JP5084069B2 - Induction heating apparatus and induction heating method - Google Patents
Induction heating apparatus and induction heating method Download PDFInfo
- Publication number
- JP5084069B2 JP5084069B2 JP2012152412A JP2012152412A JP5084069B2 JP 5084069 B2 JP5084069 B2 JP 5084069B2 JP 2012152412 A JP2012152412 A JP 2012152412A JP 2012152412 A JP2012152412 A JP 2012152412A JP 5084069 B2 JP5084069 B2 JP 5084069B2
- Authority
- JP
- Japan
- Prior art keywords
- heating coil
- subordinate
- coil
- induction
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010438 heat treatment Methods 0.000 title claims description 268
- 230000006698 induction Effects 0.000 title claims description 91
- 238000000034 method Methods 0.000 title claims description 17
- 230000008878 coupling Effects 0.000 claims description 23
- 238000010168 coupling process Methods 0.000 claims description 23
- 238000005859 coupling reaction Methods 0.000 claims description 23
- 230000004907 flux Effects 0.000 claims description 21
- 230000001419 dependent effect Effects 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 26
- 238000004804 winding Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- General Induction Heating (AREA)
Description
本発明は、誘導加熱装置、および方法に係り、特に大径のウエハ等の基板を処理する場合に、被加熱物の温度制御を行う際に好適な半導体基板熱処理用の装置および方法に関する。 The present invention relates to an induction heating apparatus and method, and more particularly to an apparatus and method for semiconductor substrate heat treatment suitable for controlling the temperature of an object to be heated when a substrate such as a large-diameter wafer is processed.
誘導加熱を利用して半導体ウエハ等の基板を熱処理する装置としては、特許文献1や特許文献2に開示されているようなものが知られている。特許文献1に開示されている熱処理装置は図5に示すように、バッチ型の熱処理装置であり、多段積みされたウエハ2を石英のプロセスチューブ3に入れ、このプロセスチューブ3の外周にグラファイト等の導電性部材で形成した加熱塔4を配置し、その外周にソレノイド状の誘導加熱コイル5を配置するというものである。このような構成の熱処理装置1によれば、誘導加熱コイル5によって生じた磁束の影響により加熱塔4が加熱され、加熱塔4からの輻射熱によりプロセスチューブ3内に配置されたウエハ2が加熱される。 As an apparatus for heat-treating a substrate such as a semiconductor wafer using induction heating, those disclosed in Patent Document 1 and Patent Document 2 are known. As shown in FIG. 5, the heat treatment apparatus disclosed in Patent Document 1 is a batch-type heat treatment apparatus, in which wafers 2 stacked in multiple stages are placed in a quartz process tube 3, and graphite or the like is placed on the outer periphery of the process tube 3. The heating tower 4 formed of the conductive member is disposed, and the solenoid-like induction heating coil 5 is disposed on the outer periphery thereof. According to the heat treatment apparatus 1 having such a configuration, the heating tower 4 is heated by the influence of the magnetic flux generated by the induction heating coil 5, and the wafer 2 disposed in the process tube 3 is heated by the radiant heat from the heating tower 4. The
また、特許文献2に開示されている熱処理装置は図6に示すように、枚葉型の熱処理装置であり、同心円状に多分割されたサセプタ7をグラファイト等で形成し、このサセプタ7の上面側にウエハ8を載置、下面側に複数の円環状の誘導加熱コイル9を同心円上に配置しこれら複数の誘導加熱コイル9に対する個別電力制御を可能としたものである。このような構成の熱処理装置6によれば、各誘導加熱コイル9による加熱範囲に位置するサセプタ7と、他のサセプタ7との間の伝熱が抑制されるため、誘導加熱コイル9に対する電力制御によるウエハ8の温度分布制御性が向上する。 Further, as shown in FIG. 6, the heat treatment apparatus disclosed in Patent Document 2 is a single-wafer type heat treatment apparatus, in which a susceptor 7 divided into concentric circles is formed of graphite or the like, and the upper surface of the susceptor 7 is A wafer 8 is placed on the side, and a plurality of annular induction heating coils 9 are arranged concentrically on the lower surface side to enable individual power control for the plurality of induction heating coils 9. According to the heat treatment apparatus 6 having such a configuration, since heat transfer between the susceptor 7 positioned in the heating range by each induction heating coil 9 and the other susceptor 7 is suppressed, power control for the induction heating coil 9 is performed. This improves the temperature distribution controllability of the wafer 8.
また、特許文献2においては、ウエハ8を載置するサセプタ7を分割する事で発熱分布を良好に制御する旨記載されているが、特許文献3には、サセプタの断面形状を工夫することで、発熱分布を改善することが開示されている。特許文献3に開示されている熱処理装置は、円環状に形成される誘導加熱コイルの径が小さい内側において発熱量が小さくなる事に注目し、サセプタにおける内側部分の厚みを厚くすることで、外側部分よりも内側部分の方が誘導加熱コイルからの距離が近くなるようにし、発熱量の増大と熱容量の増大を図ったものである。 In Patent Document 2, it is described that the distribution of heat generation is favorably controlled by dividing the susceptor 7 on which the wafer 8 is placed. However, in Patent Document 3, the cross-sectional shape of the susceptor is devised. It is disclosed to improve the heat generation distribution. The heat treatment apparatus disclosed in Patent Document 3 pays attention to the fact that the heat generation amount is reduced on the inner side where the diameter of the induction heating coil formed in an annular shape is small, and by increasing the thickness of the inner part of the susceptor, The inner part is closer to the induction heating coil than the part, and the amount of heat generation and the heat capacity are increased.
しかし、上記のような構成の熱処理装置ではいずれも、グラファイトに対して磁束が垂直に作用することとなる。このため、被加熱物としてのウエハ表面に金属膜等を形成していた場合にはウエハが直接加熱されてしまう場合があり、温度分布制御が乱れることが生じ得る。 However, in any of the heat treatment apparatuses configured as described above, the magnetic flux acts perpendicularly to the graphite. For this reason, when a metal film or the like is formed on the surface of the wafer as an object to be heated, the wafer may be directly heated, and temperature distribution control may be disturbed.
これに対し、グラファイト(サセプタ)に対して水平方向の磁束を与えることで加熱を促すようにした場合、多数のサセプタを積層配置して加熱することが困難となる。これを解消するために誘導加熱コイルを複数、積層方向(垂直方向)に近接配置した場合には、誘導加熱コイル間における相互誘導の影響により、加熱制御が不安定になるといった問題が生ずる。 On the other hand, when heating is promoted by applying a horizontal magnetic flux to graphite (susceptor), it becomes difficult to heat a large number of susceptors in a stacked arrangement. In order to solve this problem, when a plurality of induction heating coils are arranged close to each other in the stacking direction (vertical direction), there arises a problem that heating control becomes unstable due to the influence of mutual induction between the induction heating coils.
そこで本発明では、上記問題点を解消し、サセプタに対して水平磁束を与えつつ誘導加熱コイルを垂直方向に複数配置した場合であっても、誘導加熱コイル間における相互誘導の影響を抑制し、良好な加熱制御を可能とすることのできる誘導加熱装置、および方法を提供することを目的とする。 Therefore, in the present invention, the above problems are solved, and even when a plurality of induction heating coils are arranged in the vertical direction while applying a horizontal magnetic flux to the susceptor, the influence of mutual induction between the induction heating coils is suppressed, An object of the present invention is to provide an induction heating apparatus and method capable of enabling good heating control.
上記目的を達成するための本発明に係る誘導加熱装置は、コアの端面から放出する磁束で誘導加熱する、コアを有する3組の誘導加熱コイルと、前記誘導加熱コイルのそれぞれに接続される3つのインバータとを有し、3組の前記誘導加熱コイルは、前記コアの端面を揃えて積層配置すると共に、その中段を主加熱コイル、上段を上段従属加熱コイル、下段を下段従属加熱コイルと定めて構成する誘導加熱装置であって、前記上段従属加熱コイルのコアには上段従属加熱コイルと磁気結合する別のコイルを設け、前記下段従属加熱コイルのコアには下段従属加熱コイルと磁気結合する別のコイルを設け、前記3つのインバータのうち、第1のインバータと前記上段従属加熱コイルとを接続し、第3のインバータと前記下段従属加熱コイルとを接続し、第2のインバータに対して前記上段従属加熱コイルのコアに設けられた別のコイルと前記下段従属加熱コイルのコアに設けられた別のコイル、および前記主加熱コイルを直列に接続したことを特徴とする。 In order to achieve the above object, an induction heating apparatus according to the present invention includes three sets of induction heating coils having a core, which are induction-heated by a magnetic flux emitted from an end surface of the core, and 3 connected to each of the induction heating coils. The three sets of induction heating coils are laminated with the end surfaces of the cores aligned, and the middle stage is defined as the main heating coil, the upper stage as the upper subordinate heating coil, and the lower stage as the lower subordinate heating coil. The upper subordinate heating coil core is provided with another coil magnetically coupled to the upper subordinate heating coil, and the lower subordinate heating coil core is magnetically coupled to the lower subordinate heating coil. Another coil is provided, and among the three inverters, the first inverter and the upper subordinate heating coil are connected, and the third inverter and the lower subordinate heating coil are connected to each other. Subsequently, another coil provided in the core of the upper subordinate heating coil, another coil provided in the core of the lower subordinate heating coil, and the main heating coil are connected in series to the second inverter. It is characterized by that.
また、上記目的を達成するための誘導加熱方法は、コアの端面から放出する磁束で誘導加熱する、コアを有する3組の誘導加熱コイルと、前記誘導加熱コイルのそれぞれに接続される3つのインバータとを有し、3組の前記誘導加熱コイルは、前記コアの端面を揃えて積層配置すると共に、その中段を主加熱コイル、上段を上段従属加熱コイル、下段を下段従属加熱コイルと定めて構成する誘導加熱装置を用いた誘導加熱方法であって、前記主加熱コイルと前記上段従属加熱コイル及び前記下段従属加熱コイルの結合インダクタンスに対して、逆結合インダクタンスを発生するように、前記上段従属加熱コイル用コアに設けられた別のコイル及び前記下段従属加熱コイル用コアに設けられた別のコイルを接続し、前記インバータを運転することを特徴とする。 In addition, an induction heating method for achieving the above object includes three sets of induction heating coils having a core and three inverters connected to each of the induction heating coils, which are induction heated by a magnetic flux emitted from an end face of the core. The three sets of induction heating coils are arranged so that the end faces of the core are aligned, and the middle stage is defined as the main heating coil, the upper stage as the upper subordinate heating coil, and the lower stage as the lower subordinate heating coil. An induction heating method using an induction heating device, wherein the upper stage dependent heating is performed such that a reverse coupling inductance is generated with respect to a coupling inductance of the main heating coil, the upper stage dependent heating coil, and the lower stage dependent heating coil. Connect another coil provided in the coil core and another coil provided in the lower subordinate heating coil core to operate the inverter. The features.
さらに、上記のような誘導加熱方法では、前記第1のインバータ、前記第2のインバータ、および前記第3のインバータからそれぞれの加熱コイルへ給電する電流を同期させることが望ましい。 Furthermore, in the induction heating method as described above, it is desirable to synchronize the current supplied to the heating coils from the first inverter, the second inverter, and the third inverter.
このような特徴を有する誘導加熱方法によれば、隣接配置した主加熱コイルと上段従属加熱コイル、下段従属加熱コイル間における相互誘導の影響を回避して電力制御(ゾーンコントロール制御)を行うことが可能となる。 According to the induction heating method having such characteristics, it is possible to perform power control (zone control control) while avoiding the influence of mutual induction between the adjacently arranged main heating coil, upper subordinate heating coil, and lower subordinate heating coil. It becomes possible.
上記のような特徴を有する誘導加熱装置、および方法によれば、サセプタに対して水平磁束を与えつつ誘導加熱コイルを垂直方向に複数配置した場合であっても、誘導加熱コイル間における相互誘導の影響を抑制することができ、良好な加熱制御を可能とする。 According to the induction heating apparatus and method having the above-described features, even when a plurality of induction heating coils are arranged in the vertical direction while applying a horizontal magnetic flux to the susceptor, mutual induction between the induction heating coils is achieved. The influence can be suppressed, and good heating control is possible.
以下、本発明の誘導加熱装置、および誘導加熱方法に係る実施の形態について、図面を参照して詳細に説明する。まず、図1、2を参照して、第1の実施形態に係る誘導加熱装置(以下、単に熱処理装置と称す)の概要構成について説明する。なお、図1(A)は熱処理装置の平面構成を示すブロック図であり、図1(B)は熱処理装置の側面構成を示すブロック図である。また、図2は、電源部の構成を説明するための図である。 Hereinafter, embodiments of the induction heating apparatus and the induction heating method of the present invention will be described in detail with reference to the drawings. First, a schematic configuration of an induction heating apparatus (hereinafter simply referred to as a heat treatment apparatus) according to the first embodiment will be described with reference to FIGS. 1A is a block diagram illustrating a planar configuration of the heat treatment apparatus, and FIG. 1B is a block diagram illustrating a side configuration of the heat treatment apparatus. FIG. 2 is a diagram for explaining the configuration of the power supply unit.
本実施形態に係る熱処理装置10は、被加熱物としてのウエハ54と発熱体としてのサセプタ52を多段に重ねて熱処理を行うバッチ式のものとする。
熱処理装置10は、ウエハ54と水平配置されたサセプタ52を垂直方向に多段に積層配置したボート50と、サセプタ52を加熱する誘導加熱コイル(詳細を後述する主加熱コイル30、従属加熱コイル32,34、逆結合コイル36,38)、および誘導加熱コイルに電力を供給する電源部12とを基本として構成される。
The heat treatment apparatus 10 according to the present embodiment is of a batch type in which heat treatment is performed by stacking a wafer 54 as an object to be heated and a susceptor 52 as a heating element in multiple stages.
The heat treatment apparatus 10 includes a boat 50 in which wafers 54 and horizontally arranged susceptors 52 are stacked in multiple stages in the vertical direction, and an induction heating coil that heats the susceptor 52 (the main heating coil 30, the subordinate heating coil 32, which will be described in detail later) 34, the reverse coupling coils 36 and 38), and the power source 12 that supplies power to the induction heating coil.
サセプタ52は、導電性部材で構成されれば良く、例えばグラファイト、SiC、SiCコートグラファイト、および耐熱金属等により構成すれば良い。本実施形態におけるサセプタ52は、平面形状を円形としている。 The susceptor 52 may be made of a conductive member, and may be made of, for example, graphite, SiC, SiC-coated graphite, refractory metal, or the like. The susceptor 52 in the present embodiment has a circular planar shape.
ボート50を構成するサセプタ52は、それぞれ支持部材56を介して積層配置される。なお、支持部材56は電磁誘導による加熱の影響を受けない石英などで構成すると良い。 The susceptors 52 constituting the boat 50 are stacked and arranged via support members 56, respectively. The support member 56 is preferably made of quartz or the like that is not affected by heating by electromagnetic induction.
また、本実施形態におけるボート50は、図示しないモータを備えた回転テーブル58に載置されており、熱処理工程中のサセプタ52及びウエハ54を回転させることができる。このような構成とすることにより、サセプタ52を加熱する際の発熱分布の偏りを抑制することができる。また、詳細を後述するように、加熱源である誘導加熱コイルの配置形態をサセプタ52の中心から偏らせた場合であっても、サセプタ52を均一加熱することが可能となる。 Further, the boat 50 in this embodiment is placed on a turntable 58 having a motor (not shown), and can rotate the susceptor 52 and the wafer 54 during the heat treatment process. By adopting such a configuration, it is possible to suppress an uneven distribution of heat generation when the susceptor 52 is heated. Further, as will be described in detail later, even when the arrangement of the induction heating coil as a heating source is biased from the center of the susceptor 52, the susceptor 52 can be uniformly heated.
実施形態に係る誘導加熱コイルは、1つの主加熱コイル30と、主加熱コイル30に対して電磁的に結合するように隣接配置された2つの従属加熱コイル32,34から成り、それぞれ、サセプタ52の外周側における円周上に配置されている。主加熱コイル30と従属加熱コイル32,34はそれぞれ、サセプタ52の積層方向と同一方向に隣接して段積みされている。また、実施形態に係る主加熱コイル30には、2つの従属加熱コイル32,34に対して電磁的に逆結合する逆結合コイル36,38が備えられる。ここで、電磁的結合とは、例えば、主加熱コイル30に供給する電流の変化に基づいて、従属加熱コイル32,34に、主加熱コイル30によって生ずる磁束を打ち消す方向の誘導起電力を生じさせるような、相互誘導関係にある状態、すなわち相互インダクタンスを生じさせる状態をいう。また、電磁的に逆結合とは、主加熱コイル30を一次巻線(一次コイル)、従属加熱コイル32,34をそれぞれ二次巻線(二次コイル)として見た場合に、主加熱コイル30と従属加熱コイル32,34間との間に生ずる相互インダクタンスと逆極性の相互インダクタンスを生じさせる結合状態をいう。 The induction heating coil according to the embodiment includes one main heating coil 30 and two subordinate heating coils 32 and 34 arranged adjacent to each other so as to be electromagnetically coupled to the main heating coil 30. It is arrange | positioned on the periphery in the outer peripheral side. The main heating coil 30 and the subordinate heating coils 32 and 34 are stacked adjacent to each other in the same direction as the stacking direction of the susceptor 52. In addition, the main heating coil 30 according to the embodiment includes reverse coupling coils 36 and 38 that electromagnetically reversely couple the two subordinate heating coils 32 and 34. Here, the electromagnetic coupling causes, for example, an induced electromotive force in a direction to cancel the magnetic flux generated by the main heating coil 30 to the subordinate heating coils 32 and 34 based on a change in current supplied to the main heating coil 30. Such a state that is in a mutual induction relationship, that is, a state that causes mutual inductance. Electromagnetic reverse coupling refers to the main heating coil 30 when the main heating coil 30 is viewed as a primary winding (primary coil) and the subordinate heating coils 32 and 34 are viewed as secondary windings (secondary coils). And the sub-heating coils 32 and 34 are coupled to each other to generate a mutual inductance having a polarity opposite to that of the mutual inductance.
各誘導加熱コイル(主加熱コイル30、および従属加熱コイル32,34)は、ボート50の外周側に配置されたコア40に銅線を巻回されて構成される。コア40は、フェライト系セラミックなどにより構成すると良く、粘土状の原料を形状形成した上で焼成して成るようにすれば良い。このような部材により構成すれば、形状形成を自由に行うことが可能となるからである。また、コア40を用いることにより、誘導加熱コイル単体の場合に比べて磁束の拡散を防止することができ、磁束を集中させた高効率な誘導加熱を実現することができる。 Each induction heating coil (the main heating coil 30 and the subordinate heating coils 32 and 34) is configured by winding a copper wire around a core 40 disposed on the outer peripheral side of the boat 50. The core 40 may be made of a ferrite ceramic or the like, and may be formed by firing after forming a clay-like raw material. This is because it is possible to freely form a shape by using such a member. Further, by using the core 40, the diffusion of magnetic flux can be prevented compared to the case of the induction heating coil alone, and highly efficient induction heating with concentrated magnetic flux can be realized.
本実施形態では、主加熱コイル30と従属加熱コイル32,34のコア40に対する巻回方向は同一としている。また、逆結合コイル36,38は、従属加熱コイル32,34を先端側(サセプタ52配置側)に配置したコア40の後端側に、巻回方向を従属加熱コイル32,34と逆にした状態で配置される。このような構成とすることにより、主加熱コイル30と従属加熱コイル32,34に供給する電流の向きを一致させることで、主加熱コイル30と従属加熱コイル32,34との間に生ずる相互インダクタンスと、逆結合コイル36,38と従属加熱コイル32,34との間に生ずる相互インダクタンスとが逆極性となり、相互誘導電力の影響を互いに打ち消しあうこととなる。このため、互いに隣接配置された主加熱コイル30と従属加熱コイル32,34との間で生ずる相互誘導の影響が小さくなり、個別の電力制御性を向上させることができる。なお、従属加熱コイル32,34と、逆結合コイル36,38との巻回割合は、7:1程度とすることが望ましい。なおこの場合、主加熱コイル30の巻回数は、従属加熱コイル32,34の巻回数と合わせるようにすると良い。 In this embodiment, the winding directions of the main heating coil 30 and the subordinate heating coils 32 and 34 around the core 40 are the same. The reverse coupling coils 36 and 38 have the winding direction opposite to that of the subordinate heating coils 32 and 34 on the rear end side of the core 40 where the subordinate heating coils 32 and 34 are arranged on the front end side (susceptor 52 arrangement side). Arranged in a state. By adopting such a configuration, the mutual inductance generated between the main heating coil 30 and the subordinate heating coils 32, 34 by matching the directions of the currents supplied to the main heating coil 30 and the subordinate heating coils 32, 34. Then, the mutual inductance generated between the reverse coupling coils 36 and 38 and the subordinate heating coils 32 and 34 has a reverse polarity, and the influence of the mutual induction power cancels each other. For this reason, the influence of the mutual induction produced between the main heating coil 30 and the subordinate heating coils 32 and 34 arranged adjacent to each other is reduced, and individual power controllability can be improved. The winding ratio between the subordinate heating coils 32 and 34 and the reverse coupling coils 36 and 38 is preferably about 7: 1. In this case, the number of turns of the main heating coil 30 is preferably matched with the number of turns of the subordinate heating coils 32 and 34.
例えば図2に示す形態の場合において、従属加熱コイル32に投入される電流をI1、電流の電圧をV1とし、主加熱コイル30に投入される電流をI2、電流の電圧をV2とし、従属加熱コイル34に投入される電流をI3、電流の電圧をV3としたとき、逆結合コイル36と従属加熱コイル32との間に生ずる相互インダクタンス+M12(+M21)と従属加熱コイル32と主加熱コイル30との間に生ずる相互インダクタンス−M12(−M21)とが等しく、逆結合コイル38と従属加熱コイル34との間に生ずる相互インダクタンス+M23(+M32)と、従属加熱コイル34と主加熱コイル30との間に生ずる相互インダクタンス−M23(−M32)とが等しい場合には、数式1〜3が成り立つこととなる。 For example, in the case of the configuration shown in FIG. 2, the current input to the subordinate heating coil 32 is I 1 , the current voltage is V 1 , the current input to the main heating coil 30 is I 2 , and the current voltage is V 2. And the mutual inductance + M 12 (+ M 21 ) generated between the reverse coupling coil 36 and the subordinate heating coil 32 and the subordinate heating when the current input to the subordinate heating coil 34 is I 3 and the voltage of the current is V 3. The mutual inductance −M 12 (−M 21 ) generated between the coil 32 and the main heating coil 30 is equal, and the mutual inductance + M 23 (+ M 32 ) generated between the reverse coupling coil 38 and the subordinate heating coil 34, When the mutual inductance −M 23 (−M 32 ) generated between the subordinate heating coil 34 and the main heating coil 30 is equal, Expressions 1 to 3 are established. The
ここで、L1は従属加熱コイル32の自己インダクタンスであり、L2は主加熱コイル30の自己インダクタンス、L3は従属加熱コイル34の自己インダクタンスである。 Here, L 1 is the self-inductance of the subordinate heating coil 32, L 2 is the self-inductance of the main heating coil 30, and L 3 is the self-inductance of the subordinate heating coil 34.
相互インダクタンスMは、 The mutual inductance M is
と示すことができる(L1、L2は、一次巻線、二次巻線における自己インダクタンス)。なお、自己インダクタンスLは、数式5で求めることができる。
(L1 and L2 are self-inductances in the primary and secondary windings). Note that the self-inductance L can be obtained by Equation 5.
ここで、Nはコイルの巻回数、φは磁束(wb)を示し、Iは電流値を示す。上述したように、主加熱コイル30と逆結合コイル36,38とでは、コイルの巻回数が異なる。このため、単位電流(dI)あたりの磁束(dφ)が等しい場合であっても、自己インダクタンスLの値は異なることとなる。よって、従属加熱コイル32,34との間に生ずる相互インダクタンスMを同一(極性は逆)とするためには、結合係数kを調整する必要がある。結合係数kは、コイル間の距離や配置形態により変化させることができる。よって、主加熱コイル30と従属加熱コイル32,34間における相互インダクタンス−Mに基づいて、逆極性の相互インダクタンス+Mを得るための結合係数kを算出する。逆結合コイル36,38は、算出された結合係数kを得るために、配置形態やコイル間距離を調整された上で配置される。 Here, N represents the number of coil turns, φ represents the magnetic flux (wb), and I represents the current value. As described above, the number of turns of the coil differs between the main heating coil 30 and the reverse coupling coils 36 and 38. For this reason, even if the magnetic flux (dφ) per unit current (dI) is equal, the value of the self-inductance L will be different. Therefore, in order to make the mutual inductance M generated between the subordinate heating coils 32 and 34 the same (the polarities are opposite), it is necessary to adjust the coupling coefficient k. The coupling coefficient k can be changed according to the distance between the coils and the arrangement form. Therefore, based on the mutual inductance −M between the main heating coil 30 and the subordinate heating coils 32 and 34, the coupling coefficient k for obtaining the mutual inductance + M having the reverse polarity is calculated. In order to obtain the calculated coupling coefficient k, the reverse coupling coils 36 and 38 are arranged after adjusting the arrangement form and the distance between the coils.
このような関係が満たされることにより、主加熱コイル30と従属加熱コイル32,34との間における相互誘導による相互インダクタンスを含む項は相殺されることとなり、隣接配置される誘導加熱コイル間における相互誘導の影響を回避することができる。 By satisfying such a relationship, the term including the mutual inductance due to mutual induction between the main heating coil 30 and the subordinate heating coils 32 and 34 is canceled, and mutual induction between the adjacent induction heating coils is cancelled. The influence of induction can be avoided.
主加熱コイル30や従属加熱コイル32,34を巻回させるコア40はその中心軸が、サセプタ52におけるウエハ54の載置面と平行(載置状態における中心軸と直行する方向)となるように配置される。磁極面となるコア40の先端面は、サセプタ52に対向することとなる。このような構成から、主加熱コイル30や従属加熱コイル32,34が巻回された磁極面からは、サセプタ52のウエハ54載置面に平行な方向に交流磁束が生ずることとなる。 The core 40 around which the main heating coil 30 and the subordinate heating coils 32 and 34 are wound has a central axis parallel to the mounting surface of the wafer 54 in the susceptor 52 (a direction perpendicular to the central axis in the mounting state). Be placed. The leading end surface of the core 40 serving as the magnetic pole surface is opposed to the susceptor 52. With such a configuration, an alternating magnetic flux is generated in a direction parallel to the wafer 54 mounting surface of the susceptor 52 from the magnetic pole surface around which the main heating coil 30 and the subordinate heating coils 32 and 34 are wound.
ここで上述したように、主加熱コイル30を一次巻線、従属加熱コイル32,34を二次巻線とみた場合、両者には投入される電流の向きが同一となるように、詳細を後述するインバータ14a〜14cが接続されている。このため、垂直方向に段積みされた主加熱コイル30と従属加熱コイル32,34は互いに減極性となる。 As described above, when the main heating coil 30 is regarded as a primary winding and the subordinate heating coils 32 and 34 are regarded as secondary windings, the details will be described later so that the directions of the currents applied to both are the same. Inverters 14a to 14c are connected. For this reason, the main heating coil 30 and the subordinate heating coils 32 and 34 stacked in the vertical direction are depolarized from each other.
このような配置関係とされる主加熱コイル30と従属加熱コイル32,34とは図3に示すように、サセプタ52の載置面に対して垂直方向に交わるように放射される磁束の向きが、互いに逆向きとなり相殺される。このため、サセプタ52に載置するウエハ54の表面に金属膜等が形成されていた場合であっても、垂直方向の磁束の影響によりウエハ54が直接加熱される虞が無く、ウエハ54の温度分布がばらつく虞が無い。 As shown in FIG. 3, the main heating coil 30 and the subordinate heating coils 32, 34 having such an arrangement relationship have the direction of the magnetic flux radiated so as to intersect perpendicularly to the mounting surface of the susceptor 52. , They are reversed and cancel each other. Therefore, even when a metal film or the like is formed on the surface of the wafer 54 placed on the susceptor 52, there is no possibility that the wafer 54 is directly heated by the influence of the magnetic flux in the vertical direction, and the temperature of the wafer 54 is increased. There is no risk of variations in distribution.
また、主加熱コイル30や従属加熱コイル32,34、および逆結合コイル36,38は、内部を中空とした管状部材(例えば銅管)とすることが望ましい。熱処理中に銅管内部に冷却部材(例えば冷却水)を挿通させることにより、主加熱コイル30や従属加熱コイル32,34、および逆結合コイル36,38自体の加熱を抑制することが可能となるからである。 Further, the main heating coil 30, the subordinate heating coils 32 and 34, and the reverse coupling coils 36 and 38 are preferably tubular members (for example, copper pipes) having a hollow inside. By inserting a cooling member (for example, cooling water) into the copper tube during the heat treatment, it becomes possible to suppress heating of the main heating coil 30, the subordinate heating coils 32 and 34, and the reverse coupling coils 36 and 38 themselves. Because.
上述したように、主加熱コイル30と従属加熱コイル32,34はそれぞれ、ウエハ54を載置したサセプタ52を垂直方向に積層させたボート50に沿って垂直方向に、隣接させて配置されている。このような構成とすることにより、より多くのサセプタ52、およびウエハ54を一度に加熱することが可能となり、ウエハ54の熱処理を効率的に行うことが可能となる。また、積層配置した誘導加熱コイルに対する電力制御をそれぞれ個別に行うようにすれば、ボート50内に積層配置された複数のサセプタ52における垂直方向の温度分布を制御することができ、サセプタ52間の温度ばらつきを抑制することも可能となる。 As described above, the main heating coil 30 and the subordinate heating coils 32 and 34 are arranged adjacent to each other in the vertical direction along the boat 50 in which the susceptors 52 on which the wafers 54 are stacked are stacked in the vertical direction. . By adopting such a configuration, it becomes possible to heat more susceptors 52 and wafers 54 at a time, and heat treatment of the wafers 54 can be performed efficiently. Further, if power control is performed individually on the stacked induction heating coils, the temperature distribution in the vertical direction in the plurality of susceptors 52 stacked in the boat 50 can be controlled. It is also possible to suppress temperature variations.
上記のように構成される主加熱コイル30、および従属加熱コイル32,34は、単一の電源部12に接続される。電源部12には、インバータ14a〜14cと、チョッパ16a〜16c、コンバータ18、三相交流電源20、およびゾーンコントロール手段22が設けられ、各誘導加熱コイル(主加熱コイル30、および従属加熱コイル32,34)に供給する電流や電圧、および周波数等を調整することができるように構成されている。図2に示す実施形態の場合、インバータ14a〜14cとして直列共振型のものを採用している。このため、周波数切替を簡易に行うための構成として、共振コンデンサ26を並列に接続し、共振周波数に合わせて、スイッチ28により、容量の増減を図るようにすると良い。 The main heating coil 30 and the subordinate heating coils 32 and 34 configured as described above are connected to a single power supply unit 12. The power supply unit 12 is provided with inverters 14a to 14c, choppers 16a to 16c, a converter 18, a three-phase AC power source 20, and zone control means 22, and each induction heating coil (main heating coil 30 and subordinate heating coil 32). , 34) can be adjusted so that the current, voltage, frequency, and the like to be supplied can be adjusted. In the case of the embodiment shown in FIG. 2, inverters 14a to 14c employ series resonance type inverters. Therefore, as a configuration for easily switching the frequency, it is preferable to connect the resonance capacitor 26 in parallel and increase or decrease the capacitance by the switch 28 in accordance with the resonance frequency.
また、実施形態に係る熱処理装置10は、各誘導加熱コイル(主加熱コイル30、および従属加熱コイル32)と各インバータ14a〜14cとの間に、トランス24を配置している。 Moreover, the heat processing apparatus 10 which concerns on embodiment has arrange | positioned the transformer 24 between each induction heating coil (the main heating coil 30 and the subordinate heating coil 32) and each inverter 14a-14c.
ゾーンコントロール手段22は、隣接配置された主加熱コイル30と従属加熱コイル32,34間に生ずる相互誘導の影響を回避しつつ、主加熱コイル30と各従属加熱コイル32,34に対する電力制御を行う役割を担う。 The zone control means 22 performs power control on the main heating coil 30 and each of the subordinate heating coils 32 and 34 while avoiding the influence of mutual induction generated between the adjacent main heating coil 30 and the subordinate heating coils 32 and 34. Take a role.
積層して隣接配置された主加熱コイル30と従属加熱コイル32,34とは、各々が個別に稼動されるため、主加熱コイル30と従属加熱コイル32、または主加熱コイル30と従属加熱コイル34において相互誘導が生じ、個別の電力制御に悪影響を与える事がある。このためゾーンコントロール手段22は、検出された電流の周波数や波形(電流波形)に基づいて、隣接配置された主加熱コイル30や従属加熱コイル32,34に投入する電流の周波数を一致させ、かつ電流波形の位相を同期(位相差を0または位相差を0に近似させる事)、あるいは所定の位相差を保つように制御することで、隣接配置した主加熱コイル30と従属加熱コイル32,34間における相互誘導の影響を回避した電力制御(ゾーンコントロール制御)を可能としている。 Since the main heating coil 30 and the subordinate heating coils 32, 34 arranged adjacent to each other are operated individually, the main heating coil 30 and the subordinate heating coil 32, or the main heating coil 30 and the subordinate heating coil 34 are arranged. Mutual induction may occur in, which may adversely affect individual power control. For this reason, the zone control means 22 matches the frequency of the current applied to the adjacent main heating coil 30 and the subordinate heating coils 32 and 34 based on the detected current frequency and waveform (current waveform), and The main heating coil 30 and the subordinate heating coils 32 and 34 arranged adjacent to each other are controlled by synchronizing the phase of the current waveform (the phase difference is 0 or the phase difference is approximated to 0), or by controlling to maintain a predetermined phase difference. It enables power control (zone control control) that avoids the influence of mutual induction between them.
このような制御は例えば、各誘導加熱コイル(主加熱コイル30および従属加熱コイル32,34)に投入されている電流値や電流の周波数、および電圧値等を検出し、これをゾーンコントロール手段22に入力する。ゾーンコントロール手段22では、主加熱コイル30に投入されている電流波形と、従属加熱コイル32,34に投入されている電流波形との位相を検出し、これを同期、あるいは所定の位相差を保つように制御するため、インバータ14b、あるいはインバータ14cに対して従属加熱コイル32、あるいは従属加熱コイル34に投入する電流の周波数を瞬時的に変化させる信号を出力することで成される。 Such control includes, for example, detecting the current value, the frequency of the current, the voltage value, and the like applied to each induction heating coil (the main heating coil 30 and the subordinate heating coils 32 and 34), and this is detected by the zone control means 22. To enter. The zone control means 22 detects the phase between the current waveform input to the main heating coil 30 and the current waveform input to the subordinate heating coils 32 and 34, and synchronizes them or maintains a predetermined phase difference. For this control, the inverter 14b or the inverter 14c is configured to output a signal that instantaneously changes the frequency of the current applied to the subordinate heating coil 32 or the subordinate heating coil 34.
また、電力制御に関しては、電源部12に設けられた図示しない記憶手段(メモリ)に記憶された制御マップ(垂直温度分布制御マップ)に基づいて、熱処理開始からの経過時間単位に変化させる信号をインバータ14a〜14cや、チョッパ16a〜16cに出力したり、図示しない温度計測手段からフィードバックされるサセプタ52の温度に基づいて、所望する垂直温度分布を得るための電力制御を行うようにすれば良い。なお、制御マップは、熱処理開始から熱処理終了に至るまでの積層配置されたサセプタ52間の温度変化を補正し、任意の温度分布(例えば均一な温度分布)を得るために主加熱コイル30および従属加熱コイル32,34に与える電力値を、熱処理開始からの経過時間と共に記録したものであれば良い。 Regarding power control, a signal to be changed in units of elapsed time from the start of the heat treatment based on a control map (vertical temperature distribution control map) stored in a storage means (memory) (not shown) provided in the power supply unit 12. Power control for obtaining a desired vertical temperature distribution may be performed based on the temperature of the susceptor 52 that is output to the inverters 14a to 14c and the choppers 16a to 16c or fed back from temperature measurement means (not shown). . The control map corrects the temperature change between the stacked susceptors 52 from the start of the heat treatment to the end of the heat treatment, and obtains an arbitrary temperature distribution (for example, a uniform temperature distribution). What is necessary is just to have recorded the electric power value given to the heating coils 32 and 34 with the elapsed time from the heat processing start.
このようにして電源部12では、ゾーンコントロール手段22からの信号に基づいて従属加熱コイル32,34に投入する電流の周波数を瞬時的に調整し、電流波形の位相制御を実施すると共に、各誘導加熱コイル間における電力制御を実施することで、ボート50内における垂直方向の温度分布を制御することができる。 In this way, the power supply unit 12 instantaneously adjusts the frequency of the current to be applied to the subordinate heating coils 32 and 34 based on the signal from the zone control means 22 and performs phase control of the current waveform, and each induction. By performing power control between the heating coils, the temperature distribution in the vertical direction in the boat 50 can be controlled.
また、実施形態に係る熱処理装置10では、従属加熱コイル32,34に対して磁気的に逆結合する逆結合コイル36,38を設けたことにより、主加熱コイル30と従属加熱コイル32,34間における相互誘導の影響を、あらかじめ抑制することができる。このため、ゾーンコントロール手段22により回避する相互誘導の影響が小さくなり、主加熱コイル30、および従属加熱コイル32,34に対する電力制御の制御性を向上させることができる。 Further, in the heat treatment apparatus 10 according to the embodiment, by providing the reverse coupling coils 36 and 38 that are magnetically reversely coupled to the subordinate heating coils 32 and 34, the main heating coil 30 and the subordinate heating coils 32 and 34 are arranged. The influence of mutual induction in can be suppressed in advance. For this reason, the influence of mutual induction avoided by the zone control means 22 is reduced, and the controllability of power control for the main heating coil 30 and the subordinate heating coils 32 and 34 can be improved.
また、上記のような構成の熱処理装置10によれば、ウエハ54の表面に金属膜等の導電性部材が形成されていた場合であっても、当該金属膜が発熱し、ウエハ54の温度分布が乱れるといった虞が無い。 Further, according to the heat treatment apparatus 10 configured as described above, even when a conductive member such as a metal film is formed on the surface of the wafer 54, the metal film generates heat, and the temperature distribution of the wafer 54. There is no danger of being disturbed.
次に、本発明の熱処理装置に係る第2の実施形態について、図4を参照して説明する。本実施形態に係る熱処理装置の殆どの構成は、上述した第1の実施形態に係る熱処理装置と同様である。よって、その構成を同一とする箇所には、図面に100を足した符号を付して、その詳細な説明は省略することとする。 Next, a second embodiment according to the heat treatment apparatus of the present invention will be described with reference to FIG. Most of the configuration of the heat treatment apparatus according to this embodiment is the same as that of the heat treatment apparatus according to the first embodiment described above. Therefore, portions having the same configuration are denoted by reference numerals obtained by adding 100 to the drawings, and detailed description thereof will be omitted.
図4(A)は、第2の実施形態に係る熱処理装置110における平面構成を示すブロック図であり、図4(B)は、本実施形態に係る熱処理装置110に用いられるコアの平面構成を示すブロック図である。なお、同図においては、電源部の記載を省略しているが、上記実施形態と同様な構成を持った電源部が接続されているものとする。 FIG. 4A is a block diagram illustrating a planar configuration of the heat treatment apparatus 110 according to the second embodiment, and FIG. 4B illustrates a planar configuration of a core used in the heat treatment apparatus 110 according to the present embodiment. FIG. In addition, in the same figure, although the description of a power supply part is abbreviate | omitted, the power supply part with the structure similar to the said embodiment shall be connected.
本実施形態に係る熱処理装置110は、第1の実施形態に係る従属加熱コイル32、主加熱コイル30、および従属加熱コイル34に相当する誘導加熱コイルをそれぞれ複数設けるようにした点を特徴としている(図4においては、従属加熱コイル132a,132bのみを表示している:以下、説明を簡単化するために、単に誘導加熱コイル132a,132bと称す)。 The heat treatment apparatus 110 according to the present embodiment is characterized in that a plurality of induction heating coils corresponding to the subordinate heating coil 32, the main heating coil 30, and the subordinate heating coil 34 according to the first embodiment are provided. (In FIG. 4, only the subordinate heating coils 132a and 132b are displayed. Hereinafter, in order to simplify the description, they are simply referred to as induction heating coils 132a and 132b).
サセプタ152の円周方向に沿った方向に、複数の誘導加熱コイル132a,132bを配置することにより、水平方向の加熱可能範囲が増え、ウエハ154の面内における温度分布を安定させることが可能となる。 By arranging a plurality of induction heating coils 132a and 132b in the direction along the circumferential direction of the susceptor 152, the horizontal heatable range is increased, and the temperature distribution in the surface of the wafer 154 can be stabilized. Become.
また、実施形態に係る熱処理装置110では、複数(図4に示す形態では2つ)の誘導加熱コイル132a,132bを巻回させるコア140を単一とし、ヨーク141から突出させた磁極141a,141bに、それぞれ誘導加熱コイル132a,132bを巻回させる構成としている。また、本実施形態に係る熱処理装置110では、サセプタ152の円周方向(水平方向)に配置した誘導加熱コイル132a,132bは、電源部(実際には電源部におけるインバータ)に対して並列に接続する構成としている。このような構成とすることにより、並列に配置した誘導加熱コイル132a,132b間においては、相互誘導の影響を考慮する必要が無くなるからである。 Further, in the heat treatment apparatus 110 according to the embodiment, the core 140 around which a plurality of (two in the form shown in FIG. 4) induction heating coils 132 a and 132 b are wound is a single core, and the magnetic poles 141 a and 141 b protrude from the yoke 141. Further, the induction heating coils 132a and 132b are wound respectively. In addition, in the heat treatment apparatus 110 according to the present embodiment, the induction heating coils 132a and 132b arranged in the circumferential direction (horizontal direction) of the susceptor 152 are connected in parallel to the power supply unit (actually an inverter in the power supply unit). It is configured to do. This is because such an arrangement eliminates the need to consider the influence of mutual induction between the induction heating coils 132a and 132b arranged in parallel.
また、各誘導加熱コイル132a,132bは、コア140の磁極141a,141bに対する巻回方向両者により発生する磁束が加極性となるようにする。このような構成とした場合には、発生磁束が破線a〜cで示すような軌跡で生ずることとなり、1つの誘導加熱コイルによって生ずる磁束よりも、サセプタ152の中心側を加熱することが可能となる。 In addition, each induction heating coil 132a, 132b is configured such that the magnetic flux generated by both the winding directions of the core 140 with respect to the magnetic poles 141a, 141b becomes an additional polarity. In such a configuration, the generated magnetic flux is generated along a locus as indicated by broken lines a to c, and the center side of the susceptor 152 can be heated more than the magnetic flux generated by one induction heating coil. Become.
なお、2つの誘導加熱コイル132a,132bは、図示しない切替スイッチにより、単一稼動と相互稼動の選択可能としても良い。このような構成とした場合、稼動させる誘導加熱コイルの組み合わせによりサセプタ152の加熱範囲が変化するため、ウエハ154面内における温度分布制御を行うことが可能となる。 The two induction heating coils 132a and 132b may be selectable between single operation and mutual operation by a changeover switch (not shown). In such a configuration, since the heating range of the susceptor 152 changes depending on the combination of the induction heating coils to be operated, it becomes possible to control the temperature distribution in the wafer 154 plane.
10………半導体基板熱処理装置(熱処理装置)、12………電源部、14a〜14c………インバータ、16a〜16c………チョッパ、18………コンバータ、20………三相交流電源、22………ゾーンコントロール手段、24………トランス、26………共振コンデンサ、28………スイッチ、30………主加熱コイル、32,34………従属加熱コイル、36,38………逆結合コイル、40………コア、50………ボート、52………サセプタ、54………ウエハ、56………支持部材、58………回転テーブル。
DESCRIPTION OF SYMBOLS 10 ......... Semiconductor substrate heat processing apparatus (heat processing apparatus), 12 ......... Power supply part, 14a-14c ......... Inverter, 16a-16c ......... Chopper, 18 ......... Converter, 20 ......... Three-phase AC power supply 22 ......... Zone control means, 24 ......... Transformer, 26 ......... Resonance capacitor, 28 ......... Switch, 30 ......... Main heating coil, 32, 34 ......... Subordinate heating coil, 36,38 ... ...... Reverse coupling coil, 40... Core, 50... Boat, 52... Susceptor 54... Wafer 56.
Claims (3)
前記上段従属加熱コイルのコアには上段従属加熱コイルと磁気結合する別のコイルを設け、
前記下段従属加熱コイルのコアには下段従属加熱コイルと磁気結合する別のコイルを設け、
前記3つのインバータのうち、第1のインバータと前記上段従属加熱コイルとを接続し、第3のインバータと前記下段従属加熱コイルとを接続し、第2のインバータに対して前記上段従属加熱コイルのコアに設けられた別のコイルと前記下段従属加熱コイルのコアに設けられた別のコイル、および前記主加熱コイルを直列に接続したことを特徴とする誘導加熱装置。 The induction heating coil includes three sets of induction heating coils having a core that is induction-heated by magnetic flux emitted from the end face of the core, and three inverters connected to each of the induction heating coils. The induction heating device is configured by arranging the end faces of the cores in a stacked manner, and defining the middle stage as a main heating coil, the upper stage as an upper subordinate heating coil, and the lower stage as a lower subordinate heating coil,
In the core of the upper subordinate heating coil, another coil magnetically coupled to the upper subordinate heating coil is provided,
The core of the lower dependent heating coil is provided with another coil that is magnetically coupled to the lower dependent heating coil,
Of the three inverters, a first inverter and the upper subordinate heating coil are connected, a third inverter and the lower subordinate heating coil are connected, and the second inverter is connected to the upper subordinate heating coil. An induction heating apparatus, wherein another coil provided in a core, another coil provided in a core of the lower subordinate heating coil, and the main heating coil are connected in series.
前記主加熱コイルと前記上段従属加熱コイル及び前記下段従属加熱コイルの結合インダクタンスに対して、逆結合インダクタンスを発生するように、
前記上段従属加熱コイル用コアに設けられた別のコイル及び前記下段従属加熱コイル用コアに設けられた別のコイルを接続し、前記インバータを運転することを特徴とする誘導加熱方法。 The induction heating coil includes three sets of induction heating coils having a core that is induction-heated by magnetic flux emitted from the end face of the core, and three inverters connected to each of the induction heating coils. It is an induction heating method using an induction heating device in which the end surfaces of the cores are aligned and arranged, the middle stage is defined as a main heating coil, the upper stage is defined as an upper subordinate heating coil, and the lower stage is defined as a lower subordinate heating coil,
In order to generate a reverse coupling inductance with respect to the coupling inductance of the main heating coil and the upper subordinate heating coil and the lower subordinate heating coil,
An induction heating method characterized by connecting another coil provided in the upper subordinate heating coil core and another coil provided in the lower subordinate heating coil core and operating the inverter.
3. The induction heating method according to claim 2, wherein currents supplied to the heating coils from the first inverter, the second inverter, and the third inverter are synchronized. 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012152412A JP5084069B2 (en) | 2012-07-06 | 2012-07-06 | Induction heating apparatus and induction heating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012152412A JP5084069B2 (en) | 2012-07-06 | 2012-07-06 | Induction heating apparatus and induction heating method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010178725A Division JP5063755B2 (en) | 2010-08-09 | 2010-08-09 | Induction heating apparatus and induction heating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012186186A JP2012186186A (en) | 2012-09-27 |
JP5084069B2 true JP5084069B2 (en) | 2012-11-28 |
Family
ID=47016035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012152412A Active JP5084069B2 (en) | 2012-07-06 | 2012-07-06 | Induction heating apparatus and induction heating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5084069B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5877920B1 (en) * | 2015-04-28 | 2016-03-08 | 株式会社ワイエイシイデンコー | Rapid heating / cooling heat treatment furnace |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145122A (en) * | 1989-10-31 | 1991-06-20 | Toshiba Corp | Temperature controller for heat treatment of semiconductor |
JP4262908B2 (en) * | 2001-08-10 | 2009-05-13 | 東京エレクトロン株式会社 | Heat treatment apparatus and heat treatment method |
JP2003297544A (en) * | 2002-03-29 | 2003-10-17 | Mitsui Eng & Shipbuild Co Ltd | Induction heater |
-
2012
- 2012-07-06 JP JP2012152412A patent/JP5084069B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012186186A (en) | 2012-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5063755B2 (en) | Induction heating apparatus and induction heating method | |
JP4676567B1 (en) | Semiconductor substrate heat treatment equipment | |
WO2012086268A1 (en) | Induction heating apparatus and induction heating method | |
JP4313775B2 (en) | Induction heating method and apparatus | |
JP5084069B2 (en) | Induction heating apparatus and induction heating method | |
KR101184133B1 (en) | Induction heating unit | |
KR101258052B1 (en) | Induction heating unit | |
KR101196555B1 (en) | Induction heating unit | |
KR101309385B1 (en) | Induction heating device | |
JP5443228B2 (en) | Semiconductor heat treatment equipment | |
JP5616271B2 (en) | Induction heating device and magnetic pole | |
JP5005120B1 (en) | Induction heating method | |
JP2008041282A (en) | Induction-heating cooker | |
JP5628731B2 (en) | Induction heating device | |
JP5297307B2 (en) | Induction heating method and induction heating apparatus | |
JP5453072B2 (en) | Semiconductor substrate heat treatment equipment | |
JP2012089775A (en) | Susceptor and semiconductor substrate heating apparatus | |
JP2015035361A (en) | Induction heating apparatus | |
JP2015032382A (en) | Induction heating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120712 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20120712 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20120823 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120829 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5084069 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |