JP5086598B2 - Cold work material - Google Patents
Cold work material Download PDFInfo
- Publication number
- JP5086598B2 JP5086598B2 JP2006274749A JP2006274749A JP5086598B2 JP 5086598 B2 JP5086598 B2 JP 5086598B2 JP 2006274749 A JP2006274749 A JP 2006274749A JP 2006274749 A JP2006274749 A JP 2006274749A JP 5086598 B2 JP5086598 B2 JP 5086598B2
- Authority
- JP
- Japan
- Prior art keywords
- cold
- thermal conductivity
- temperature
- less
- purity aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Conductive Materials (AREA)
Description
本発明は、極低温において優れた熱伝導度や電気伝導度を示しうる高純度アルミニウム材を冷間加工してなる冷間加工材に関する。 The present invention relates to a cold-worked material obtained by cold-working a high-purity aluminum material that can exhibit excellent thermal conductivity and electrical conductivity at extremely low temperatures.
医療用のMRI(磁気共鳴画像診断装置)や分析用のNMR(核磁気共鳴分析装置)等に用いられる超電導マグネットには、液体ヘリウムを用いてその沸点4.2K(ケルビン)に冷却された低温超電導コイルや、冷凍機で20K程度に冷却された高温超電導コイルが使われている。これら超電導コイルを効率的かつ均一に冷却するためには、液体窒素の沸点77Kより低い極低温の雰囲気において熱伝導度の高い材料が要求される。さらに、超電導マグネットの輻射シールド材としても、熱伝導度の高い材料が使用される(特許文献1参照)。また、超電導線においても、超電導フィラメントがはんだ材などで埋め込まれた安定化母材に、熱伝導度と電気伝導度がともに高い材料が要望されている(非特許文献1参照)。 Superconducting magnets used in medical MRI (magnetic resonance imaging apparatus) and analytical NMR (nuclear magnetic resonance analyzer), etc., are cooled to a boiling point of 4.2 K (Kelvin) using liquid helium. A superconducting coil or a high-temperature superconducting coil cooled to about 20K by a refrigerator is used. In order to cool these superconducting coils efficiently and uniformly, a material having high thermal conductivity is required in an extremely low temperature atmosphere lower than the boiling point 77K of liquid nitrogen. Furthermore, a material having high thermal conductivity is also used as a radiation shield material for the superconducting magnet (see Patent Document 1). Also in superconducting wires, there is a demand for a material having high thermal conductivity and high electrical conductivity for a stabilizing base material in which a superconducting filament is embedded with a solder material or the like (see Non-Patent Document 1).
熱伝導度や電気伝導度の高い材料としては、極低温における熱伝導度が高いという特性を有する高純度アルミニウム材が有用である(非特許文献1参照)。
しかしながら、極低温における熱伝導度や電気伝導度の高い高純度アルミニウム材は非常に軟質であるという性質を有している。特に、通常用いられている数mm程度の厚さの板材では、装置部材として使用するための成型加工や装置への取り付け等の際に変形しやすく、その取り扱いが難しいという問題があった。材料が変形すると、たとえ熱伝導度や電気伝導度が高い高純度アルミニウム板材を用いても、変形によって生じた歪みが原因となって極低温での熱伝導度や電気伝導度が低下することになる。 However, high-purity aluminum materials having high thermal conductivity and electrical conductivity at extremely low temperatures have a property of being very soft. In particular, a plate material having a thickness of about several millimeters that is usually used has a problem that it is easily deformed when it is molded for use as an apparatus member or attached to an apparatus, and is difficult to handle. If the material is deformed, even if a high-purity aluminum plate with high thermal conductivity and electrical conductivity is used, the thermal conductivity and electrical conductivity at cryogenic temperatures will decrease due to the distortion caused by the deformation. Become.
装置部材の成型加工や装置への取り付け等の際に、良好なハンドリング性で変形を生じにくくし、取り扱いを容易にするには、例えば、鋳塊を圧延や鍛造等で塑性加工することにより高純度アルミニウム板材を硬質化し、強度を向上させればよいと考えられる。しかし、高純度アルミニウム材は、硬質化するに伴い熱伝導度や電気伝導度が低くなるという性質を有している。硬質化して低下した熱伝導度や電気伝導度は、一般に400℃以上の高温で熱処理を施すことにより向上させることができるが、同時に軟質材となるので、ハンドリングのための強度が不足して取り扱いが困難になる。また、通常、冷間加工材を超電導マグネット等の部材として使用する際には、はんだ付けや樹脂接着剤によって装置に取り付けて組み込まれるのであるが、この場合、取り付け後にははんだや樹脂が存在するため、これらの劣化が懸念される400℃以上の高温で熱処理することはできない。 In order to make it easy to handle the equipment member by forming it or attaching it to the equipment, it is difficult to be deformed and easy to handle. It is considered that the purity aluminum plate material may be hardened to improve the strength. However, the high-purity aluminum material has a property that thermal conductivity and electrical conductivity are lowered as it is hardened. Heat conductivity and electrical conductivity that have been reduced by hardening can generally be improved by heat treatment at a high temperature of 400 ° C. or higher, but at the same time, it becomes a soft material, so that the handling strength is insufficient. Becomes difficult. Also, normally, when using a cold-worked material as a member such as a superconducting magnet, it is attached to a device by soldering or resin adhesive, and in this case, solder or resin is present after attachment. For this reason, heat treatment cannot be performed at a high temperature of 400 ° C. or higher where the deterioration is a concern.
このように、これまで、高純度アルミニウム材を高熱伝導材料もしくは高電気伝導材料として用いる際に、装置部材として使用するための成型加工や装置への取り付け等の際の良好なハンドリング性と、高い熱伝導度や電気伝導度とを両立させることは困難であった。 Thus, when using a high-purity aluminum material as a high thermal conductivity material or a high electrical conductivity material, good handling properties at the time of molding processing for use as a device member, attachment to the device, and the like are high. It has been difficult to achieve both thermal conductivity and electrical conductivity.
そこで、本発明は、装置部材として使用するための成型加工や装置への取り付け等の際には良好なハンドリング性が得られるだけの充分な強度を備えるとともに、極低温で高純度アルミニウムが有する高い熱伝導度や電気伝導度を発現しうる材料を提供することを目的とする。 Therefore, the present invention has sufficient strength to obtain good handling properties in the case of molding processing for use as a device member or attachment to the device, and high purity aluminum has a high temperature at a very low temperature. It aims at providing the material which can express thermal conductivity and electrical conductivity.
本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、装置部材の成型加工等によって熱伝導度や電気伝導度が一旦低下しても、その後の熱処理によって熱伝導度や電気伝導度を回復させることで、前記課題を解決することを目指した。そして、熱伝導度や電気伝導度を回復させる際の熱処理について、従来のように400℃以上という高温ではなく、装置等に取り付けて使用する際に通常曝される程度の比較的低い温度、具体的には80〜300℃で熱伝導度や電気伝導度を回復させることを着想した。詳しくは、例えば、装置への取付けに樹脂接着剤を用いた場合、樹脂を硬化させるためのベーキングや硬化時の樹脂自体の発熱によって、通常80〜300℃の温度に30分から数日間曝され、はんだ付けにより装置へ取付けた場合にも、通常200〜300℃の温度に30分から数時間曝されるのが現状であり、これらの熱を熱伝導度や電気伝導度を回復させる際の熱処理に利用すれば、別途加熱工程を設ける必要もなく、しかも従来懸念されていたはんだや樹脂の劣化の問題も回避することができる、と考えたのである。この着想を実現するべく検討を重ねたところ、高純度アルミニウム材に含まれる元素の含有量を特定範囲とするとともに、冷間加工を、特定の加工温度において、高純度アルミニウム材に含まれる特定元素の含有量と高温保持の際の温度とに応じて決定される範囲の冷間加工率W(%)で行うことにより、前述した高純度アルミニウム材を得ることができることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the thermal conductivity and electrical conductivity are reduced by subsequent heat treatment even if the thermal conductivity and electrical conductivity are once reduced due to molding processing of the apparatus member. We aimed to solve the above-mentioned problems by recovering the degree. The heat treatment for recovering thermal conductivity and electrical conductivity is not a high temperature of 400 ° C. or higher as in the prior art, but a relatively low temperature that is normally exposed when used in an apparatus or the like. The idea was to recover the thermal conductivity and electrical conductivity at 80 to 300 ° C. Specifically, for example, when a resin adhesive is used for attachment to the apparatus, it is usually exposed to a temperature of 80 to 300 ° C. for 30 minutes to several days due to baking for curing the resin and heat generation of the resin itself at the time of curing, Even when attached to the apparatus by soldering, it is usually exposed to a temperature of 200 to 300 ° C. for 30 minutes to several hours, and these heats are used for heat treatment when recovering thermal conductivity and electrical conductivity. If it is used, it is considered that it is not necessary to provide a separate heating step, and the problem of deterioration of solder and resin, which has been a concern in the past, can be avoided. As a result of repeated studies to achieve this concept, the content of elements contained in high-purity aluminum materials is set to a specific range, and cold processing is performed at a specific processing temperature and specific elements contained in high-purity aluminum materials. And found that the high-purity aluminum material described above can be obtained by performing the cold working rate W (%) in a range determined according to the content of the steel and the temperature at the time of holding at high temperature. It came to do.
すなわち、本発明の冷間加工材は、高純度アルミニウム材が冷間加工されてなる冷間加工材であって、前記高純度アルミニウム材は、シリコン含有量(CSi)が30質量ppm以下、鉄含有量(CFe)が2質量ppm以下、銅含有量(CCu)が3質量ppm以下であり、かつ、B、Na、Mg、Ti、V、Cr、Mn、Ni、Co、Zn、Ga、As、Zr、Mo、Sn、Sb、La、Ce、NdおよびPbの各元素に関し、含有量総和が3質量ppm以下、各元素の含有量がそれぞれ1質量ppm以下であり、50℃以下の冷間加工温度で冷間加工された後、80℃以上300℃以下の範囲にある保持温度T(℃)において0.5〜240時間保持されてなるとともに、冷間加工率W(%)が下記式(1)を満たす、ことを特徴とする。
本発明によれば、装置部材として使用するための成型加工や装置への取り付け等の際には良好なハンドリング性が得られるだけの充分な強度を備えるとともに、極低温で高純度アルミニウムが有する高い熱伝導度や電気伝導度を発現させることが可能になる。しかも、本発明によれば、装置等に取り付けて使用する際に通常曝される程度の比較的低い温度(具体的には80〜300℃)で熱伝導度や電気伝導度を向上させることが可能になったので、熱伝導度や電気伝導度を回復させるために別途加熱工程を設ける必要もなく、はんだや樹脂の劣化等のおそれもない。これにより、超電導マグネット等における熱伝達部材や輻射シールド材、超電導安定化母材等として有用な高熱伝導材料や高電気伝導材料を容易に提供できる、という効果がある。 According to the present invention, the high purity aluminum has a sufficient strength to obtain good handling properties at the time of molding processing for use as a device member or attachment to the device, and high purity aluminum has a high temperature. It becomes possible to express thermal conductivity and electrical conductivity. Moreover, according to the present invention, it is possible to improve thermal conductivity and electrical conductivity at a relatively low temperature (specifically, 80 to 300 ° C.) that is normally exposed when used in an apparatus or the like. Since it has become possible, it is not necessary to provide a separate heating step in order to recover the thermal conductivity and electrical conductivity, and there is no fear of deterioration of solder or resin. Thereby, there is an effect that it is possible to easily provide a high heat conduction material or a high electric conduction material useful as a heat transfer member, a radiation shield material, a superconducting stabilization base material or the like in a superconducting magnet or the like.
