JP5087561B2 - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP5087561B2
JP5087561B2 JP2008558079A JP2008558079A JP5087561B2 JP 5087561 B2 JP5087561 B2 JP 5087561B2 JP 2008558079 A JP2008558079 A JP 2008558079A JP 2008558079 A JP2008558079 A JP 2008558079A JP 5087561 B2 JP5087561 B2 JP 5087561B2
Authority
JP
Japan
Prior art keywords
gas flow
insulator
flow path
electrostatic chuck
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008558079A
Other languages
Japanese (ja)
Other versions
JPWO2008099789A1 (en
Inventor
欣也 宮下
博 藤澤
Original Assignee
株式会社クリエイティブ テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリエイティブ テクノロジー filed Critical 株式会社クリエイティブ テクノロジー
Priority to JP2008558079A priority Critical patent/JP5087561B2/en
Publication of JPWO2008099789A1 publication Critical patent/JPWO2008099789A1/en
Application granted granted Critical
Publication of JP5087561B2 publication Critical patent/JP5087561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Description

この発明は、半導体製造装置のウエハ等を保持及び搬送するために用いられる静電チャックに関し、特に基板に設けられるガス流路の構造に特徴を有する静電チャックに関するものである。   The present invention relates to an electrostatic chuck used for holding and transporting a wafer or the like of a semiconductor manufacturing apparatus, and more particularly to an electrostatic chuck characterized by the structure of a gas flow path provided on a substrate.

静電チャックを、プラズマCVD装置,プラズマエッチング装置,イオン注入装置,イオンドーピング装置,プラズマドーピング装置等の半導体製造装置に用いる際には、ウエハ等の被吸着体を保持固定すると同時に冷却する必要がある。
これは、プラズマを用いた処理において、高エネルギのイオンが被吸着体に衝突したり、プラズマ発生用の高周波電力の一部が被吸着体で消費されることから、被吸着体自体が高温に達するからである。
かかる被吸着体の冷却温度は、被吸着体上でパターニングに使用する有機レジスト材からゴミが発生することを防止する必要性からも、100°C以下に保つ必要がある。
被吸着体をプラズマで処理する処理室内は真空に保持されているため、被吸着体の加熱原因は、被吸着体に接触している静電チャックから熱が被吸着体に伝導される場合と、処理室内の高温ガスの対流による場合とがある。
したがって、逆に言えば、被吸着体と静電チャックとの接触や冷却ガスの対流によって、被吸着体を100°C以下に冷却することができるといえる。しかしながら、ウエハ等の被吸着体は撓みや反りがあるため、静電チャックとの接触面積が小さい。特に、静電チャックにセラミックを使用した場合には、このセラミックと被吸着体との有効接触面積が、被吸着体載置面の1パーセント以下になってしまうことが経験的に知られている。
したがって、数100ワット以上の電力が被吸着体で消費される高温条件下では、冷却ガスを用いて、被吸着体を冷却する方法が主流になっている。
静電チャックの冷却ガス用流路構造としては、通常、冷却ガス用のガス流路を、最下層の金属製の基板の表面に設けて、複数の通気孔を、基板上に形成された誘電体層に穿設し、この通気孔を基板のガス流路と連通させると共に、誘電体層の表面で開口させた構造を採る。かかる構造により、冷却ガスを10Torr〜30Torr内の圧力で基板のガス流路に流し、通気孔から被吸着体側に噴射して、被吸着体を下から冷却するようにしている。
しかしながら、高温プラズマの雰囲気下に置かれ且つ高周波電力が印加される静電チャックでは、通気孔やガス流路内でグロー放電やアーク放電が生じ、その対策が問題となる。特に、通気孔が垂直に延び、下の金属製の基板がこの通気孔を通じて外部に曝されている場合には、この金属製の基板と被吸着体と間で放電が生じる可能性が高い。
かかる放電は、パッシェンの法則によって、被吸着体と基板との距離を冷却ガスの圧力に乗算することで、予測することができる。しかし、圧力が10Torr〜30Torr内の冷却ガスを使用する限り、かかる放電の発生を防止することは不可能である。
そこで、放電防止機能を備えた各種の静電チャックが提案されている。
図15は、第1の従来例に係る静電チャックの概略断面図であり、図16は、第2の従来例に係る静電チャックの概略断面図であり、図17は、第3の従来例に係る静電チャックの概略断面図である。なお、これらの断面図では、吸着電極を省略してある。
When an electrostatic chuck is used in a semiconductor manufacturing apparatus such as a plasma CVD apparatus, a plasma etching apparatus, an ion implantation apparatus, an ion doping apparatus, or a plasma doping apparatus, it is necessary to hold and fix an object to be adsorbed such as a wafer at the same time. is there.
This is because, in plasma processing, high-energy ions collide with the object to be adsorbed, and a part of the high-frequency power for plasma generation is consumed by the object to be adsorbed, so Because it reaches.
The cooling temperature of the adsorbent is required to be kept at 100 ° C. or lower from the necessity of preventing dust from being generated from the organic resist material used for patterning on the adsorbent.
Since the processing chamber for processing the object to be adsorbed with plasma is maintained in a vacuum, the reason for heating the object to be adsorbed is that heat is conducted from the electrostatic chuck in contact with the object to be adsorbed to the object to be adsorbed. In some cases, convection of hot gas in the processing chamber may occur.
Therefore, conversely, it can be said that the object to be adsorbed can be cooled to 100 ° C. or less by contact between the object to be adsorbed and the electrostatic chuck or by convection of the cooling gas. However, since an object to be attracted such as a wafer is bent or warped, the contact area with the electrostatic chuck is small. In particular, when ceramic is used for the electrostatic chuck, it is empirically known that the effective contact area between the ceramic and the object to be adsorbed is 1% or less of the adsorbing object mounting surface. .
Therefore, under high temperature conditions where power of several hundred watts or more is consumed by the adsorbent, a method of cooling the adsorbent using a cooling gas has become the mainstream.
As a cooling gas flow path structure of an electrostatic chuck, a cooling gas flow path is usually provided on the surface of a lowermost metal substrate, and a plurality of ventilation holes are formed on the substrate. A structure is adopted in which the air holes are opened in the surface of the dielectric layer while being formed in the body layer so as to communicate with the gas flow path of the substrate. With this structure, the cooling gas is caused to flow through the gas flow path of the substrate at a pressure in the range of 10 Torr to 30 Torr, and is injected from the vent toward the adsorbent to cool the adsorbent from below.
However, in an electrostatic chuck that is placed in an atmosphere of high-temperature plasma and to which high-frequency power is applied, glow discharge and arc discharge are generated in the air holes and gas flow paths, and countermeasures against them are problematic. In particular, when the vent hole extends vertically and the lower metal substrate is exposed to the outside through the vent hole, there is a high possibility that a discharge will occur between the metal substrate and the adsorbent.
Such discharge can be predicted by multiplying the pressure of the cooling gas by the distance between the adsorbent and the substrate according to Paschen's law. However, as long as a cooling gas having a pressure of 10 Torr to 30 Torr is used, it is impossible to prevent such discharge.
Therefore, various electrostatic chucks having a discharge preventing function have been proposed.
15 is a schematic cross-sectional view of an electrostatic chuck according to a first conventional example, FIG. 16 is a schematic cross-sectional view of an electrostatic chuck according to a second conventional example, and FIG. 17 is a third conventional example. It is a schematic sectional drawing of the electrostatic chuck which concerns on an example. In these sectional views, the adsorption electrode is omitted.

