and the occurrence of curling. Less. The PPS smoothness shown in the present invention is a value measured at a clamping pressure of 2000 kPa using a hard type backing.

本発明において熱膨張性樹脂粒子とは、加熱により粒子径が増大する樹脂粒子のことを指す。例えば、揮発性液体を内包する中空樹脂粒子があり、加熱により樹脂が軟化すると同時に揮発性液体が気化(体積増加)することで粒子が膨張する。より具体的には、スチレン、α−メチルスチレン等のスチレン系モノマー、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソボルニル、アクリロニトリル等のアクリル系モノマー、塩化ビニリデンモノマー、酢酸ビニルモノマー等の重合体及び共重合体を外殻樹脂とし、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、ヘプタン等の低沸点炭化水素を揮発性液体として内包した中空樹脂粒子である。本発明においては、熱膨張性能、襞形状の形成の点から、メタクリル酸メチル−アクリロニトリル共重合体または塩化ビニリデン−アクリロニトリル共重合体を外殻樹脂とし、イソブタンまたはイソペンタンを揮発性液体とする中空樹脂粒子が特に好ましく用いられる。更に、外殻樹脂を多官能性モノマーで架橋したり、外殻樹脂の表面にシリカ等のナノスケールの無機粒子を吸着させたりしても良い。また、本発明の熱膨張性樹脂粒子の膨張開始温度は80〜150℃の範囲であるのが好ましく、90〜120℃が特に好ましい。熱膨張性樹脂粒子の膨張開始温度をこの範囲とすることで、熱カレンダーでの短時間の熱膨張が効率良く行われ、また支持体との接着性も良好となる。   In the present invention, the heat-expandable resin particles refer to resin particles whose particle diameter increases by heating. For example, there are hollow resin particles containing a volatile liquid, and the resin is softened by heating, and at the same time, the volatile liquid is vaporized (volume increase), and the particles expand. More specifically, styrene monomers such as styrene and α-methylstyrene, acrylic monomers such as methyl (meth) acrylate, ethyl (meth) acrylate, isobornyl (meth) acrylate, acrylonitrile, vinylidene chloride monomer, Hollow resin particles in which a polymer and a copolymer such as vinyl acetate monomer are used as an outer shell resin, and low-boiling hydrocarbons such as propane, butane, isobutane, pentane, isopentane, hexane, and heptane are encapsulated as a volatile liquid. In the present invention, from the viewpoint of thermal expansion performance and the formation of a bowl shape, a hollow resin in which methyl methacrylate-acrylonitrile copolymer or vinylidene chloride-acrylonitrile copolymer is used as an outer shell resin and isobutane or isopentane is used as a volatile liquid. Particles are particularly preferably used. Furthermore, the outer shell resin may be crosslinked with a polyfunctional monomer, or nanoscale inorganic particles such as silica may be adsorbed on the surface of the outer shell resin. Moreover, it is preferable that the expansion | swelling start temperature of the thermally expansible resin particle of this invention is the range of 80-150 degreeC, and 90-120 degreeC is especially preferable. By setting the expansion start temperature of the thermally expandable resin particles within this range, thermal expansion in a short time with a thermal calendar is efficiently performed, and adhesion to the support is also improved.

また熱膨張性樹脂粒子の未膨張時の平均粒子径としては、好ましくは1〜25μmであり、加熱により体積が10〜50倍に膨張し、中空率が80%以上となるものが好ましく用いられる。平均粒子径を1μm以上とすることで加熱形成処理後十分な体積及び表面積が得られ弾性に富んだ発泡層を形成しやすく、カールがより抑制される。また平均粒子径を25μm以下とすることで熱膨張後の発泡層の平坦性が得やすくなり、滑り止め対象物との密着性が良くなり滑り止め性能が高くなる。より好ましくは3〜10μmであり、平均粒子径をこの範囲にすることで、滑り止め性能がより良好となる。ここで言う平均粒子径とはレーザー回折散乱法により測定される平均粒子径(D50)である。また加熱後の中空率を80%以上とすることで熱カレンダー加熱後粒子内に十分な空隙が生じ、滑り止め対象物との密着性がより良くなり、優れた滑り止め性能が得られる。また殻が薄膜化しやすくなり、中空セル側面の襞形状の形成が容易になる。ここで言う中空率とは、中空樹脂の中空部の体積を、中空粒子の体積で除した値である。   Further, the average particle diameter of the thermally expandable resin particles when not expanded is preferably 1 to 25 μm, and those whose volume is expanded 10 to 50 times by heating and whose hollow ratio is 80% or more are preferably used. . By setting the average particle size to 1 μm or more, a sufficient volume and surface area can be obtained after the heat forming treatment, and a foam layer rich in elasticity can be easily formed, and curling is further suppressed. Further, when the average particle diameter is 25 μm or less, the flatness of the foamed layer after thermal expansion can be easily obtained, the adhesion with the anti-slip object is improved, and the anti-slip performance is enhanced. More preferably, it is 3 to 10 μm, and by making the average particle diameter within this range, the anti-slip performance becomes better. The average particle diameter referred to here is an average particle diameter (D50) measured by a laser diffraction scattering method. Further, by setting the hollow ratio after heating to 80% or more, sufficient voids are generated in the particles after heating by calendering, the adhesion with the anti-slip object is improved, and excellent anti-slip performance is obtained. In addition, the shell is easily made into a thin film, and the formation of a bowl shape on the side surface of the hollow cell is facilitated. The hollow ratio here is a value obtained by dividing the volume of the hollow portion of the hollow resin by the volume of the hollow particles.