本発明の冷間加工材は、高純度アルミニウム材が冷間加工されてなる。高純度アルミニウム材は、冷間加工されることによって、硬質材となり、良好なハンドリング性を得るのに充分な強度を付与されるのである。しかも、従来、このように高純度アルミニウム材を冷間加工した場合、低い熱伝導度や電気伝導度しか発現できず、これらを向上させるには400℃以上の高温で熱処理する必要があったのであるが、本発明では、装置等に取り付けて使用する際に通常曝される程度の比較的低い温度(80〜300℃)での熱処理で、低下した熱伝導度や電気伝導度を再び向上させることができるのである。さらに詳しくは、本発明の冷間加工材は、冷間加工によって得られた直後、硬質材となっているので、良好なハンドリング性で成型加工や装置への取り付け等が行なえる。ただし、この時点では、熱伝導度や電気伝導度は低下している。その後、成型加工もしくは装置へ取付けされた高純度アルミニウム材を、例えば、装置への取り付けに樹脂接着剤やはんだを用いた場合であれば、それらを硬化させるための加熱や硬化によるそれら自体の発熱によって、80℃以上300℃以下の範囲にある温度とし、その状態で一定時間保持するだけで、低下した熱伝導度や電気伝導度は向上する。 The cold-worked material of the present invention is obtained by cold-working a high-purity aluminum material. A high-purity aluminum material becomes a hard material by being cold-worked, and is given sufficient strength to obtain good handling properties. Moreover, conventionally, when such a high-purity aluminum material is cold worked, only low thermal conductivity and electrical conductivity can be exhibited, and it has been necessary to perform heat treatment at a high temperature of 400 ° C. or higher to improve these. However, in the present invention, the reduced thermal conductivity and electrical conductivity are improved again by heat treatment at a relatively low temperature (80 to 300 ° C.) that is normally exposed when used in an apparatus or the like. It can be done. More specifically, since the cold-worked material of the present invention is a hard material immediately after being obtained by cold-working, it can be molded or attached to an apparatus with good handling properties. However, at this time, thermal conductivity and electrical conductivity are decreasing. After that, if high-purity aluminum material attached to the molding process or equipment is used, for example, if resin adhesive or solder is used for attachment to the equipment, heating itself to cure them or heat generation due to curing Therefore, the reduced thermal conductivity and electrical conductivity can be improved simply by setting the temperature in the range of 80 ° C. or higher and 300 ° C. or lower and maintaining the temperature for a certain period of time.
このように、本発明の冷間加工材は、冷間加工の後、80℃以上300℃以下の範囲にある保持温度T(℃)において保持されるものである(以下、保持温度Tで保持することを「高温保持」と称することがある。)。保持温度Tが80℃未満であると、熱伝導度や電気伝導度の向上効果が不充分となり、一方、300℃を超えると、装置等に取り付けて使用する際に用いられる樹脂接着剤やはんだが高温によって劣化する等の問題が生じる。なお、保持温度に昇温する手段としては、前述したように、例えば、装置への取り付けに樹脂接着剤やはんだを用いた場合であれば、それらを硬化させるための加熱や硬化によるそれら自体の発熱を利用することが望ましいのであるが、各種加熱機器など従来公知の加熱手段を採用しても何ら差し支えない。 Thus, the cold-worked material of the present invention is held at a holding temperature T (° C.) in the range of 80 ° C. or higher and 300 ° C. or lower after cold working (hereinafter, held at the holding temperature T). (This is sometimes referred to as “high temperature holding”.) When the holding temperature T is less than 80 ° C., the effect of improving the thermal conductivity and electrical conductivity becomes insufficient. On the other hand, when the holding temperature T exceeds 300 ° C., a resin adhesive or solder used when attached to a device or the like is used. This causes problems such as deterioration due to high temperatures. As described above, as a means for raising the temperature to the holding temperature, for example, in the case where a resin adhesive or solder is used for attachment to the apparatus, the heating and curing for curing them are performed. Although it is desirable to use heat generation, any conventionally known heating means such as various heating devices may be employed.
高温保持の際の保持時間は0.5〜240時間である。保持時間が0.5時間未満であると、熱伝導度や電気伝導度を充分に向上させることができず、一方、240時間を超えると、生産性が低下して実用的でなくなる。 The holding time at the time of holding at high temperature is 0.5 to 240 hours. If the holding time is less than 0.5 hours, the thermal conductivity and the electric conductivity cannot be sufficiently improved. On the other hand, if the holding time exceeds 240 hours, the productivity is lowered and becomes impractical.
冷間加工後の高温保持により最終的に得られる熱伝導度や電気伝導度は、高純度アルミニウム材が含有する元素の種類と量および冷間加工率に依存する。つまり、高純度アルミニウム材中に含有する元素量が少ないほど、最終的に到達する熱伝導度や電気伝導度が高くなり、他方、冷間加工率が高いほど、冷間加工後の保持温度がより低い場合にも熱伝導度や電気伝導度を向上させやすくなる傾向がある。 The thermal conductivity and electrical conductivity finally obtained by holding at a high temperature after cold working depend on the type and amount of elements contained in the high-purity aluminum material and the cold working rate. In other words, the smaller the amount of element contained in the high-purity aluminum material, the higher the ultimate thermal conductivity and electrical conductivity, while the higher the cold working rate, the higher the holding temperature after cold working. Even if it is lower, the thermal conductivity and electrical conductivity tend to be improved.
一般に、高純度アルミニウム材に主に含まれる元素としては、シリコン、鉄、銅が挙げられる(以下、これら3元素を纏めて「(I)群元素」と称することもある)。本発明において、これら3元素の各含有量は、それぞれ、シリコン含有量(CSi)が30質量ppm以下、鉄含有量(CFe)が2質量ppm以下、銅含有量(CCu)が3質量ppm以下である。(I)群元素の各含有量(CSi)、(CFe)、(CCu)のいずれかが前記範囲を超えると、冷間加工で硬質材としたことにより低下した熱伝導度や電気伝導度が、冷間加工後の高温保持の際に80〜300℃程度の熱で充分に向上しない。なお、シリコン含有量(CSi)は、あまりにも少なすぎる場合、硬質材にしても室温において充分な強度が得られず軟質化してしまうおそれがあるので、シリコン含有量(CSi)は3質量ppm以上であるのがよい。 In general, silicon, iron, and copper are included as elements mainly contained in the high-purity aluminum material (hereinafter, these three elements may be collectively referred to as “(I) group elements”). In the present invention, each of these three elements has a silicon content (C Si ) of 30 mass ppm or less, an iron content (C Fe ) of 2 mass ppm or less, and a copper content (C Cu ) of 3 respectively. The mass is ppm or less. (I) If any of the group element contents (C Si ), (C Fe ), or (C Cu ) exceeds the above range, the thermal conductivity or electricity decreased due to the cold working of the hard material. The conductivity is not sufficiently improved by heat of about 80 to 300 ° C. during holding at a high temperature after cold working. If the silicon content (C Si ) is too small, even if it is a hard material, sufficient strength cannot be obtained at room temperature and the material may be softened. Therefore, the silicon content (C Si ) is 3 mass. It should be at least ppm.
さらに、一般的な高純度アルミニウム材には、前記(I)群元素以外の元素が含有されていることがある。本発明においては、種々の元素の中でも、B、Na、Mg、Ti、V、Cr、Mn、Ni、Co、Zn、Ga、As、Zr、Mo、Sn、Sb、La、Ce、NdおよびPbの各元素(以下、これらの元素を纏めて「(II)群元素」と称することもある)に関し、各元素の含有量がそれぞれ1質量ppm以下であり、含有量総和が3質量ppm以下である。(II)群元素の各含有量およびその総量のいずれかが前記範囲を超えると、冷間加工で硬質材としたことにより低下した熱伝導度や電気伝導度が、冷間加工後の高温保持の際に80〜300℃程度の熱で充分に向上しない。 Further, a general high-purity aluminum material may contain an element other than the group (I) element. In the present invention, among various elements, B, Na, Mg, Ti, V, Cr, Mn, Ni, Co, Zn, Ga, As, Zr, Mo, Sn, Sb, La, Ce, Nd and Pb In each of these elements (hereinafter, these elements may be collectively referred to as “(II) group elements”), the content of each element is 1 ppm by mass or less, and the total content is 3 ppm by mass or less. is there. (II) If any one of the group elements and the total amount thereof exceeds the above range, the thermal conductivity and electrical conductivity that are decreased by making the hard material by cold working are maintained at a high temperature after cold working. In this case, it is not sufficiently improved by heat of about 80 to 300 ° C.
一般に、高純度アルミニウム材は、例えば、高純度アルミニウムを連続鋳造や重力鋳造する方法によって製造することができる。具体的には、高純度アルミニウムを加熱して溶融し、これに必要に応じてマグネシウムやシリコン等を添加して溶湯を得、この溶湯を鋳型内で冷却し固化すればよい。高純度アルミニウムとしては、純度99.99質量%以上のものを用いればよい。このような純度の高純度アルミニウムを用いることで、得られる高純度アルミニウム材に含まれる各元素の含有量を容易に前述の範囲とすることができる。添加するマグネシウムおよびシリコンは、通常、金属状態で添加される。マグネシウムおよびシリコンとしては、それぞれ純度が99.9質量%以上のものを用いることが好ましい。高純度アルミニウムを溶融するには、例えば黒鉛製の坩堝やアルミナ質のレンガを用いた溶解炉の中で加熱すればよい。また、溶湯の温度は通常700〜800℃であるのがよい。 In general, a high-purity aluminum material can be produced by, for example, a method of continuously casting or gravity casting high-purity aluminum. Specifically, high-purity aluminum is heated and melted, and magnesium or silicon or the like is added thereto as necessary to obtain a molten metal, which is then cooled and solidified in a mold. As high-purity aluminum, a material having a purity of 99.99% by mass or more may be used. By using such high-purity aluminum, the content of each element contained in the resulting high-purity aluminum material can be easily adjusted to the above-described range. The magnesium and silicon to be added are usually added in a metal state. As magnesium and silicon, it is preferable to use those having a purity of 99.9% by mass or more. In order to melt high-purity aluminum, for example, heating may be performed in a melting furnace using a graphite crucible or alumina brick. Moreover, it is good that the temperature of a molten metal is 700-800 degreeC normally.
冷間加工に供する高純度アルミニウム材には、含有元素の量が前記範囲になるよう、三層電解法や偏析精製法など公知の方法で適宜精製されたものを用いるのがよい。精製は、1段で行なってもよいし、複数段で行なってもよい。
冷間加工に供する高純度アルミニウム材は、例えば鋳型内で冷却固化して得た鋳塊材を塑性加工することで得ることができる。塑性加工としては、例えば圧延、鍛造などが挙げられる。鋳塊材を塑性加工するには、例えば鋳塊材を板状に切り出し、圧延、鍛造などの方法により塑性加工すればよい。塑性加工温度は通常200℃以上500℃以下程度であるのがよい。
As the high-purity aluminum material to be subjected to cold working, it is preferable to use a material that is appropriately purified by a known method such as a three-layer electrolytic method or a segregation purification method so that the amount of the contained element falls within the above range. Purification may be performed in one stage or in multiple stages.
A high-purity aluminum material used for cold working can be obtained, for example, by plastic working an ingot material obtained by cooling and solidifying in a mold. Examples of plastic working include rolling and forging. In order to plastically process the ingot material, for example, the ingot material may be cut into a plate shape and plastically processed by a method such as rolling or forging. The plastic working temperature is usually about 200 ° C. or higher and 500 ° C. or lower.
本発明において、冷間加工率W(%)は下記式(1)を満たすことが重要である。
冷間加工率Wが式(1)に示される下限値(すなわち、 1.5×(CSi+CFe+CCu)−(T/10)+65で計算される値(%))未満であると、冷間加工で硬質材としたことにより低下した熱伝導度や電気伝導度が、冷間加工後の高温保持の際に80〜300℃程度の熱で充分に向上しない。一方、冷間加工率Wが99%を超えると、冷間加工後に硬質化しにくくなり、充分な強度が得られずハンドリング性に欠けることとなる。なお、冷間加工率Wが前記下限値以上であっても、冷間加工率Wがあまりに低すぎると、取り扱い性が悪くなる傾向があるので、冷間加工率Wは少なくとも40%以上であることが好ましい。 When the cold work rate W is less than the lower limit value represented by the formula (1) (that is, a value calculated by 1.5 × (C Si + C Fe + C Cu ) − (T / 10) +65 (%)). In addition, the heat conductivity and electrical conductivity that have been lowered due to the use of a hard material by cold working are not sufficiently improved by heat of about 80 to 300 ° C. during holding at a high temperature after cold working. On the other hand, when the cold work rate W exceeds 99%, it becomes difficult to harden after the cold work, and sufficient strength cannot be obtained, resulting in poor handling. Even if the cold work rate W is equal to or higher than the lower limit, if the cold work rate W is too low, the handleability tends to deteriorate, so the cold work rate W is at least 40% or more. It is preferable.
本発明において、冷間加工率は、冷間加工前の材料の断面積S0と冷間加工後の断面積Sとの差を加工前の材料の断面積S0で割った値を百分率(%)で表したものである。具体的には、実施例で後述する方法で算出すればよい。 In the present invention, the cold working rate is a percentage (%) obtained by dividing the difference between the cross-sectional area S0 of the material before cold working and the cross-sectional area S of the material after cold working by the cross-sectional area S0 of the material before working. It is represented by. Specifically, it may be calculated by the method described later in the embodiment.
本発明において、冷間加工温度は、50℃以下でなければならない。冷間加工温度が50℃を超えると、冷間加工によって得られる高純度アルミニウム材が硬質材ではなく軟質材となり、取り扱いが困難になる。なお、冷間加工温度の下限については、特に制限はないが、−20℃以下での冷間加工は作業上困難になるので、通常は−20℃を超える温度とされる。冷間加工温度は、好ましくは0〜40℃であるのがよい。 In the present invention, the cold working temperature must be 50 ° C. or lower. If the cold working temperature exceeds 50 ° C., the high-purity aluminum material obtained by cold working becomes a soft material instead of a hard material, and handling becomes difficult. In addition, although there is no restriction | limiting in particular about the minimum of cold work temperature, Since cold work in -20 degrees C or less becomes difficult on an operation | work, it is normally made into the temperature exceeding -20 degreeC. The cold working temperature is preferably 0 to 40 ° C.
本発明における冷間加工材は、極低温における熱伝導度と電気伝導度とが高いものである。具体的には、成型加工時等には硬質材で取り扱いやすく、80℃以上300℃以下の範囲にある保持温度T(℃)で一定時間保持するだけで、5,000W/m/K以上の高い熱伝導度と比抵抗値20×10-12Ω・m以下の高い電気伝導度が得られる。 The cold-worked material in the present invention has high thermal conductivity and electrical conductivity at extremely low temperatures. Specifically, it is easy to handle with a hard material at the time of molding processing, etc., and it is 5,000 W / m / K or more only by holding at a holding temperature T (° C.) in the range of 80 ° C. or more and 300 ° C. or less for a certain period of time. A high thermal conductivity and a high electrical conductivity of 20 × 10 −12 Ω · m or less can be obtained.
以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
以下の実施例および比較例においては、高純度アルミニウム材として、下記材料A〜Eのうちのいずれかを使用した。なお、材料A〜E中の各元素含有量について、グロー放電質量分析法(サーモエレクトロン社製「VG9000」を使用)にて分析した結果を表1および表2に示す。 In the following Examples and Comparative Examples, any of the following materials A to E was used as a high purity aluminum material. Tables 1 and 2 show the results of analyzing the content of each element in materials A to E by glow discharge mass spectrometry (using “VG9000” manufactured by Thermo Electron).
材料A:純度99.92質量%の普通アルミニウムを三層電解法により精製し、さらに偏析精製法によって2段精製して得られたもの。
材料B:純度99.92質量%の普通アルミニウムを三層電解法により精製して得られたもの。
材料C:純度99.92質量%の普通アルミニウムを三層電解法により精製し、Siとして純度99.9999質量%のポリシリコンを15質量ppm添加して得られたもの。
材料D:純度99.92質量%の普通アルミニウムを三層電解法により精製し、Feとして純度99質量%の純鉄を3質量ppm添加して得られたもの。
材料E:純度99.92質量%の普通アルミニウムを三層電解法により精製し、Siとして純度99.9999質量%のポリシリコン17質量ppmと、Cuとして純度99.9質量%の電気銅を10質量ppmとを添加して得られたもの。
Material A: obtained by purifying ordinary aluminum having a purity of 99.92% by mass by a three-layer electrolysis method and further purifying in two stages by a segregation purification method.
Material B: obtained by refining ordinary aluminum having a purity of 99.92% by mass by a three-layer electrolytic method.
Material C: A material obtained by refining ordinary aluminum having a purity of 99.92% by mass by a three-layer electrolytic method and adding 15 mass ppm of polysilicon having a purity of 99.9999% by mass as Si.
Material D: obtained by refining 99.92% by mass of pure aluminum by a three-layer electrolysis method and adding 3% by mass of 99% by mass of pure iron as Fe.
Material E: Ordinary aluminum having a purity of 99.92% by mass is purified by a three-layer electrolytic method, and 17 mass ppm of polysilicon having a purity of 99.9999% by mass as Si and 109.9% by weight of electrolytic copper as Cu. It was obtained by adding mass ppm.
以下の実施例および比較例において、熱間または冷間圧延の際の加工率は、加工前の断面積(S0)と加工後の断面積(S)とから、下記式(2)に基づき算出した。
以下の実施例および比較例において、熱伝導度は、下記式で示されるヴィーデマン−フランツの法則(すなわち、極低温におけるアルミニウムの熱伝導度は電気抵抗と反比例するという法則)に基づき、極低温での電気抵抗(比抵抗値)を測定し、下記式(3)から熱伝導度を算出した。
ρ:比抵抗(Ω・m)
T:温度(K)
L:Lorenz定数(2.45×10-8(W・Ω/K2))
なお、本明細書において、「軟質」とはビッカース硬度(Hv)が25未満である状態をいい、「硬質」とはビッカース硬度(Hv)が25以上である状態をいうものとする。
In the following examples and comparative examples, the thermal conductivity is based on the Wiedemann-Franz law expressed by the following formula (that is, the law that the thermal conductivity of aluminum at an extremely low temperature is inversely proportional to the electrical resistance). Was measured, and the thermal conductivity was calculated from the following formula (3).
ρ: Specific resistance (Ω · m)
T: Temperature (K)
L: Lorenz constant (2.45 × 10 −8 (W · Ω / K 2 ))
In the present specification, “soft” means a state where the Vickers hardness (Hv) is less than 25, and “hard” means a state where the Vickers hardness (Hv) is 25 or more.
(実施例1)
まず、高純度アルミニウム材の鋳塊材を製造した。すなわち、黒鉛製坩堝に材料Aを入れ、750℃に加熱して溶融させ、アルミニウム製の連続鋳造鋳型(内寸法:縦210mm×横300mm)を用いて50mm/分の鋳造速度で鋳造し、長さ2000mmの鋳塊材を得た。
次に、上記で得られた鋳塊材を幅300mm×長さ1500mm×厚み200mmの形状に切り出し、これを500℃に加熱し、3.3mmの厚みになるまで加工率98%の熱間圧延を行い、幅300mm×長さ90m×厚み3.3mmの熱間圧延板を得た。
次いで、厚み3.3mmの熱間圧延板を1m切り出し、約30℃において0.33mmの厚みとなるまで加工率90%の冷間圧延を行い、幅300mm×長さ10m×厚み0.33mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が33の硬質であり、良好な取り扱い性を有していた。
Example 1
First, an ingot material of high-purity aluminum material was manufactured. That is, the material A is put in a graphite crucible, heated to 750 ° C. and melted, and cast at a casting speed of 50 mm / min using an aluminum continuous casting mold (inner dimensions: 210 mm long × 300 mm wide). An ingot material having a thickness of 2000 mm was obtained.
Next, the ingot material obtained above is cut into a shape of width 300 mm × length 1500 mm × thickness 200 mm, heated to 500 ° C., and hot-rolled with a processing rate of 98% until the thickness becomes 3.3 mm. Then, a hot rolled sheet having a width of 300 mm, a length of 90 m, and a thickness of 3.3 mm was obtained.
Next, a hot rolled plate having a thickness of 3.3 mm was cut out by 1 m, and cold-rolled at a processing rate of 90% until a thickness of 0.33 mm was obtained at about 30 ° C., and the width 300 mm × length 10 m × thickness 0.33 mm A cold rolled sheet was obtained. The obtained cold-rolled sheet had a Vickers hardness of 33 immediately after rolling and had good handleability.
冷間加工後、得られた冷間圧延板を130℃で15時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が21の軟質であり、4.2Kでの比抵抗値は3.6×10-12Ω・m、熱伝導度は28,000W/m/Kであった。 After cold working, the obtained cold-rolled plate was heat-treated at 130 ° C. for 15 hours, and then allowed to cool at room temperature to obtain a cold-worked material. The obtained cold-worked material is soft with a Vickers hardness of 21, a specific resistance value at 4.2K of 3.6 × 10 −12 Ω · m, and a thermal conductivity of 28,000 W / m / K. there were.
(実施例2)
実施例1における冷間加工後の加熱処理の温度を200℃に変更したこと以外は、実施例1と同様にして、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が21の軟質であり、4.2Kでの比抵抗値は3.4×10-12Ω・m、熱伝導度は30,000W/m/Kであった。
(Example 2)
A cold worked material was obtained in the same manner as in Example 1 except that the temperature of the heat treatment after cold working in Example 1 was changed to 200 ° C. The obtained cold-worked material is soft with a Vickers hardness of 21, a specific resistance value at 4.2K of 3.4 × 10 −12 Ω · m, and a thermal conductivity of 30,000 W / m / K. there were.
(実施例3)
材料Aに替えて材料Bを用いたこと以外は実施例1と同じ方法で、厚み3.3mmの熱間圧延板を得、これを1m切り出し、約30℃において1mmの厚みとなるまで加工率70%の冷間圧延を行い、幅300mm×長さ3.3m×厚み1mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が29の硬質であり、良好な取り扱い性を有していた。
(Example 3)
A hot-rolled sheet having a thickness of 3.3 mm was obtained in the same manner as in Example 1 except that material B was used instead of material A, and this was cut into 1 m and processed to a thickness of 1 mm at about 30 ° C. 70% cold rolling was performed to obtain a cold rolled sheet having a width of 300 mm, a length of 3.3 m, and a thickness of 1 mm. The obtained cold-rolled sheet had a Vickers hardness of 29 immediately after rolling and had good handleability.
冷間加工後、得られた冷間圧延板を200℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が23の軟質であり、4.2Kでの比抵抗値は9.0×10-12Ω・m、熱伝導度は11,000W/m/Kであった。 After cold working, the obtained cold-rolled plate was heat-treated at 200 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold-worked material. The obtained cold-worked material is soft with a Vickers hardness of 23, a specific resistance value at 4.2K of 9.0 × 10 −12 Ω · m, and a thermal conductivity of 11,000 W / m / K. there were.
(実施例4)
実施例3における冷間加工後の加熱処理の温度を300℃に変更したこと以外は、実施例3と同様にして、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が21の軟質であり、4.2Kでの比抵抗値は7.8×10-12Ω・m、熱伝導度は13,000W/m/Kであった。
Example 4
A cold worked material was obtained in the same manner as in Example 3 except that the temperature of the heat treatment after cold working in Example 3 was changed to 300 ° C. The obtained cold-worked material is soft with a Vickers hardness of 21, a specific resistance value at 4.2K of 7.8 × 10 −12 Ω · m, and a thermal conductivity of 13,000 W / m / K. there were.
(実施例5)
材料Aに替えて材料Cを用いたこと以外は実施例1と同じ方法で、厚み3.3mmの熱間圧延板を得、これを1m切り出し、約30℃において0.33mmの厚みとなるまで加工率90%の冷間圧延を行い、幅300mm×長さ10m×厚み0.33mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が34の硬質であり、良好な取り扱い性を有していた。
(Example 5)
A hot-rolled sheet having a thickness of 3.3 mm was obtained in the same manner as in Example 1 except that material C was used instead of material A, and this was cut out 1 m, and until a thickness of 0.33 mm was obtained at about 30 ° C. Cold rolling with a processing rate of 90% was performed to obtain a cold rolled sheet having a width of 300 mm, a length of 10 m, and a thickness of 0.33 mm. The obtained cold-rolled sheet had a Vickers hardness of 34 immediately after rolling and had good handleability.
冷間加工後、得られた冷間圧延板を100℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が21の軟質であった。 After the cold working, the obtained cold rolled plate was heat-treated at 100 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The obtained cold-worked material was soft with a Vickers hardness of 21.
(実施例6)
実施例5で得られた厚み3.3mmの熱間圧延板を1m切り出し、約30℃において1mmの厚みとなるまで加工率70%の冷間圧延を行い、幅300mm×長さ3.3m×厚み1mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が31の硬質であり、良好な取り扱い性を有していた。
(Example 6)
The hot-rolled sheet having a thickness of 3.3 mm obtained in Example 5 was cut out by 1 m, and cold-rolled at a processing rate of 70% until a thickness of 1 mm was obtained at about 30 ° C., and the width was 300 mm × length was 3.3 m ×. A cold-rolled sheet having a thickness of 1 mm was obtained. The obtained cold-rolled sheet had a Vickers hardness of 31 immediately after rolling and had good handleability.
冷間加工後、得られた冷間圧延板を300℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が22の軟質であり、4.2Kでの比抵抗値は1.8×10-11Ω・m、熱伝導度は6,000W/m/Kであった。 After the cold working, the obtained cold rolled plate was heat treated at 300 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The obtained cold-worked material is soft with a Vickers hardness of 22, the specific resistance value at 4.2K is 1.8 × 10 −11 Ω · m, and the thermal conductivity is 6,000 W / m / K. there were.
