JP2015035361A - Induction heating apparatus - Google Patents

Induction heating apparatus Download PDF

Info

Publication number
JP2015035361A
JP2015035361A JP2013166190A JP2013166190A JP2015035361A JP 2015035361 A JP2015035361 A JP 2015035361A JP 2013166190 A JP2013166190 A JP 2013166190A JP 2013166190 A JP2013166190 A JP 2013166190A JP 2015035361 A JP2015035361 A JP 2015035361A
Authority
JP
Japan
Prior art keywords
heated
resonance
induction heating
heating
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013166190A
Other languages
Japanese (ja)
Inventor
内田 直喜
Naoki Uchida
直喜 内田
信恭 松中
Nobutaka Matsunaka
信恭 松中
啓二 川中
Keiji Kawanaka
啓二 川中
和義 藤田
Kazuyoshi Fujita
和義 藤田
高広 阿尾
Takahiro Ao
高広 阿尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2013166190A priority Critical patent/JP2015035361A/en
Publication of JP2015035361A publication Critical patent/JP2015035361A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating apparatus that has a plurality of heating coils approximated to each other with respect to a heated member and respectively corresponding resonance type power supplies and that enables high power factor operation by reducing variation in displacement of a phase angle of each resonance type power supply even at frequency control.SOLUTION: An induction heating apparatus is configured so that respective induction heating coil power supplies are synchronized with each other, resonance sharpness (=an inductive reactance/an equivalent resistance) of the induction heating coils becomes substantially the same at all coils after execution of reduction in mutual induction between respective zones by a reverse coupling inductance for reducing mutual induction between coils, and phases of self-resonance circuits each configured by a resonance capacitor become substantially the same at all coils. When an output phase of each power supply is changed by a change in the equivalent resistance accompanying heating of the heated object, a high power factor operation is performed by controlling so that each power supply output is within a predetermined phase angle range, by common frequency control.

Description

本発明は、被加熱部材を誘導加熱により加熱する装置に係り、特に、複数の加熱コイルを近接配置した上で各加熱コイルに対応した加熱対象ゾーンを加熱する場合に好適な誘導加熱装置に関する。   The present invention relates to an apparatus for heating a member to be heated by induction heating, and more particularly to an induction heating apparatus suitable for heating a heating target zone corresponding to each heating coil after arranging a plurality of heating coils close to each other.

従来より、急速加熱を行う手段として、誘導加熱が有効であることは知られている。被加熱部材に対して1つの加熱コイルを採用している誘導加熱装置では、被加熱部材の状態変化(例えば、被加熱部材が常温から高温に加熱された際に生じる変化)による誘導リアクタンス及び等価抵抗の変化によって生じる共振型電源の出力位相変化に対して、周波数を制御して最高力率およびZVS(Zero Voltage Switching)が確保できるよう位相角を制御している。   Conventionally, it has been known that induction heating is effective as means for rapid heating. In an induction heating apparatus that employs one heating coil for a member to be heated, induction reactance and equivalent due to changes in the state of the member to be heated (for example, changes that occur when the member to be heated is heated from room temperature to high temperature) The phase angle is controlled so that the maximum power factor and ZVS (Zero Voltage Switching) can be secured by controlling the frequency with respect to the output phase change of the resonance type power supply caused by the change in resistance.

しかし、このような構成の誘導加熱装置では、被加熱部材の温度分布がバラツキ易く、均一な温度制御が必要な被加熱部材には対応することが困難であった。このため、1つの被加熱部材に対して複数に分割された加熱コイルを近接して配置し、各加熱コイル毎に共振型電源を設けるといった構成が提案されていた。しかし、この場合には、近接配置された加熱コイル間において相互誘導の影響が生じ、各加熱コイルに対する供給電力の制御ができなくなってしまうといった問題があった。このような問題に対し、特許文献1では、各加熱コイルに供給する電流の周波数を同一とすると共に、各加熱コイルに供給する電流の位相を同期させることで、相互誘導の影響を回避した電流制御の実現を図っている。   However, in the induction heating apparatus having such a configuration, the temperature distribution of the heated member is likely to vary, and it is difficult to cope with the heated member that requires uniform temperature control. For this reason, the structure which arrange | positions the heating coil divided | segmented into plurality with respect to one to-be-heated member, and provides a resonance type power supply for each heating coil was proposed. However, in this case, there is a problem in that the influence of mutual induction occurs between the heating coils arranged close to each other, and it becomes impossible to control the power supplied to each heating coil. With respect to such a problem, in Patent Document 1, the frequency of the current supplied to each heating coil is made the same, and the phase of the current supplied to each heating coil is synchronized to avoid the influence of mutual induction. The control is realized.

しかしこのような構成とした場合、各共振型電源からの出力電流の周波数を同じにする必要があるため、各共振型電源毎に周波数制御を行うことはできない。このため、被加熱部材の状態変化に応じて周波数制御を行った場合には、出力電流と出力電圧との位相角が大きく変化し、力率が低下して所定の出力を発生することができなくなる共振型電源が生じたり、高周波数時におけるハードスイッチングに起因してスイッチング損失が増大する場合などがある。   However, in such a configuration, it is necessary to make the frequency of the output current from each resonance type power supply the same, so frequency control cannot be performed for each resonance type power supply. For this reason, when the frequency control is performed according to the state change of the heated member, the phase angle between the output current and the output voltage is greatly changed, and the power factor is lowered to generate a predetermined output. There is a case where a resonance type power supply disappears or a switching loss increases due to hard switching at a high frequency.

力率の悪化に対しては、インバータの変換器容量を大きくする事に変えて、特許文献2に開示されているように、加熱コイルと共振型電源との間に、加熱コイル間に生じる相互誘導と逆極性の相互誘導を生じさせるインダクタンス(逆結合インダクタンス)を設けることで、出力位相角を小さくし、力率を改善することが提案されている。   In response to the deterioration of the power factor, instead of increasing the converter capacity of the inverter, as disclosed in Patent Document 2, between the heating coil and the resonance type power source, the mutual generated between the heating coils. It has been proposed to reduce the output phase angle and improve the power factor by providing an inductance (reverse coupling inductance) that causes mutual induction of induction and reverse polarity.

また、特許文献3には、周波数制御により複数の共振型電源の出力位相角の調整を行う技術が開示されている。   Patent Document 3 discloses a technique for adjusting the output phase angle of a plurality of resonant power sources by frequency control.

特表2005−529475号公報JP 2005-529475 A 特開2004−259665号公報JP 2004-259665 A 特開2011−14331号公報JP 2011-14331 A

特許文献1に開示されている技術に対し、特許文献2に開示されているような技術を適用すれば、相互誘導の影響の軽減を図ることはできると考えられる。しかし、被加熱部材の状態変化に対する共振型電源の周波数調整に基づく問題に関しては、対応することができない。   If the technique disclosed in Patent Document 2 is applied to the technique disclosed in Patent Document 1, it is considered that the influence of mutual induction can be reduced. However, the problem based on the frequency adjustment of the resonance type power supply with respect to the state change of the heated member cannot be dealt with.

また、特許文献3に開示されている技術は、単に、全ての加熱コイルに接続された共振型電源の出力位相角が、与えられた周波数に対して最も効率の良い運転を行うことができる共振型電源の周波数に合わせて運転されるようにし、基準とする共振型電源からの出力を、他の共振型電源からの出力に合わせ込むことで、出力のバラツキを抑えるというものである。このため、高効率な運転を行うことはできず、出力位相角が大きくなりすぎた場合には、停止することが記載されており何ら解決策がとられていない。   In addition, the technique disclosed in Patent Document 3 is simply a resonance in which the output phase angle of the resonant power source connected to all the heating coils can perform the most efficient operation for a given frequency. It is made to operate according to the frequency of the mold power supply, and the output from the reference resonance power supply is matched with the output from the other resonance power supply, thereby suppressing output variations. For this reason, high-efficiency operation cannot be performed, and when the output phase angle becomes too large, it is described that the operation is stopped, and no solution has been taken.

そこで本発明では、被加熱部材に対して、互いに近接させた複数の加熱コイルと、各々に対応した共振型電源を有する誘導加熱装置において、周波数制御時にも各共振型電源の出力位相角の変位のバラツキを小さくして高力率運転を可能にする誘導加熱装置を提供することを目的とする。   Therefore, in the present invention, in an induction heating apparatus having a plurality of heating coils close to each other and a resonance type power supply corresponding to each member to be heated, the displacement of the output phase angle of each resonance type power supply also during frequency control It is an object of the present invention to provide an induction heating device that enables high power factor operation by reducing the variation of.

上記目的を達成するための本発明に係る誘導加熱装置は、被加熱部材と、互いに近接配置した複数の加熱コイルと、各加熱コイルに個別に接続され、各々の電流値および電流波形の同期制御を可能な共振型電源を有する誘導加熱装置において、前記各加熱コイルと前記被加熱部材及び共振コンデンサからなる共振回路の誘導性リアクタンスと等価抵抗の比を一致、あるいは近似させたことを特徴とする。   In order to achieve the above object, an induction heating apparatus according to the present invention includes a member to be heated, a plurality of heating coils arranged in close proximity to each other, and each heating coil individually connected, and synchronous control of each current value and current waveform. In the induction heating apparatus having a resonance type power source capable of performing the above, the ratio of the inductive reactance and the equivalent resistance of the resonance circuit composed of each heating coil, the heated member, and the resonance capacitor is matched or approximated. .

また、上記のような特徴を有する誘導加熱装置は、前記誘導性リアクタンスと前記等価抵抗の比の一致、あるいは近似は、各加熱コイルにおいて加熱対象とする前記被加熱部材の加熱領域と、各加熱コイルとの幾何学的関係を同一にすることで成すようにすると良い。   In addition, the induction heating apparatus having the above-described characteristics has the same or approximate ratio of the inductive reactance and the equivalent resistance. The heating area of the heated member to be heated in each heating coil, and each heating It is good to make it by making the geometric relationship with a coil the same.