本発明において、熱膨張性樹脂粒子を膨張させた発泡層の塗工量は、本発明の所望の効果を損なわない範囲で適宜設定されるが、2〜30g/mが好ましく、3〜15g/mが特に好ましい。また発泡層における熱膨張性樹脂粒子の含有量は発泡層の総固形量に対して20質量%以上とすることが好ましく、更に60〜90質量%とすることがより好ましい。 In the present invention, the coating amount of the foamed layer in which the thermally expandable resin particles are expanded is appropriately set within a range that does not impair the desired effect of the present invention, but is preferably 2 to 30 g / m 2 , and 3 to 15 g. / M 2 is particularly preferred. The content of the thermally expandable resin particles in the foamed layer is preferably 20% by mass or more, more preferably 60 to 90% by mass with respect to the total solid content of the foamed layer.

本発明に用いられる支持体としては、特に限定されず、用途に応じた薄葉体を使用することができる。一般には、紙シートや不織布、織布、フィルム等が用いられるが、汎用性の点で紙シートが特に好ましい。紙シートはLBKPやNBKP等のパルプ繊維から成るもので一般的な上質紙が用いられるが、特に抄紙時に使用されるパルプ比率においてLBKPが80質量%以上占める支持体が熱カレンダー後の地合の点で好ましく用いられる。更に、密度0.9g/cm以上、坪量30〜100g/mの支持体が好ましく用いられる。支持体の密度と坪量をこの範囲にすることで、熱カレンダーにおける支持体側からの熱伝導が良好となり、発泡層における瞬間的な熱膨張に有効である。 It does not specifically limit as a support body used for this invention, The thin leaf body according to a use can be used. In general, a paper sheet, a nonwoven fabric, a woven fabric, a film, or the like is used, but a paper sheet is particularly preferable from the viewpoint of versatility. The paper sheet is composed of pulp fibers such as LBKP and NBKP, and is used for general fine paper. Especially, the support in which LBKP is 80% by mass or more in the pulp ratio used at the time of papermaking is the condition after heat calendering. It is preferably used in terms of points. Furthermore, a support having a density of 0.9 g / cm 3 or more and a basis weight of 30 to 100 g / m 2 is preferably used. By setting the density and basis weight of the support in this range, the heat conduction from the support side in the thermal calendar becomes good, which is effective for instantaneous thermal expansion in the foam layer.

本発明の発泡層には発明の効果を損ねない範囲で、必要に応じて各種無機顔料、有機顔料、及び有機無機複合顔料を含有することができる。顔料としては、ケイソウ土、タルク、カオリン、焼成カオリン、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、二酸化チタン、硫酸バリウム、硫酸亜鉛、非晶質シリカ、ケイ酸カルシウム、コロイダルシリカ、メラミン樹脂、尿素−ホルムアルデヒド樹脂、ポリエチレン、ポリスチレン、エチレン−酢酸ビニル等の通常塗工紙等に使用される顔料が挙げられ、これらを単独または2種以上併用して使用できる。また有機球状粒子、有機中空粒子等も使用可能である。これら無機及び有機顔料の含有量は熱膨張性樹脂粒子に対して0〜30質量%の範囲であるのが本発明の効果を損ねることなく好ましい。   The foamed layer of the present invention can contain various inorganic pigments, organic pigments, and organic-inorganic composite pigments as necessary, as long as the effects of the invention are not impaired. The pigments include diatomaceous earth, talc, kaolin, calcined kaolin, heavy calcium carbonate, light calcium carbonate, magnesium carbonate, zinc oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, titanium dioxide, barium sulfate, zinc sulfate, non- Examples include pigments used in ordinary coated papers such as crystalline silica, calcium silicate, colloidal silica, melamine resin, urea-formaldehyde resin, polyethylene, polystyrene, ethylene-vinyl acetate, and the like. Can be used in combination. Organic spherical particles, organic hollow particles, and the like can also be used. The content of these inorganic and organic pigments is preferably in the range of 0 to 30% by mass with respect to the heat-expandable resin particles without impairing the effects of the present invention.

また発泡層にはバインダーとして、通常の塗工で用いられる種々の水溶性高分子化合物、または水分散性樹脂を用いることができる。その具体例としては、例えば澱粉類、ヒドロキシメチルセルロース、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ゼラチン、カゼイン、完全鹸化ポリビニルアルコール、部分鹸化ポリビニルアルコール、変性ポリビニルアルコール、アルギン酸ソーダ、ポリビニルピロリドン、ポリアクリルアミド、アクリルアミド/アクリル酸エステル共重合体、アクリルアミド/アクリル酸エステル/メタクリル酸三元共重合体、ポリアクリル酸のアルカリ塩、ポリマレイン酸のアルカリ塩、スチレン/無水マレイン酸共重合体のアルカリ塩、エチレン/無水マレイン酸共重合体のアルカリ塩、イソブチレン/無水マレイン酸共重合体のアルカリ塩等の水溶性樹脂、及びスチレン/ブタジエン共重合体、アクリロニトリル/ブタジエン共重合体、アクリル酸メチル/ブタジエン共重合体、アクリロニトリル/ブタジエン/スチレン三元共重合体、ポリ酢酸ビニル、酢酸ビニル/アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体、ポリアクリル酸エステル、スチレン/アクリル酸エステル共重合体、ポリウレタン等の水分散性樹脂が挙げられるが、これらに限定されるものではない。バインダーは単独、もしくは2種以上混合して用いることができる。バインダーの使用量は熱膨張性樹脂粒子に対して10〜400質量%とすることが好ましく、10〜70質量%とすることがより好ましい。   In the foamed layer, various water-soluble polymer compounds or water-dispersible resins used in ordinary coating can be used as a binder. Specific examples thereof include starches, hydroxymethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, gelatin, casein, fully saponified polyvinyl alcohol, partially saponified polyvinyl alcohol, modified polyvinyl alcohol, sodium alginate, polyvinyl pyrrolidone, polyacrylamide, acrylamide / acrylic. Acid ester copolymer, acrylamide / acrylic ester / methacrylic acid terpolymer, alkali salt of polyacrylic acid, alkali salt of polymaleic acid, alkali salt of styrene / maleic anhydride copolymer, ethylene / maleic anhydride Water-soluble resin such as alkali salt of copolymer, alkali salt of isobutylene / maleic anhydride copolymer, and styrene / butadiene copolymer, acrylonitrile / butane En copolymer, methyl acrylate / butadiene copolymer, acrylonitrile / butadiene / styrene terpolymer, polyvinyl acetate, vinyl acetate / acrylate copolymer, ethylene / vinyl acetate copolymer, polyacrylic acid Examples include, but are not limited to, water-dispersible resins such as esters, styrene / acrylic acid ester copolymers, and polyurethanes. A binder can be used individually or in mixture of 2 or more types. The amount of the binder used is preferably 10 to 400% by mass and more preferably 10 to 70% by mass with respect to the thermally expandable resin particles.

また、発泡層には、本発明の効果を損ねない範囲において、他の添加剤、例えば、顔料分散剤、蛍光染料、着色染顔料、紫外線吸収剤、導電性物質、滑剤、耐水化剤、親水化剤、消泡剤、腐敗防止剤等を含有することができる。更に本発明の効果の範囲において、発泡層の上に更に、保護層や印刷層、その他機能層を設けることもできる。   Further, the foamed layer has other additives such as pigment dispersants, fluorescent dyes, colored dyes, ultraviolet absorbers, conductive substances, lubricants, water resistance agents, hydrophilicity, as long as the effects of the present invention are not impaired. Agents, antifoaming agents, antiseptics, etc. Furthermore, in the range of the effect of this invention, a protective layer, a printing layer, and other functional layers can be further provided on the foam layer.

熱膨張性樹脂粒子を含む塗液の支持体上への塗工方法は、特に限定されるものではなく、従来公知の技術に従って塗工することができる。具体的な例としては、エアナイフ塗工、ロッドブレード塗工、バー塗工、ブレード塗工、グラビア塗工、カーテン塗工、Eバー塗工等が挙げられる。本発明においては、熱膨張性樹脂粒子の安定性の点から、エアナイフ塗工、カーテン塗工が特に好ましい。   The coating method of the coating liquid containing the thermally expandable resin particles on the support is not particularly limited, and can be applied according to a conventionally known technique. Specific examples include air knife coating, rod blade coating, bar coating, blade coating, gravure coating, curtain coating, E-bar coating, and the like. In the present invention, air knife coating and curtain coating are particularly preferred from the viewpoint of the stability of the thermally expandable resin particles.

なお、本発明の滑り止めシートにおいては、必要に応じて発泡層を設けていない支持体の裏の面にバックコート層、粘着剤層を設けたり、任意の記録層を設けたりすることができる。また両方の面に発泡層を設ける方法として、片方の面に発泡層を設けた滑り止めシートを裏の面同士で貼り合わせることで形成することもできる。   In the anti-slip sheet of the present invention, a back coat layer and a pressure-sensitive adhesive layer can be provided on the back surface of the support that is not provided with a foamed layer, or an optional recording layer can be provided as necessary. . Moreover, as a method of providing a foam layer on both surfaces, it can also form by sticking together the anti-slip sheet | seat which provided the foam layer on the one surface between the back surfaces.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部はすべて質量基準であり、塗工量は絶乾塗工量であり、平均粒子径はレーザー回折散乱法により測定された平均粒子径(D50)である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and parts are all based on mass, the coating amount is an absolutely dry coating amount, and the average particle size is an average particle size (D50) measured by a laser diffraction scattering method.

実施例1
(1)熱膨張性樹脂粒子の塗工
熱膨張性樹脂粒子エクスパンセル461DU20(AkzoNovel社製、平均粒子径7μm、膨張開始温度100℃)100部を完全鹸化ポリビニルアルコールNM−11(日本合成化学工業製)の10%水溶液300部に分散させて塗工液を作製した後、LBKP100%(パルプ内比率)、密度1.0g/cm、坪量75g/mの支持体に、塗工量5.5g/mとなるように塗工液をエアナイフ塗工し、熱風式ドライヤーを用い紙面温度が80℃以下となるように保って乾燥した。
(2)熱カレンダー処理
その後、共に150℃に加熱された熱ロール(トクデン製誘電発熱ジャケットロール)2つを用いた2段型1ニップ式熱カレンダーを用い、ニップ直前に熱膨張性樹脂粒子塗設面が熱ロールに12秒間接触するように抱かせ、ニップ線圧700N/cmの条件にて熱カレンダー処理を行い、熱膨張性樹脂粒子を熱膨張させて、発泡層を有する滑り止めシートを作製した。
Example 1
(1) Coating of thermally expandable resin particles 100 parts of thermally expandable resin particle expand cell 461DU20 (manufactured by AkzoNovel, average particle diameter 7 μm, expansion start temperature 100 ° C.) is completely saponified polyvinyl alcohol NM-11 (Nippon Synthetic Chemical) After making a coating solution by dispersing in 300 parts of a 10% aqueous solution of Kogyo Kogyo), the coating was applied to a support having a LBKP of 100% (ratio in pulp), a density of 1.0 g / cm 3 and a basis weight of 75 g / m 2. The coating solution was applied with an air knife so that the amount was 5.5 g / m 2, and dried using a hot air drier so that the paper surface temperature was 80 ° C. or lower.
(2) Thermal calendar treatment After that, using a two-stage one-nip thermal calendar using two hot rolls (dielectric heat-generating jacket rolls made by Tokuden) both heated to 150 ° C., the coating of thermally expandable resin particles was applied immediately before the nip. An anti-slip sheet having a foamed layer is obtained by holding the installation surface in contact with a heat roll for 12 seconds, performing a heat calender treatment under the condition of a nip linear pressure of 700 N / cm, and thermally expanding the heat-expandable resin particles. Produced.

実施例2
実施例1の(2)熱カレンダー処理において、熱カレンダー処理後連続して(余熱を持った状態で)、線圧500N/cmにてソフトニップカレンダー処理を行った以外は実施例1と同様にして、発泡層を有する滑り止めシートを作製した。なお、ソフトニップカレンダー処理直前の塗工面の表面温度は約40℃であった。
Example 2
Example 2 (2) Thermal calendaring The same as Example 1 except that soft nip calendering was performed at a linear pressure of 500 N / cm continuously (with remaining heat) after thermal calendering. Thus, an anti-slip sheet having a foam layer was produced. The surface temperature of the coated surface immediately before the soft nip calendering was about 40 ° C.

実施例3
実施例1の(2)熱カレンダー処理において、熱ロールの温度150℃及び接触時間12秒間に代えて、熱ロールの温度170℃及び接触時間1秒間とした以外は実施例1と同様にして発泡層を有する滑り止めシートを作製した。
Example 3
Foaming in the same manner as in Example 1 except that, in (2) thermal calendering of Example 1, the temperature of the hot roll was 150 ° C. and the contact time was 12 seconds, instead of the temperature of the hot roll was 170 ° C. and the contact time was 1 second. An anti-slip sheet having a layer was prepared.

実施例4
実施例1の(2)熱カレンダー処理において、熱ロールの温度150℃及び接触時間12秒間に代えて、熱ロールの温度170℃及び接触時間1秒間とし、更に熱カレンダー処理後連続して(余熱を持った状態で)、線圧500N/cmにてソフトニップカレンダー処理を行った以外は実施例1と同様にして、発泡層を有する滑り止めシートを作製した。なお、ソフトニップカレンダー処理直前の塗工面の表面温度は約60℃であった。
Example 4
In (2) thermal calendering of Example 1, instead of the hot roll temperature of 150 ° C. and the contact time of 12 seconds, the hot roll temperature was set to 170 ° C. and the contact time of 1 second. In the same manner as in Example 1 except that soft nip calendering was performed at a linear pressure of 500 N / cm, an anti-slip sheet having a foamed layer was produced. The surface temperature of the coated surface immediately before the soft nip calendering process was about 60 ° C.

実施例5
実施例1の(1)熱膨張性樹脂粒子の塗工において、熱膨張性樹脂粒子エクスパンセル461DU20(AkzoNovel社製、平均粒子径7μm、膨張開始温度100℃)100部に代えて、熱膨張性樹脂粒子クレハマイクロスフィアM430(クレハ製、平均粒子径15μm、膨張開始温度102℃)100部を用いた以外は実施例1と同様にして、発泡層を有する滑り止めシートを作製した。
Example 5
In the application of (1) thermally expandable resin particles in Example 1, instead of 100 parts of thermally expandable resin particle expand cell 461DU20 (manufactured by Akzo Novell, average particle diameter 7 μm, expansion start temperature 100 ° C.), thermal expansion A non-slip sheet having a foamed layer was prepared in the same manner as in Example 1 except that 100 parts of the conductive resin particle Kureha Microsphere M430 (manufactured by Kureha, average particle diameter 15 μm, expansion start temperature 102 ° C.) was used.

比較例1
実施例1の(2)熱カレンダー処理において、熱カレンダー処理に代えて、130℃に加熱されたドラム式ドライヤーを用い180秒間かけて熱膨張性樹脂粒子を熱膨張させた以外は実施例1と同様にして発泡層を有する滑り止めシートを作製した。
Comparative Example 1
Example 2 (2) In the thermal calendar process, instead of the thermal calendar process, the thermal expandable resin particles were thermally expanded over 180 seconds using a drum dryer heated to 130 ° C. Similarly, an anti-slip sheet having a foam layer was produced.

比較例2
実施例1の(2)熱カレンダー処理において、熱カレンダー処理に代えて、130℃に加熱されたドラム式ドライヤーを用い180秒間かけて熱膨張性樹脂粒子を熱膨張させ、その後連続して(余熱を持った状態で)、線圧500N/cmにてソフトニップカレンダー処理を行った以外は実施例1と同様にして、発泡層を有する滑り止めシートを作製した。なお、ソフトニップカレンダー処理直前の塗工面の表面温度は約60℃であった。
Comparative Example 2
In (2) thermal calendaring of Example 1, instead of thermal calendaring, the thermally expandable resin particles were thermally expanded over 180 seconds using a drum dryer heated to 130 ° C., and then continuously (residual heat) In the same manner as in Example 1 except that soft nip calendering was performed at a linear pressure of 500 N / cm, an anti-slip sheet having a foamed layer was produced. The surface temperature of the coated surface immediately before the soft nip calendering process was about 60 ° C.

比較例3
実施例1の(2)熱カレンダー処理において、熱カレンダー処理に代えて、近赤外線照射式ドライヤーを用い150℃で12秒間かけて熱膨張性樹脂粒子を熱膨張させた以外は実施例1と同様にして発泡層を有する滑り止めシートを作製した。
Comparative Example 3
Example 2 (2) In the thermal calendar process, instead of the thermal calendar process, the thermal expandable resin particles were thermally expanded at 150 ° C. for 12 seconds using a near infrared irradiation dryer, and the same as in Example 1. Thus, an anti-slip sheet having a foam layer was produced.

比較例4
実施例1の(2)熱カレンダー処理において、熱カレンダー処理に代えて、近赤外線照射式ドライヤーを用い150℃で12秒間かけて熱膨張性樹脂粒子を熱膨張させ、その後連続して(余熱を持った状態で)、線圧500N/cmにてソフトニップカレンダー処理を行った以外は実施例1と同様にして、発泡層を有する滑り止めシートを作製した。なお、ソフトニップカレンダー処理直前の塗工面の表面温度は約60℃であった。
Comparative Example 4
In (2) thermal calendar process of Example 1, instead of the thermal calendar process, the thermally expandable resin particles were thermally expanded at 150 ° C. for 12 seconds using a near infrared irradiation dryer, and then continuously (residual heat was reduced). An anti-slip sheet having a foam layer was prepared in the same manner as in Example 1 except that the soft nip calendering was performed at a linear pressure of 500 N / cm. The surface temperature of the coated surface immediately before the soft nip calendering process was about 60 ° C.

比較例5
実施例1の(2)熱カレンダー処理において、熱カレンダー処理に代えて、熱風式ドライヤーを用い130℃で300秒間かけて熱膨張性樹脂粒子を熱膨張させた以外は実施例1と同様にして発泡層を有する滑り止めシートを作製した。
Comparative Example 5
Example 2 (2) In the heat calendering process, instead of the heat calendering process, the heat-expandable resin particles were thermally expanded at 130 ° C. for 300 seconds instead of the heat calendering process in the same manner as in Example 1. An anti-slip sheet having a foam layer was produced.

以上の実施例1〜5、比較例1〜5で作製した発泡層を有する滑り止めシートについて、それぞれ以下の評価を行った。結果を表1に示す。   The following evaluation was performed about the anti-slip sheet | seat which has the foamed layer produced in the above Examples 1-5 and Comparative Examples 1-5, respectively. The results are shown in Table 1.

[中空セルの襞]
実施例1〜5及び比較例1〜5の滑り止めシートを、イオンミリングにて断面処理し、日立製走査電子顕微鏡S−2300を用い倍率1000倍にて観察し、中空セル側面の襞の程度の観察を行った。評価は以下の基準に従った。なお参考として、実施例4の断面図を図1に、比較例1の断面図を図2に示す。
◎:ほとんどの中空セルに襞が確認できる。
○:多くの中空セルに襞が確認できる。
△:一部の中空セルでしか襞が確認できない。
×:ほとんどの中空セルで襞が確認できない。
[Hole of hollow cell]
The anti-slip sheets of Examples 1 to 5 and Comparative Examples 1 to 5 were subjected to cross-section processing by ion milling, and observed at a magnification of 1000 times using a Hitachi scanning electron microscope S-2300. Was observed. Evaluation was according to the following criteria. For reference, a sectional view of Example 4 is shown in FIG. 1, and a sectional view of Comparative Example 1 is shown in FIG.
A: Wrinkles can be confirmed in almost all hollow cells.
○: Flaws can be confirmed in many hollow cells.
(Triangle | delta): A flaw can be confirmed only in some hollow cells.
X: No wrinkles can be confirmed in most hollow cells.

[PPS平滑度]
実施例1〜5及び比較例1〜5の滑り止めシートの発泡層面を米国TESTING MACHINES INC社製パーカープリントサーフ平滑度計にてハードタイプのバッキングを用い、クランプ圧2000kPaにて測定した。なお表1中の数値は、5カ所を測定した平均値の小数点第二位以下を四捨五入した値である。
[PPS smoothness]
The foamed layer surfaces of the non-slip sheets of Examples 1 to 5 and Comparative Examples 1 to 5 were measured with a Parker Print Surf Smoothness Meter manufactured by TESTING MACHINES INC. Using a hard type backing at a clamp pressure of 2000 kPa. The numerical values in Table 1 are values obtained by rounding off the second decimal place of the average value measured at five locations.

[カール]
実施例1〜5及び比較例1〜5の滑り止めシートを、外径10cmの紙管に発泡層が内側になるように巻き付け40℃90%RHの環境下に24時間静置後、常温常湿の室内に取り出し、一片が15cmの正方形紙片にそれぞれ2枚ずつ切り取り、1枚を発泡層側が上になるよう、残りの1枚を発泡層側が下になるように水平な台に静置し、それぞれの正方形紙片の中で最も高く浮き上がっている部分の高さを測定した。そして得られた個々の測定値を比較し、値が大きい方の浮き上がり高さを最大値として求め、カールを評価した。評価は以下の基準に従った。
◎:浮き上がりの最大値が、5mm未満。
○:浮き上がりが、5mm以上10mm未満。
△:浮き上がりが、10mm以上15mm未満。
×:浮き上がりが、15mm以上。
[curl]
The anti-slip sheets of Examples 1 to 5 and Comparative Examples 1 to 5 were wrapped around a paper tube having an outer diameter of 10 cm so that the foamed layer was on the inside, and allowed to stand in an environment of 40 ° C. and 90% RH for 24 hours. Take out into a damp room, cut two pieces of each into 15 cm square pieces of paper, and place them on a horizontal base so that the foam layer side is on the top and the other sheet is on the horizontal side with the foam layer side down. The height of the highest floating part of each square paper piece was measured. Then, the individual measured values obtained were compared, the rising height of the larger value was determined as the maximum value, and the curl was evaluated. Evaluation was according to the following criteria.
A: The maximum lift is less than 5 mm.
○: Lifting is 5 mm or more and less than 10 mm.
Δ: Lift is 10 mm or more and less than 15 mm.
X: Lifting is 15 mm or more.

[滑り止め性能]
実施例1〜5及び比較例1〜5の滑り止めシートを、発泡層の反対の面を両面テープでガラス板に固定し、滑り止めシートの発泡層の上に、重さ200g、直径60mm、高さ10mmの円柱状分銅を乗せて徐々に傾斜させて、分銅が滑り始める角度を調べることで、滑り止め性能を評価した。評価は以下の基準に従った。
◎:(分銅が滑り始める角度が)60度以上。
○:45度以上60度未満。
△:30度以上45度未満。
×:30度未満。
[Non-slip performance]
The anti-slip sheets of Examples 1 to 5 and Comparative Examples 1 to 5 were fixed to the glass plate with a double-sided tape on the opposite side of the foam layer, and the weight was 200 g, the diameter was 60 mm on the foam layer of the anti-slip sheet. Non-slip performance was evaluated by placing a cylindrical weight of 10 mm in height and gradually tilting it to examine the angle at which the weight starts to slide. Evaluation was according to the following criteria.
A: 60 degrees or more (the angle at which the weight starts to slide).
○: 45 degrees or more and less than 60 degrees.
Δ: 30 degrees or more and less than 45 degrees.
X: Less than 30 degrees.

表1から明らかなように、熱カレンダー処理にて熱膨張性粒子を熱膨張させて発泡層を形成させた実施例1〜5の発泡層を有する滑り止めシートは、熱カレンダー処理以外の方法で熱膨張性粒子を熱膨張させて発泡層を形成させた比較例1〜5の発泡層を有する滑り止めシートに比べ、カールの発生が少なく、優れた滑り止め性能を有する滑り止めシートであることが判る。   As is clear from Table 1, the anti-slip sheet having the foamed layer of Examples 1 to 5 in which the thermally expandable particles were thermally expanded by thermal calendering to form a foamed layer was obtained by a method other than thermal calendering. Compared to the non-slip sheet having the foam layer of Comparative Examples 1 to 5 in which the thermally expandable particles are thermally expanded to form a foam layer, the anti-slip sheet has less anti-slip performance and less curling. I understand.

Claims (2)

支持体上に熱膨張性樹脂粒子を膨張させた発泡層を有する滑り止めシートであって、該発泡層が、熱カレンダー処理にて該熱膨張性樹脂粒子を熱膨張させて形成したものであることを特徴とする滑り止めシート。   An anti-slip sheet having a foamed layer obtained by expanding thermally expandable resin particles on a support, wherein the foamed layer is formed by thermally expanding the thermally expandable resin particles by thermal calendaring. An anti-slip sheet characterized by that. 前記発泡層が、熱カレンダー処理にて該熱膨張性樹脂粒子を熱膨張させた後、更にカレンダー処理を施すことにより形成したものであり、且つパーカープリントサーフにて測定される発泡層側の平滑度が0.5μm以下であることを特徴とする請求項1に記載の滑り止めシート。   The foamed layer is formed by thermally expanding the thermally expandable resin particles by thermal calendering and then further calendering, and is smooth on the foamed layer side measured by Parker Print Surf. The anti-slip sheet according to claim 1, wherein the degree is 0.5 μm or less.
JP2011206886A 2011-09-22 2011-09-22 Non-slip sheet Withdrawn JP2013067070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011206886A JP2013067070A (en) 2011-09-22 2011-09-22 Non-slip sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011206886A JP2013067070A (en) 2011-09-22 2011-09-22 Non-slip sheet

Publications (1)

Publication Number Publication Date
JP2013067070A true JP2013067070A (en) 2013-04-18

Family

ID=48473381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206886A Withdrawn JP2013067070A (en) 2011-09-22 2011-09-22 Non-slip sheet

Country Status (1)

Country Link
JP (1) JP2013067070A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217661A (en) * 2018-06-18 2019-12-26 カシオ計算機株式会社 Method for producing resin sheet
RU2770849C2 (en) * 2017-07-18 2022-04-22 ХЕНКЕЛЬ АйПи ЭНД ХОЛДИНГ ГМБХ Dielectric heating of foamed compositions
US11833788B2 (en) 2018-02-16 2023-12-05 Henkel Ag & Co, Kgaa Method for producing a multi-layer substrate
US11926134B2 (en) 2017-08-25 2024-03-12 Henkel Ag & Co. Kgaa Process for forming improved protective eco-friendly pouch and packaging and products made therefrom
US11970634B2 (en) 2022-08-30 2024-04-30 Henkel Ag & Co. Kgaa Waterborne adhesives for reduced basis weight multilayer substrates and use thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770849C2 (en) * 2017-07-18 2022-04-22 ХЕНКЕЛЬ АйПи ЭНД ХОЛДИНГ ГМБХ Dielectric heating of foamed compositions
US11773297B2 (en) 2017-07-18 2023-10-03 Henkel Ag & Co., Kgaa Dielectric heating of foamable compositions
US11926134B2 (en) 2017-08-25 2024-03-12 Henkel Ag & Co. Kgaa Process for forming improved protective eco-friendly pouch and packaging and products made therefrom
US11833788B2 (en) 2018-02-16 2023-12-05 Henkel Ag & Co, Kgaa Method for producing a multi-layer substrate
JP2019217661A (en) * 2018-06-18 2019-12-26 カシオ計算機株式会社 Method for producing resin sheet
US11130262B2 (en) 2018-06-18 2021-09-28 Casio Computer Co., Ltd. Resin sheet production method
US11970634B2 (en) 2022-08-30 2024-04-30 Henkel Ag & Co. Kgaa Waterborne adhesives for reduced basis weight multilayer substrates and use thereof

Similar Documents

Publication Publication Date Title
JP2013067070A (en) Non-slip sheet
JP6272009B2 (en) Recording medium and manufacturing method thereof
JP5440172B2 (en) Process release sheet and method for producing synthetic leather
JPH11348416A (en) Ink jet recording sheet and manufacture of the same
JP2012524150A (en) Organic polymer particles, paper coating compositions, and methods
JP2000238440A (en) Thermal transfer image receiving body and method for sublimation transfer recording
JP2009214315A (en) Foamed decorative material
JP6196763B2 (en) Paperboard, cardboard sheet and box
JP3508307B2 (en) Manufacturing method of cast coated paper
JP2020006547A (en) Sublimation type thermal transfer image receiving sheet and manufacturing method therefor
JP5211834B2 (en) Aqueous resin emulsion composition, foamed decorative material and method for producing the same
JP2003238908A (en) Pressure sensitive adhesive sheet
JPS63146945A (en) Antisliding sheet
JP2010234702A (en) Thermal transfer image-receiving sheet and manufacturing method for the same
JP6896485B2 (en) recoding media
JPH10168792A (en) Cast-coated paper
JP2019014107A (en) Sublimation type thermal transfer sheet and method for producing the same
JP2010043167A (en) Non-slip pressure sensitive adhesive sheet
JPS6356489A (en) Thermal transfer recording sheet
JP5746107B2 (en) Process paper
JP2010059555A (en) Low-density composite material
JP7203090B2 (en) Laminates and casting paper
JP2007296745A (en) Thermal transfer receiving sheet and manufacturing method thereof
JP4779406B2 (en) Foam wallpaper
JP2017177747A (en) Roll state thermal transfer image receiving sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202