図15に示すように、第1の従来例に係る静電チャック100は、誘電体層120に形成された通気孔121を基板110のガス流路111に連通させ、且つこの通気孔121を折り曲がった形状に形成している。
これにより、基板110が通気孔121の開口121aから見えない構造にして、基板110と二点鎖線で示す被吸着体Wとの間の放電を防止しようとするものである(例えば、特許文献1参照)。
また、図16に示すように、第2の従来例に係る静電チャック200は、基板210内のガス流路211が円柱状をなしており、セラミック製の筒状体212がこのガス流路211内に挿入され、ガス流路211の全内面が筒状体212によって覆われている。
これにより、絶縁体であるセラミック製の筒状体212が、通気孔221を有した誘電体層220上の被吸着体Wと基板210との間に介在し、この筒状体212が、被吸着体Wと基板200との間の放電を防止するものである(例えば、特許文献2参照)。
さらに、図17に示すように、第3の従来例に係る静電チャック300では、ガス流路311が基板310の表面にリング状に形成され、複数の孔312aを有するリング状のインサート312がこのガス流路311内に嵌められている。そして、セラミック製の多孔質体313が、このインサート312の孔312aに挿入されている。
これにより、絶縁体であるセラミック製の多孔質体313が、誘電体層320上の被吸着体Wと基板310との間に介在し、この多孔質体313が、被吸着体Wと基板310との間の放電を防止するものである(例えば、特許文献3参照)。
As shown in FIG. 15, the electrostatic chuck 100 according to the first conventional example communicates the vent hole 121 formed in the dielectric layer 120 to the gas flow path 111 of the substrate 110 and folds the vent hole 121. It is formed in a bent shape.
Accordingly, the substrate 110 is made invisible from the opening 121a of the vent hole 121 to prevent discharge between the substrate 110 and the adsorbed member W indicated by a two-dot chain line (for example, Patent Document 1). reference).
Further, as shown in FIG. 16, in the electrostatic chuck 200 according to the second conventional example, the gas flow path 211 in the substrate 210 has a cylindrical shape, and the ceramic tubular body 212 has this gas flow path. The entire inner surface of the gas flow path 211 is covered with the cylindrical body 212.
As a result, the ceramic cylindrical body 212 as an insulator is interposed between the substrate W and the adsorbed body W on the dielectric layer 220 having the air holes 221. This prevents discharge between the adsorbent W and the substrate 200 (see, for example, Patent Document 2).
Further, as shown in FIG. 17, in the electrostatic chuck 300 according to the third conventional example, the gas flow path 311 is formed in a ring shape on the surface of the substrate 310, and the ring-shaped insert 312 having a plurality of holes 312a is formed. The gas channel 311 is fitted. A ceramic porous body 313 is inserted into the hole 312 a of the insert 312.
Thereby, the ceramic porous body 313 as an insulator is interposed between the adherend W on the dielectric layer 320 and the substrate 310, and the porous body 313 is attached to the adherend W and the substrate 310. (See, for example, Patent Document 3).

特開2004−006505号公報JP 2004006505 A 特開2005−268654号公報JP 2005-268654 A 特開平10−050813号公報Japanese Patent Laid-Open No. 10-050813

しかし、上記した従来の静電チャックでは、次のような問題がある。
まず、図15に示した第1の従来例に係る静電チャック100では、基板110が通気孔の開口から見えない構造にしているものの、放電防止が十分でなく、通気孔の開口部分で異常放電を起こすおそれがあった。
これに対して、図16及び図17に示した第2及び第3の従来例に係る静電チャック200,300では、筒状体212や多孔質体313である絶縁体を、被吸着体Wと基板210,310のガス流路211,311との間に介在させているので、放電防止の点では十分にその効果を発揮する。
しかしながら、これら第2及び第3の従来例に係る静電チャック200,300では、以下のような問題がある。
However, the conventional electrostatic chuck described above has the following problems.
First, although the electrostatic chuck 100 according to the first conventional example shown in FIG. 15 has a structure in which the substrate 110 is not visible from the opening of the vent hole, the discharge prevention is not sufficient, and an abnormality occurs at the opening portion of the vent hole. There was a risk of discharge.
On the other hand, in the electrostatic chucks 200 and 300 according to the second and third conventional examples shown in FIGS. 16 and 17, the insulators such as the cylindrical body 212 and the porous body 313 are replaced with the object to be adsorbed W. And the gas flow paths 211 and 311 of the substrates 210 and 310, the effect is sufficiently exhibited in terms of preventing discharge.
However, the electrostatic chucks 200 and 300 according to the second and third conventional examples have the following problems.

図18は、第2の従来例に係る静電チャックの問題点を説明するための斜視図であり、図19は、第3の従来例に係る静電チャックの問題点を説明するための斜視図である。
近年、資源の節約や環境にやさしい半導体製造の実現が叫ばれており、静電チャックにおいても、その再利用による資源節約が重要な課題となっている。
すなわち、放電等で使用不能になって現場に放置されている多量の静電チャックを再利用して、資源節約等を図る必要がある。かかる再利用は、基板上の吸着電極や誘電体層を削り取って、新しい吸着電極や誘電体層を基板の上に再生することで行われる。
したがって、第2の従来例に静電チャック200では、図18に示すように、誘電体層220や図示しない吸着電極を基板210上から削り取って、新たな誘電体層220や吸着電極を基板210上に再生することで、基板210の再利用を図ることになる。
しかしながら、基板210の1つのガス流路211と誘電体層220の1つの通気孔221とが連通した構造であるので、誘電体層220や吸着電極の再生時に、各ガス流路211の位置と正確に一致するように、即ち、点と点とを一致させるが如くに、各通気孔221を誘電体層220に穿設しなければならず、その穿設作業は非常に難しい。
このため、静電チャック200を再利用する場合には、誘電体層220や吸着電極の再生時毎に、この通気孔221の高精度で困難な位置合わせ作業と穿設作業が強いられることとなるので、再生時間が長くなり、しかも作業能率が悪い。したがって、第2の従来例に係る静電チャック200では、構造的に再利用に適しておらず、再利用による資源節約という課題に応えることができる製品としての適格性に欠ける。
一方、第3の従来例に静電チャック300においても、図19に示すように、誘電体層320や吸着電極を基板310上から削り取ることで、基板310の再利用を図ることになる。
しかしながら、この静電チャック300も上記静電チャック200と同様に、インサート312の1つの孔312aと誘電体層320の1つの通気孔321とを連通させた構造であるので、誘電体層320等の再生時に、各通気孔321を、各孔312aの位置と正確に一致するように、誘電体層320に穿設しなければならない。
このため、上記静電チャック200と同様に、通気孔321の高精度な位置合わせ作業と穿設作業とが強いられることとなり、この第3の従来例に係る静電チャック200も、構造的に再利用に適しておらず、再利用による資源節約という課題に応えることができる製品としての適格性に欠ける。
FIG. 18 is a perspective view for explaining the problems of the electrostatic chuck according to the second conventional example, and FIG. 19 is a perspective view for explaining the problems of the electrostatic chuck according to the third conventional example. FIG.
In recent years, there has been a call for resource saving and the realization of environmentally friendly semiconductor manufacturing, and resource saving through reuse of electrostatic chucks has become an important issue.
That is, it is necessary to save resources by reusing a large quantity of electrostatic chucks that have become unusable due to discharge or the like and are left on site. Such reuse is performed by scraping off the adsorption electrode or dielectric layer on the substrate and regenerating a new adsorption electrode or dielectric layer on the substrate.
Accordingly, in the electrostatic chuck 200 of the second conventional example, as shown in FIG. 18, the dielectric layer 220 and the attracting electrode (not shown) are scraped off from the substrate 210, and the new dielectric layer 220 and the attracting electrode are replaced with the substrate 210. By recycling the substrate upward, the substrate 210 can be reused.
However, since one gas flow path 211 of the substrate 210 and one vent hole 221 of the dielectric layer 220 are in communication with each other, the position of each gas flow path 211 is determined when the dielectric layer 220 or the adsorption electrode is regenerated. Each vent hole 221 must be drilled in the dielectric layer 220 so as to match exactly, that is, to match the points, and the drilling operation is very difficult.
For this reason, when the electrostatic chuck 200 is reused, a highly accurate and difficult alignment operation and drilling operation of the air holes 221 are forced every time the dielectric layer 220 and the suction electrode are regenerated. As a result, the reproduction time becomes longer and the work efficiency is poor. Therefore, the electrostatic chuck 200 according to the second conventional example is structurally unsuitable for reuse and lacks qualification as a product that can meet the problem of resource saving by reuse.
On the other hand, also in the electrostatic chuck 300 in the third conventional example, the substrate 310 can be reused by scraping the dielectric layer 320 and the attracting electrode from the substrate 310 as shown in FIG.
However, since the electrostatic chuck 300 has a structure in which one hole 312a of the insert 312 and one ventilation hole 321 of the dielectric layer 320 are communicated with each other, like the electrostatic chuck 200, the dielectric layer 320 and the like. At the time of reproduction, each of the vent holes 321 must be drilled in the dielectric layer 320 so as to exactly coincide with the position of each hole 312a.
For this reason, as with the electrostatic chuck 200 described above, a highly accurate positioning operation and drilling operation of the vent holes 321 are forced, and the electrostatic chuck 200 according to the third conventional example is also structurally It is not suitable for reuse and lacks eligibility as a product that can meet the problem of resource saving through reuse.

この発明は、上述した課題を解決するためになされたもので、誘電体層や基板で生じる異常放電を防止することができるだけでなく、再利用に適した構造の静電チャックを提供することを目的とする。   The present invention has been made to solve the above-described problems, and can provide an electrostatic chuck having a structure suitable not only for reuse but also for preventing abnormal discharge generated in a dielectric layer or a substrate. Objective.

上記課題を解決するために、請求項1の発明は、リング状,湾曲状又は直線状のガス流路が表面に凹設された基板と、ガス流路を気密に覆うように基板の表面に形成され且つ下部開口が当該ガス流路内に位置し上部開口が表面に位置する通気孔を有した誘電体層と、この誘電体層内に形成された吸着電極とを備える静電チャックであって、平面視において、ガス流路と同形同幅の支持部材を、当該ガス流路内に嵌め、平面視において支持部材の形状と対応した形状の帯体であり且つ通気孔の直径よりも幅広の上面を有する多孔質の絶縁体を、支持部材によって、当該絶縁体の上面が露出した状態で通気孔の下部開口に当接するように且つ当該絶縁体の下部の少なくとも一部が当該ガス流路内に露出するように支持し、且つ、支持部材を、平面視においてガス流路と同形同幅の天壁部と、この天壁部の下側に天壁部の長さ方向に沿って設けられ且つ当該ガス流路の底面迄垂下して当該天壁部をガス流路内で支持する立壁部とで構成し、天壁部の上面に、上方に開口する所定深さの長溝を当該天壁部の全長に亘って設けると共に、当該長溝と連通し且つガス流路内で開口する複数の開口溝を当該天壁部の下面に所定間隔で設け、絶縁体を長溝内に充填して、当該絶縁体の上面を露出させると共に当該絶縁体の下部を複数の開口溝を通じてガス流路側に露出させた構成とする。
かかる構成により、被吸着体を誘電体層の表面に載置し、電圧を吸着電極に印加することで、誘電体層と被吸着体との間の静電気力により、被吸着体が誘電体層の表面に吸着固定される。かかる状態で、冷却ガスをガス流路に通すと、この冷却ガスが、支持部材で支持された絶縁体の露出された下部から多孔質の絶縁体内に入り込み、その上面及び下部開口から誘電体層の通気孔内に流入する。そして、冷却ガスは通気孔を通じて上部開口から外部に流出され、被吸着体がこの冷却ガスによって下側から冷却される。また、プラズマ雰囲気下では、プラズマを発生させるための高周波電圧が被吸着体と基板との間に印加され、異常放電が発生するおそれがある。しかし、この発明の静電チャックは、絶縁体の上面が通気孔の下部開口に当接し、絶縁体が、電圧が印加される被吸着体と基板との間に介在した構成となっているので、この絶縁体によって、異常放電が阻止される。
また、長時間の使用の結果、静電チャックが使用不能になった場合には、誘電体層と吸着電極とを基板から削り取って、基板を再利用することができる。具体的には、誘電体層を基板上に形成すると共に吸着電極を誘電体層内に形成し、通気孔を誘電体層に穿設し、基板の絶縁体を介してガス流路と連通させる作業を行う。この際、絶縁体が帯体であるので、各通気孔をこの帯体上に位置合わせすることは、容易である。しかも、絶縁体が通気孔の直径よりも幅広の上面を有するので、通気孔の位置が絶縁体の幅方向に多少ずれても、通気孔が絶縁体の上面に位置する。すなわち、通気孔を絶縁体に位置合わせすることは、点を面上に位置させるとほぼ同様であるので、通気孔を極めて容易に絶縁体上に位置合わせすることができる。このように、通気孔と絶縁体との位置合わせを行うと、通気孔の下部開口が、支持部材で支持された絶縁体の上面に当接し、通気孔が絶縁体を介してガス流路と連通する。このようにして、誘電体層及び吸着電極を容易に基板上に再生することができる。
具体的には、ガス流路内の冷却ガスが、天壁部下面の開口溝から絶縁体の下部に至り、当該下部から絶縁体内に流入して、天壁部の長溝内で上方に開口する絶縁体上面から誘電体層の通気孔内に流出する。そして、冷却ガスは、通気孔の上部開口から外部に流出される。そして、誘電体層を基板上に形成する際には、通気孔を天壁部側の開口から露出された絶縁体の上面に位置合わせするだけで、絶縁体に対する通気孔の正確な位置合わせを行うことができる。
In order to solve the above-mentioned problems, the invention of claim 1 is directed to a substrate having a ring-shaped, curved or straight gas flow path recessed on the surface, and a surface of the substrate so as to airtightly cover the gas flow path. An electrostatic chuck comprising a dielectric layer having a vent hole formed and having a lower opening located in the gas flow path and an upper opening located on the surface, and an adsorption electrode formed in the dielectric layer. In plan view, a support member having the same shape and width as the gas flow path is fitted into the gas flow path, and is a band having a shape corresponding to the shape of the support member in plan view, and is larger than the diameter of the vent hole. A porous insulator having a wide upper surface is brought into contact with the lower opening of the vent hole with the support member in a state where the upper surface of the insulator is exposed, and at least a part of the lower portion of the insulator is in contact with the gas flow. supported so as to be exposed in the road, and the support member, the plane A top wall portion having the same shape and width as the gas flow path, and a ceiling wall section provided below the top wall section along the length direction of the top wall section and hanging down to the bottom surface of the gas flow path And a long groove having a predetermined depth that opens upward on the upper surface of the top wall portion over the entire length of the top wall portion, and communicates with the long groove. A plurality of opening grooves that open in the gas flow path are provided at predetermined intervals on the lower surface of the top wall portion, and an insulator is filled into the long groove to expose the upper surface of the insulator, and a plurality of lower portions of the insulator are provided. It is set as the structure exposed to the gas flow path side through this opening groove | channel.
With this configuration, the object to be adsorbed is placed on the surface of the dielectric layer, and a voltage is applied to the adsorption electrode so that the object to be adsorbed is caused by the electrostatic force between the dielectric layer and the object to be adsorbed. Adsorbed and fixed to the surface. In this state, when the cooling gas is passed through the gas flow path, the cooling gas enters the porous insulator from the exposed lower portion of the insulator supported by the support member, and the dielectric layer from the upper surface and the lower opening. Flows into the air vent. Then, the cooling gas flows out from the upper opening through the vent hole, and the adsorbent is cooled from the lower side by the cooling gas. In a plasma atmosphere, a high-frequency voltage for generating plasma is applied between the adsorbent and the substrate, and abnormal discharge may occur. However, the electrostatic chuck of the present invention has a configuration in which the upper surface of the insulator is in contact with the lower opening of the vent hole, and the insulator is interposed between the attracted member to which a voltage is applied and the substrate. This insulator prevents abnormal discharge.
Further, when the electrostatic chuck becomes unusable as a result of long-term use, the substrate can be reused by scraping the dielectric layer and the attracting electrode from the substrate. Specifically, the dielectric layer is formed on the substrate, the adsorption electrode is formed in the dielectric layer, the air holes are formed in the dielectric layer, and communicated with the gas flow path through the insulator of the substrate. Do work. At this time, since the insulator is a band, it is easy to align the air holes on the band. Moreover, since the insulator has an upper surface that is wider than the diameter of the vent hole, the vent hole is positioned on the upper surface of the insulator even if the position of the vent hole is slightly shifted in the width direction of the insulator. That is, aligning the air hole with the insulator is substantially the same as placing the point on the surface, so that the air hole can be aligned with the insulator very easily. As described above, when the vent hole and the insulator are aligned, the lower opening of the vent hole comes into contact with the upper surface of the insulator supported by the support member, and the vent hole is connected to the gas flow path via the insulator. Communicate. In this way, the dielectric layer and the adsorption electrode can be easily reproduced on the substrate.
Specifically, the cooling gas in the gas flow path reaches the lower part of the insulator from the opening groove on the lower surface of the top wall part, flows into the insulator from the lower part, and opens upward in the long groove of the top wall part. It flows out from the upper surface of the insulator into the ventilation hole of the dielectric layer. Then, the cooling gas flows out from the upper opening of the vent hole. When the dielectric layer is formed on the substrate, the vent hole is aligned with the upper surface of the insulator exposed from the opening on the top wall side, so that the vent hole is accurately aligned with the insulator. It can be carried out.

請求項2の発明は、請求項1に記載の静電チャックにおいて、多孔質の絶縁体は、多孔質のセラミックスである構成とした。
かかる構成により、ガス流路内の冷却ガスが多孔質のセラミックスを通じて誘電体層の通気孔内に流入し、通気孔の上部開口から外部に流出される。また、セラミックスがより高い異常放電防止効果を発揮する。
According to a second aspect of the present invention, in the electrostatic chuck according to the first aspect, the porous insulator is a porous ceramic.
With this configuration, the cooling gas in the gas flow channel flows into the ventilation hole of the dielectric layer through the porous ceramics, and flows out from the upper opening of the ventilation hole. Moreover, the ceramic exhibits a higher effect of preventing abnormal discharge.

以上詳しく説明したように、この発明の静電チャックによれば、異常放電を防止することができるだけでなく、誘電体層や吸着電極を基板上に形成する際に、通気孔の絶縁体に対する位置合わせを容易に行うことができるので、誘電体層や吸着電極の再生時間が短く、しかも作業能率が非常に良い。すなわち、この発明の静電チャックは、構造的に再利用に適しており、再利用による資源節約という課題に応えることができる製品としての適格性を有している。   As described above in detail, according to the electrostatic chuck of the present invention, not only can abnormal discharge be prevented, but also when the dielectric layer and the suction electrode are formed on the substrate, the position of the vent hole relative to the insulator is not limited. Since the alignment can be easily performed, the regeneration time of the dielectric layer and the adsorption electrode is short, and the work efficiency is very good. In other words, the electrostatic chuck of the present invention is structurally suitable for reuse, and has an eligibility as a product that can meet the problem of resource saving through reuse.

特に、請求項2の発明によれば、より高い異常放電防止効果を期待することができる。   In particular, according to the invention of claim 2, a higher effect of preventing abnormal discharge can be expected.

この発明の一実施例に係る静電チャックを示す分解斜視図である。1 is an exploded perspective view showing an electrostatic chuck according to an embodiment of the present invention. 図1の静電チャックの外観図である。It is an external view of the electrostatic chuck of FIG. 図2の矢視A−A断面図である。It is arrow AA sectional drawing of FIG. 基板と支持部材とを示す平面図である。It is a top view which shows a board | substrate and a supporting member. 図4の矢視B−B断面図である。It is arrow BB sectional drawing of FIG. 図4の矢視C−C断面図である。FIG. 5 is a cross-sectional view taken along the line CC in FIG. 4. 支持部材の一部を破断して示す部分拡大斜視図である。It is a partial expansion perspective view which fractures | ruptures and shows a part of support member. 図4の矢視D−D展開図である。FIG. 5 is a development view taken along the line DD in FIG. 4. 吸着電極を示す平面図である。It is a top view which shows an adsorption electrode. 誘電体層を示す平面図である。It is a top view which shows a dielectric material layer. 静電チャックの吸着作用を説明するための概略図である。It is the schematic for demonstrating the adsorption | suction effect | action of an electrostatic chuck. 静電チャックの冷却作用と異常放電防止作用とを説明するための部分拡大断面図である。It is a partial expanded sectional view for demonstrating the cooling effect | action and abnormal discharge prevention effect | action of an electrostatic chuck. 通気孔の位置決め方法を説明するための部分平面図である。It is a fragmentary top view for demonstrating the positioning method of a ventilation hole. 支持部材と絶縁体の組合せ構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the combined structure of a supporting member and an insulator. 第1の従来例に係る静電チャックの概略断面図である。It is a schematic sectional drawing of the electrostatic chuck which concerns on a 1st prior art example. 第2の従来例に係る静電チャックの概略断面図である。It is a schematic sectional drawing of the electrostatic chuck which concerns on a 2nd prior art example. 第3の従来例に係る静電チャックの概略断面図である。It is a schematic sectional drawing of the electrostatic chuck which concerns on a 3rd prior art example. 第2の従来例に係る静電チャックの問題点を説明するための斜視図である。It is a perspective view for demonstrating the problem of the electrostatic chuck which concerns on a 2nd prior art example. 第3の従来例に係る静電チャックの問題点を説明するための斜視図である。It is a perspective view for demonstrating the problem of the electrostatic chuck which concerns on a 3rd prior art example.

以下、この発明の最良の形態について図面を参照して説明する。
(実施例1)
The best mode of the present invention will be described below with reference to the drawings.
Example 1

図1は、この発明の一実施例に係る静電チャックを示す分解斜視図であり、図2は、図1の静電チャックの外観図であり、図3は、図2の矢視A−A断面図である。
図1に示すように、この実施例の静電チャック1は、200mmウエハ用の静電チャックであり、基板2と吸着電極3と誘電体層4とを備えている。
1 is an exploded perspective view showing an electrostatic chuck according to one embodiment of the present invention, FIG. 2 is an external view of the electrostatic chuck of FIG. 1, and FIG. It is A sectional drawing.
As shown in FIG. 1, the electrostatic chuck 1 of this embodiment is an electrostatic chuck for a 200 mm wafer, and includes a substrate 2, an adsorption electrode 3, and a dielectric layer 4.

図1において最下に位置する基板2は、アルミニュウムで形成された円板体であり、この実施例では、基板2の直径を200mm、その厚さを10mmに設定した。
かかる基板2の表面には、リング状のガス流路21,22が凹設されている。この実施例では、これらガス流路21,22の幅と深さとをそれぞれ、5mm,3.5mmに設定した。そして、外側のガス流路21を、基板2の外縁から20mmの位置に配し、内側のガス流路22を、基板2の中心から20mmの位置に配した。
このようなガス流路21,22内には、絶縁体6を支持した支持部材5−1,5−2が嵌められている。
なお、冷却ガスは、図示しない供給口からガス流路21,22内に供給されるようになっており、また、基板2の内部には、基板2を冷却するための冷却水を流す図示しない通路が設けられている。
The substrate 2 located at the bottom in FIG. 1 is a disc body made of aluminum. In this embodiment, the substrate 2 has a diameter of 200 mm and a thickness of 10 mm.
On the surface of the substrate 2, ring-shaped gas flow paths 21 and 22 are recessed. In this embodiment, the width and depth of the gas flow paths 21 and 22 are set to 5 mm and 3.5 mm, respectively. The outer gas flow path 21 was disposed at a position 20 mm from the outer edge of the substrate 2, and the inner gas flow path 22 was disposed at a position 20 mm from the center of the substrate 2.
Support members 5-1 and 5-2 that support the insulator 6 are fitted in the gas flow paths 21 and 22, respectively.
The cooling gas is supplied into the gas flow paths 21 and 22 from a supply port (not shown), and cooling water for cooling the substrate 2 is flown into the substrate 2 (not shown). A passage is provided.

図4は、基板2と支持部材5−1,5−2とを示す平面図であり、図5は、図4の矢視B−B断面図であり、図6は、図4の矢視C−C断面図であり、図7は、支持部材5−1,5−2の一部を破断して示す部分拡大斜視図であり、図8は、図4の矢視D−D展開図である。
図4及び図5に示すように、支持部材5−1(5−2)は、アルミニュウムで形成されており、ガス流路21(22)と同形同幅の天壁部50と、この天壁部50の下側に設けられた立壁部51とで成り、その断面は、T字状を成す。
具体的には、図5に示すように、天壁部50が、ガス流路21(22)の上開口に位置している。そして、立壁部51が、天壁部50の下側からガス流路21(22)の底面21a(22a)迄垂下し、天壁部50をガス流路21(22)内で支持している。これにより、立壁部51がガス流路21(22)を立壁部51の両側に分断している。このような立壁部51は、図7及び図8に示すように、天壁部50の長さ方向全長に亘って設けられられている。そして、立壁部51の所定箇所に、切り欠き部51aが設けられ、立壁部51で分断されたガス流路21(22)内がこの切り欠き部51aで連通されている。これにより、冷却ガスがガス流路21(22)の一方側から他方側に流れ込むようになっている。この実施例では、天壁部50,立壁部51の厚さを約1mmに設定した。
4 is a plan view showing the substrate 2 and the support members 5-1 and 5-2, FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, and FIG. 6 is a view taken in the direction of the arrow in FIG. FIG. 7 is a partially enlarged perspective view in which a part of the support members 5-1 and 5-2 is cut away, and FIG. 8 is a development view taken along the line DD in FIG. It is.
As shown in FIGS. 4 and 5, the support member 5-1 (5-2) is made of aluminum, and has a ceiling wall 50 having the same shape and width as the gas flow path 21 (22). It consists of the standing wall part 51 provided in the lower side of the wall part 50, and the cross section comprises T shape.
Specifically, as shown in FIG. 5, the top wall 50 is located in the upper opening of the gas flow path 21 (22). And the standing wall part 51 hangs down from the lower side of the top wall part 50 to the bottom face 21a (22a) of the gas flow path 21 (22), and supports the top wall part 50 in the gas flow path 21 (22). . Thereby, the standing wall 51 divides the gas flow path 21 (22) on both sides of the standing wall 51. As shown in FIGS. 7 and 8, the standing wall portion 51 is provided over the entire length of the top wall portion 50 in the length direction. And the notch part 51a is provided in the predetermined location of the standing wall part 51, and the inside of the gas flow path 21 (22) divided by the standing wall part 51 is connected by this notch part 51a. Thereby, cooling gas flows into the other side from the one side of the gas flow path 21 (22). In this embodiment, the thickness of the top wall portion 50 and the standing wall portion 51 is set to about 1 mm.

このような天壁部50の上面には、上方に開口した長溝8が設けられている。この長溝8は、図4及び図5に示すように、天壁部50の中央部に配された状態で、天壁部50の全長に亘って形成されている。この実施例では、長溝8の幅d1及び深さd2をそれぞれ0.8mm及び0.5mmに設定した。
そして、天壁部50の下面には、図6に示すように、開口溝81が設けられている。この開口溝81は、長溝8と連通し且つガス流路21(22)内に向かって開口した半径約1mmの半円溝である。このような開口溝81は、図4の破線で示すように、支持部材5−1(5−2)の天壁部50の下側に複数設けられ、例えば1cm間隔で配されている。
A long groove 8 opened upward is provided on the top surface of the top wall 50. As shown in FIGS. 4 and 5, the long groove 8 is formed over the entire length of the top wall 50 in a state of being arranged at the center of the top wall 50. In this example, the width d1 and the depth d2 of the long groove 8 were set to 0.8 mm and 0.5 mm, respectively.
An opening groove 81 is provided on the lower surface of the top wall portion 50 as shown in FIG. The opening groove 81 is a semicircular groove having a radius of about 1 mm that communicates with the long groove 8 and opens into the gas flow path 21 (22). As shown by the broken line in FIG. 4, a plurality of such opening grooves 81 are provided below the top wall portion 50 of the support member 5-1 (5-2), and are arranged at intervals of 1 cm, for example.

図6に示すように、絶縁体6は、多孔質のセラミックスであり、支持部材5−1(5−2)の長溝8内に充填されている。これにより、絶縁体6の上面61が上方に露出すると共に、絶縁体6の下部62が、各開口溝81を通じてガス流路21(22)内に向かって露出している。
絶縁体6の長溝8内への充填は、セラミックス粒子の溶射や多孔質セラミックスの切り出しによって行うことができるが、この実施例では、溶射を用いた。
具体的には、純度99.9%以上のアルミナ粒子を、図示しない溶射ガンを用いて、天壁部50の上方から長溝8内に向かって溶射した。溶射は、2段階で行った。第1段階では、粒子の粗いアルミナを用い、長溝8の所定深さまで溶射して、絶縁体6のおおよその厚みを確保した。そして、第2段階では、粒子の細かいアルミナを、長溝8内のアルミナ層の上から、例えば10μm〜50μmの厚さまで溶射した。このようにして、長溝8内の絶縁体6の気孔率を、下層で高く(10%〜30%)、上層で低くした(10%以下)。
As shown in FIG. 6, the insulator 6 is a porous ceramic and is filled in the long groove 8 of the support member 5-1 (5-2). As a result, the upper surface 61 of the insulator 6 is exposed upward, and the lower portion 62 of the insulator 6 is exposed toward the gas flow path 21 (22) through each opening groove 81.
The filling of the insulator 6 into the long groove 8 can be performed by thermal spraying of ceramic particles or cutting of porous ceramics. In this embodiment, thermal spraying was used.
Specifically, alumina particles having a purity of 99.9% or higher were sprayed from above the top wall portion 50 into the long groove 8 using a spray gun (not shown). Thermal spraying was performed in two stages. In the first stage, coarse-grained alumina was used and sprayed to a predetermined depth of the long groove 8 to ensure an approximate thickness of the insulator 6. In the second stage, fine-grained alumina was sprayed from above the alumina layer in the long groove 8 to a thickness of, for example, 10 μm to 50 μm. Thus, the porosity of the insulator 6 in the long groove 8 was high in the lower layer (10% to 30%) and low in the upper layer (10% or less).

図1に示す吸着電極3は、誘電体層4に電荷を誘起させるための電極で、吸着電極3の内部に形成された導体パターンである。この実施例では、タングステン,タンタル及びモリブデン等のように耐熱性及び耐食性が高い金属を溶射し、又はペースト状のかかる金属を露光現像してパターニングすることで、吸着電極3を形成した。そして、この実施例では、吸着電極3の厚さを、5μm〜40μmに設定した。
図9は、吸着電極3を示す平面図である。
図9に示すように、この実施例の吸着電極3は、双極型吸着電極である。すなわち、同心円状の第1極吸着電極パターン31を、同じく同心円状の第2極吸着電極パターン32と交互に配置することで、吸着電極3を構成した。そして、直流電源400とスイッチ401とを第1及び第2極吸着電極パターン31,32のそれぞれに接続した。また、第1及び第2極吸着電極パターン31,32の間隙d3を、絶縁体6の上面61の幅d1よりもよりも大きく設定して、上記絶縁体6の上面61がこの間隙d3内に含まれるようにした。
The adsorption electrode 3 shown in FIG. 1 is an electrode for inducing charge in the dielectric layer 4 and is a conductor pattern formed inside the adsorption electrode 3. In this example, the adsorption electrode 3 was formed by spraying a metal having high heat resistance and corrosion resistance such as tungsten, tantalum, and molybdenum, or by patterning the paste-like metal by exposure and development. In this example, the thickness of the adsorption electrode 3 was set to 5 μm to 40 μm.
FIG. 9 is a plan view showing the adsorption electrode 3.
As shown in FIG. 9, the adsorption electrode 3 of this embodiment is a bipolar adsorption electrode. That is, the adsorption electrode 3 was configured by alternately arranging the concentric first electrode adsorption electrode patterns 31 and the second concentric second electrode adsorption electrode patterns 32. The DC power supply 400 and the switch 401 were connected to the first and second electrode attracting electrode patterns 31 and 32, respectively. Further, the gap d3 between the first and second electrode attracting electrode patterns 31, 32 is set to be larger than the width d1 of the upper surface 61 of the insulator 6, and the upper surface 61 of the insulator 6 is placed in the gap d3. Included.

図1に示す誘電体層4は、セラミックスを基板2上に溶射して形成した層であり、図3に示すように、吸着電極3を覆うように基板2上に形成されている。具体的には、誘電体層4は、純度99.9%以上のアルミナであり、吸着電極3より下側の層厚と上側の層厚とが共に300μmに設定されている。但し、これらの層厚は150μm〜500μmの範囲内で設定可能であり、仕様条件によって調整する。このような誘電体層4は、図2に示すように、ガス流路21,22を有した基板2全体を気密に覆っており、複数の孔状の通気孔41が、この誘電体層4に穿設されている。   The dielectric layer 4 shown in FIG. 1 is a layer formed by thermal spraying ceramics on the substrate 2, and is formed on the substrate 2 so as to cover the adsorption electrode 3 as shown in FIG. 3. Specifically, the dielectric layer 4 is alumina having a purity of 99.9% or more, and both the lower layer thickness and the upper layer thickness of the adsorption electrode 3 are set to 300 μm. However, these layer thicknesses can be set within a range of 150 μm to 500 μm, and are adjusted according to the specification conditions. As shown in FIG. 2, such a dielectric layer 4 hermetically covers the entire substrate 2 having the gas flow paths 21 and 22, and a plurality of hole-shaped ventilation holes 41 are formed in the dielectric layer 4. Has been drilled.

図10は、誘電体層4を示す平面図である。
図10に示すように、複数の通気孔41は、超音波加工によって、二点鎖線で示す絶縁体6の上面61に一致するように穿設されている。すなわち、図5に示すように、下部開口41aが絶縁体6の露出した上面61に当接し、上部開口41bが誘電体層4の表面4aに位置した状態になるように、各通気孔41が誘電体層4に穿設されている。この実施例では、通気孔41の直径d4を0.2mmに設定し、0.8mm幅d1の上面61が通気孔41の直径d4に対して十分に広くなるように設定してある。
FIG. 10 is a plan view showing the dielectric layer 4.
As shown in FIG. 10, the plurality of vent holes 41 are formed by ultrasonic processing so as to coincide with the upper surface 61 of the insulator 6 indicated by a two-dot chain line. That is, as shown in FIG. 5, each air hole 41 is formed such that the lower opening 41 a contacts the exposed upper surface 61 of the insulator 6 and the upper opening 41 b is positioned on the surface 4 a of the dielectric layer 4. The dielectric layer 4 is perforated. In this embodiment, the diameter d4 of the vent hole 41 is set to 0.2 mm, and the upper surface 61 having a width of 0.8 mm d1 is set to be sufficiently wider than the diameter d4 of the vent hole 41.

次に、この実施例の静電チャック1が示す作用及び効果について説明する。
図11は、静電チャック1の吸着作用を説明するための概略図であり、図12は、静電チャック1の冷却作用と異常放電防止作用とを説明するための部分拡大断面図である。
図11に示すように、被吸着体であるウエハWを誘電体層4の上に載置すると、ウエハWが表面4aに接触した状態になる。かかる状態で、スイッチ401を閉じて、直流電源400を吸着電極3の第1及び第2極吸着電極パターン31,32に印加すると、正電荷が、吸着電極3の第1極吸着電極パターン31の真上に集まり、負電荷が、第2極吸着電極パターン32の真上に集まった状態になる。これらの電荷とウエハWに誘起された電荷との静電気力によって、ウエハWが誘電体層4の表面4aに吸着され、固定される。
Next, operations and effects of the electrostatic chuck 1 of this embodiment will be described.
FIG. 11 is a schematic view for explaining the attracting action of the electrostatic chuck 1, and FIG. 12 is a partially enlarged sectional view for explaining the cooling action and the abnormal discharge preventing action of the electrostatic chuck 1.
As shown in FIG. 11, when the wafer W, which is an object to be adsorbed, is placed on the dielectric layer 4, the wafer W comes into contact with the surface 4a. In this state, when the switch 401 is closed and the DC power source 400 is applied to the first and second electrode adsorption electrode patterns 31 and 32 of the adsorption electrode 3, the positive charge is applied to the first electrode adsorption electrode pattern 31 of the adsorption electrode 3. As a result, the negative charges are collected right above the second electrode adsorption electrode pattern 32. The wafer W is attracted to the surface 4a of the dielectric layer 4 and fixed by the electrostatic force of these charges and the charge induced on the wafer W.

かかる状態で、図12に示すように、冷却ガスGをガス流路21(22)に通すと、冷却ガスGが、開口溝81から下部62を通じてから多孔質の絶縁体6内に入り込む。また、支持部材5−1(5−2)の立壁部51で分断された図左側のガス流路21c(22c)内の冷却ガスGは、破線で示す切り欠き部51a(詳しくは図7及び図8参照)を通って、図右側のガス流路21b(22b)内に入り込み、ガス流路21b(22b)内で露出した下部62から絶縁体6内に入り込む。このように、冷却ガスGが切り欠き部51aを通じてガス流路21(22)内を効率よく流れるので、冷却ガスGのコンダクタンスが高い。
上記のように絶縁体6内に入り込んだ冷却ガスGは、絶縁体6内を上昇し、上面61に当接した下部開口41aから通気孔41内に流入する。しかる後、冷却ガスGは通気孔41の上部開口41bから外部に流出され、ウエハWを下側から冷却する。
In this state, as shown in FIG. 12, when the cooling gas G is passed through the gas flow path 21 (22), the cooling gas G enters the porous insulator 6 from the opening groove 81 through the lower portion 62. Further, the cooling gas G in the gas channel 21c (22c) on the left side of the drawing divided by the standing wall portion 51 of the support member 5-1 (5-2) is notched 51a (see FIG. 7 and FIG. 7 for details). 8) and enters the gas channel 21b (22b) on the right side of the figure, and enters the insulator 6 from the lower part 62 exposed in the gas channel 21b (22b). In this way, the cooling gas G efficiently flows through the gas flow path 21 (22) through the notch 51a, so that the conductance of the cooling gas G is high.
The cooling gas G that has entered the insulator 6 as described above rises in the insulator 6 and flows into the vent hole 41 from the lower opening 41 a that is in contact with the upper surface 61. Thereafter, the cooling gas G flows out from the upper opening 41b of the vent hole 41 to cool the wafer W from below.

また、静電チャック1をプラズマ雰囲気下に置くと、プラズマを発生させるための高周波電圧が、ガス流路21(22)のアルミニュウム製の底面21a(22a)とウエハWとの間に印加され、異常放電が発生するおそれがある。
しかし、この実施例の静電チャック1では、上面61が通気孔41の下部開口41aに当接して塞いだ状態で、絶縁体6が、ウエハWとガス流路21(22)との間に介在しているので、アルミナ製の絶縁体6の絶縁効果により、異常放電が阻止される。
When the electrostatic chuck 1 is placed in a plasma atmosphere, a high frequency voltage for generating plasma is applied between the aluminum bottom surface 21a (22a) of the gas flow path 21 (22) and the wafer W, Abnormal discharge may occur.
However, in the electrostatic chuck 1 of this embodiment, the insulator 6 is interposed between the wafer W and the gas flow path 21 (22) in a state where the upper surface 61 is in contact with and closed by the lower opening 41a of the vent hole 41. Since it is interposed, abnormal discharge is prevented by the insulating effect of the insulator 6 made of alumina.

また、この実施例の静電チャック1を再利用する場合には、まず、図1に示す吸着電極3と誘電体層4とを基板2から削り取って、誘電体層4を基板2上に形成すると共に吸着電極3を誘電体層4内に形成する。そして、複数の通気孔41を誘電体層4に穿設し、通気孔41を基板2の支持部材5−1(5−2)に支持された絶縁体6を介してガス流路21(22)と連通させる作業を行う。   When the electrostatic chuck 1 of this embodiment is reused, first, the attracting electrode 3 and the dielectric layer 4 shown in FIG. 1 are scraped from the substrate 2 to form the dielectric layer 4 on the substrate 2. At the same time, the adsorption electrode 3 is formed in the dielectric layer 4. A plurality of vent holes 41 are formed in the dielectric layer 4, and the gas flow paths 21 (22) are formed through the insulator 6 supported by the support members 5-1 (5-2) of the substrate 2. ) To communicate.

図13は、通気孔41の位置決め方法を説明するための部分平面図である。
上記第2及び第3の従来例の静電チャックでは、図13の(a)に示すように、通気孔41の穿設位置Pを、平面視小円形のガス流路211や多孔質体313の位置に合わせ、この位置に通気孔41を穿設する必要がある。すなわち、穿設位置Pのr方向とθ方向とを正確に決めてから穿設する必要あり、ほぼ点を点上に位置合わせするような困難な作業になる。
これに対して、この実施例の静電チャック1では、図13の(b)に示すように、通気孔41の穿設位置Pを、帯状の上面61上のいずれかの位置に合わせて、その位置に通気孔41を穿設すればよい。すなわち、穿設位置Pのr方向のみを正確に決めて穿設すれば、通気孔41が絶縁体6の上面61上に穿設される。しかも、上面61の幅d1が通気孔41の直径d4よりも大きく設定されているので、穿設位置Pがr方向に多少ずれても、通気孔41を上面61上に確実に穿設することができる。したがって、この実施例の静電チャック1では、点を面上に位置合わせするような極めて容易な作業で、通気孔41の穿設作業を達成することができる。
このように、通気孔41を絶縁体6の上面61上に位置合わせを行うことで、通気孔41の下部開口41aが、上面61に一致し、通気孔41が絶縁体6を介してガス流路21(22)に連通する。これで、誘電体層4と吸着電極3とが基板2上に形成され、静電チャック1の再利用が可能となる。
FIG. 13 is a partial plan view for explaining a method of positioning the vent hole 41.
In the electrostatic chucks of the second and third conventional examples, as shown in FIG. 13A, the position P of the vent hole 41 is set to a gas channel 211 or a porous body 313 having a small circular shape in plan view. It is necessary to make a vent hole 41 at this position. That is, it is necessary to accurately determine the r direction and the θ direction of the drilling position P, which is a difficult task such that the points are substantially aligned on the points.
On the other hand, in the electrostatic chuck 1 of this embodiment, as shown in FIG. 13 (b), the drilling position P of the vent hole 41 is adjusted to any position on the belt-like upper surface 61, What is necessary is just to drill the ventilation hole 41 in the position. That is, if only the r direction of the drilling position P is accurately determined and drilled, the vent hole 41 is drilled on the upper surface 61 of the insulator 6. Moreover, since the width d1 of the upper surface 61 is set to be larger than the diameter d4 of the vent hole 41, the vent hole 41 can be reliably drilled on the upper surface 61 even if the drilling position P is slightly shifted in the r direction. Can do. Therefore, in the electrostatic chuck 1 of this embodiment, the drilling operation of the vent hole 41 can be achieved by an extremely easy operation of aligning the points on the surface.
Thus, by aligning the vent hole 41 on the upper surface 61 of the insulator 6, the lower opening 41 a of the vent hole 41 coincides with the upper surface 61, and the vent hole 41 flows through the insulator 6 through the gas flow. It communicates with the road 21 (22). Thus, the dielectric layer 4 and the attracting electrode 3 are formed on the substrate 2, and the electrostatic chuck 1 can be reused.

以上のように、この実施例の静電チャック1によれば、異常放電を防止することができるだけでなく、基板2に誘電体層4や吸着電極3を形成する際に、通気孔41の絶縁体6に対する位置合わせが容易であるので、再生作業時間が短く、能率よく再生することができる。すなわち、静電チャック1は、構造的に再利用に適しており、再利用による資源節約という課題に応えることができる製品としての適格性を有しているといえる。   As described above, according to the electrostatic chuck 1 of this embodiment, not only abnormal discharge can be prevented, but also when the dielectric layer 4 and the suction electrode 3 are formed on the substrate 2, the insulation of the air holes 41 is achieved. Since the positioning with respect to the body 6 is easy, the reproduction work time is short and the reproduction can be performed efficiently. That is, it can be said that the electrostatic chuck 1 is structurally suitable for reuse, and has a qualification as a product that can meet the problem of resource saving by reuse.

なお、この発明は、上記実施例に限定されるものではなく、発明の要旨の範囲内において種々の変形や変更が可能である。
例えば、上記実施例では、図5及び図6に示したように、断面T字状の支持部材5−1(5−2)に長溝8を設け、絶縁体6を長溝8内に充填した構造としたが、支持部材は、平面視においてガス流路と同形同幅に設定され、ガス流路内に嵌められるものであればよく、また、絶縁体は、上面が露出した状態で通気孔の下部開口に当接し、その下部の少なくとも一部がガス流路内に露出していればよい。したがって、図14の(a)に示すように、支持部材5−1(5−2)の立壁部51がガス流路21(22)の左部を占有する形状を成す構造の静電チャック、図14の(b)に示すように、支持部材5−1(5−2)の立壁部51が左側に寄って、支持部材5−1(5−2)全体がL字状を成す構造の静電チャックも、この発明の範囲に含まれる。
また、上記実施例では、ガス流路として2重のガス流路21,22を適用した例を示したが、ガス流路の数は、任意であり、1重や3重のガス流路を適用しても良い。また、ガス流路は、リング状に限らず、湾曲状又は直線状のガス流路も適用することができる。
In addition, this invention is not limited to the said Example, A various deformation | transformation and change are possible within the range of the summary of invention.
For example, in the above embodiment, as shown in FIGS. 5 and 6, the long groove 8 is provided in the support member 5-1 (5-2) having a T-shaped cross section, and the insulator 6 is filled in the long groove 8. However, the support member may be any member as long as it is set in the same shape and width as the gas flow channel in a plan view and can be fitted in the gas flow channel. It suffices that the lower opening is abutted and at least a part of the lower part is exposed in the gas flow path. Therefore, as shown in FIG. 14A, an electrostatic chuck having a structure in which the standing wall portion 51 of the support member 5-1 (5-2) occupies the left portion of the gas flow path 21 (22), As shown in FIG. 14 (b), the standing wall portion 51 of the support member 5-1 (5-2) is shifted to the left side, and the entire support member 5-1 (5-2) is L-shaped. An electrostatic chuck is also included in the scope of the present invention.
In the above embodiment, an example in which the double gas flow paths 21 and 22 are applied as the gas flow paths has been shown. However, the number of the gas flow paths is arbitrary, and the single or triple gas flow paths are used. It may be applied. The gas flow path is not limited to a ring shape, and a curved or straight gas flow path can also be applied.

1…静電チャック、 2…基板、 3…吸着電極、 4…誘電体層、 4a…表面、 5−1,5−2…支持部材、 6…絶縁体、 61…上面、 62…下部、 8…長溝、 21,22…ガス流路、 21a,22a…底面、 31…第1極吸着電極パターン、 32…第2極吸着電極パターン、 41…通気孔、 41a…下部開口、 41b…上部開口、 50…天壁部、 51…立壁部、 51a…切り欠き部、 81…開口溝、 400…直流電源、 401…スイッチ、 G…冷却ガス、 W…ウエハ。   DESCRIPTION OF SYMBOLS 1 ... Electrostatic chuck, 2 ... Board | substrate, 3 ... Adsorption electrode, 4 ... Dielectric layer, 4a ... Surface, 5-1, 5-2 ... Supporting member, 6 ... Insulator, 61 ... Upper surface, 62 ... Lower part, 8 ... long groove, 21, 22 ... gas flow path, 21a, 22a ... bottom, 31 ... first electrode adsorption electrode pattern, 32 ... second electrode adsorption electrode pattern, 41 ... vent hole, 41a ... lower opening, 41b ... upper opening, DESCRIPTION OF SYMBOLS 50 ... Top wall part, 51 ... Standing wall part, 51a ... Notch part, 81 ... Opening groove, 400 ... DC power supply, 401 ... Switch, G ... Cooling gas, W ... Wafer.

Claims (2)

リング状,湾曲状又は直線状のガス流路が表面に凹設された基板と、
上記ガス流路を気密に覆うように基板の表面に形成され且つ下部開口が当該ガス流路内に位置し上部開口が表面に位置する通気孔を有した誘電体層と、
この誘電体層内に形成された吸着電極とを備える静電チャックであって、
平面視において、上記ガス流路と同形同幅の支持部材を、当該ガス流路内に嵌め、
平面視において上記支持部材の形状と対応した形状の帯体であり且つ上記通気孔の直径よりも幅広の上面を有する多孔質の絶縁体を、上記支持部材によって、当該絶縁体の上記上面が露出した状態で上記通気孔の下部開口に当接するように且つ当該絶縁体の下部の少なくとも一部が当該ガス流路内に露出するように支持し、
且つ、上記支持部材を、平面視において上記ガス流路と同形同幅の天壁部と、この天壁部の下側に天壁部の長さ方向に沿って設けられ且つ当該ガス流路の底面迄垂下して当該天壁部をガス流路内で支持する立壁部とで構成し、
上記天壁部の上面に、上方に開口する所定深さの長溝を当該天壁部の全長に亘って設けると共に、当該長溝と連通し且つ上記ガス流路内で開口する複数の開口溝を当該天壁部の下面に所定間隔で設け、
上記絶縁体を上記長溝内に充填して、当該絶縁体の上面を露出させると共に当該絶縁体の下部を上記複数の開口溝を通じてガス流路側に露出させた、
ことを特徴とする静電チャック。
A substrate in which a ring-shaped, curved or straight gas flow path is recessed on the surface;
A dielectric layer formed on the surface of the substrate so as to airtightly cover the gas flow path and having a vent hole in which the lower opening is located in the gas flow path and the upper opening is located on the surface;
An electrostatic chuck comprising an adsorption electrode formed in the dielectric layer,
In plan view, a support member having the same shape and width as the gas channel is fitted into the gas channel,
In the plan view, a porous insulator having a shape corresponding to the shape of the support member and having an upper surface wider than the diameter of the air hole is exposed to the upper surface of the insulator by the support member. In such a state, it is supported so as to contact the lower opening of the vent hole and at least a part of the lower portion of the insulator is exposed in the gas flow path ,
And the said support member is provided along the length direction of a ceiling wall part on the lower side of this ceiling wall part and the ceiling wall part of the same shape and width as the said gas channel in planar view, and the said gas channel It is composed of a standing wall part that hangs down to the bottom of the wall and supports the top wall part in the gas flow path,
On the upper surface of the top wall portion, a long groove having a predetermined depth that opens upward is provided over the entire length of the top wall portion, and a plurality of opening grooves that communicate with the long groove and open in the gas flow path are provided. Provided at a predetermined interval on the lower surface of the top wall,
Filling the insulator into the long groove, exposing the upper surface of the insulator and exposing the lower portion of the insulator to the gas flow path side through the plurality of opening grooves,
An electrostatic chuck characterized by that.
請求項1に記載の静電チャックにおいて、
上記多孔質の絶縁体は、多孔質のセラミックスである、
ことを特徴とする静電チャック。
The electrostatic chuck according to claim 1,
The porous insulator is a porous ceramic,
An electrostatic chuck characterized by that.
JP2008558079A 2007-02-15 2008-02-08 Electrostatic chuck Active JP5087561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008558079A JP5087561B2 (en) 2007-02-15 2008-02-08 Electrostatic chuck

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007034359 2007-02-15
JP2007034359 2007-02-15
PCT/JP2008/052199 WO2008099789A1 (en) 2007-02-15 2008-02-08 Electrostatic chuck
JP2008558079A JP5087561B2 (en) 2007-02-15 2008-02-08 Electrostatic chuck

Publications (2)

Publication Number Publication Date
JPWO2008099789A1 JPWO2008099789A1 (en) 2010-05-27
JP5087561B2 true JP5087561B2 (en) 2012-12-05

Family

ID=39690022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008558079A Active JP5087561B2 (en) 2007-02-15 2008-02-08 Electrostatic chuck

Country Status (2)

Country Link
JP (1) JP5087561B2 (en)
WO (1) WO2008099789A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5449750B2 (en) * 2008-11-19 2014-03-19 株式会社日本セラテック Electrostatic chuck and manufacturing method thereof
JP5956379B2 (en) * 2012-04-27 2016-07-27 日本碍子株式会社 Components for semiconductor manufacturing equipment
JP5633766B2 (en) * 2013-03-29 2014-12-03 Toto株式会社 Electrostatic chuck
JP6124156B2 (en) * 2015-04-21 2017-05-10 Toto株式会社 Electrostatic chuck and wafer processing equipment
US9999947B2 (en) * 2015-05-01 2018-06-19 Component Re-Engineering Company, Inc. Method for repairing heaters and chucks used in semiconductor processing
WO2017079338A1 (en) 2015-11-02 2017-05-11 Component Re-Engineering Company, Inc. Electrostatic chuck for clamping in high temperature semiconductor processing and method of making same
JP6865145B2 (en) * 2016-12-16 2021-04-28 日本特殊陶業株式会社 Holding device
CN112687602A (en) * 2019-10-18 2021-04-20 中微半导体设备(上海)股份有限公司 Electrostatic chuck, manufacturing method thereof and plasma processing device
CN113752094B (en) * 2021-08-25 2022-08-30 杭州大和江东新材料科技有限公司 Semiconductor insulating ring processing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182645A (en) * 1992-12-17 1994-07-05 Tokyo Electron Ltd Electrostatic chuck
JPH06244119A (en) * 1993-02-20 1994-09-02 Tokyo Electron Ltd Plasma process equipment
JPH1050813A (en) * 1996-04-26 1998-02-20 Applied Materials Inc Conduit for flow of heat conduction fluid to electrostatic chuck surface
JPH1131680A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Substrate dry etching device
JPH11238596A (en) * 1998-02-23 1999-08-31 Matsushita Electron Corp Plasma processing device
JPH11330215A (en) * 1998-05-20 1999-11-30 Matsushita Electric Ind Co Ltd Method and device for controlling temperature of substrate
WO2003046969A1 (en) * 2001-11-30 2003-06-05 Tokyo Electron Limited Processing device, and gas discharge suppressing member
JP2003338492A (en) * 2002-05-21 2003-11-28 Tokyo Electron Ltd Plasma processing system
JP2004006505A (en) * 2002-05-31 2004-01-08 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2005268654A (en) * 2004-03-19 2005-09-29 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2006344766A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Plasma treatment apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182645A (en) * 1992-12-17 1994-07-05 Tokyo Electron Ltd Electrostatic chuck
JPH06244119A (en) * 1993-02-20 1994-09-02 Tokyo Electron Ltd Plasma process equipment
JPH1050813A (en) * 1996-04-26 1998-02-20 Applied Materials Inc Conduit for flow of heat conduction fluid to electrostatic chuck surface
JPH1131680A (en) * 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd Substrate dry etching device
JPH11238596A (en) * 1998-02-23 1999-08-31 Matsushita Electron Corp Plasma processing device
JPH11330215A (en) * 1998-05-20 1999-11-30 Matsushita Electric Ind Co Ltd Method and device for controlling temperature of substrate
WO2003046969A1 (en) * 2001-11-30 2003-06-05 Tokyo Electron Limited Processing device, and gas discharge suppressing member
JP2003338492A (en) * 2002-05-21 2003-11-28 Tokyo Electron Ltd Plasma processing system
JP2004006505A (en) * 2002-05-31 2004-01-08 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2005268654A (en) * 2004-03-19 2005-09-29 Ngk Spark Plug Co Ltd Electrostatic chuck
JP2006344766A (en) * 2005-06-09 2006-12-21 Matsushita Electric Ind Co Ltd Plasma treatment apparatus

Also Published As

Publication number Publication date
JPWO2008099789A1 (en) 2010-05-27
WO2008099789A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP5087561B2 (en) Electrostatic chuck
JP4219927B2 (en) Substrate holding mechanism, manufacturing method thereof, and substrate processing apparatus
KR102594473B1 (en) Semiconductor substrate supports with built-in RF shielding
US9136097B2 (en) Shower plate and substrate processing apparatus
KR102604063B1 (en) Electrostatic chuck assembly and substrate treating apparatus including the assembly
JP5058727B2 (en) Top plate structure and plasma processing apparatus using the same
US9818583B2 (en) Electrode plate for plasma etching and plasma etching apparatus
CN101689492B (en) Apparatus and method for processing a substrate edge region
US20100177454A1 (en) Electrostatic chuck with dielectric inserts
CN104600006A (en) Substrate processing apparatus
KR20150109463A (en) Showerhead having a detachable gas distribution plate
JP2000216136A (en) Treating chamber having improved gas distributor and its manufacture
JP2008306212A (en) Plasma processing equipment
KR20210072114A (en) High power electrostatic chuck with features to prevent He hole light-up/arcing
TWI776107B (en) Ceramic showerheads with conductive electrodes
KR101249247B1 (en) Plasma etching chamber
JP5479180B2 (en) Mounting table
JP7464237B2 (en) Separate intake structure prevents plasma backflow
TW202231921A (en) Backside gas leakby for bevel deposition reduction
TW202123304A (en) High conductance lower shield for process chamber
JP2005277400A (en) Plasma processing apparatus and method
JP2006253200A (en) Ring for etcher with excellent etching resistance
TWI502641B (en) Plasma etching chamber
JP2008235735A (en) Electrostatic chuck and plasma processing equipment having it
JP2013021151A (en) Electrostatic chuck, and semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R150 Certificate of patent or registration of utility model

Ref document number: 5087561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250