また、上記のような特徴を有する誘導加熱装置は、前記各加熱コイルと前記被加熱部材、および前記共振コンデンサで造る共振回路の位相を全ての自己共振回路において同一にすることが望ましい。   In addition, in the induction heating apparatus having the above-described characteristics, it is desirable that the phase of the resonance circuit formed by each of the heating coils, the heated member, and the resonance capacitor is the same in all the self-resonance circuits.

また、上記のような特徴を有する誘導加熱装置は、前記加熱コイル間の相互誘導を低減するための逆結合インダクタンスを設けるようにすると良い。   The induction heating apparatus having the above-described characteristics may be provided with a reverse coupling inductance for reducing mutual induction between the heating coils.

さらに、上記のような特徴を有する誘導加熱装置では、前記共振型電源各々の出力電圧と出力電流の位相角が所定範囲に入るように周波数を共通に制御する制御手段を備えるようにすることが望ましい。   Furthermore, the induction heating apparatus having the above-described characteristics may include control means for commonly controlling the frequency so that the phase angle between the output voltage and the output current of each of the resonance type power supplies falls within a predetermined range. desirable.

上記のような特徴を有する誘導加熱装置によれば、被加熱部材に対して、互いに近接させた複数の加熱コイルと、各々に対応した共振型電源を有する誘導加熱装置において、周波数制御時にも各共振型電源の出力位相角の変位のバラツキを小さくして高力率運転を可能にすることができる。   According to the induction heating device having the characteristics as described above, in the induction heating device having a plurality of heating coils close to each other and the resonance type power supply corresponding to each member to be heated, It is possible to reduce the variation in the displacement of the output phase angle of the resonance type power supply and enable high power factor operation.

共振先鋭度の異なる自己共振回路における周波数変化と位相変化の関係を示すグラフである。It is a graph which shows the relationship between the frequency change and phase change in the self-resonance circuit from which resonance sharpness differs. 実施形態に係る誘導加熱装置を簡単に説明するための図であり、(A)は正面断面図、(B)は側面図である。It is a figure for demonstrating briefly the induction heating apparatus which concerns on embodiment, (A) is front sectional drawing, (B) is a side view. 実施形態に関係する誘導加熱装置であって、加熱コイルに対して被加熱部材の長さを短くした場合の説明をする図であり、(A)は正面断面図、(B)は側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the induction heating apparatus relevant to embodiment, Comprising: It is a figure explaining the case where the length of a to-be-heated member is shortened with respect to a heating coil, (A) is front sectional drawing, (B) is a side view. is there. 実施形態に係る誘導加熱装置の構成を説明するための図であり、(A)は正面断面図、(B)は側面図である。It is a figure for demonstrating the structure of the induction heating apparatus which concerns on embodiment, (A) is front sectional drawing, (B) is a side view. 実施形態に係る誘導加熱装置の構成を示す等価回路図である。It is an equivalent circuit diagram which shows the structure of the induction heating apparatus which concerns on embodiment. 隣接配置される加熱コイルを備える自己共振回路間に逆結合インダクタンスを設ける場合の構成を示す等価回路図である。It is an equivalent circuit diagram which shows a structure in the case of providing a reverse coupling inductance between self-resonant circuits provided with the heating coil arrange | positioned adjacently. 電流同期制御を行いつつZVS制御を実施している2つの自己共振回路における電圧波形と電流波形の関係を示す図である。It is a figure which shows the relationship between the voltage waveform and current waveform in two self-resonance circuits which are implementing ZVS control, performing current synchronous control. 電流同期制御を行いつつZVS制御を実施している2つの自己共振回路において、2つの自己共振回路におけるQ値を一致させた上で、出力電流の周波数を変化させた場合における電圧波形と電流波形の関係を示す図である。In two self-resonant circuits that perform ZVS control while performing current synchronous control, the voltage waveform and current waveform when the frequency of the output current is changed after matching the Q values in the two self-resonant circuits It is a figure which shows the relationship. 電流同期制御を行いつつZVS制御を実施している2つの自己共振回路において、2つの自己共振回路におけるQ値が離れているときに、出力電流の周波数を変化させた場合における電圧波形と電流波形の関係を示す図である。In two self-resonant circuits performing ZVS control while performing current synchronous control, voltage waveforms and current waveforms when the frequency of the output current is changed when the Q values in the two self-resonant circuits are separated It is a figure which shows the relationship.

以下、本発明の誘導加熱装置、および誘導加熱方法に係る実施の形態について、図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the induction heating apparatus and the induction heating method of the present invention will be described in detail with reference to the drawings.

図1に示すように、相互誘導環境下において電流同期制御を行っている2つの自己共振回路であっても、共振先鋭度Q(以下、Q値と称す)が異なると、運転周波数(出力電流の周波数)に対する出力位相角の変化に違いが生じる。具体的には、Q値が高い回路(Q=10で示す回路)の方が、Q値が低い回路(Q=5で示す回路)よりも、運転周波数の変化に対する出力位相角の変化量が大きいということを読み取ることができる。   As shown in FIG. 1, even if two self-resonant circuits performing current synchronous control under a mutual induction environment, if the resonance sharpness Q (hereinafter referred to as Q value) is different, the operating frequency (output current) Difference in the output phase angle with respect to the frequency). Specifically, the amount of change in the output phase angle with respect to the change in operating frequency is higher in a circuit having a high Q value (a circuit indicated by Q = 10) than in a circuit having a low Q value (a circuit indicated by Q = 5). It can be read that it is large.

このため、電流同期制御を行っている誘導加熱装置において、周波数制御を行う場合には、各自己共振回路におけるQ値を揃えることが望ましいということを理解することができる。以下、各自己共振回路におけるQ値の違いにより出力位相角に変化が生じる理由と、各自己共振回路におけるQ値を揃えるための手段について説明する。   For this reason, in the induction heating apparatus performing current synchronous control, when performing frequency control, it can be understood that it is desirable to align the Q values in the respective self-resonant circuits. Hereinafter, the reason why the output phase angle changes due to the difference in the Q value in each self-resonant circuit and the means for aligning the Q value in each self-resonant circuit will be described.

まず、図5に示すような、相互誘導状態にある2つの誘導加熱回路において、被加熱物を加熱するための電力を得るのに必要とされる各インバータINV1,INV2からの出力電圧Viv1、Viv2は、それぞれ数式1と数式2で示すように、自己共振回路の電圧(Vs1、Vs2)と相互誘導電圧(Vm21、Vm12)を合成したものである。ここで、自己共振回路とは、加熱コイル、共振コンデンサ、および配線経路等から成る回路をいう。   First, in two induction heating circuits in a mutual induction state as shown in FIG. 5, output voltages Viv1 and Viv2 from the respective inverters INV1 and INV2 required to obtain power for heating the object to be heated. Is a combination of self-resonant circuit voltages (Vs1, Vs2) and mutual induction voltages (Vm21, Vm12), as shown in equations 1 and 2, respectively. Here, the self-resonant circuit refers to a circuit including a heating coil, a resonant capacitor, a wiring path, and the like.

上記のような構成の回路において、相互誘導環境でのインバータの運転状態は、
・・・数式1
と示すことができる。なお、数式1は、インバータINV1における運転状態を示すものである。数式1において、θiv1は、インバータINV1の出力電圧Viv1と基準位置(基準信号)との位相差を示す。また、θi1、θi2は、各インバータ電流Iiv1、Iiv2と基準信号との位相差であり、θs1は、インバータ電流Iiv1、I2ivに対する自己共振回路の合成電圧Vs1、Vs2の位相角である。さらに、θmは、インバータ電流Iiv1、Iiv2に対する相互誘導電圧Vm21、Vm12の位相角である。
In the circuit configured as described above, the operating state of the inverter in the mutual induction environment is
... Formula 1
Can be shown. In addition, Formula 1 shows the operation state in the inverter INV1. In Equation 1, θiv1 represents a phase difference between the output voltage Viv1 of the inverter INV1 and a reference position (reference signal). Θi1 and θi2 are the phase differences between the inverter currents Iiv1 and Iiv2 and the reference signal, and θs1 is the phase angle of the combined voltages Vs1 and Vs2 of the self-resonant circuit with respect to the inverter currents Iiv1 and I2iv. Furthermore, θm is a phase angle of the mutual induction voltages Vm21 and Vm12 with respect to the inverter currents Iiv1 and Iiv2.

数式1において、隣接配置された加熱コイル間の電流を同期させると、θi1=θi2=0となり、
・・・数式2
を導くことができる。
In Equation 1, when the currents between adjacent heating coils are synchronized, θi1 = θi2 = 0.
... Formula 2
Can guide you.

図5に示すような等価回路で示される誘導加熱装置では、特定の自己共振回路のインピーダンスZs1と、この特定の自己共振回路に対する相互誘導インピーダンスZmは、それぞれ、
・・・数式3
・・・数式4
と示すことができる。
In the induction heating apparatus shown by an equivalent circuit as shown in FIG. 5, the impedance Zs1 of a specific self-resonant circuit and the mutual induction impedance Zm for the specific self-resonant circuit are respectively
... Formula 3
... Formula 4
Can be shown.

ここで、数式4において結合係数kが小さい場合には、Zmの値は、Zs1の値に比べて極めて小さくなる(Zm<<Zs1)。このため、Zm≒0と仮定すると、数式2は、
・・・数式5
と表すことが可能となる。
Here, when the coupling coefficient k in Expression 4 is small, the value of Zm is extremely smaller than the value of Zs1 (Zm << Zs1). Therefore, assuming that Zm≈0, Equation 2 is
... Formula 5
Can be expressed as follows.

ここで、θs1とθs2は、
・・・数式6
・・・数式7
と表される。これを共振先鋭度Qを用いて表すと、XL1=Q1×R1×(F/F)、および、XC1=Q1×R1/(F/F)の関係から、
・・・数式8
・・・数式9
が成り立つこととなる。なお、数式6、7において、Fは、固有共振点における周波数であり、Fはインバータの出力電流Iivにおいて、各自己共振回路における電流の位相角を同期させる際の特定周波数である。また、Q1、Q2は、それぞれ共振先鋭度である。
Here, θs1 and θs2 are
... Formula 6
... Formula 7
It is expressed. Expressing this using the resonance sharpness Q, from the relationship of XL1 = Q1 × R1 × (F / F 0 ) and XC1 = Q1 × R1 / (F / F 0 ),
... Formula 8
... Formula 9
Will hold. In Equations 6 and 7, F 0 is a frequency at the natural resonance point, and F is a specific frequency when synchronizing the phase angle of the current in each self-resonant circuit in the output current Iiv of the inverter. Q1 and Q2 are resonance sharpnesses, respectively.

また、共振先鋭度Q1、Q2が相違した場合に、θs1とθs2の値が相違することも読み取ることができる。このため、インバータの出力位相角θiv1とθiv2は、θs1、θs2の変化の影響を大きく受ける。よって、Q値が相違した場合に周波数Fが変化すると、θiv1、θiv2も大きく変化するということができる。   It can also be read that the values of θs1 and θs2 are different when the resonance sharpness Q1 and Q2 are different. Therefore, the output phase angles θiv1 and θiv2 of the inverter are greatly affected by changes in θs1 and θs2. Therefore, when the frequency F changes when the Q values are different, it can be said that θiv1 and θiv2 also change greatly.

次に、各自己共振回路におけるQ値を揃える手段について説明する。Q=ωL/Rで示される一般式より、各自己共振回路のQ値を調整するには、各加熱コイルと被加熱部材、および共振コンデンサから成る共振回路のリアクタンス値ωL(誘導性リアクタンス)と、回路の等価抵抗値Rを調整すれば良い。そして、両者の比を一致、あるいは近似させることにより、各共振回路におけるQ値を揃える(一致させる)ことができる。ここで、リアクタンス値ωLは、まず、加熱コイルの長さの長短により変化し、加熱コイルが長いほど大きくなる。また、リアクタンス値ωLは、加熱コイルにより加熱される被加熱部材の割合によっても変化する。具体的には、ωLは、加熱コイルにより加熱される被加熱部材が何も無い場合、すなわち、加熱コイル周囲に生ずる磁束が淀み無く発生している状態が最大となる。一方、加熱コイルによる被加熱部材が存在する場合、加熱コイルの周囲に生じた磁束が被加熱部材に鎖交し、被加熱部材の内部に、鎖交磁束を打ち消そうとする渦電流が発生する。そして、この渦電流回りに発生する磁束は、加熱コイル回りに生ずる磁束と逆方向の磁束となるため、両者間に打ち消し合いが生じ、リアクタンス値ωLが小さくなるのである。 Next, means for aligning the Q values in each self-resonant circuit will be described. In order to adjust the Q value of each self-resonant circuit from the general formula represented by Q = ω 0 L / R, the reactance value ω 0 L (induction of the resonance circuit including each heating coil, a heated member, and a resonance capacitor is used. And the equivalent resistance value R of the circuit may be adjusted. Then, the Q values in the respective resonance circuits can be made uniform (matched) by matching or approximating the ratio between the two. Here, the reactance value ω 0 L changes according to the length of the heating coil, and increases as the heating coil becomes longer. The reactance value ω 0 L also changes depending on the ratio of the heated member heated by the heating coil. Specifically, ω 0 L is maximized when there is no member to be heated that is heated by the heating coil, that is, when the magnetic flux generated around the heating coil is generated without stagnation. On the other hand, when there is a member to be heated by the heating coil, the magnetic flux generated around the heating coil is linked to the member to be heated, and an eddy current is generated inside the heated member to try to cancel the flux linkage To do. Since the magnetic flux generated around the eddy current becomes a magnetic flux in the opposite direction to the magnetic flux generated around the heating coil, cancellation occurs between the two and the reactance value ω 0 L decreases.

例えば、Q値を一致させる加熱装置構成の一例としては、図2に示すように、ソレノイド状に形成された4つの加熱コイル12(12a〜12d)を軸線方向に隣接配置し、加熱コイル12により形成された囲繞空間に被加熱部材30を配置する構成とするものを挙げることができる。なお、図2において、図2(A)は、誘導加熱装置の構成を示す正面断面図であり、図2(B)は、側面図である。このような基本構成を有する装置においてQ値を一致させるためには、まず、加熱コイル12と被加熱部材30との間の距離d1を等しく設定する。そして、加熱コイル12の軸線方向長さと、被加熱部材30の軸線方向長さが等しく、かつ4つの加熱コイル12a〜12dによる加熱ゾーン(第1ゾーンから第4ゾーン)により加熱される被加熱部材30の割合も等しくすることで、複数の加熱ゾーンを構成する自己共振回路のリアクタンス値ωLや等価抵抗値Rがそれぞれ等しくなり、共振先鋭度Qが近似することとなる。なお、各加熱コイル12を構成要素の一部とする各自己共振回路には、各加熱コイル12へ高周波電流を個別供給することができるインバータ20(20a〜20d)を設けるようにすると良い。 For example, as an example of a heating device configuration for matching the Q values, as shown in FIG. 2, four heating coils 12 (12 a to 12 d) formed in a solenoid shape are arranged adjacent to each other in the axial direction. An example is a configuration in which the member to be heated 30 is arranged in the formed surrounding space. In FIG. 2, FIG. 2A is a front cross-sectional view showing the configuration of the induction heating apparatus, and FIG. 2B is a side view. In order to match the Q values in the apparatus having such a basic configuration, first, the distance d1 between the heating coil 12 and the heated member 30 is set equal. And the to-be-heated member heated by the heating zone (the 1st zone to the 4th zone) by the four heating coils 12a-12d is equal to the axial direction length of the heating coil 12, and the to-be-heated member 30 axial direction length. By equalizing the ratio of 30, the reactance value ω 0 L and the equivalent resistance value R of the self-resonant circuits constituting the plurality of heating zones are equalized, and the resonance sharpness Q is approximated. Each self-resonant circuit having each heating coil 12 as a component may be provided with an inverter 20 (20a to 20d) that can individually supply a high-frequency current to each heating coil 12.

一方、図3に示すように、ソレノイド状に形成された4つの加熱コイル12を軸線方向に隣接配置し、加熱コイル12により形成された囲繞空間に被加熱部材30を配置する構成とした場合であっても、加熱コイル12の軸線方向長さに対して被加熱部材30の軸線方向長さを短くすると、長手方向両端部(第1ゾーンと第4ゾーン)にあたる加熱コイル12a,12dにより加熱対象とされる被加熱部材30の部位は、中央(第2ゾーンと第3ゾーン)にあたる加熱コイル12b,12cにより加熱対象とされる被加熱部材30の部位よりも、その割合が小さくなる。このため、図2に示す装置構成に比べて、第1ゾーンと第4ゾーンを構成する自己共振回路におけるリアクタンス値ωLが大きくなる。よって、共振先鋭度Qの値も大きくなる。なお、図3において、図3(A)は、誘導加熱装置の構成を示す正面断面図であり、図3(B)は、側面図である。 On the other hand, as shown in FIG. 3, the four heating coils 12 formed in a solenoid shape are arranged adjacent to each other in the axial direction, and the heated member 30 is arranged in the surrounding space formed by the heating coils 12. Even if the length in the axial direction of the heated member 30 is shorter than the length in the axial direction of the heating coil 12, the heating target is heated by the heating coils 12a and 12d corresponding to both ends in the longitudinal direction (first zone and fourth zone). The ratio of the heated member 30 to be heated is smaller than that of the heated member 30 to be heated by the heating coils 12b and 12c in the center (second zone and third zone). For this reason, the reactance value ω 0 L in the self-resonant circuit constituting the first zone and the fourth zone is larger than that in the device configuration shown in FIG. Therefore, the value of the resonance sharpness Q is also increased. In FIG. 3, FIG. 3 (A) is a front sectional view showing the structure of the induction heating apparatus, and FIG. 3 (B) is a side view.

また、等価抵抗値Rも、加熱コイルの長さ、加熱コイルと被加熱部材との距離、および加熱対象領域における被加熱部材の長さ等により変化する。
例えば、図5に示す等価回路のように構成される2つの自己共振回路において、任意の出力周波数で電流同期制御を行っている場合、電流、電圧の波形は、図7に示すようなものとなる。ここで、2つの自己共振回路におけるQ値を揃えている場合には、インバータINV1,INV2からの出力電流の周波数を上昇させた場合であっても、2つの自己共振回路における出力電圧Viv1,Viv2と基準位置との間の位相角θiv1,θiv2は、図8に示すように、図7に示す任意の出力周波数での電流同期制御時と殆ど変わらず、θiv1とθiv2との間の位相差も小さい。このため、出力電流Iiv1,Iiv2の出力周波数を変化させた際に生ずる各自己共振回路間における力率の変動は近似することとなり、誘導加熱装置全体として高効率運転となる周波数を選択することが可能となる。
The equivalent resistance value R also varies depending on the length of the heating coil, the distance between the heating coil and the member to be heated, the length of the member to be heated in the heating target region, and the like.
For example, in two self-resonant circuits configured as the equivalent circuit shown in FIG. 5, when current synchronous control is performed at an arbitrary output frequency, current and voltage waveforms are as shown in FIG. Become. Here, when the Q values in the two self-resonant circuits are aligned, the output voltages Viv1 and Viv2 in the two self-resonant circuits are increased even when the frequency of the output current from the inverters INV1 and INV2 is increased. As shown in FIG. 8, the phase angles θiv1 and θiv2 between the reference position and the reference position are almost the same as those in the current synchronous control at an arbitrary output frequency shown in FIG. 7, and the phase difference between θiv1 and θiv2 is also small. For this reason, the fluctuation of the power factor between the respective self-resonant circuits that occurs when the output frequency of the output currents Iiv1 and Iiv2 is changed is approximated, and it is possible to select the frequency at which the induction heating apparatus as a whole becomes highly efficient operation. It becomes possible.

一方、2つの自己共振回路におけるQ値に差がある場合には、出力電流Iiv1,Iiv2の出力周波数を上昇させ、この状態で電流同期制御を実施しようとすると、図9に示すように、各自己共振回路間における出力電圧Viv1,Viv2と基準値との間に生ずる位相差に大きな違いが生ずることとなる。このため、図9に示す例では、Q値が大きい自己共振回路における出力電圧Viv1と出力電流Iiv1との位相差θs1が、Q値が小さい自己共振回路における出力電圧Viv2と出力電流Iiv2との位相差θs2に比べて極端に大きくなる。このため、電流同期制御時に、Q値の小さい自己共振回路における力率を良好に保とうとする周波数で運転すると、Q値の大きい自己共振回路における力率が低くなってしまう。また、図示はしないが、Q値が大きい自己共振回路における力率を良好に保つ周波数で運転した場合には、Q値の小さい自己共振回路では、電流が電圧に対して進み位相となり、ZVS制御ができなくなってしまう虞が生ずる。   On the other hand, if there is a difference between the Q values in the two self-resonant circuits, the output frequencies of the output currents Iiv1 and Iiv2 are increased, and when current synchronization control is performed in this state, as shown in FIG. There will be a large difference in the phase difference between the output voltages Viv1, Viv2 and the reference value between the self-resonant circuits. For this reason, in the example shown in FIG. 9, the phase difference θs1 between the output voltage Viv1 and the output current Iiv1 in the self-resonant circuit having a large Q value is the level of the output voltage Viv2 and the output current Iiv2 in the self-resonant circuit having a small Q value. It becomes extremely larger than the phase difference θs2. For this reason, during current synchronous control, if the power factor in the self-resonant circuit having a small Q value is operated at a frequency that favorably maintains the power factor, the power factor in the self-resonant circuit having a large Q value becomes low. Although not shown, when operating at a frequency that maintains a good power factor in a self-resonant circuit having a large Q value, in the self-resonant circuit having a small Q value, the current advances in phase with respect to the voltage, and ZVS control is performed. There is a risk that it will not be possible.

また、上記実施形態では、Q値と加熱コイル12、および被加熱部材30の関係を簡単化して説明するために、被加熱部材30を円柱材のように示しているが、実際に加熱装置10を構成する場合には、図4に示すように、加熱コイル12の内周側に、被加熱部材30としてのサセプタ(グラファイト)を配置する構成とすると良い。サセプタは、加熱コイル12の囲繞形状に沿った筒型を成し、筒の内部に、加熱処理するための被処理部材40を収容する構成とする。なお、図4において、図4(A)は、誘導加熱装置の正面構成を示す断面図であり、図4(B)は、側面図である。   Moreover, in the said embodiment, in order to simplify and demonstrate the relationship between Q value, the heating coil 12, and the to-be-heated member 30, the to-be-heated member 30 is shown like a cylindrical material, but actually the heating apparatus 10 is shown. 4, a susceptor (graphite) as the member to be heated 30 is preferably arranged on the inner peripheral side of the heating coil 12 as shown in FIG. The susceptor has a cylindrical shape along the surrounding shape of the heating coil 12, and is configured to accommodate a member to be processed 40 for heat treatment inside the cylinder. In FIG. 4, FIG. 4A is a cross-sectional view illustrating a front configuration of the induction heating apparatus, and FIG. 4B is a side view.

このような構成とした場合、加熱コイル12により加熱される部材は、被加熱部材30であるサセプタとなる。よって、各加熱コイル12の長手方向長さと、各加熱コイル12の加熱対象となるサセプタの長手方向長さ、および各加熱コイル12とサセプタとの間の距離d1を合わせ、各加熱コイル12を備える自己共振回路間のQ値を揃えるようにする。そして、被処理部材40は、加熱コイル12やサセプタよりも、その長手方向長さを短くし、サセプタの長手方向中心位置を基点として、両端が、サセプタ端部よりも内側に位置するように配置し、熱処理を行うようにすることが望ましい。   In such a configuration, the member heated by the heating coil 12 is a susceptor that is the heated member 30. Therefore, the length of each heating coil 12 in the longitudinal direction, the length of each heating coil 12 in the longitudinal direction of the susceptor to be heated, and the distance d1 between each heating coil 12 and the susceptor are combined, and each heating coil 12 is provided. The Q values between the self-resonant circuits are made uniform. And the to-be-processed member 40 is arrange | positioned so that both ends may be located inside a susceptor edge part by making the longitudinal direction length shorter than the heating coil 12 and a susceptor, and making the longitudinal direction center position of a susceptor a base point It is desirable to perform heat treatment.

このような配置構成とした上で熱処理を行うことで、被処理部材40の端部からの放熱を考慮して、被処理部材40全体を均等加熱することが可能となるからである。   This is because by performing the heat treatment after having such an arrangement configuration, it is possible to uniformly heat the entire processing target member 40 in consideration of heat radiation from the end of the processing target member 40.

また、上記実施形態では、隣接して配置されている加熱コイル間の結合係数kが小さい場合に、Zm≒0とみなすことができ、数式5が成り立つと説明した。しかしながら、結合係数kが比較的大きい場合であっても、図6に示すように、自己共振回路間に逆結合インダクタンスLs1を設けるようにすることで、Zmを小さく抑えることができ、数式5を成立させることができる。なお、本実施形態において逆結合インダクタンスとは、加熱コイル間に生ずる相互誘導電力と逆極性の相互誘導電力を生じさせるコイルである。   Moreover, in the said embodiment, when the coupling coefficient k between the heating coils arrange | positioned adjacently is small, it can be considered that Zm ≒ 0, and it demonstrated that Numerical formula 5 was formed. However, even if the coupling coefficient k is relatively large, as shown in FIG. 6, by providing the reverse coupling inductance Ls1 between the self-resonant circuits, Zm can be kept small. Can be established. In the present embodiment, the reverse coupling inductance is a coil that generates a mutual induction power having a polarity opposite to that of the mutual induction power generated between the heating coils.

10………誘導加熱装置、12(12a〜12d)………加熱コイル、20(20a〜20d)………インバータ、30………被加熱部材、40………被処理部材。
DESCRIPTION OF SYMBOLS 10 ......... Induction heating apparatus, 12 (12a-12d) ......... Heating coil, 20 (20a-20d) ......... Inverter, 30 ......... Heating member, 40 ... Processing member.

Claims (5)

被加熱部材と、互いに近接配置した複数の加熱コイルと、各加熱コイルに個別に接続され、各々の電流値および電流波形の同期制御を可能な共振型電源を有する誘導加熱装置において、
前記各加熱コイルと前記被加熱部材及び共振コンデンサからなる共振回路の誘導性リアクタンスと等価抵抗の比を一致、あるいは近似させたことを特徴とする誘導加熱装置。
In an induction heating apparatus including a member to be heated, a plurality of heating coils arranged in close proximity to each other, and a resonance type power source that is individually connected to each heating coil and capable of synchronous control of each current value and current waveform,
An induction heating apparatus characterized in that a ratio of an inductive reactance and an equivalent resistance of a resonance circuit including each of the heating coils, the heated member, and a resonance capacitor is matched or approximated.
前記誘導性リアクタンスと前記等価抵抗の比の一致、あるいは近似は、各加熱コイルにおいて加熱対象とする前記被加熱部材の加熱領域と、各加熱コイルとの幾何学的関係を同一にすることで成すことを特徴とする請求項1に記載の誘導加熱装置。   The coincidence or approximation of the ratio between the inductive reactance and the equivalent resistance is achieved by making the heating region of the heated member to be heated in each heating coil the same geometrical relationship between each heating coil. The induction heating apparatus according to claim 1. 前記各加熱コイルと前記被加熱部材、および前記共振コンデンサで造る共振回路の位相を全ての自己共振回路において同一にしたことを特徴とする請求項1または2に記載の誘導加熱装置。   The induction heating apparatus according to claim 1 or 2, wherein the phase of a resonance circuit formed by each of the heating coils, the member to be heated, and the resonance capacitor is the same in all self-resonance circuits. 前記加熱コイル間の相互誘導を低減するための逆結合インダクタンスを設けたことを特徴とする請求項1乃至3のいずれか1項に記載の誘導加熱装置。   The induction heating apparatus according to any one of claims 1 to 3, wherein a reverse coupling inductance is provided to reduce mutual induction between the heating coils. 前記共振型電源各々の出力電圧と出力電流の位相角が所定範囲に入るように周波数を共通に制御する制御手段を備えたことを特徴とする請求項1乃至4のいずれか1項に記載の誘導加熱装置。
5. The control unit according to claim 1, further comprising a control unit configured to commonly control a frequency so that a phase angle between an output voltage and an output current of each of the resonance type power supplies falls within a predetermined range. Induction heating device.
JP2013166190A 2013-08-09 2013-08-09 Induction heating apparatus Pending JP2015035361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013166190A JP2015035361A (en) 2013-08-09 2013-08-09 Induction heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166190A JP2015035361A (en) 2013-08-09 2013-08-09 Induction heating apparatus

Publications (1)

Publication Number Publication Date
JP2015035361A true JP2015035361A (en) 2015-02-19

Family

ID=52543751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166190A Pending JP2015035361A (en) 2013-08-09 2013-08-09 Induction heating apparatus

Country Status (1)

Country Link
JP (1) JP2015035361A (en)

Similar Documents

Publication Publication Date Title
KR101429414B1 (en) Induction heating apparatus and induction heating method
KR101480984B1 (en) Induction heating method implemented in a device including magnetically coupled inductors
CN108781484B (en) Induction heating device and induction heating method
JP6803387B2 (en) High frequency power supply system with finely tuned output for heating workpieces
WO2014088423A1 (en) Apparatus and method for induction heating of magnetic materials
JP6921085B2 (en) High frequency power supply system with finely tuned output for workpiece heating
JP2018538778A5 (en)
JP2019507461A5 (en)
JP2015035361A (en) Induction heating apparatus
JP6347044B2 (en) Induction heating device
JP5612396B2 (en) Induction heating apparatus and induction heating method
JP4406588B2 (en) Induction heating method and induction heating apparatus
JP4494374B2 (en) Induction heating cooker
JP5084069B2 (en) Induction heating apparatus and induction heating method
JP5090196B2 (en) High frequency induction heating device
JP5976484B2 (en) Induction heating method and induction heating apparatus
KR101309385B1 (en) Induction heating device
JP2015032382A (en) Induction heating apparatus
JP2022095156A (en) High frequency induction heating device
JP2010080327A (en) Induction heating device
JP2016225189A (en) Induction heating apparatus