JP5081357B2 - 屋外の放射電磁界の特性を広範囲に、かつ高精度に決定するための移動システムおよびこれを実施する方法 - Google Patents

屋外の放射電磁界の特性を広範囲に、かつ高精度に決定するための移動システムおよびこれを実施する方法 Download PDF

Info

Publication number
JP5081357B2
JP5081357B2 JP2001550042A JP2001550042A JP5081357B2 JP 5081357 B2 JP5081357 B2 JP 5081357B2 JP 2001550042 A JP2001550042 A JP 2001550042A JP 2001550042 A JP2001550042 A JP 2001550042A JP 5081357 B2 JP5081357 B2 JP 5081357B2
Authority
JP
Japan
Prior art keywords
measurement
measuring
measuring device
electromagnetic field
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001550042A
Other languages
English (en)
Other versions
JP2003524777A (ja
Inventor
フリッツェル,トルステン
Original Assignee
アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE1999163794 external-priority patent/DE19963794B4/de
Priority claimed from DE10043461A external-priority patent/DE10043461B4/de
Application filed by アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング filed Critical アストリウム・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
Publication of JP2003524777A publication Critical patent/JP2003524777A/ja
Application granted granted Critical
Publication of JP5081357B2 publication Critical patent/JP5081357B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Description

【0001】
本発明は独立クレームに記載されているような、放射電磁界の特性を高性能で決定するシステムと方法に関する。
【0002】
放射電磁界の特性の決定は、例えばアンテナ近距離場測定技術のような多くの分野で不可欠である。近距離場測定技術は約0.5から最大20GHzの周波数範囲のアンテナで好適に利用される。この測定方法では、アンテナの近距離電磁場が直接測定され、近距離場(NF)から遠距離場(FF)への変換によって、高速フーリエ変換(FFT)によって遠距離場へと換算される。アンテナの近距離場の測定の利点は、今までほぼ固定された測定室内のみに組み込まれていた、必要なアンテナ測定システムのサイズがコンパクトになることにある。
【0003】
近距離場測定システムとは対照的にさらに遠距離場測定システムがあり、これらはサイズの点で屋外システムであるが、常に固定装置であり、これらは周囲、地形、建物からの反射などによって基本的に誤差が比較的多い。
【0004】
近距離場測定技術の別の利点は、近距離場の検出によって、遠距離場の全区域を計算することができることにあるが、その反面、一旦測定された遠距離場の区域は固定され、更なる遠距離場の区域に対してはアンテナを事後に再測定しなければならない。
【0005】
近距離場は走査理論に基づいて、間隔<λ/2の間隔で走査され、アンテナから放射される放射電磁界全体は、この測定点全体がそれぞれ個々に計算される遠距離場のポイントに影響を及ぼすので、約−45dbまで検出されなければならない。
【0006】
全方向性アンテナの測定には通常は、測定されるアンテナの近距離場を球面で走査する球形スキャナが使用される。指向性アンテナの場合は、放射部分全体が約−45dbまで円筒面または平坦面上で確実に検出可能である限りは、高価な球形スキャナは必要ない。例えば電気通信には主として指向性アンテナ(パラボラ・アンテナ)が使用されるので、この分野での選択肢はせいぜい円筒形の近距離場測定システム、または平面システムとなる。
【0007】
NFからFFへの変換の際に個々の測定点の振幅値の他に、位相情報を入れることが不可欠であるので、スキャナは種類に応じて、球面、円筒面、または平坦面をできるだけ最適に測定ゾンデで走査可能でなければならない。何故ならば、NFからFFへの変換は数学的にこの最適な場合を前提としているからである。近距離場測定システムのスキャナによる誤差要因は最適な曲線からλ/50以上偏れてはならない。
【0008】
したがって、f=2.0GHzで、位相精度がλ/50である場合は、必要なスキャナ精度は3.0mmである。アンテナ直径が例えば14mの地上局アンテナが平坦な測定システムによって測定される必要がある場合、このことは少なくとも20m×20mの面積で前記の精度が満たされなければならないことを意味する。
【0009】
レーダに関しては近距離場スキャナは、出来るだけ見えないようにする必要があり、これはほとんどの場合はこのようなスキャナの機械的コストと矛盾し、通常は適宜の吸収材の被覆によってしか達成できない。
【0010】
測定の位相精度の最大値を得るために、時間経過に伴う位相ドリフトをできるだけ少なくするため、測定点全体のデータ収集をできるだけ迅速に行う必要がある。
【0011】
走査面積が20m×20mで、測定点間隔が75mmである前記の例では、アンテナの幅に267の測定点を配分し、高さにわたって267の測定点を配分した場合、全部で少なくとも71,289の測定点が生ずる。この概算から、それぞれ個々の測定点に当たるには容認し難い消費であることは明らかであるので、測定は測定位置の通過時に進行中に行われなければならない。100mm/秒の走査速度の場合、データ収集には約15時間を要する。
シュテーレ氏他の「Reledop:フルスケールのアンテナ・パターン測定」放送に関するIEEE紀要、第34巻第2号、1988年6月刊(1988/06、210−220ページ、YP000054225、米国、ニューヨーク、)、およびヘンス氏の「ヘリコプター測定」NTZ放送技術誌、第40巻第4号、1987年4月刊(1987/04、258−261ページ、YP−002168218、ドイツ・ベルリン)から、パイロット制御のヘリコプタを使用して、長い引き綱もしくは伸縮棒を導入して、測定される放射電磁界にゾンデを設置することは公知である。本物のヘリコプタを使用しても、長い引き綱もしくは伸縮棒を使用しても高精度の測定はできず、特に測定される場の内部に高精度に位置決めすることはできない。
【0012】
本発明の目的は、特に屋外での高精度で広範囲の放射電磁界の測定を比較的低コストで実施できる、放射電磁界の特性を高精度で決定するシステムと方法を提供することにある。
【0013】
上記の目的は独立クレームの特徴によって達成され、好適な実施形態は従属クレームの特徴によって開示される。
【0014】
放射電磁界を放射するための/放射を伴う装置を調整(アライメント)/測位(ポジショニング)し、および/またはその電磁特性を検出するための測定システムであって、本発明に基づいて、姿勢と位置を特定するシステムによって検出可能な、測定装置の姿勢と位置を特定するための少なくとも1つの装置を備える、該測定システムは、指向性信号を検出するための測定ゾンデと共に浮遊可能な遠隔操作可能な測定装置を備えることを特徴とする、特に移動式の測定システムが提供される。
【0015】
姿勢と位置を特定するシステムは、好適には放射装置の場所で利用できる測位システムであり、かつ前記装置は位置受信機/位置アンテナであり、この位置受信機/位置アンテナ(1つまたは複数)は浮遊装置に対して所定の相対位置に備えられる。
【0016】
本発明に基づく測定システムでは、測位システムは好適には、比較的高い精度で位置を探知できる、例えばGPSのような非地上式全地球測位システムが使用される。
【0017】
さらに好適には、現在位置、位置測定、および姿勢測定のためのシステムの位置受信機/位置アンテナ(1つまたは複数)は測定ゾンデに配置される。電磁測定と放射装置の測位、ないし位置調整とのできるだけ正確な一致を維持するために、測定ゾンデの位相中心はできるだけ位置受信機/位置アンテナの近傍にある必要がある。
【0018】
さらに、放射装置は好適にはアンテナ、特にパラボラ・アンテナまたはアレイ・アンテナである。
【0019】
その上、本測定システムは、測定装置が位置受信機/位置アンテナと、コンパスと、慣性力および/または加速度を測定するための装置と、浮遊する測定装置の姿勢を特定し、制御するための1つまたは複数の回転センサとの組合せを備えるように構成することができる。特定の用途で必要であるならば、もちろん、前記部品にさらに別の部品を加えることができる。
【0020】
本発明に基づく測定システムはさらに、測定装置が互いに空間的に離間されて浮遊装置に配置された複数個の位置受信機/位置アンテナを備えることで、浮遊装置の位置および姿勢を特定するために異なる方法を利用できるように構成されることができる。
【0021】
最後に、本発明に基づく測定システムでは、放射装置の領域の地上に基準としての補助位置受信機/位置アンテナを備えることで、浮遊装置の位置および姿勢を特定するために異なる方法を利用できるようにすることができる。
【0022】
このように構成された測定システムでは、例えば測定ゾンデから供給されるデータを処理するための測定機器、並びに浮遊する測定装置を制御するための装置を備えることができる地上局と、受信機との間の直接的な視野的接触を必要とせず、これは特に球形の走査輪郭の場合に有利であり得る。
【0023】
位置受信機/位置アンテナ、および/または測定ゾンデからなるシステムは好適には、測定ゾンデの角度の調整、旋回、または安定化が可能であり、かつ例えば風の影響がある場合に、浮遊装置が傾倒位置にあっても所望の調整が保証されるように、例えばヘリコプターのような浮遊装置に取り付けることができる。特に、放射装置に対する相対位置を考慮に入れることができる僅かな位置および角度の偏差の安定化を図ることができるだけではなく、この安定化および/または位置決めは好適には、測定制御ループと相互関係にもあるので、適切な追尾が可能である。したがって、それによって公差の補償、ひいては個々の測定の促進が達成される。
【0024】
あるいは、指向性の放射線信号および/または波形信号を放射するための/放射を伴う装置を高精度で調整/測位し、かつ/またはその電磁特性を検出するための測定システムを次のように構成することができる。すなわち、放射装置の前に浮遊して配置される信号検出用の測定ゾンデに、複数の装置を取付け、該装置の相対的な瞬間測定位置を測地器を有する少なくとも1つの位置測定システムによって検出可能とし、該測地器は、所定の光信号を放射する装置、および光信号を受信する装置を備え、かつ測地器の所定の光信号を測定される位置に反射させる装置を備え、所定の光信号を反射させる装置は、例えば反射性の球形反射面によって形成されているので、所定の光信号は観測地点に反射する。球形の反射面(1つまたは複数)は浮遊装置、および/または測定ゾンデに対する所定の相対位置に取り付けられる。
【0025】
その際に、このような測定システムを、反射面がミラー被覆された球であるように構成することができる。
【0026】
さらに、この測定システムは好適には、光信号を受信する測地器が凹面の主ミラーと、凸面の補助ミラーと、読み取り信号を発生するための、例えば位置ダイオードのような二次元感度が高い検出装置を備えるように構成される。ミラーの代わりにリフレクタ/屈折体のような他の光学系を使用することもできる。
【0027】
さらに、測定システムは、補助ミラーが主ミラーのほぼ焦点に位置し、検出装置が補助ミラーと反対側の主ミラーの領域に位置するように構成することができ、検出装置は好適には、補助ミラー内で集束し、反射される光信号が透過する主ミラー内の開口の背後に配置される。
【0028】
同様に好適には、各々の反射装置には2つの測地器が割り当てられるので、クロス方位測定が可能である。
【0029】
測地器から放射される光信号は好適にはレーザビーム、特に出力調整可能、および/または変調可能なレーザビームであり、測地器はそれぞれのリフレクタへの方位測定角を動的に、かつ正確に決定するための、方位角および仰角の高精度の角度エンコーダを備えることができる。例えば2つのレーザビームを使用する場合、これらは異なる周波数で変調されることができるので、反射した信号を識別することが可能である。さらに、特に好適な実施形態では、レーザ源リフレクタと検出装置との距離に応じて出力の調整が可能であることにより、過度なレーザ照射によるダイオードの損傷を防止することができる。レーザビーム用に半導体レーザを使用することが特に有利であることが判明しており、代替として、または補助的に変調を周波数フィルタによって行うことができる。
【0030】
この測定システムは好適には、浮遊装置に対して所定の相対位置に備えられた3つの反射面を有する3つの前記システムが備えられるように構成される。
【0031】
測定システム自体は公知の方法で電磁特性を検出でき、この目的のため通常は測定ゾンデが使用される。それによって、電磁測定、測定場所および/または放射装置の位置の相互の関係を確立できる。3つのパラメータ、すなわち位置、放射電磁界、および放射電磁界の生成、を高精度で相対的に決定することによって、多数の高精度測定を行うことが簡単に可能であり、測定ゾンデは例えば冒頭に述べた近距離場測定技術を利用して作動可能である。
【0032】
さらに好適には、球形の反射面の1つは測定ゾンデに配置される。電磁測定と放射装置の測位、もしくは位置調整の出来るだけ正確な一致を維持するために、測定ゾンデの位相中心が球形反射面の中点のできるだけ近傍に位置するようにする必要があり、球の中心と位相の中心が一致した場合に最適な精度が維持される。さらに、放射装置は好適にはアンテナ、特にパラボラ・アンテナまたはアレイ・アンテナである。
【0033】
上記の特徴の他に、この測定システムは、反射レーザビームの投影の際にオートフォーカス装置を備えることが有利であり、これは個々の測定点の迅速な検知、およびその精度を促進する。測定精度をさらに高めるために、ダイオード、もしくは検出装置の相対位置を表示領域で評価することができることを付記しておく。
【0034】
その際に、測定される電磁場内の物体が著しい測定誤差を誘発することがあるので、測位される放射装置に対する浮動装置のサイズと質量はできるだけ小さく選択される。このような要求基準を満たすために、例えば浮遊装置として小型ヘリコプタを備えることが提案され、好適には無線遠隔操作される、例えば制御された気球、飛行船等のような代替案も考えられる。
【0035】
本発明は測定システムの他に、本発明に基づいて以下のステップを含む、特に移動式に使用され、および/または屋外用の放射電磁界の特性を高精度で決定する方法をも提供するものである。すなわち、
1.放射電磁界を検出する測定ゾンデと、姿勢と位置を特定するシステムによって検出可能な、測定装置の姿勢と位置を特定する少なくとも1つの装置とを備えた、遠隔操作可能な測定装置を浮遊状態で放射電磁界に配置するステップ
2.測定装置の位置と姿勢を特定するステップ
3.放射電磁界の特性を決定する測定信号を発生するステップ
4.測定信号を測定システムの浮遊部分から地上側の小型計器に送信するステップ。
【0036】
その際に、本発明に基づく方法は、測定装置の姿勢および位置を三次元の空間次元で決定するために検出装置の姿勢および位置を求めるための装置の座標が決定され、かつこの座標から測定装置の全6自由度の現在位置と現在姿勢が特にリアルタイムで動的に決定されるように構成される。
【0037】
さらに、測定装置の全6自由度の現在位置と現在姿勢が所定の目標位置および目標姿勢と比較され、かつ測定装置の制御を伴う閉ループ内で制御されることが可能であり、制御の際には測定ゾンデの安定化、または測位が図られる。
【0038】
最後に、本件出願では放射装置に関して記載しているが、本発明は勿論、受信設備、または放射電磁界が変化する、特に反射する装置の場合の反転/補完にも応用できることが専門家には明らかである。
【0039】
本発明に基づいて構成された測定システム、または測定システムの決定的な利点は、可動性があるので、大型の、殆どが固定式である屋外でのアンテナシステムの放射線特性を完全に決定でき、その上、高精度で実現できる。
【0040】
本発明に基づく解決方法のその他の利点は特に下記のとおりである。
・約2.0mmから50mまでの高精度の測位
・一辺の長さが100mの立方体までの広い測位範囲
・100mの測位区間にわたり<1.0分の高い測位速度
・50mの距離から0.5mmと1.0度の角度の全6自由度を高精度で検出
・可動性
・比較的低い設置コスト
・広範な利用範囲(アンテナ測定、レーダーの後方散乱測定、EMV測定(Electromagnetic Compatibility Measurements)、環境測定等)
【0041】
本発明のその他の特徴と利点は、添付図面を参照した本発明の好適な実施形態の以下の説明から明らかにされる。
【0042】
図1は、ここではレーザビームである所定の光信号6を放射するための装置4、並びに光信号8を受信するための装置をそれぞれ備えた、ここでは光学式経緯儀である2つの測地器2と、測地器2の所定の光信号6を測定される位置に反射するための装置10とを備えた位置測定システムの実施形態を示しており、所定の光信号6を反射する装置10はここでは反射性の、もしくはミラー被覆された球10によって形成されているので、観測機器用の所定の光信号6の反射率はポイント12で低下する。
【0043】
さらに図1から分かるように、測地装置2は反射した光信号8を受信するために凹面の主ミラー14と、凸面の補助ミラー16と、読み取り信号を発生するための二次元感度が高い検出装置18とを備えている。その際に、補助ミラー16は主ミラー14の焦点に配置され、検出装置18は補助ミラー16と対向して主ミラー14の領域の、補助ミラー16内で集束し、反射される光信号8が透過する主ミラー内の開口20の背後に配置される。測地器2は図示した実施形態では、検出装置18を使用して、それぞれのリフレクタへの方位測定角を動的に、かつ正確に検出し/追尾するための、方位角および仰角の高精度の角度エンコーダおよび追尾駆動装置を備えている。
【0044】
図2は、ここではパラボラ・アンテナ22である、指向性の放射信号、および/または波形信号を放射する装置の高精度の調整(アライメント)/測位(ポジショニング)のための測定システムの実施形態を示しており、図示した実施形態の測定システムは、アンテナ22の信号を検出する測定ゾンデを備えた、アンテナの前に浮遊する測定装置24を備え、その位置は図1に示すように位置測定用の多数のシステムによって特定可能である。図2には6つの光学式経緯儀2が示され、そこから発するレーザビーム6はアンテナ22の前で浮遊する測定装置24に取り付けられたリフレクタに向けられる。
【0045】
図3から図5は図2に示した実施形態の浮遊測定装置24の具体例を示している。その際に認識すべきことは、この場合は好適には小型化されたヘリコプタが使用され、これは姿勢と位置を検出するためのシステムによって特定可能な、浮遊測定装置24の姿勢と位置を特定するための3つの装置10を備え、前記測定装置はアンテナ信号を検出するための伸縮アーム26もしくは測定ゾンデ28の、ヘリコプタに所定の位置で固定されることである。これらの装置は例えば図1を参照して記載したようなミラー被覆された球10、または放射装置22の場所で利用可能な位置特定システム(図示せず)用の位置受信機/位置アンテナ10であってよい。
【0046】
したがって、図示した実施形態における小型ヘリコプタは、測定されるアンテナ22の前に安定して浮遊する位置をとるのに適しているために使用され、アンテナは比較的軽量であるので、ヘリコプタによる測定誤差は実質的に予測されず、簡単で常時利用できる技術で制御することができる。測定誤差をさらに縮減するために、測位装置および/または安定化装置(図示せず)を備えることができ、これはヘリコプタに対して確実な連結解除が可能で、放射装置に対してほぼ任意の位置をとることが可能である。例えばヘリコプタが放射装置の上方にあると、測定ゾンデは本質的に下方に向く必要があろう。
【0047】
図6および図7は図2の実施形態を平面図および正面図で示し、同じ要素には同じ参照番号が付されている。
【0048】
図2から図7に示した測定システムは、ヘリコプタに固定されているレーザ・リフレクタ10の位置がそれぞれ2つの高精度の角度測定器2によって方位角および仰角で特定されるように動作する。その際に自動的な目標追跡は、例えば追尾装置を使用して、それぞれの角度測定器、もしくは光学式経緯儀2から放出されるレーザビーム6に基づいて行われる。
【0049】
複数のレーザビームを使用する場合は、互いに異なるものでよい。この目的のため、例えば変調可能な半導体レーザ、または出力側に周波数フィルタを接続したレーザを使用できるので、各々のレーザビームはこれを識別できる特有の特性を有する。
【0050】
このレーザビーム6はヘリコプタに取り付けられたレーザ・リフレクタ10で反射され、それぞれの角度測定器2内にある光学望遠鏡14、16によって二次元感度が高い検出装置18に投影される。ヘリコプタ、ひいてはレーザ・リフレクタ10の移動によって距離差信号が発生され、これが追尾駆動装置(図示せず)によって方位角と仰角での追尾を誘発する制御回路に供給される。方位角と仰角での高精度の角度エンコーダ(図示せず)がそれぞれのレーザ・リフレクタ10に動的に正確に方位測定角を供給する。図2、図6および図7に示すように、それぞれ2つの角度測定器2が同じレーザ・リフレクタ10の方位を測定するので、それぞれのレーザ・リフレクタ10の座標は三次元空間で特定可能である。そこで、3つのレーザ・リフレクタ10の座標から、ヘリコプタ24の全6自由度の現在位置と現在姿勢が動的に決定される。この情報は所定の目標位置、および目標姿勢と比較され、ヘリコプタ制御を伴う閉ループで制御される。この方法によって、ヘリコプタもしくはこれに搭載され、アンテナ22の指向性信号を検出するための測定ゾンデ28を、100mまでの高度の全6自由度の最高の精度で測位されることができる。浮遊測定装置としてのヘリコプタ24からのダウンリンクは公知の伝送概念に基づいて行われ、膨脹誤差がないグラスファイバ・システムによる結合が他の可能性と共に好適である。しかしいずれの場合も留意すべきことは、それによって例えば位相ずれのような誤差が生じないことである。
【0051】
図8には本発明の調整および制御概念が示されている。角度測定器2はリフレクタ10のそのつどの位置をリアルタイムで計算する位置コンピュータ30と接続されている。このようにして決定された位置データは浮遊測定装置24の位置および姿勢コンピュータ32に伝送される。ポイント34では位置および姿勢の現在値が供給され、その後、36において、この供給値の適用により発生する位置と姿勢の目標値38を考慮に入れた位置と姿勢に関する目標値/現在値との比較が行われ、この比較に基づいて、ヘリコプタ制御のための目標値が生成され40、それが遠隔操作42によってヘリコプタ24に伝送される。
【0052】
図9は放射電磁界の特性を高精度で決定するための測定システムの別の実施形態を示している。この図では、図1から図8と同様の要素には同じ参照番号が付されている。図示した実施形態の測定システムにも、遠隔操作可能な、指向性信号を検出するための測定ゾンデ28と、放射装置22の場所で利用できる位置特定システム(図示せず)用の少なくとも1つの位置受信機/位置アンテナ10とを備えた浮遊可能な測定装置24が備えられている。本発明に基づく測定システムでは、位置特定システムとして好適には、例えばGPSのような非地上式全地球測位システムが使用され、これによって、地表より上方の位置をより高い精度で決定することが可能である。地上局には別の固定式位置受信機/位置アンテナ44が備えられている。測定装置24はデータリンク42を介して地上局、もしくはこれに装備されている、高精度の基準位置を供給する位置受信機/位置アンテナ44と接続されている。
【0053】
測定システムによって、電磁測定、放射装置22の測定場所および/または測定位置の相互関係を確定することができる。3つのパラメータ、すなわち位置、放射電磁界、および放射電磁界の生成、を高精度で相対的に決定することによって、多数の高精度測定を実行することが容易に可能であり、その際に測定ゾンデ28を例えば近距離場測定技術を採用して動作させることができる。
【0054】
その際に留意すべき点は、図3から図5を参照して説明したような、好適には小型化されたヘリコプタは例えばGPSのようなナビゲーションまたは測位システム用の、伸縮アーム26、もしくは測定ゾンデ28のヘリコプタに対する、もしくは相互の所定位置に固定されている3つの位置受信機/位置アンテナ10を備えていることである。電磁測定と放射装置22の測位もしくは位置調整(アライメント)のできる限り正確な一致を維持するため、測定ゾンデ28の位相中心は位置受信機/位置アンテナ10の極めて近傍にある。
【0055】
空間的に離間して小型ヘリコプタ24に配置された複数の位置受信機/位置アンテナ10、並びに補助的な位置受信機/位置アンテナを基準として放射装置の領域の地上に備えることによって、例えばヘリコプタ24のDGPSのような位置及び姿勢決定のための異なる方法を利用することが可能になる。
【0056】
本発明に基づいて構成された測定システムでは、例えば測定ゾンデから供給されたデータを処理するための測定機器、並びに浮遊する測定装置24を制御するための装置を備えることができる地上局44と、それぞれの受信機10との間の直接的な視野的接触は必要なく、このことは特に球形のスキャン輪郭の場合に有利になり得る。
【0057】
測定誤差をさらに縮減するため、ヘリコプタとの確実な連結解除を呈し、かつ放射装置に対するヘリコプタのほぼ任意の位置をとることを可能にする測位装置および/または安定化装置(図示せず)を備えることができる。例えばヘリコプタが放射装置の上方に位置する場合は、測定ゾンデ28は本質的に下方を向いている必要があろう。
【0058】
図10および図11は図9のシステムの平面図および正面図である。
【0059】
図9から11に示した測定システムは、ヘリコプタ24に固定された位置受信機/位置アンテナ10の位置、並びに地上局の位置受信機/位置アンテナ44の位置がそれぞれ特定され、その後で、ヘリコプタ24のそのつどの瞬間位置と姿勢が好適にはリアルタイムで計算できるように動作する。
【0060】
例えばGPSのような適宜のナビゲーション、または測位システムを使用することによって、それぞれの位置受信機/位置アンテナ10の座標を特定することができる。そこで、3つの位置受信機/位置アンテナ10、ならびに位置受信機/位置アンテナ44の座標から、ヘリコプタ24の全6自由度の現在位置と現在姿勢が動的に決定される。この情報は所定の目標位置および目標姿勢と比較され、ヘリコプタ制御を伴う閉ループで制御される。この方法によって、ヘリコプタもしくはこれに搭載され、アンテナ22の指向性信号を検出するための測定ゾンデ28の全6自由度の位置をより高精度で測位可能である。浮遊装置としてのヘリコプタ24のダウンリンク42は公知の概念に基づいて行われ、放射電磁界の特性を決定するための測定信号の伝送は例えば、膨脹誤差、および温度誤差がないグラスファイバ・システムによって実現可能である。しかし、いずれの場合も留意すべきことは、それによって例えば位相ずれのような許容し得ない誤差が生じないことである。
【0061】
本発明の調整および制御概念は、位置コンピュータが位置受信機/位置アンテナ10のそのつどの位置をできる限りリアルタイムで計算することを意図するものである。このようにして求めた位置データはヘリコプタ24の位置コンピュータに伝送される。位置および姿勢の現在値はヘリコプタ24の位置コンピュータに送られ、その後、この伝送値の適用から発生する位置と姿勢の目標値を考慮に入れた、位置と姿勢に関する目標値/現在値との比較が行われ、この比較に基づいて、ヘリコプタ制御のための動作値が生成され、これは遠隔操作によってヘリコプタ24に伝送される。
【0062】
本発明に基づくシステムによって、測位範囲が広い場合でも簡単かつ有利に、高い測位精度を達成可能であり、同時に高い測位速度と全6自由度の高精度の検出、並びにとりわけ放射電磁界の特性の高精度の決定が可能である。このシステムと方法は屋外での使用に適し、可動性を保証し、設置コストが安く、応用範囲が広い(アンテナ測定、レーダー後方散乱測定、EMV測定(Electromagnetic Compatibility Measurements)、環境測定等)。特に、その可動性により、屋外における放射電磁界の高精度かつ広い面積にわたる測定と、特性の決定が可能になる。
【0063】
図示した実施形態の他に、勿論、それぞれの実施形態の個々の要素を互いに組み合わせることも可能である。
【図面の簡単な説明】
【図1】 測位のための測地器の実施形態の概略図である。
【図2】 測地器による測位のための測定システムの実施形態の概略側面図である。
【図3】 浮遊装置の実施形態の図である。
【図4】 浮遊装置の実施形態の図である。
【図5】 浮遊装置の実施形態の図である。
【図6】 図2に示した測定システムの平面図である。
【図7】 図2に示した測定システムの正面図である。
【図8】 調整および制御概念の概略図である。
【図9】 測位システムによって測位するための測定システムの実施形態の概略側面図である。
【図10】 図9の測定システムの平面図である。
【図11】 図9の測定システムの正面図である。

Claims (17)

  1. 放射電磁界を放射するためのまたは放射を伴う放射装置(22)を調整(アライメント)または測位(ポジショニング)し、および/またはその電磁特性を検出するための測定システムであって、
    遠隔操作可能な測定装置(24)を備え、
    前記測定装置(24)は、放射電磁界の特性を決定する信号を検出するための測定ゾンデ(28)と共に放射装置(22)の前で浮遊可能であり、
    前記測定装置(24)は、前記測定装置(24)の姿勢と位置を特定するために、姿勢と位置を特定するシステムによって検出可能となった複数のリフレクタ装置(10)を備え、
    前記測定装置(24)のサイズと質量が、前記放射装置(22)と比較して小さく選択され、
    前記姿勢と位置を特定するシステムは、複数の測地器(2)を備え、
    前記各測地器(2)は、光信号(6)を放射するための光放射装置(4)と、光信号(8)を受信するための光受信装置とを有し、
    前記リフレクタ装置(10)は、測定点で前記測地器(2)の光信号(6)を反射するための少なくとも1つの反射性の球形の反射面(10)を備え、球形の反射面(10)は前記測定装置(24)に対して予め決められた相対位置に備えられ、各リフレクタ装置(10)にはクロス方位測定が可能であるように2つの測地器(2)が割り当てられ
    それぞれのリフレクタ装置(10)の座標が特定され、かつこの座標から測定装置(24)の全6自由度の現在位置と現在姿勢がリアルタイムで動的に決定されることを特徴とする測定システム。
  2. 反射面がミラー被覆された球(10)の一部であることを特徴とする請求項1に記載の測定システム。
  3. 光信号を受信する装置は、凹面の主ミラー(14)と、凸面の補助ミラー(16)と、読取り信号を発生するための二次元の感度を持つ検出装置(18)とを備えることを特徴とする請求項1または2記載の測定システム。
  4. 補助ミラー(16)は主ミラー(14)のほぼ焦点に配置され、かつ検出装置(18)は補助ミラー(16)に対向して主ミラー(14)の領域に配置されることを特徴とする請求項3記載の測定システム。
  5. 検出装置(18)は主ミラー(14)内の開口(20)の背後に配置されることを特徴とする請求項3または4に記載の測定システム。
  6. 測地器(2)から放射される光信号は、レーザビーム(6)であることを特徴とする請求項1から5のいずれか一項に記載の測定システム。
  7. 前記レーザビーム(6)は、出力調整可能または変調可能なレーザビーム(6)であることを特徴とする請求項6記載の測定システム。
  8. 測地器(2)はそれぞれのリフレクタ装置(10)に対する角度を動的に、かつ正確に決定するための、方位角および仰角の角度エンコーダを備えることを特徴とする請求項1から7のいずれか一項に記載の測定システム。
  9. 前記リフレクタ装置(10)は、3つ備えられることを特徴とする請求項1から8のいずれか一項に記載の測定システム。
  10. 球形の反射面(10)の1つが測定ゾンデ(28)に配置され、ゾンデの位相中心は球形の反射面の中心とほぼ一致することを特徴とする請求項1から9のいずれか一項に記載の測定システム。
  11. 測定ゾンデ(28)は近距離場測定技術に使用するように構成されることを特徴とする請求項1から10のいずれか一項に記載の測定システム。
  12. 測定装置(24)は遠隔操作される小型ヘリコプタであることを特徴とする請求項1から11のいずれか一項に記載の測定システム。
  13. 測定装置(24)は遠隔操作される気球であることを特徴とする請求項1から11のいずれか一項に記載の測定システム。
  14. 測定装置(24)は遠隔操作される飛行船であることを特徴とする請求項1から11のいずれか一項に記載の測定システム。
  15. 測定装置(24)は遠隔操作される航空機であることを特徴とする請求項1から11のいずれか一項に記載の測定システム。
  16. 請求項1ないし15のいずれか1項に記載の測定システムを用いて放射電磁界の特性を高精度で決定する方法であって、
    ・放射電磁界を検出する測定ゾンデ(28)と、複数のリフレクタ装置(10)とを備えた、前記測定装置(24)を浮遊状態で放射電磁界に配置するステップと、
    ・前記測定装置(24)の位置と姿勢を特定するステップと、
    ・放射電磁界の特性を決定する測定信号を発生するステップと、
    ・測定信号を浮遊した測定装置(24)から地上側の測定器に送信するステップと
    を含み、
    前記測定装置(24)の位置と姿勢を特定するステップは、それぞれのリフレクタ装置(10)の座標が特定され、かつこの座標から測定装置(24)の全6自由度の現在位置と現在姿勢がリアルタイムで動的に決定されることを含
    方法。
  17. 測定装置(24)の全6自由度の現在位置と現在姿勢が所定の目標位置および目標姿勢と比較され、かつ測定装置(24)の制御を伴う閉ループ内で制御されることを特徴とする請求項16に記載の方法。
JP2001550042A 1999-12-30 2000-12-29 屋外の放射電磁界の特性を広範囲に、かつ高精度に決定するための移動システムおよびこれを実施する方法 Expired - Lifetime JP5081357B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19963794.6 1999-12-30
DE1999163794 DE19963794B4 (de) 1999-12-30 1999-12-30 Anordnung und Verfahren zur hochgenauen Winkelmessung
DE10043461.4 2000-09-04
DE10043461A DE10043461B4 (de) 2000-09-04 2000-09-04 Mobile Anordnung und Verfahren zur großflächigen Charakterisierung von Strahlungsfeldern im Außenbereich
PCT/DE2000/004681 WO2001050145A2 (de) 1999-12-30 2000-12-29 Mobile anordnung und verfahren zur grossflächigen und genauen charakterisierung von strahlungsfeldern im aussenbereich

Publications (2)

Publication Number Publication Date
JP2003524777A JP2003524777A (ja) 2003-08-19
JP5081357B2 true JP5081357B2 (ja) 2012-11-28

Family

ID=26006916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001550042A Expired - Lifetime JP5081357B2 (ja) 1999-12-30 2000-12-29 屋外の放射電磁界の特性を広範囲に、かつ高精度に決定するための移動システムおよびこれを実施する方法

Country Status (10)

Country Link
US (1) US6750822B2 (ja)
EP (1) EP1242829B1 (ja)
JP (1) JP5081357B2 (ja)
AT (1) ATE254769T1 (ja)
AU (1) AU769332B2 (ja)
CA (1) CA2395998C (ja)
DE (1) DE50004529D1 (ja)
DK (1) DK1242829T3 (ja)
IL (1) IL150409A0 (ja)
WO (1) WO2001050145A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE512348T1 (de) * 2002-10-12 2011-06-15 Leica Geosystems Ag Elektronische anzeige- und steuervorrichtung für ein messgerät
ES2253020B1 (es) * 2003-05-05 2008-03-01 Grupo Isolux Corsan, S.A. Sistema remoto de control y monitorizacion de emisiones electromagneticas.
TWI422838B (zh) * 2006-04-05 2014-01-11 Emscan Corp 多頻道無吸收器之近場測量系統
US7672640B2 (en) * 2006-04-05 2010-03-02 Emscan Corporation Multichannel absorberless near field measurement system
US8502546B2 (en) * 2006-04-05 2013-08-06 Emscan Corporation Multichannel absorberless near field measurement system
JP5466806B2 (ja) 2006-09-21 2014-04-09 株式会社トプコン 光波距離測定方法、距離測定プログラム及び距離測定装置
JP5466808B2 (ja) * 2006-09-29 2014-04-09 株式会社トプコン 光波距離測定方法、距離測定プログラム及び距離測定システム
US8421673B2 (en) * 2008-05-15 2013-04-16 The United States Of America As Represented By The Secretary Of The Navy Method and software for spatial pattern analysis
US8077098B2 (en) * 2008-05-15 2011-12-13 The United States Of America As Represented By The Secretary Of The Navy Antenna test system
DE102008024134B4 (de) * 2008-05-19 2012-04-19 Astrium Gmbh Anordnung und Verfahren zur drahtlosen Übertragung von phasen-kritischen Signalen bei variabler Längenänderung der Übertragungsstrecke
DE102009051969A1 (de) 2009-11-04 2011-05-05 Astrium Gmbh Verfahren und Vorrichtung zum Vermessen eines Strahlungsfelds
DE102009053446B4 (de) * 2009-11-17 2018-09-20 Airbus Defence and Space GmbH Hochfrequenz-Messanlage und Verfahren zum Vermessen eines Hochfrequenz-Testobjekts, insbesondere einer Antenne
US20120136631A1 (en) * 2010-01-29 2012-05-31 Alexandre Bratkovski Subordinate and master sensor nodes
DE102011015917B4 (de) 2011-04-01 2015-09-17 Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zur Freiraum-Funksignalmessung sowie Freiraum-Funksignalmesseineinrichtung hierzu
US9726704B2 (en) * 2013-10-29 2017-08-08 Nsi-Mi Technologies, Llc Radiation measurement system and method with synchronous high speed tracking laser based position measurement
JP2017534051A (ja) 2014-11-12 2017-11-16 イーエムスキャン コーポレイション リアクティブ近傍界アンテナ測定
DE102016110734B4 (de) 2016-06-10 2019-03-07 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren und Vorrichtung zur Messung von Fahrzeugantennen
US10067172B1 (en) * 2016-07-21 2018-09-04 Softronics, Ltd. Far-field antenna pattern characterization via drone/UAS platform
EP3798647A1 (en) * 2017-05-29 2021-03-31 Mitsubishi Electric Corporation Wireless power transmission device and power transmission system to aerial moving body
JP2019101024A (ja) * 2017-12-01 2019-06-24 三菱電機株式会社 測定システム、測定制御装置、測定装置、測定方法及びプログラム
CN116929289B (zh) * 2023-09-18 2024-01-05 中国科学院西安光学精密机械研究所 一种天线姿态快速测量系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1303621A (ja) 1963-07-11 1973-01-17
GB1605430A (en) 1975-01-10 2003-04-09 Shorts Missile Syst Ltd Improvements in or relating to the height of guidable flying bodies
US4422076A (en) * 1980-07-24 1983-12-20 General Dynamics Corporation, Electronics Division Passive synthetic aperture system for locating a source of electromagnetic radiation
JP2746487B2 (ja) * 1991-07-25 1998-05-06 防衛庁技術研究本部長 垂直離着陸航空機の機体位置測定方法
JP3176981B2 (ja) * 1992-04-27 2001-06-18 株式会社エヌエイチケイアイテック Gpsを利用した送信空中線放射特性の測定方法
JPH0672391A (ja) * 1992-08-31 1994-03-15 Res Dev Corp Of Japan 三次元航行体の操舵制御装置
JP2644151B2 (ja) * 1992-10-29 1997-08-25 鹿島建設株式会社 シールド機の自動測量方法
EP0622625A3 (en) * 1993-04-27 1997-04-16 Hughes Aircraft Co Air quality monitoring system.
JP2606656B2 (ja) * 1993-09-24 1997-05-07 日本電気株式会社 レーダ空中線送信パターン測定方式
JPH07139944A (ja) * 1993-11-12 1995-06-02 Wacom Co Ltd 光学式位置検出装置及び光学式位置指示器
DE4421783C2 (de) 1994-06-22 1996-05-15 Leica Ag Optische Einrichtung und Verfahren zum Bestimmen der Lage einer reflektierenden Zielmarke
JPH08211117A (ja) * 1995-02-02 1996-08-20 Nippon Telegr & Teleph Corp <Ntt> アンテナ放射パターン測定方法
DE19543321B4 (de) 1995-11-21 2006-11-16 Diehl Stiftung & Co.Kg Verfahren und Einrichtung zum drahtlosen Austausch von Informationen zwischen Stationen
JPH1060904A (ja) * 1996-08-13 1998-03-03 Maeda Corp ケーソンの沈設管理システム
JPH10170267A (ja) * 1996-12-10 1998-06-26 Nikon Corp 物体方向検出装置及びそれを有する測量装置
DE19714539B4 (de) 1997-04-09 2006-09-07 Diehl Stiftung & Co.Kg Aufklärungs-Drohne

Also Published As

Publication number Publication date
US20030122078A1 (en) 2003-07-03
DK1242829T3 (da) 2004-01-05
US6750822B2 (en) 2004-06-15
IL150409A0 (en) 2002-12-01
CA2395998C (en) 2009-02-03
JP2003524777A (ja) 2003-08-19
DE50004529D1 (de) 2003-12-24
ATE254769T1 (de) 2003-12-15
WO2001050145A3 (de) 2002-02-14
WO2001050145A2 (de) 2001-07-12
AU769332B2 (en) 2004-01-22
EP1242829A2 (de) 2002-09-25
CA2395998A1 (en) 2001-07-12
AU3002201A (en) 2001-07-16
EP1242829B1 (de) 2003-11-19

Similar Documents

Publication Publication Date Title
JP5081357B2 (ja) 屋外の放射電磁界の特性を広範囲に、かつ高精度に決定するための移動システムおよびこれを実施する方法
US11137433B2 (en) Radio wave measurement system
AU2006224653B2 (en) Method and system for determining position and orientation of an object
US9453913B2 (en) Target apparatus for three-dimensional measurement system
US5077557A (en) Surveying instrument with receiver for satellite position-measuring system and method of operation
US9482755B2 (en) Measurement system having air temperature compensation between a target and a laser tracker
CN101010563A (zh) 组合激光系统和全球导航卫星系统
CN107819187B (zh) 用于微波天线的对准装置、微波天线及对准方法
US6653650B2 (en) Streamlined method and apparatus for aligning a sensor to an aircraft
CN109100733A (zh) 激光雷达设备误差检测设备、方法及装置
CN208833907U (zh) 激光雷达设备误差检测设备
US5835069A (en) GPS antennas and receivers configured as handles for a surveyor&#39;s optical total station
JP2006284385A (ja) Gps衛星用基準局システム
KR20010072444A (ko) 안테나 장치
JP4410684B2 (ja) アクティブな信号送信ラジオゾンデの方位角および仰角を測定するアンテナ・システムおよび方法
CN116222301A (zh) 一种海上发射火箭快速瞄准方法及系统
US20210396798A1 (en) Wireless power transmission device and power transmission system to aerial moving body
Skryja et al. Autoaligning System for Short-Range Free Space Optics Links
CN111174751B (zh) 一种便携式天线光电测向测姿仪及其调整方法与应用
CN114157351A (zh) 一种声光复合定位的无扫描空间激光通信装置及捕获方法
KR101938778B1 (ko) Rf 및 sal 기반의 이중모드 복합 센서장치
RU2163353C1 (ru) Система подсвета объекта
RU2704712C1 (ru) Способ автономного управления строем космических аппаратов
CA2550034C (en) Streamlined method and apparatus for aligning a sensor to an aircraft
US7773201B1 (en) Alignment of optical system components using an ADM beam through a null assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100824

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111111

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5081357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term