(比較例1)
実施例1で得られた厚み3.3mmの熱間圧延板を1m切り出し、約30℃において1.65mmの厚みとなるまで加工率50%の冷間圧延を行い、幅300mm×長さ2m×厚み1.65mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が28の硬質であった。
(Comparative Example 1)
The hot-rolled sheet having a thickness of 3.3 mm obtained in Example 1 was cut out by 1 m, and cold-rolled at a processing rate of 50% until a thickness of 1.65 mm was obtained at about 30 ° C., and the width was 300 mm × length was 2 m ×. A cold rolled sheet having a thickness of 1.65 mm was obtained. The obtained cold-rolled sheet had a Vickers hardness of 28 immediately after rolling.
冷間加工後、得られた冷間圧延板を100℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が25で硬質のままであった。 After the cold working, the obtained cold rolled plate was heat-treated at 100 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The resulting cold-worked material remained hard with a Vickers hardness of 25.
(比較例2)
実施例3で得られた厚み3.3mmの熱間圧延板を1m切り出し、約30℃において2mmの厚みとなるまで加工率40%の冷間圧延を行い、幅300mm×長さ1.7m×厚み2mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が27の硬質であった。
(Comparative Example 2)
The hot-rolled sheet having a thickness of 3.3 mm obtained in Example 3 was cut out by 1 m, and cold-rolled at a processing rate of 40% until a thickness of 2 mm was obtained at about 30 ° C., and the width was 300 mm × length was 1.7 m ×. A cold-rolled sheet having a thickness of 2 mm was obtained. The obtained cold-rolled sheet was a hard Vickers hardness of 27 immediately after rolling.
冷間加工後、得られた冷間圧延板を300℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が25で硬質のままであった。 After the cold working, the obtained cold rolled plate was heat treated at 300 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The resulting cold-worked material remained hard with a Vickers hardness of 25.
(比較例3)
実施例6における冷間加工後の加熱処理の温度を200℃に変更したこと以外は、実施例6と同様にして、冷間加工材を得た。得られた冷間加工材は、ビッカース硬度が30の硬質のままであった。
(Comparative Example 3)
A cold worked material was obtained in the same manner as in Example 6 except that the temperature of the heat treatment after cold working in Example 6 was changed to 200 ° C. The obtained cold-worked material remained hard with a Vickers hardness of 30.
(比較例4)
材料Cに替えて材料Dを用いたこと以外は実施例6と同じ方法で、幅300mm×長さ3.3m×厚み1mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が31の硬質であった。
(Comparative Example 4)
A cold rolled sheet having a width of 300 mm, a length of 3.3 m, and a thickness of 1 mm was obtained in the same manner as in Example 6 except that the material D was used instead of the material C. The obtained cold-rolled sheet was hard with a Vickers hardness of 31 immediately after rolling.
冷間加工後、得られた冷間圧延板を300℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、4.2Kでの比抵抗値が2.1×10-11Ω・m、熱伝導度が4,900W/m/Kであった。 After the cold working, the obtained cold rolled plate was heat treated at 300 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The obtained cold-worked material had a specific resistance value of 2.1 × 10 −11 Ω · m at 4.2 K and a thermal conductivity of 4,900 W / m / K.
(比較例5)
材料Aに替えて材料Eを用いたこと以外は実施例1と同じ方法で、幅300mm×長さ10m×厚み0.33mmの冷間圧延板を得た。得られた冷間圧延板は、圧延直後のビッカース硬度が34の硬質であった。
(Comparative Example 5)
A cold rolled sheet having a width of 300 mm, a length of 10 m and a thickness of 0.33 mm was obtained in the same manner as in Example 1 except that the material E was used instead of the material A. The obtained cold-rolled sheet was a hard Vickers hardness of 34 immediately after rolling.
冷間加工後、得られた冷間圧延板を300℃で1時間加熱処理し、その後、室温で放冷して、冷間加工材を得た。得られた冷間加工材は、4.2Kでの比抵抗値が2.2×10-11Ω・m、熱伝導度が4,600W/m/Kであった。 After the cold working, the obtained cold rolled plate was heat treated at 300 ° C. for 1 hour, and then allowed to cool at room temperature to obtain a cold worked material. The obtained cold worked material had a specific resistance value of 2.2 × 10 −11 Ω · m at 4.2 K and a thermal conductivity of 4,600 W / m / K.
Claims (1)
前記高純度アルミニウム材は、シリコン含有量(CSi)が30質量ppm以下、鉄含有量(CFe)が2質量ppm以下、銅含有量(CCu)が3質量ppm以下であり、かつ、B、Na、Mg、Ti、V、Cr、Mn、Ni、Co、Zn、Ga、As、Zr、Mo、Sn、Sb、La、Ce、NdおよびPbの各元素に関し、含有量総和が3質量ppm以下、各元素の含有量がそれぞれ1質量ppm以下であり、
冷間加工温度は50℃以下で、冷間加工率W(%)は下記式(1)を満たす冷間加工された後、80℃以上300℃以下の範囲にある保持温度T(℃)において0.5〜240時間保持されたことにより、ビッカース硬度が25未満となった、ことを特徴とする冷間加工材。
The high-purity aluminum material has a silicon content (C Si ) of 30 mass ppm or less, an iron content (C Fe ) of 2 mass ppm or less, a copper content (C Cu ) of 3 mass ppm or less, and B, Na, Mg, Ti, V, Cr, Mn, Ni, Co, Zn, Ga, As, Zr, Mo, Sn, Sb, La, Ce, Nd and Pb, the total content is 3 mass ppm or less, each element content is 1 mass ppm or less,
Cold working temperature is 50 ° C. or less, cold-rolling ratio W (%) after being cold worked to satisfy the following formula (1), holding temperature T (° C.) in the range of 80 ° C. or higher 300 ° C. or less by held from 0.5 to 240 hours at a Vickers hardness of Tsu Do less than 25, the cold worked material, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006274749A JP5086598B2 (en) | 2006-10-06 | 2006-10-06 | Cold work material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006274749A JP5086598B2 (en) | 2006-10-06 | 2006-10-06 | Cold work material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007070733A JP2007070733A (en) | 2007-03-22 |
JP5086598B2 true JP5086598B2 (en) | 2012-11-28 |
Family
ID=37932440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006274749A Active JP5086598B2 (en) | 2006-10-06 | 2006-10-06 | Cold work material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5086598B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5086592B2 (en) * | 2006-09-25 | 2012-11-28 | 住友化学株式会社 | Cold work material |
JP5098753B2 (en) * | 2008-03-31 | 2012-12-12 | 住友化学株式会社 | Manufacturing method of ultra-high purity aluminum high rolled material |
JP5098751B2 (en) * | 2008-03-31 | 2012-12-12 | 住友化学株式会社 | Manufacturing method of ultra-high purity aluminum high rolled material |
JP5098750B2 (en) * | 2008-03-31 | 2012-12-12 | 住友化学株式会社 | Method for producing high-purity aluminum rolled material |
JP5274981B2 (en) * | 2008-10-31 | 2013-08-28 | 住友化学株式会社 | Cryogenic heat transfer material |
JP2012234939A (en) * | 2011-04-28 | 2012-11-29 | High Energy Accelerator Research Organization | Magnetic shielding material for superconducting magnet |
JP2012234938A (en) * | 2011-04-28 | 2012-11-29 | High Energy Accelerator Research Organization | Low-temperature heat transfer material |
CN103474153B (en) * | 2013-08-07 | 2016-01-20 | 武汉宏联电线电缆有限公司 | A kind of rare earth aluminum alloy power cable and production technology |
CN109843460A (en) * | 2016-09-30 | 2019-06-04 | 株式会社Uacj | The Predicting Performance Characteristics device of aluminum products, the characteristic prediction method of aluminum products, control program and recording medium |
JP7151068B2 (en) * | 2016-12-26 | 2022-10-12 | 三菱マテリアル株式会社 | Thermoelectric conversion module with case |
JP7236299B2 (en) * | 2019-03-25 | 2023-03-09 | 住友化学株式会社 | High-purity aluminum sheet, manufacturing method thereof, and power semiconductor module using the high-purity aluminum sheet |
CN111910113A (en) * | 2020-09-08 | 2020-11-10 | 哈尔滨工业大学 | Boron-containing particle reinforced tungsten-aluminum alloy composite shielding material and preparation method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57145957A (en) * | 1981-03-03 | 1982-09-09 | Sumitomo Electric Ind Ltd | Aluminum alloy for stabilizing superconduction |
JPH02200749A (en) * | 1989-01-31 | 1990-08-09 | Sumitomo Light Metal Ind Ltd | Aluminum foil for electrolytic capacitor cathode and its production |
JP2803762B2 (en) * | 1990-06-30 | 1998-09-24 | 日本製箔株式会社 | Manufacturing method of aluminum foil for electrolytic capacitor |
JPH04192314A (en) * | 1990-11-26 | 1992-07-10 | Toshiba Corp | Superconducting magnet |
JP3458146B2 (en) * | 1993-03-10 | 2003-10-20 | 独立行政法人物質・材料研究機構 | Aluminum-based particle-dispersed composite material and method for producing the same |
US5573861A (en) * | 1993-07-06 | 1996-11-12 | Sumitomo Chemical Co., Ltd. | High purity aluminum conductor used at ultra low temperature |
FR2707420B1 (en) * | 1993-07-07 | 1996-05-15 | Sumitomo Chemical Co | High purity aluminum conductor used at very low temperatures. |
JP3208941B2 (en) * | 1993-08-20 | 2001-09-17 | 住友化学工業株式会社 | Continuous casting method of high purity aluminum alloy |
JP2003031029A (en) * | 2001-07-12 | 2003-01-31 | Fujikura Ltd | Overhead electric wire |
JP3643116B2 (en) * | 2002-06-28 | 2005-04-27 | 住友精密工業株式会社 | Conductive film for movable electric circuit and vibratory gyro |
JP2006179881A (en) * | 2004-11-24 | 2006-07-06 | Tosoh Corp | Wiring, electrode, and sputtering target |
JP5086592B2 (en) * | 2006-09-25 | 2012-11-28 | 住友化学株式会社 | Cold work material |
-
2006
- 2006-10-06 JP JP2006274749A patent/JP5086598B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007070733A (en) | 2007-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5086598B2 (en) | Cold work material | |
JP5086592B2 (en) | Cold work material | |
CN102892908B (en) | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device | |
EP3009223B1 (en) | Nickel brazing material having excellent corrosion resistance | |
JP6860768B2 (en) | Manufacturing method of aluminum alloy for casting, aluminum alloy member, and aluminum alloy member | |
KR102318304B1 (en) | Reduction of regular growth of soft magnetic FE-CO alloys | |
CN108642317B (en) | Conductive elastic Cu-Ti-Mg alloy and preparation method thereof | |
JP6984799B1 (en) | Pure copper plate, copper / ceramic joint, insulated circuit board | |
US10954586B2 (en) | Copper alloy and method for producing same | |
US11851735B2 (en) | High-strength and ductile multicomponent precision resistance alloys and fabrication methods thereof | |
JP2017179502A (en) | Copper alloy sheet excellent in strength and conductivity | |
JP4756974B2 (en) | Ni3 (Si, Ti) -based foil and method for producing the same | |
JP5274981B2 (en) | Cryogenic heat transfer material | |
JP5098753B2 (en) | Manufacturing method of ultra-high purity aluminum high rolled material | |
US20160312340A1 (en) | Copper alloy | |
JP5098751B2 (en) | Manufacturing method of ultra-high purity aluminum high rolled material | |
Kang et al. | Microstructures and shape memory characteristics of a Ti–20Ni–30Cu (at.%) alloy strip fabricated by the melt overflow process | |
JP5098750B2 (en) | Method for producing high-purity aluminum rolled material | |
CN108467984A (en) | Five yuan of high-entropy alloy Cu of one kind0.5FeNiVAlxAnd its intensity hardness method for improving | |
US20120273181A1 (en) | Low temperature thermal conductor | |
JP5929251B2 (en) | Iron alloy | |
JP5688744B2 (en) | High strength and high toughness copper alloy forging | |
JP3951921B2 (en) | Manufacturing method of aluminum alloy processed material of 58.1IACS% or more | |
JP2017179503A (en) | Copper alloy sheet excellent in strength and conductivity | |
JPH06279894A (en) | Copper alloy excellent in strength and electrical conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5086598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |