JP5080012B2 - Polishing liquid for metal - Google Patents
Polishing liquid for metal Download PDFInfo
- Publication number
- JP5080012B2 JP5080012B2 JP2006048470A JP2006048470A JP5080012B2 JP 5080012 B2 JP5080012 B2 JP 5080012B2 JP 2006048470 A JP2006048470 A JP 2006048470A JP 2006048470 A JP2006048470 A JP 2006048470A JP 5080012 B2 JP5080012 B2 JP 5080012B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- group
- polishing
- metal
- polishing liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
Description
本発明は、半導体デバイスの製造に関するものであり、特に半導体デバイスの配線工程における金属研磨用有機素材の製造方法およびそれを用いた金属用研磨液に関する。 The present invention relates to manufacturing of semiconductor devices, and more particularly to a method for manufacturing an organic material for metal polishing in a wiring process of a semiconductor device and a metal polishing liquid using the same.
半導体集積回路(以下LSIと記す)で代表される半導体デバイスの開発においては、高集積化・高速化のため、配線の微細化と積層化による高密度化・高集積化が求められている。このための技術として、絶縁性薄膜(SiO2など)や配線に用いられる金属薄膜を研磨し、基板の平滑化や配線形成時の余分な金属薄膜の除去を行う化学的機械的研磨(Chemical Mechanical Polishing、以下CMPと記す)等の種々の術が用いられてきている。
CMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を研磨液で浸して、パッドに基盤(ウェハ)の表面を押しつけ、その裏面から所定の圧力(研磨圧力)を加えた状態で、研磨定盤及び基盤の双方を回転させ、発生する機械的摩擦により基盤の表面を平坦化するものである。
CMPに用いる金属用研磨溶液は、一般には砥粒(例えばアルミナ、シリカ)と酸化剤(例えば過酸化水素、過硫酸)とを含むものであって、酸化剤によって金属表面を酸化し、その酸化皮膜を砥粒で除去することで研磨していると考えられている。
In the development of a semiconductor device typified by a semiconductor integrated circuit (hereinafter referred to as LSI), high density and high integration by miniaturization and lamination of wiring are required for high integration and high speed. As a technique for this purpose, chemical mechanical polishing (Chemical Mechanical Polishing) that polishes an insulating thin film (SiO 2 or the like) or a metal thin film used for wiring, and smoothes the substrate or removes an excess metal thin film during wiring formation. Various techniques such as Polishing (hereinafter referred to as CMP) have been used.
A general method of CMP is to apply a polishing pad on a circular polishing platen (platen), immerse the surface of the polishing pad with a polishing liquid, press the surface of the substrate (wafer) against the pad, In a state where pressure (polishing pressure) is applied, both the polishing platen and the base are rotated, and the surface of the base is flattened by the generated mechanical friction.
A metal polishing solution used in CMP generally contains abrasive grains (eg, alumina, silica) and an oxidizing agent (eg, hydrogen peroxide, persulfuric acid). The metal surface is oxidized by the oxidizing agent, and the oxidation is performed. It is considered that the film is polished by removing the film with abrasive grains.
しかしながら、このような固体砥粒を含む金属用研磨液を用いてCMPを行うと、研磨傷(スクラッチ)、研磨面全体が必要以上に研磨される現象(シニング)、研磨金属面が平面状ではなく、中央のみがより深く研磨されて皿状のくぼみを生ずる現象(ディッシング)、金属配線間の絶縁体が必要以上に研磨されたうえ、複数の配線金属面表面が皿状の凹部を形成する現象(エロージョン)などが発生することがある。
このような従来の固体砥粒における問題点を解決するために、砥粒を含まず、過酸化水素/リンゴ酸/ベンゾトリアゾール/ポリアクリル酸アンモニウムおよび水からなる金属用研磨液が開示されている(例えば、特許文献1参照。)。この方法によれば、半導体基体の凸部の金属膜が選択的にCMPされ、凹部に金属膜が残されて所望の導体パターンが得られるものの、従来の固体砥粒を含むよりもはるかに機械的に柔らかい研磨パッドとの摩擦によってCMPが進むため、十分な研磨速度が得難いという問題点を有している。
However, when CMP is performed using a metal polishing liquid containing such solid abrasive grains, scratches (scratches), a phenomenon in which the entire polished surface is polished more than necessary (thinning), and the polished metal surface is flat In addition, a phenomenon in which only the center is polished deeper to form a dish-like depression (dishing), an insulator between metal wirings is polished more than necessary, and a plurality of wiring metal surface surfaces form dish-shaped recesses. A phenomenon (erosion) may occur.
In order to solve the problems in such conventional solid abrasive grains, a metal polishing liquid which does not contain abrasive grains and is composed of hydrogen peroxide / malic acid / benzotriazole / ammonium polyacrylate and water is disclosed. (For example, refer to Patent Document 1). According to this method, although the metal film on the convex portion of the semiconductor substrate is selectively CMPed and the metal film is left in the concave portion to obtain a desired conductor pattern, it is much more mechanical than the conventional solid abrasive grains. Since CMP proceeds by friction with a soft polishing pad, it is difficult to obtain a sufficient polishing rate.
一方、更なる高性能化を目指し、配線用の金属として、従来汎用のタングステンやアルミニウムに代えて、配線抵抗の低い銅を用いたLSIが開発されるようになった。高密度化を目指す配線の微細化に伴って、銅配線の導電性や電子マイギュレート耐性などの向上が必要となり、それに伴って高純度銅に銀などの第3成分を微量添加した銅合金を用いることも提案されている。同時に、これらの高精細で高純度の材料を汚染させることなく高生産性を発揮し得る高速金属研磨手段が求められている。 On the other hand, an LSI using copper having low wiring resistance has been developed as a metal for wiring in place of conventional general-purpose tungsten or aluminum as a metal for wiring. Along with the miniaturization of wiring aiming at higher density, it is necessary to improve the conductivity and electron migration resistance of the copper wiring, and accordingly, use a copper alloy in which a small amount of a third component such as silver is added to high purity copper. It has also been proposed. At the same time, there is a need for high-speed metal polishing means that can exhibit high productivity without contaminating these high-definition and high-purity materials.
また、最近は生産性向上のため、LSI製造時のウェハ径を大型化しており、現在は直径200mm以上が汎用されており、300mm以上の大きさでの製造も始められている。このような大型化に伴い、ウェハ中心部と周辺部とでの研磨速度の差が大きくなり、面内均一性に対する改善要求が強くなってきている。
銅及び銅合金に対して機械的研磨手段をもたない化学研磨方法としては、溶解作用のみによる化学研磨方法も知られている(例えば、特許文献2参照。)。しかしながら、凸部の金属膜が選択的に化学的機械的に研磨されるCMPに比べ、ディッシングなどの発生による問題が発生しやすく平坦性の確保が課題となっている。
その他にも研磨面の段差平坦化を目的として、研磨パッドの劣化を抑える化学機械研磨用水系分散体(例えば、特許文献3参照。)や、ウエハ表面を修正するのに有用なイミノジ酢酸とその塩から選ばれるキレート剤を含有する加工液(例えば、特許文献4参照。)、α−アミノ酸を含有する化学機械研磨組成物(例えば、特許文献5参照。)などが提案されている。
これらの技術により、銅配線における研磨性能の向上が見られるが、銅配線のバリア金属としてしばしば用いられるタンタルやその合金類は、銅に比較して硬質であるため、配線近傍の平滑化に際しては、銅/タンタル選択性を有する研磨液の実現が望まれているのが現状である。
Recently, in order to improve productivity, the diameter of a wafer at the time of manufacturing an LSI has been increased. Currently, a diameter of 200 mm or more is widely used, and manufacture with a size of 300 mm or more has also started. With such an increase in size, the difference in polishing rate between the wafer center and the periphery has increased, and the demand for improvement in in-plane uniformity has increased.
As a chemical polishing method having no mechanical polishing means for copper and a copper alloy, a chemical polishing method using only a dissolving action is also known (see, for example, Patent Document 2). However, as compared with CMP in which the metal film of the convex portion is selectively chemically and mechanically polished, problems due to the occurrence of dishing and the like are likely to occur, and ensuring flatness is an issue.
In addition, for the purpose of flattening the step of the polishing surface, an aqueous dispersion for chemical mechanical polishing that suppresses deterioration of the polishing pad (for example, see Patent Document 3), iminodiacetic acid useful for correcting the wafer surface, and its A processing fluid containing a chelating agent selected from salts (for example, see Patent Document 4), a chemical mechanical polishing composition containing an α-amino acid (for example, see Patent Document 5), and the like have been proposed.
These technologies improve the polishing performance in copper wiring, but tantalum and its alloys, which are often used as barrier metal for copper wiring, are harder than copper. At present, it is desired to realize a polishing liquid having copper / tantalum selectivity.
本発明は、LSIの生産性を高めるために、銅金属及び銅合金を原料とする配線のより迅速な研磨を実現するCMPスラリーが求められているという背景に基づいて行なわれたものである。
したがって本発明の目的は、迅速な研磨速度を有し、且つ、研磨における銅/タンタル選択性が向上することで、ディッシングが少なく平坦性が向上したLSIの作製を可能とする金属用研磨液を提供することにある。
The present invention has been carried out based on the background that a CMP slurry that realizes faster polishing of wiring using copper metal and a copper alloy as a raw material is required in order to increase the productivity of LSI.
Accordingly, an object of the present invention is to provide a metal polishing liquid that has a rapid polishing rate and improves the copper / tantalum selectivity in polishing, thereby enabling the production of an LSI with less dishing and improved flatness. It is to provide.
上記の金属用研磨液に係る問題点について、本発明者は鋭意検討した結果、下記金属用研磨液を用いることによって問題を解決できることを見出し、本発明を完成するに至った。本発明は下記の通りである。
<1> 半導体デバイスの化学的機械的平坦化に使用される金属用研磨液であって、下記一般式(I)または(II)で表されるテトラゾール誘導体を少なくとも1種含有することを特徴とした金属用研磨液。
一般式(I)
一般式(II)
<2> 半導体デバイスの化学的機械的平坦化において、主として銅配線の研磨に用いられることを特徴とする上記<1>に記載の金属用研磨液。
As a result of intensive studies on the problems associated with the above-described metal polishing liquid, the present inventors have found that the problem can be solved by using the following metal polishing liquid, and have completed the present invention. The present invention is as follows.
<1> A metal-polishing liquid used for chemical mechanical planarization of a semiconductor device, characterized by containing at least one tetrazole derivative represented by the following general formula (I) or (II): Polishing liquid for metal.
Formula (I)
Formula (II)
<2> The metal polishing slurry as described in <1> above, which is mainly used for polishing copper wiring in chemical mechanical planarization of semiconductor devices.
半導体デバイスの製造における化学的機械的研磨に用いる研磨液として、本発明の金属用研磨液を使用することにより、化学的機械的研磨速度が向上し、且つ、研磨における銅/タンタル選択性が向上し、ディッシングの発生が少なく平坦性が向上したLSIの作製を可能とすることができる。また、このことから、LSIにおける、コロージョン、スクラッチ、シニング、エロージョンなどの研磨の局部的な不均一に伴う欠陥の発生が低レベルに維持されるという効果をも奏する。 By using the metal polishing liquid of the present invention as a polishing liquid used for chemical mechanical polishing in the manufacture of semiconductor devices, the chemical mechanical polishing rate is improved and the copper / tantalum selectivity in polishing is improved. In addition, it is possible to manufacture an LSI with less dishing and improved flatness. This also brings about an effect that the occurrence of defects due to local non-uniformity of polishing such as corrosion, scratching, thinning, and erosion in the LSI is maintained at a low level.
本発明の金属用研磨液は、以下に示す特定のテトラゾール誘導体を有することを特徴とする。即ち、テトラゾール環の炭素原子上にある特定の置換基を少なくとも1個含有するテトラゾール誘導体(以下、適宜、特定テトラゾール誘導体と称する)である。
本発明の一般式(I)で表されるテトラゾール誘導体は、テトラゾール環を形成する窒素原子上には置換基を有さず、かつテトラゾール環の5位(炭素原子上)(Ra)にスルホ基(−SO3H)、アミノ基、ホスホノ基(−PO3H2)、カルバモイル基(−CONRR’)、カルボンアミド基(−NHCOR”)、スルファモイル基(−SO2NH2)、及びスルホンアミド基(−NHSO2R”)からなる群より選択された少なくとも1つの置換基を表す。R及びR’はそれぞれ独立に水素原子、アルキル基及びアリール基から選ばれる基を表し、水素原子または炭素数1〜3程度のアルキル基がより好ましい。R”はそれぞれ独立にアルキル基及びアリール基から選ばれる基を表し、アルキル基、特に炭素数1〜3程度のアルキル基がより好ましい。
The metal polishing slurry of the present invention is characterized by having the following specific tetrazole derivatives. That is, it is a tetrazole derivative containing at least one specific substituent on the carbon atom of the tetrazole ring (hereinafter referred to as a specific tetrazole derivative as appropriate).
The tetrazole derivative represented by the general formula (I) of the present invention does not have a substituent on the nitrogen atom forming the tetrazole ring, and has a sulfo group at the 5-position (on the carbon atom) (R a ) of the tetrazole ring. Group (—SO 3 H), amino group, phosphono group (—PO 3 H 2 ), carbamoyl group (—CONRR ′), carbonamido group (—NHCOR ″), sulfamoyl group (—SO 2 NH 2 ), and sulfone It represents at least one substituent selected from the group consisting of an amide group (—NHSO 2 R ″). R and R ′ each independently represents a group selected from a hydrogen atom, an alkyl group and an aryl group, and a hydrogen atom or an alkyl group having about 1 to 3 carbon atoms is more preferable. R ″ represents a group independently selected from an alkyl group and an aryl group, and an alkyl group, particularly an alkyl group having about 1 to 3 carbon atoms, is more preferable.
また、一般式(II)で表されるテトラゾール誘導体は、テトラゾール環を形成する窒素原子上には置換基を有さず、テトラゾール環の5位にLbで表される2価の連結基を介して、ヒドロキシ基、カルボキシ基、スルホ基、アミノ基、ホスホノ基(−PO3H2)、カルバモイル基(−CONRR’)、カルボンアミド基(−NHCOR”)、スルファモイル基(−SO2NH2)、及びスルホンアミド基(−NHSO2R”)からなる群より選択された少なくとも1つの置換基で置換されたアルキレン基を含有することを特徴としたテトラゾール誘導体である。R及びR’はそれぞれ独立に水素原子、アルキル基及びアリール基から選ばれる基を表し、水素原子または炭素数1〜3程度のアルキル基がより好ましい。R”はそれぞれ独立にアルキル基及びアリール基から選ばれる基を表し、アルキル基、特に炭素数1〜3程度のアルキル基がより好ましい。 Further, tetrazole derivative represented by the formula (II), has no substituent on the nitrogen atom to form a tetrazole ring, a divalent linking group represented in the 5-position of the tetrazole ring in L b Hydroxy group, carboxy group, sulfo group, amino group, phosphono group (—PO 3 H 2 ), carbamoyl group (—CONRR ′), carbonamido group (—NHCOR ″), sulfamoyl group (—SO 2 NH 2) ), And an alkylene group substituted with at least one substituent selected from the group consisting of a sulfonamide group (—NHSO 2 R ″). R and R ′ each independently represents a group selected from a hydrogen atom, an alkyl group and an aryl group, and a hydrogen atom or an alkyl group having about 1 to 3 carbon atoms is more preferable. R ″ represents a group independently selected from an alkyl group and an aryl group, and an alkyl group, particularly an alkyl group having about 1 to 3 carbon atoms, is more preferable.
Lbで表される2価の連結基としては、例えばアルキレン基、−S−、−O−、−NH−、−CO−、およびそれらの組合せが挙げられる。好ましくはアルキレン基、より好ましくは炭素数1〜3のアルキレン基である。
Lbは、Rb以外の置換基を有してもよく、置換基としては例えば、炭素数1〜3のアルキル基、炭素数6〜12のアリール基であり、これらはさらに置換基を有していてもよい。さらに置換してもよい置換基として好ましくは、ヒドロキシ基、カルボキシ基である。
本発明のテトラゾール誘導体において、好ましくは一般式(II)で表されるテトラゾール誘導体であり、より好ましくはRbがヒドロキシ基またはカルボキシ基の場合であり、さらに好ましくは、カルボキシ基の場合である。例えば1H−テトラゾール−5−酢酸、1H−テトラゾール−5−コハク酸である。
Examples of the divalent linking group represented by L b include an alkylene group, —S—, —O—, —NH—, —CO—, and combinations thereof. An alkylene group is preferable, and an alkylene group having 1 to 3 carbon atoms is more preferable.
L b may have a substituent other than R b , and examples of the substituent include an alkyl group having 1 to 3 carbon atoms and an aryl group having 6 to 12 carbon atoms, and these further have a substituent. You may do it. Further, the substituent which may be further substituted is preferably a hydroxy group or a carboxy group.
The tetrazole derivative of the present invention is preferably a tetrazole derivative represented by the general formula (II), more preferably R b is a hydroxy group or a carboxy group, and still more preferably a carboxy group. For example, 1H-tetrazole-5-acetic acid and 1H-tetrazole-5-succinic acid.
以下に、本発明で好適に使用しうるテトラゾール誘導体の具体例を挙げるが、本発明はこれらに制限されるものではない。
Specific examples of tetrazole derivatives that can be suitably used in the present invention are listed below, but the present invention is not limited thereto.
本発明のテトラゾール誘導体は、商業的に入手可能であり、あるいはChemische Berichte,34,3120(1901)、Chemische Berichte,89,2648,(1956)、Chemische Berichte,34,3120(1901)、Chemische Berichte,89,2652,(1956)、Journal of Medicinal Chemistry,29,538−549(1986)、Carbohydrate Research,73,323−326(1979)を参考にして合成することができる。 The tetrazole derivatives of the present invention are commercially available, or Chemische Berichte, 34, 3120 (1901), Chemische Berichte, 89, 2648, (1956), Chemische Berichte, 34, 3120 (1901), Chemische Berichte, 89, 2652, (1956), Journal of Medicinal Chemistry, 29, 538-549 (1986), Carbohydrate Research, 73, 323-326 (1979).
本発明の金属用研磨液において、特定テトラゾール誘導体は1種のみを用いてもよく、2種以上を併用してもよい。
本発明の金属用研磨液に含まれる特定テトラゾール誘導体の添加量は、総量として、研磨に使用する際の金属用研磨液の1L中、好ましくは0.00001〜1mol、より好ましくは0.0001〜0.5mol、更に好ましくは0.0001〜0.1molである。
In the metal polishing slurry of the present invention, the specific tetrazole derivative may be used alone or in combination of two or more.
The total amount of the specific tetrazole derivative contained in the metal polishing liquid of the present invention is preferably 0.00001 to 1 mol, more preferably 0.0001 to 1 L of the metal polishing liquid used for polishing. 0.5 mol, more preferably 0.0001 to 0.1 mol.
本発明の金属用研磨液は、構成成分として前記特定テトラゾール誘導体の少なくとも1種と溶媒/分散媒とを含有する他は、その処方に特に制限はないが、通常、酸化剤を添加して用いる。また、本発明の効果を損なわない限りにおいては、公知の金属用研磨液に用いられる化合物を目的に応じて選択して用いることができるが、有機酸(例えばアミノ酸誘導体、カルボン酸誘導体)を含有することが好ましい。
一般に金属用研磨液には、酸化剤、不動態膜形成剤、有機酸、砥粒が含まれるが、本発明においては必ずしも砥粒を入れなくてもよい。本発明の金属用研磨液は、さらに他の成分を含有してもよく、好ましい成分としては例えば界面活性剤、水溶性ポリマー、及び各種添加剤を挙げることができる。金属用研磨液には、各成分を2種以上添加してもよい。
The metal-polishing liquid of the present invention is not particularly limited in its formulation except that it contains at least one of the specific tetrazole derivatives and a solvent / dispersion medium as constituent components. Usually, an oxidizing agent is added and used. . In addition, as long as the effects of the present invention are not impaired, compounds used in known metal polishing liquids can be selected and used depending on the purpose, but contain organic acids (for example, amino acid derivatives, carboxylic acid derivatives). It is preferable to do.
In general, the metal-polishing liquid contains an oxidizing agent, a passive film forming agent, an organic acid, and abrasive grains. In the present invention, it is not always necessary to add abrasive grains. The metal polishing slurry of the present invention may further contain other components, and preferred components include, for example, surfactants, water-soluble polymers, and various additives. Two or more of each component may be added to the metal polishing slurry.
本発明における「金属用研磨液」は、研磨に使用する際の研磨液(即ち、必要により希釈された研磨液)のみならず、金属用研磨液の濃縮液を含んでいる。濃縮液または濃縮された研磨液とは、研磨に使用する際の研磨液よりも、溶質の濃度が高く調製された研磨液を意味し、研磨に使用する際に、水または水溶液などで希釈して、研磨に使用されるものである。希釈倍率は、一般的には1〜20体積倍である。本明細書において「濃縮」及び「濃縮液」とは、使用状態よりも「濃厚」及び「濃厚な液」を意味する慣用表現にしたがって用いており、蒸発などの物理的な濃縮操作を伴う一般的な用語の意味とは異なる用法で用いている。 The “metal polishing liquid” in the present invention includes not only a polishing liquid used for polishing (that is, a polishing liquid diluted as necessary) but also a concentrated liquid of the metal polishing liquid. The concentrated liquid or the concentrated polishing liquid means a polishing liquid prepared with a higher solute concentration than the polishing liquid used for polishing, and is diluted with water or an aqueous solution when used for polishing. And used for polishing. The dilution factor is generally 1 to 20 volume times. In this specification, “concentration” and “concentrated liquid” are used in accordance with conventional expressions meaning “thick” and “thick liquid” rather than the state of use, and generally involve physical concentration operations such as evaporation. The term is used in a different way from the meaning of common terms.
なお、金属用研磨液の濃縮液作製時に添加する成分の内、室温での水に対する溶解度が5質量%未満のものの配合量は、濃縮液を5℃に冷却した際の析出を防止する点で、室温での水に対する溶解度の2倍以内とすることが好ましく、1.5倍以内とすることがより好ましい。
なお、本明細書において「濃縮」及び「濃縮液」とは、使用状態よりも「濃厚」及び「濃厚な液」を意味する慣用表現にしたがって用いており、蒸発などの物理的な濃縮操作を伴う一般的な用語の意味とは異なる用法で用いている。
In addition, among the components added when preparing the concentrate of the metal polishing liquid, the blending amount of water having a solubility in water at room temperature of less than 5% by mass is to prevent precipitation when the concentrate is cooled to 5 ° C. The solubility in water at room temperature is preferably within 2 times, more preferably within 1.5 times.
In this specification, “concentration” and “concentrated liquid” are used in accordance with conventional expressions meaning “thick” and “thick liquid” rather than the state of use, and physical concentration operations such as evaporation are performed. It is used in a different way from the meaning of the general terms involved.
以下、本発明の金属研磨液に用いうる前記特定テトラゾール誘導体以外の構成成分について説明する。
〔酸化剤〕
本発明の金属用研磨液には、通常、研磨対象の金属を酸化できる化合物(酸化剤)を添加して用いる。ただし、酸化剤の分解等を防ぐために、酸化剤は使用直前に添加してもよい。したがって、本明細書では、酸化剤を含まず、使用直前に酸化剤を添加するような金属用研磨液予備液も「金属用研磨液」と称する。酸酸化剤としては、例えば、過酸化水素、過酸化物、硝酸塩、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、過硫酸塩、重クロム酸塩、過マンガン酸塩、オゾン水および銀(II)塩、鉄(III)塩が挙げられる。
Hereinafter, components other than the specific tetrazole derivative that can be used in the metal polishing liquid of the present invention will be described.
〔Oxidant〕
The metal polishing liquid of the present invention is usually used by adding a compound (oxidant) capable of oxidizing the metal to be polished. However, the oxidizing agent may be added immediately before use in order to prevent decomposition of the oxidizing agent. Therefore, in the present specification, a metal polishing liquid preliminary liquid that does not contain an oxidizing agent and adds an oxidizing agent immediately before use is also referred to as a “metal polishing liquid”. Examples of the acid oxidizing agent include hydrogen peroxide, peroxide, nitrate, iodate, periodate, hypochlorite, chlorite, chlorate, perchlorate, persulfate , Dichromate, permanganate, ozone water and silver (II) salt, iron (III) salt.
鉄(III)塩としては例えば、硝酸鉄(III)、塩化鉄(III)、硫酸鉄(III)、臭化鉄(III)など無機の鉄(III)塩の他、鉄(III)の有機錯塩が好ましく用いられる。 Examples of iron (III) salts include inorganic iron (III) salts such as iron nitrate (III), iron chloride (III), iron sulfate (III), iron bromide (III), and organic iron (III) salts. Complex salts are preferably used.
鉄(III)の有機錯塩を用いる場合、鉄(III)錯塩を構成する錯形成化合物としては、例えば、酢酸、クエン酸、シュウ酸、サリチル酸、ジエチルジチオカルバミン酸、コハク酸、酒石酸、グリコール酸、グリシン、アラニン、アスパラギン酸、チオグリコール酸、エチレンジアミン、トリメチレンジアミン、ジエチレングリコール、トリエチレングリコール、1,2−エタンジチオール、マロン酸、グルタル酸、3−ヒドロキシ酪酸、プロピオン酸、フタル酸、イソフタル酸、3−ヒドロキシサリチル酸、3,5−ジヒドロキシサリチル酸、没食子酸、安息香酸、マレイン酸などやこれらの塩の他、アミノポリカルボン酸及びその塩が挙げられる。 When an organic complex salt of iron (III) is used, examples of complex-forming compounds constituting the iron (III) complex salt include acetic acid, citric acid, oxalic acid, salicylic acid, diethyldithiocarbamic acid, succinic acid, tartaric acid, glycolic acid, glycine , Alanine, aspartic acid, thioglycolic acid, ethylenediamine, trimethylenediamine, diethylene glycol, triethylene glycol, 1,2-ethanedithiol, malonic acid, glutaric acid, 3-hydroxybutyric acid, propionic acid, phthalic acid, isophthalic acid, 3 Aminopolycarboxylic acid and its salt are mentioned other than -hydroxy salicylic acid, 3,5-dihydroxy salicylic acid, gallic acid, benzoic acid, maleic acid, etc. and these salts.
アミノポリカルボン酸及びその塩としては、エチレンジアミン−N,N,N’,N’−四酢酸、ジエチレントリアミン五酢酸、1,3−ジアミノプロパン−N,N,N’,N’−四酢酸、1,2−ジアミノプロパン−N,N,N’,N’−四酢酸、エチレンジアミン−N,N’−ジコハク酸(ラセミ体)、エチレンジアミンジコハク酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、N−(カルボキシメチル)−L−アスパラギン酸、β−アラニンジ酢酸、メチルイミノジ酢酸、ニトリロ三酢酸、シクロヘキサンジアミン四酢酸、イミノジ酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミン1−N,N’−ニ酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、N,N−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N−ジ酢酸など及びその塩が挙げられる。対塩の種類は、アルカリ金属塩及びアンモニウム塩が好ましく、特にはアンモニウム塩が好ましい。
中でも、過酸化水素、硝酸、過ヨウ素酸カリウム、次亜塩素酸及びオゾン水が好ましい。
Examples of aminopolycarboxylic acids and salts thereof include ethylenediamine-N, N, N ′, N′-tetraacetic acid, diethylenetriaminepentaacetic acid, 1,3-diaminopropane-N, N, N ′, N′-tetraacetic acid, , 2-Diaminopropane-N, N, N ′, N′-tetraacetic acid, ethylenediamine-N, N′-disuccinic acid (racemic), ethylenediamine disuccinic acid (SS), N- (2-carboxylate ethyl) ) -L-aspartic acid, N- (carboxymethyl) -L-aspartic acid, β-alanine diacetic acid, methyliminodiacetic acid, nitrilotriacetic acid, cyclohexanediaminetetraacetic acid, iminodiacetic acid, glycol etherdiaminetetraacetic acid, ethylenediamine 1-N, N′-diacetic acid, ethylenediamine orthohydroxyphenylacetic acid, N, N-bis (2-hydroxybenzyl) ethylene Examples thereof include diamine-N, N-diacetic acid and salts thereof. The kind of the counter salt is preferably an alkali metal salt or an ammonium salt, and particularly preferably an ammonium salt.
Among these, hydrogen peroxide, nitric acid, potassium periodate, hypochlorous acid and ozone water are preferable.
酸化剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.003mol〜8molとすることが好ましく、0.03mol〜6molとすることがより好ましく、0.1mol〜4molとすることが特に好ましい。即ち、酸化剤の添加量は、金属の酸化が十分で高いCMP速度を確保する点で0.003mol以上が好ましく、研磨面の荒れ防止の点から8mol以下が好ましい。 The addition amount of the oxidizing agent is preferably 0.003 mol to 8 mol, more preferably 0.03 mol to 6 mol, and more preferably 0.1 mol to 4 mol in 1 liter of the metal polishing liquid used for polishing. It is particularly preferable to do this. That is, the addition amount of the oxidizing agent is preferably 0.003 mol or more from the viewpoint of sufficient metal oxidation and ensuring a high CMP rate, and is preferably 8 mol or less from the viewpoint of preventing roughening of the polished surface.
〔有機酸〕
本発明の研磨液には、有機酸を併用することが好ましい。ここでいう有機酸とは、金属を酸化するための酸化剤とは構造が異なる化合物であり、前述の酸化剤として機能する酸を包含するものではない。
有機酸としては、以下の群から選ばれたものが適している。ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、およびアミノ酸類(アミノ酸類には、1級、2級、3級のアミノ酸およびアミノポリカルボン酸類が包含され、本発明においては水溶性のものが好ましい。例えばグリシン、L−アラニン、β−アラニン、L−2−アミノ酪酸、L−ノルバリン、L−バリン、L−ロイシン、L−ノルロイシン、L−イソロイシン、L−アロイソロイシン、L−フェニルアラニン、L−プロリン、サルコシン、L−オルニチン、L−リシン、タウリン、L−セリン、L−トレオニン、L−アロトレオニン、L−ホモセリン、L−チロシン、3,5−ジヨード−L−チロシン、β−(3,4−ジヒドロキシフェニル)−L−アラニン、L−チロキシン、4−ヒドロキシ−L−プロリン、L−システィン、L−メチオニン、L−エチオニン、L−ランチオニン、L−シスタチオニン、L−シスチン、L−システィン酸、L−アスパラギン酸、L−グルタミン酸、S−(カルボキシメチル)−L−システィン、4−アミノ酪酸、L−アスパラギン、L−グルタミン、アザセリン、L−アルギニン、L−カナバニン、L−シトルリン、δ−ヒドロキシ−L−リシン、クレアチン、L−キヌレニン、L−ヒスチジン、1−メチル−L−ヒスチジン、3−メチル−L−ヒスチジン、エルゴチオネイン、L−トリプトファン、アクチノマイシンC1、アパミン、アンギオテンシンI、アンギオテンシンII及びアンチパインが挙げられる。)、以下に示す一般式(1)、一般式(2)で表される化合物及びそれらのアンモニウム塩やアルカリ金属塩等が挙げられる。
[Organic acid]
It is preferable to use an organic acid in combination with the polishing liquid of the present invention. The organic acid here is a compound having a structure different from that of an oxidizing agent for oxidizing a metal, and does not include an acid that functions as the oxidizing agent.
As the organic acid, one selected from the following group is suitable. Formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid , N-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, Tartaric acid, citric acid, lactic acid, and amino acids (amino acids include primary, secondary, tertiary amino acids and aminopolycarboxylic acids, and water-soluble ones are preferred in the present invention. For example, glycine, L -Alanine, β-alanine, L-2-aminobutyric acid, L-norvaline, L-valine, L-leucine, L-norleucine, L-isoleucine, L- Loisoleucine, L-phenylalanine, L-proline, sarcosine, L-ornithine, L-lysine, taurine, L-serine, L-threonine, L-allothreonine, L-homoserine, L-tyrosine, 3,5-diiodo- L-tyrosine, β- (3,4-dihydroxyphenyl) -L-alanine, L-thyroxine, 4-hydroxy-L-proline, L-cysteine, L-methionine, L-ethionine, L-lanthionine, L-cystathionine , L-cystine, L-cystineic acid, L-aspartic acid, L-glutamic acid, S- (carboxymethyl) -L-cysteine, 4-aminobutyric acid, L-asparagine, L-glutamine, azaserine, L-arginine, L -Canavanine, L-citrulline, δ-hydroxy-L-lysine, creatine, L-quinu Nin, L-histidine, 1-methyl-L-histidine, 3-methyl-L-histidine, ergothioneine, L-tryptophan, actinomycin C1, apamin, angiotensin I, angiotensin II and antipine. Examples thereof include compounds represented by general formula (1) and general formula (2), and ammonium salts and alkali metal salts thereof.
一般式(1)
R1は、単結合、アルキレン基、又はフェニレン基を表す。R2及びR3は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、又はアリール基を表す。R4及びR5は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、又はアシル基を表す。但し、R1が単結合のとき、R4及びR5の少なくともいずれかは水素原子ではない。
一般式(2)
R 1 represents a single bond, an alkylene group, or a phenylene group. R 2 and R 3 each independently represents a hydrogen atom, a halogen atom, a carboxyl group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, or an aryl group. R 4 and R 5 each independently represents a hydrogen atom, a halogen atom, a carboxyl group, an alkyl group, or an acyl group. However, when R 1 is a single bond, at least one of R 4 and R 5 is not a hydrogen atom.
General formula (2)
R6は単結合、アルキレン基、又はフェニレン基を表す。R7及びR8は、各々独立に、水素原子、ハロゲン原子、カルボキシル基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、又はアリール基を表す。R9は、水素原子、ハロゲン原子、カルボキシル基、又はアルキル基を表す。R10はアルキレン基を表す。但し、R10が−CH2−のとき、R6は単結合ではないか、R9が水素原子ではないかの少なくともいずれかである。 R 6 represents a single bond, an alkylene group, or a phenylene group. R 7 and R 8 each independently represents a hydrogen atom, a halogen atom, a carboxyl group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, or an aryl group. R 9 represents a hydrogen atom, a halogen atom, a carboxyl group, or an alkyl group. R 10 represents an alkylene group. However, when R 10 is —CH 2 —, R 6 is not a single bond or R 9 is not a hydrogen atom.
式(1)におけるR1としてのアルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは炭素数1〜8であり、例えば、メチレン基、エチレン基を挙げることができる。アルキレン基が有していてもよい置換基としては、水酸基、ハロゲン原子などを挙げることができる。 The alkylene group as R 1 in Formula (1) may be linear, branched or cyclic, and preferably has 1 to 8 carbon atoms, and examples thereof include a methylene group and an ethylene group. it can. Examples of the substituent that the alkylene group may have include a hydroxyl group and a halogen atom.
R2及びR3としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、プロピル基などを挙げることができる。R2及びR3としてのシクロアルキル基は、好ましくは炭素数5〜15であり、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基を挙げることができる。R2及びR3としてのアルケニル基は、好ましくは炭素数2〜9であり、例えば、ビニル基、プロペニル基、アリル基を挙げることができる。R2及びR3としてのアルキニル基は、好ましくは炭素数2〜9であり、例えば、エチニル基、プロピニル基、ブチニル基を挙げることができる。 The alkyl group as R 2 and R 3 preferably has 1 to 8 carbon atoms, and examples thereof include a methyl group and a propyl group. The cycloalkyl group as R 2 and R 3 preferably has 5 to 15 carbon atoms, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. The alkenyl group as R 2 and R 3 preferably has 2 to 9 carbon atoms, and examples thereof include a vinyl group, a propenyl group, and an allyl group. The alkynyl group as R 2 and R 3 preferably has 2 to 9 carbon atoms, and examples thereof include an ethynyl group, a propynyl group, and a butynyl group.
R2及びR3としてのアリール基は、好ましくは炭素数6〜15であり、例えばフェニル基を挙げることができる。これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。R2及びR3としての各基が有してもよい置換基としては、水酸基、ハロゲン原子、芳香環(好ましくは炭素数3〜15)、カルボキシル基、アミノ基などを挙げることができる。 The aryl group as R 2 and R 3 preferably has 6 to 15 carbon atoms, and examples thereof include a phenyl group. The alkylene chain in these groups may have a hetero atom such as an oxygen atom or a sulfur atom. Examples of the substituent that each group represented by R 2 and R 3 may have include a hydroxyl group, a halogen atom, an aromatic ring (preferably having 3 to 15 carbon atoms), a carboxyl group, and an amino group.
R4及びR5としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、エチル基を挙げることができる。アシル基は、好ましくは炭素数2〜9であり、例えば、メチルカルボニル基を挙げることができる。R4及びR5としての各基が有してもよい置換基としては、水酸基、アミノ基、ハロゲン原子を挙げることができる。 The alkyl group as R 4 and R 5 preferably has 1 to 8 carbon atoms, and examples thereof include a methyl group and an ethyl group. The acyl group preferably has 2 to 9 carbon atoms, and examples thereof include a methylcarbonyl group. Examples of the substituent that each group as R 4 and R 5 may have include a hydroxyl group, an amino group, and a halogen atom.
一般式(1)において、R4及びR5のいずれか一方は水素原子でないことが好ましい。
また、一般式(1)において、R1が単結合、R2及びR4が水素原子であることが特に好ましい。この場合、R3は、水素原子、ハロゲン原子、カルボキシル基、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、又はアリール基を表すが、特に水素原子、アルキル基が好ましい。R5は、水素原子、ハロゲン原子、カルボキシル基、アルキル基、又はアシル基を表すが、特にはアルキル基が好ましい。R3としてのアルキル基が有してもよい置換基として、水酸基、カルボキシル基又はアミノ基が好ましい。R5としてのアルキル基が有してもよい置換基として、水酸基又はアミノ基が好ましい。
In general formula (1), it is preferable that either one of R 4 and R 5 is not a hydrogen atom.
In the general formula (1), it is particularly preferable that R 1 is a single bond, and R 2 and R 4 are hydrogen atoms. In this case, R 3 represents a hydrogen atom, a halogen atom, a carboxyl group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, or an aryl group, and particularly preferably a hydrogen atom or an alkyl group. R 5 represents a hydrogen atom, a halogen atom, a carboxyl group, an alkyl group, or an acyl group, and an alkyl group is particularly preferable. As the substituent that the alkyl group as R 3 may have, a hydroxyl group, a carboxyl group, or an amino group is preferable. As the substituent that the alkyl group as R 5 may have, a hydroxyl group or an amino group is preferable.
式(2)におけるR6及びR10としてのアルキレン基は、直鎖状、分岐状、環状のいずれであってもよく、好ましくは炭素数1〜8であり、例えば、メチレン基、エチレン基を挙げることができる。アルキレン基及びフェニレン基が有していてもよい置換基としては、水酸基、ハロゲン原子などを挙げることができる。 The alkylene group as R 6 and R 10 in formula (2) may be linear, branched or cyclic, and preferably has 1 to 8 carbon atoms. For example, a methylene group or an ethylene group Can be mentioned. Examples of the substituent that the alkylene group and the phenylene group may have include a hydroxyl group and a halogen atom.
R7及びR8としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、プロピル基などを挙げることができる。R7及びR8としてのシクロアルキル基は、好ましくは炭素数5〜15であり、例えば、シクロペンチル基、シクロヘキシル基、シクロオクチル基を挙げることができる。R7及びR8としてのアルケニル基は、好ましくは炭素数2〜9であり、例えば、ビニル基、プロペニル基、アリル基を挙げることができる。R7及びR8としてのアルキニル基は、好ましくは炭素数2〜9であり、例えば、エチニル基、プロピニル基、ブチニル基を挙げることができる。 The alkyl group as R 7 and R 8 preferably has 1 to 8 carbon atoms, and examples thereof include a methyl group and a propyl group. The cycloalkyl group as R 7 and R 8 preferably has 5 to 15 carbon atoms, and examples thereof include a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. The alkenyl group as R 7 and R 8 preferably has 2 to 9 carbon atoms, and examples thereof include a vinyl group, a propenyl group, and an allyl group. The alkynyl group as R 7 and R 8 preferably has 2 to 9 carbon atoms, and examples thereof include an ethynyl group, a propynyl group, and a butynyl group.
R7及びR8としてのアリール基は、好ましくは炭素数6〜15であり、例えばフェニル基を挙げることができる。これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。R7及びR8としての各基が有してもよい置換基としては、水酸基、ハロゲン原子、芳香環(好ましくは炭素数3〜15)などを挙げることができる。 The aryl group as R 7 and R 8 preferably has 6 to 15 carbon atoms, and examples thereof include a phenyl group. The alkylene chain in these groups may have a hetero atom such as an oxygen atom or a sulfur atom. Examples of the substituent that each group represented by R 7 and R 8 may have include a hydroxyl group, a halogen atom, and an aromatic ring (preferably having 3 to 15 carbon atoms).
R9としてのアルキル基は、好ましくは炭素数1〜8であり、例えば、メチル基、エチル基を挙げることができる。R9としてのアシル基は、好ましくは炭素数2〜9であり、例えば、メチルカルボニル基を挙げることができる。これらの基におけるアルキレン鎖中には、酸素原子、硫黄原子などのヘテロ原子を有していてもよい。R9としての各基が有してもよい置換基としては、水酸基、アミノ基、ハロゲン原子、カルボキシル基を挙げることができる。
一般式(2)において、R9は水素原子でないことが好ましい。
The alkyl group as R 9 preferably has 1 to 8 carbon atoms, and examples thereof include a methyl group and an ethyl group. The acyl group as R 9 preferably has 2 to 9 carbon atoms, and examples thereof include a methylcarbonyl group. The alkylene chain in these groups may have a hetero atom such as an oxygen atom or a sulfur atom. Examples of the substituent that each group as R 9 may have include a hydroxyl group, an amino group, a halogen atom, and a carboxyl group.
In the general formula (2), R 9 is preferably not a hydrogen atom.
以下に、一般式(1)又は一般式(2)で表される化合物の具体例を挙げるが、これらに限定するものではない。
Although the specific example of a compound represented by General formula (1) or General formula (2) below is given, it does not limit to these.
一般式(1)または(2)で表される化合物は、公知の方法により合成できるが、市販のものを用いてもよい。 The compound represented by the general formula (1) or (2) can be synthesized by a known method, but a commercially available product may be used.
特に有機酸としては、一般式(1)および(2)を含むアミノ酸誘導体が実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点で好ましい。 In particular, as the organic acid, amino acid derivatives containing the general formulas (1) and (2) are preferable in that the etching rate can be effectively suppressed while maintaining a practical CMP rate.
有機酸の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0005〜0.5molとすることが好ましく、0.005mol〜0.3molとすることがより好ましく、0.01mol〜0.1molとすることが特に好ましい。即ち、酸の添加量は、エッチングの抑制の点から0.5mol以下が好ましく、充分な効果を得る上で0.0005mol以上が好ましい。 The addition amount of the organic acid is preferably 0.0005 to 0.5 mol, more preferably 0.005 to 0.3 mol in 1 L of the metal polishing liquid used for polishing. It is especially preferable to set it as 01 mol-0.1 mol. That is, the amount of acid added is preferably 0.5 mol or less from the viewpoint of suppressing etching, and 0.0005 mol or more is preferable for obtaining a sufficient effect.
〔無機酸〕
本発明の研磨液は更に無機酸を添加することができる。ここでの酸は、酸化の促進、pH調整、緩衝剤としての作用を有する。無機酸としては、硫酸、硝酸、ホウ酸、燐酸などが挙げられ、無機酸の中では燐酸が好ましい。
酸の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0005〜0.5molとすることが好ましく、0.005mol〜0.3molとすることがより好ましく、0.01mol〜0.1molとすることが特に好ましい。即ち、酸の添加量は、エッチングの抑制の点から0.5mol以下が好ましく、充分な効果を得る上で0.0005mol以上が好ましい。
[Inorganic acid]
An inorganic acid can be further added to the polishing liquid of the present invention. The acid here has an action of promoting oxidation, adjusting pH, and buffering agent. Examples of the inorganic acid include sulfuric acid, nitric acid, boric acid, phosphoric acid, etc. Among the inorganic acids, phosphoric acid is preferable.
The amount of acid added is preferably 0.0005 to 0.5 mol, more preferably 0.005 mol to 0.3 mol, in 1 L of the metal polishing liquid used for polishing, and 0.01 mol. It is especially preferable to set it to -0.1 mol. That is, the amount of acid added is preferably 0.5 mol or less from the viewpoint of suppressing etching, and 0.0005 mol or more is preferable for obtaining a sufficient effect.
〔不動態膜形成剤(芳香環を有する化合物)〕
また、本発明における金属用研磨液には、特定のテトラゾール誘導体以外に酸化剤の劣化を抑制し、且つ、金属表面に不動態膜を形成し、研磨速度を制御する不動態膜形成剤としての機能を有する化合物、具体的には、芳香環を有する化合物を併用してもよい。
芳香環を有する化合物とは、ベンゼン環、ナフタレン環などの芳香環を有する、好ましくは分子量20〜600の化合物であり、例えば、テトラゾール類及びその誘導体またはアントラニル酸類及びその誘導体、アミノトルイル酸、キナルジン酸、以下のようなアゾール類が挙げられる。
[Passive film forming agent (compound having an aromatic ring)]
In addition, the metal polishing liquid in the present invention is used as a passive film forming agent that suppresses deterioration of an oxidizing agent in addition to a specific tetrazole derivative, forms a passive film on the metal surface, and controls the polishing rate. A compound having a function, specifically, a compound having an aromatic ring may be used in combination.
The compound having an aromatic ring is a compound having an aromatic ring such as a benzene ring or a naphthalene ring, preferably having a molecular weight of 20 to 600, such as tetrazole and derivatives thereof, or anthranilic acids and derivatives thereof, aminotoluic acid, and quinaldine. Examples of the acid include the following azoles.
芳香環を有する化合物としてのアゾール類は、ベンズイミダゾール−2−チオール、2−[2−(ベンゾチアゾリル)]チオプロピオン酸、2−[2−(ベンゾチアゾリル)]チオブチル酸、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾール、4−メトキシカルボニル−1H−ベンゾトリアゾール、4−ブトキシカルボニル−1H−ベンゾトリアゾール、4−オクチルオキシカルボニル−1H−ベンゾトリアゾール、5−ヘキシルベンゾトリアゾール、N−(1,2,3−ベンゾトリアゾリル−1−メチル)−N−(1,2,4−トリアゾリル−1−メチル)−2−エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等が挙げられ、ベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾールブチルエステル、トリルトリアゾール、ナフトトリアゾールが高いCMP速度と低いエッチング速度を両立する上で好ましい。 The azoles as compounds having an aromatic ring are benzimidazole-2-thiol, 2- [2- (benzothiazolyl)] thiopropionic acid, 2- [2- (benzothiazolyl)] thiobutyric acid, 2-mercaptobenzothiazole, 1 , 2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-di Carboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl-1H-benzotriazole, 4-methoxycarbonyl-1H-benzotriazole, 4-butoxycarbonyl-1H-benzotriazole, 4-octyloxycarbonyl-1H-benzo Riazole, 5-hexylbenzotriazole, N- (1,2,3-benzotriazolyl-1-methyl) -N- (1,2,4-triazolyl-1-methyl) -2-ethylhexylamine, tolyltriazole , Naphthotriazole, bis [(1-benzotriazolyl) methyl] phosphonic acid and the like, benzotriazole, 4-hydroxybenzotriazole, 4-carboxyl-1H-benzotriazole butyl ester, tolyltriazole, naphthotriazole are high This is preferable for achieving both a CMP rate and a low etching rate.
上記の芳香環を有する化合物の添加量は、総量として、研磨に使用する際の金属用研磨液(即ち、水または水溶液で希釈する場合は希釈後の研磨液。以降の「研磨に使用する際の研磨液」も同意である。)の1L中、0.0001〜1.0molが好ましく、より好ましくは0.001〜0.5mol、更に好ましくは0.01〜0.1molである。
すなわち、芳香環を有する化合物の添加量は、酸化剤及びこれらの化合物の劣化(無効化、分解)防止の点から研磨に使用する際の研磨液1L中1.0mol以下が好ましく、充分な効果を得る上で0.0001mol以上が好ましい。
なお、芳香環を有する化合物の添加量よりも少ない添加量で、チオシアン酸塩、チオエーテル類、チオ硫酸塩又はメソイオン化合物を併用してもよい。
The total amount of the compound having an aromatic ring is, as a total amount, a metal polishing liquid used for polishing (that is, a diluted polishing liquid when diluted with water or an aqueous solution. In 1 liter) is preferably 0.0001 to 1.0 mol, more preferably 0.001 to 0.5 mol, and still more preferably 0.01 to 0.1 mol.
That is, the addition amount of the compound having an aromatic ring is preferably 1.0 mol or less in 1 L of polishing liquid when used for polishing from the viewpoint of oxidizing agent and prevention of deterioration (invalidation, decomposition) of these compounds, and sufficient effect. Is preferably 0.0001 mol or more.
In addition, you may use together thiocyanate, thioethers, thiosulfate, or a meso ion compound with the addition amount smaller than the addition amount of the compound which has an aromatic ring.
〔キレート剤〕
本発明の金属用研磨液は、混入する多価金属イオンなどの悪影響を低減させるために、必要に応じてキレート剤(すなわち硬水軟化剤)を含有することが好ましい。
キレート剤としては、カルシウムやマグネシウムの沈澱防止剤である汎用の硬水軟化剤やその類縁化合物であり、例えば、ニトリロ三酢酸、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、N,N,N−トリメチレンホスホン酸、エチレンジアミン−N,N,N’,N’−テトラメチレンスルホン酸、トランスシクロヘキサンジアミン四酢酸、1,2−ジアミノプロパン四酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、エチレンジアミンジ琥珀酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、β−アラニンジ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、N,N′−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−ジ酢酸、1,2−ジヒドロキシベンゼン−4,6−ジスルホン酸等が挙げられる。
[Chelating agent]
The metal polishing liquid of the present invention preferably contains a chelating agent (that is, a hard water softening agent) as necessary in order to reduce adverse effects such as mixed polyvalent metal ions.
Chelating agents include general water softeners and related compounds that are calcium and magnesium precipitation inhibitors, such as nitrilotriacetic acid, diethylenetriaminepentaacetic acid, ethylenediaminetetraacetic acid, N, N, N-trimethylenephosphonic acid. , Ethylenediamine-N, N, N ′, N′-tetramethylenesulfonic acid, transcyclohexanediaminetetraacetic acid, 1,2-diaminopropanetetraacetic acid, glycol etherdiaminetetraacetic acid, ethylenediamine orthohydroxyphenylacetic acid, ethylenediamine disuccinic acid ( SS form), N- (2-carboxylateethyl) -L-aspartic acid, β-alanine diacetic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, N N'-bis (2-hydroxyben Zyl) ethylenediamine-N, N′-diacetic acid, 1,2-dihydroxybenzene-4,6-disulfonic acid and the like.
キレート剤は必要に応じて2種以上併用してもよい。キレート剤の添加量は混入する多価金属イオンなどの金属イオンを封鎖するのに充分な量であればよく、例えば、研磨に使用する際の金属用研磨液の1L中、0.0003mol〜0.07molになるように添加する。 Two or more chelating agents may be used in combination as necessary. The addition amount of the chelating agent may be an amount sufficient to sequester metal ions such as mixed polyvalent metal ions. For example, 0.0003 mol to 0 in 1 L of a metal polishing liquid used for polishing. 0.07 mol is added.
〔添加剤〕
また、本発明の金属用研磨液には以下の添加剤を用いることが好ましい。アンモニア;ジメチルアミン、トリメチルアミン、トリエチルアミン、プロピレンジアミン等のアルキルアミンや、エチレンジアミンテトラ酢酸(EDTA)、ジエチルジチオカルバミン酸ナトリウム及びキトサン等のアミン;ジチゾン、クプロイン(2,2’−ビキノリン)、ネオクプロイン(2,9−ジメチル−1,10−フェナントロリン)、バソクプロイン(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)及びキュペラゾン(ビスシクロヘキサノンオキサリルヒドラゾン)等のイミン;ベンズイミダゾール−2−チオール、2−[2−(ベンゾチアゾリル)]チオプロピオン酸、2−[2−(ベンゾチアゾリル)]チオブチル酸、2−メルカプトベンゾチアゾール、1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ−1H−1,2,4−トリアゾール、ベンゾトリアゾール、1−ヒドロキシベンゾトリアゾール、1−ジヒドロキシプロピルベンゾトリアゾール、2,3−ジカルボキシプロピルベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾール、4−メトキシカルボニル−1H−ベンゾトリアゾール、4−ブトキシカルボニル−1H−ベンゾトリアゾール、4−オクチルオキシカルボニル−1H−ベンゾトリアゾール、5−ヘキシルベンゾトリアゾール、N−(1,2,3−ベンゾトリアゾリル−1−メチル)−N−(1,2,4−トリアゾリル−1−メチル)−2−エチルヘキシルアミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1−ベンゾトリアゾリル)メチル]ホスホン酸等のアゾール;ノニルメルカプタン、ドデシルメルカプタン、トリアジンチオール、トリアジンジチオール、トリアジントリチオール等のメルカプタン、その他、アントラニル酸、アミノトルイル酸、キナルジン酸などが挙げられる。これらの中でもキトサン、エチレンジアミンテトラ酢酸、L−トリプトファン、キュペラゾン、トリアジンジチオール、ベンゾトリアゾール、4−ヒドロキシベンゾトリアゾール、4−カルボキシル−1H−ベンゾトリアゾールブチルエステル、トリルトリアゾール、ナフトトリアゾールが高いCMP速度と低いエッチング速度を両立する上で好ましい。
〔Additive〕
Moreover, it is preferable to use the following additives for the metal polishing slurry of the present invention. Ammonia; alkylamines such as dimethylamine, trimethylamine, triethylamine and propylenediamine; amines such as ethylenediaminetetraacetic acid (EDTA), sodium diethyldithiocarbamate and chitosan; dithizone, cuproin (2,2′-biquinoline), neocuproin (2, Imines such as 9-dimethyl-1,10-phenanthroline), bathocuproine (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) and cuperazone (biscyclohexanone oxalylhydrazone); benzimidazole-2-thiol, 2- [2- (benzothiazolyl)] thiopropionic acid, 2- [2- (benzothiazolyl)] thiobutyric acid, 2-mercaptobenzothiazole, 1,2,3-triazole, 1,2,4- Triazole, 3-amino-1H-1,2,4-triazole, benzotriazole, 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4- Carboxyl-1H-benzotriazole, 4-methoxycarbonyl-1H-benzotriazole, 4-butoxycarbonyl-1H-benzotriazole, 4-octyloxycarbonyl-1H-benzotriazole, 5-hexylbenzotriazole, N- (1,2 , 3-Benzotriazolyl-1-methyl) -N- (1,2,4-triazolyl-1-methyl) -2-ethylhexylamine, tolyltriazole, naphthotriazole, bis [(1-benzotriazolyl) Chill] azole such as phosphonic acid; nonyl mercaptan, dodecyl mercaptan, triazine thiol, triazine dithiol, mercaptan triazine trithiol etc., other, anthranilic acid, Aminotoruiru acid, quinaldic acid. Among these, chitosan, ethylenediaminetetraacetic acid, L-tryptophan, cuperazone, triazinedithiol, benzotriazole, 4-hydroxybenzotriazole, 4-carboxyl-1H-benzotriazole butyl ester, tolyltriazole, naphthotriazole have high CMP rate and low etching It is preferable for achieving both speeds.
これら添加剤の添加量は、研磨に使用する際の金属用研磨液の1L中、0.0001mol〜0.5molとすることが好ましく0.001mol〜0.2molとすることがより好ましく、0.005mol〜0.1molとすることが特に好ましい。即ち、添加剤の添加量は、エッチング抑制の点から0.0001mol以上が好ましく、CMP速度低下防止の点から0.5mol以下が好ましい。 The addition amount of these additives is preferably 0.0001 mol to 0.5 mol, more preferably 0.001 mol to 0.2 mol, in 1 L of the metal polishing liquid used for polishing. It is especially preferable to set it as 005 mol-0.1 mol. That is, the addition amount of the additive is preferably 0.0001 mol or more from the viewpoint of suppressing etching, and preferably 0.5 mol or less from the viewpoint of preventing a decrease in CMP rate.
〔界面活性剤及び/又は親水性ポリマー〕
本発明の金属用研磨液は、界面活性剤及び/又は親水性ポリマーを含有することが好ましい。界面活性剤と親水性ポリマーは、いずれも被研磨面の接触角を低下させる作用を有して、均一な研磨を促す作用を有する。用いられる界面活性剤及び/又は親水性ポリマーとしては、以下の群から選ばれたものが好適である。
陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレンまたはポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。
[Surfactant and / or hydrophilic polymer]
The metal polishing slurry of the present invention preferably contains a surfactant and / or a hydrophilic polymer. Both the surfactant and the hydrophilic polymer have the action of reducing the contact angle of the surface to be polished and the action of promoting uniform polishing. As the surfactant and / or hydrophilic polymer to be used, those selected from the following group are suitable.
Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. As the carboxylate salt, soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxy B pyrene alkyl allyl ether phosphate can be exemplified.
陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。
非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキルおよびアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。また、フッ素系界面活性剤などが挙げられる。
As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; carboxybetaine type, aminocarboxylate as amphoteric surfactant And imidazolinium betaine, lecithin, and alkylamine oxide.
Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester Le, sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. Moreover, a fluorine-type surfactant etc. are mentioned.
さらに、その他の界面活性剤、親水性化合物、親水性ポリマー等としては、グリセリンエステル、ソルビタンエステル、メトキシ酢酸、エトキシ酢酸、3−エトキシプロピオン酸及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール、アルケニルポリプロピレングリコールアルキルエーテル及びアルケニルポリプロピレングリコールアルケニルエーテル等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩及びスルホコハク酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等が挙げられる。 Furthermore, other surfactants, hydrophilic compounds, hydrophilic polymers and the like include esters such as glycerin ester, sorbitan ester, methoxyacetic acid, ethoxyacetic acid, 3-ethoxypropionic acid and alanine ethyl ester; polyethylene glycol, polypropylene glycol, Polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl Ete , Polypropylene glycol alkenyl ethers, alkyl polypropylene glycols, alkyl polypropylene glycol alkyl ethers, alkyl polypropylene glycol alkenyl ethers, alkenyl polypropylene glycols, alkenyl polypropylene glycol alkyl ethers and alkenyl polypropylene glycol alkenyl ethers; alginic acid, pectinic acid, carboxymethylcellulose, curd Polysaccharides such as orchid and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid , Polymaleic acid, poly Taconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), polyacrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, polyamic acid, polyamic acid ammonium salt, polyamic acid sodium salt And polycarboxylic acids such as polyglyoxylic acid and salts thereof; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein; methyl taurate ammonium salt, methyl taurate sodium salt, methyl sodium sulfate salt, ethylammonium sulfate salt, sulfuric acid Butylammonium salt, vinylsulfonic acid sodium salt, 1-allylsulfonic acid sodium salt, 2-allylsulfonic acid sodium salt, methoxymethylsulfonic acid sodium salt, ethoxymethyls Sulfonic acid and its salts such as ammonium sulfonate, 3-ethoxypropyl sulfonate, sodium methoxymethyl sulfonate, ammonium ethoxymethyl sulfonate, sodium 3-ethoxypropyl sulfonate and sodium sulfosuccinate; propion Amides such as amide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfanilamide are exemplified.
但し、適用する基体が半導体集積回路用シリコン基板などの場合はアルカリ金属、アルカリ土類金属、ハロゲン化物等による汚染は望ましくないため、酸もしくはそのアンモニウム塩が望ましい。基体がガラス基板等である場合はその限りではない。上記例示化合物の中でもシクロヘキサノール、ポリアクリル酸アンモニウム塩、ポリビニルアルコール、コハク酸アミド、ポロビニルピロリドン、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレンブロックポリマーがより好ましい。 However, when the substrate to be applied is a silicon substrate for a semiconductor integrated circuit or the like, contamination with an alkali metal, an alkaline earth metal, a halide, or the like is not desirable, so an acid or an ammonium salt thereof is desirable. This is not the case when the substrate is a glass substrate or the like. Among the above exemplified compounds, cyclohexanol, polyacrylic acid ammonium salt, polyvinyl alcohol, succinic acid amide, polo vinyl pyrrolidone, polyethylene glycol, and polyoxyethylene polyoxypropylene block polymer are more preferable.
界面活性剤及び/又は親水性ポリマーの添加量は、総量として、研磨に使用する際の金属用研磨液の1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。即ち、界面活性剤及び/又は親水性ポリマーの添加量は、充分な効果を得る上で、0.001g以上が好ましく、CMP速度の低下防止の点から10g以下が好ましい。また、これらの界面活性剤及び/又は親水性ポリマーの重量平均分子量としては、500〜100000が好ましく、特には2000〜50000が好ましい。 The total amount of the surfactant and / or hydrophilic polymer added is preferably 0.001 to 10 g and preferably 0.01 to 5 g in 1 liter of the metal polishing slurry used for polishing. Is more preferably 0.1 to 3 g. That is, the addition amount of the surfactant and / or the hydrophilic polymer is preferably 0.001 g or more for obtaining a sufficient effect, and is preferably 10 g or less from the viewpoint of preventing the CMP rate from being lowered. Moreover, as a weight average molecular weight of these surfactant and / or hydrophilic polymer, 500-100000 are preferable, and 2000-50000 are especially preferable.
〔アルカリ剤及び緩衝剤〕
本発明の研磨液は、必要に応じて、pH調整のためにアルカリ剤、さらにはpHの変動抑制の点から緩衝剤を含有することができる。
[Alkaline agent and buffer]
The polishing liquid of the present invention can contain an alkali agent for pH adjustment and further a buffering agent from the viewpoint of suppressing fluctuations in pH, if necessary.
アルカリ剤及び緩衝剤としては、水酸化アンモニウム及びテトラメチルアンモニウムハイドロキサイドなどの有機水酸化アンモニウム、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどのようなアルカノールアミン類などの非金属アルカリ剤、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸塩、リン酸塩、ホウ酸塩、四ホウ酸塩、ヒドロキシ安息香酸塩、グリシル塩、N,N−ジメチルグリシン塩、ロイシン塩、ノルロイシン塩、グアニン塩、3,4−ジヒドロキシフェニルアラニン塩、アラニン塩、アミノ酪酸塩、2−アミノ−2−メチル−1, 3−プロパンジオール塩、バリン塩、プロリン塩、トリスヒドロキシアミノメタン塩、リシン塩などを用いることができる。 Alkaline agents and buffering agents include organic ammonium hydroxides such as ammonium hydroxide and tetramethylammonium hydroxide, nonmetallic alkali agents such as alkanolamines such as diethanolamine, triethanolamine, triisopropanolamine, and the like. Alkali metal hydroxides such as sodium, potassium hydroxide and lithium hydroxide, carbonate, phosphate, borate, tetraborate, hydroxybenzoate, glycyl salt, N, N-dimethylglycine salt, leucine Salt, norleucine salt, guanine salt, 3,4-dihydroxyphenylalanine salt, alanine salt, aminobutyrate, 2-amino-2-methyl-1,3-propanediol salt, valine salt, proline salt, trishydroxyaminomethane salt Lysine salts can be used That.
アルカリ剤及び緩衝剤の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、重炭酸ナトリウム、重炭酸カリウム、リン酸三ナトリウム、リン酸三カリウム、リン酸二ナトリウム、リン酸二カリウム、ホウ酸ナトリウム、ホウ酸カリウム、四ホウ酸ナトリウム(ホウ砂)、四ホウ酸カリウム、o−ヒドロキシ安息香酸ナトリウム(サリチル酸ナトリウム)、o−ヒドロキシ安息香酸カリウム、5−スルホ−2−ヒドロキシ安息香酸ナトリウム(5−スルホサリチル酸ナトリウム)、5−スルホ−2−ヒドロキシ安息香酸カリウム(5−スルホサリチル酸カリウム)、水酸化アンモニウムなどを挙げることができる。
特に好ましいアルカリ剤として水酸化アンモニウム、水酸化カリウム、水酸化リチウム及びテトラメチルアンモニウムハイドロキサイドである。
Specific examples of the alkali agent and buffer include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, trisodium phosphate, tripotassium phosphate, diphosphate phosphate. Sodium, dipotassium phosphate, sodium borate, potassium borate, sodium tetraborate (borax), potassium tetraborate, sodium o-hydroxybenzoate (sodium salicylate), potassium o-hydroxybenzoate, 5-sulfo Examples include sodium 2-hydroxybenzoate (sodium 5-sulfosalicylate), potassium 5-sulfo-2-hydroxybenzoate (potassium 5-sulfosalicylate), ammonium hydroxide, and the like.
Particularly preferred alkali agents are ammonium hydroxide, potassium hydroxide, lithium hydroxide and tetramethylammonium hydroxide.
アルカリ剤及び緩衝剤の添加量としては、pHが好ましい範囲に維持される量であればよく、研磨に使用する際の研磨液の1L中、0.0001mol〜1.0molとすることが好ましく、0.003mol〜0.5molとすることがより好ましい。
研磨に使用する際の研磨液のpHは2〜14が好ましく、3〜12がより好ましく、3.5〜8が最も好ましい。この範囲において本発明の金属液は特に優れた効果を発揮する。
The addition amount of the alkaline agent and the buffer may be an amount that maintains the pH within a preferable range, and is preferably 0.0001 mol to 1.0 mol in 1 L of the polishing liquid used for polishing. More preferably, it is 0.003 mol to 0.5 mol.
The pH of the polishing liquid when used for polishing is preferably 2 to 14, more preferably 3 to 12, and most preferably 3.5 to 8. Within this range, the metal liquid of the present invention exhibits particularly excellent effects.
本発明においては、研磨面への吸着性や反応性、研磨金属の溶解性、被研磨面の電気化学的性質、化合物官能基の解離状態、液としての安定性などにより、適時化合物種、添加量やpHを設定することが好ましい。 In the present invention, depending on the adsorptivity and reactivity to the polishing surface, the solubility of the polishing metal, the electrochemical properties of the surface to be polished, the dissociation state of the compound functional group, the stability as a liquid, etc. It is preferable to set the amount and pH.
〔砥粒〕
本発明の金属用研磨液は砥粒を含有してもよい。好ましい砥粒としては、例えば、シリカ(沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカ)、セリア、アルミナ、チタニア、ジルコニア、ゲルマニア、酸化マンガン、炭化ケイ素、ポリスチレン、ポリアクリル、ポリテレフタレートなどが挙げられる。
また、砥粒は平均粒径が5〜1000nmが好ましく、特には10〜200nmが好ましい。
砥粒の添加量としては、砥粒は、使用する際の金属用研磨液の全質量に対して0.01〜20質量%であることが好ましく、0.05〜5質量%の範囲であることがより好ましい。研磨速度の向上とウエハ面内の研磨速度のばらつきの低減における充分な効果を得る上で0.01質量%以上が好ましく、CMPによる研磨速度が飽和するため、20質量%以下が好ましい。
[Abrasive]
The metal polishing liquid of the present invention may contain abrasive grains. Examples of preferable abrasive grains include silica (precipitated silica, fumed silica, colloidal silica, synthetic silica), ceria, alumina, titania, zirconia, germania, manganese oxide, silicon carbide, polystyrene, polyacryl, polyterephthalate, and the like. It is done.
The average grain size of the abrasive grains is preferably 5 to 1000 nm, and particularly preferably 10 to 200 nm.
As addition amount of an abrasive grain, it is preferable that an abrasive grain is 0.01-20 mass% with respect to the total mass of the polishing liquid for metals at the time of use, and is the range of 0.05-5 mass%. It is more preferable. 0.01% by mass or more is preferable for obtaining a sufficient effect in improving the polishing rate and reducing variation in the polishing rate within the wafer surface, and 20% by mass or less is preferable because the polishing rate by CMP is saturated.
〔配線金属原材料〕
本発明においては、研磨する対象である半導体が、銅金属及び/又は銅合金からなる配線を持つLSIであることが好ましく、特には銅合金が好ましい。本発明において、金属用研磨液が“主として銅配線の研磨に用いられる”とは、研磨する対象である半導体ウェハ上に銅金属及び/又は銅合金がメッキされた状態にあるものを研磨することを指している。更には、銅合金の中でも銀を含有する銅合金が好ましい。銅合金に含有される銀含量は、40質量%以下が好ましく、特には10質量%以下、さらには1質量%以下が好ましく、0.00001〜0.1質量%の範囲である銅合金において最も優れた効果を発揮する。
[Raw metal materials]
In the present invention, the semiconductor to be polished is preferably an LSI having wiring made of copper metal and / or copper alloy, and particularly preferably a copper alloy. In the present invention, the term “mainly used for polishing copper wiring” means that a metal polishing liquid is used to polish a semiconductor wafer plated with copper metal and / or copper alloy. Pointing. Furthermore, the copper alloy containing silver is preferable among copper alloys. The silver content contained in the copper alloy is preferably 40% by mass or less, particularly 10% by mass or less, more preferably 1% by mass or less, and most preferably in the range of 0.00001 to 0.1% by mass. Exhibits excellent effects.
〔配線の太さ〕
本発明においては、研磨する対象である半導体が、例えばDRAMデバイス系ではハーフピッチで0.15μm以下で特には0.10μm以下、更には0.08μm以下、一方、MPUデバイス系では0.12μm以下で特には0.09μm以下、更には0.07μm以下の配線を持つLSIであることが好ましい。これらのLSIに対して、本発明の研磨液は特に優れた効果を発揮する。
[Wiring thickness]
In the present invention, the semiconductor to be polished is, for example, a DRAM device system having a half pitch of 0.15 μm or less, particularly 0.10 μm or less, more preferably 0.08 μm or less, while MPU device system is 0.12 μm or less In particular, an LSI having a wiring of 0.09 μm or less, more preferably 0.07 μm or less is preferable. The polishing liquid of the present invention exhibits particularly excellent effects on these LSIs.
〔バリア金属〕
本発明においては、半導体が銅金属及び/または銅合金からなる配線と層間絶縁膜との間に、銅の拡散を防ぐ為のバリア層を設けることが好ましい。バリア層としては低抵抗のメタル材料がよく、特にはTiN、TiW、Ta、TaN、W、WNが好ましく、中でもTa、TaNが特に好ましい。
[Barrier metal]
In the present invention, it is preferable to provide a barrier layer for preventing the diffusion of copper between the wiring in which the semiconductor is made of copper metal and / or a copper alloy and the interlayer insulating film. As the barrier layer, a low-resistance metal material is preferable, and TiN, TiW, Ta, TaN, W, and WN are particularly preferable, and Ta and TaN are particularly preferable.
〔研磨方法〕
金属用研磨液は、濃縮液であって使用する際に水を加えて希釈して使用液とする場合、または、各成分が次項に述べる水溶液の形態でこれらを混合し、必要により水を加え希釈して使用液とする場合、あるいは使用液として調製されている場合がある。本発明の金属用研磨液を用いた研磨方法は、いずれの場合にも適用でき、研磨液を研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する研磨方法である。
研磨する装置としては、被研磨面を有する半導体基板等を保持するホルダーと研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤を有する一般的な研磨装置が使用できる。研磨パッドとしては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、研磨定盤の回転速度は基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面(被研磨膜)を有する半導体基板の研磨パッドへの押しつけ圧力は、5〜500g/cm2であることが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、12〜240g/cm2であることがより好ましい。
[Polishing method]
The metal polishing liquid is a concentrated liquid, and when used, it is diluted with water to make a working liquid, or each component is mixed in the form of an aqueous solution described in the next section, and water is added if necessary. In some cases, it is used as a working solution after dilution. The polishing method using the metal polishing liquid of the present invention can be applied to any case, and the polishing liquid is supplied to the polishing pad on the polishing surface plate and brought into contact with the surface to be polished to thereby connect the surface to be polished and the polishing pad. This is a polishing method in which polishing is performed by relative movement.
As an apparatus for polishing, there is a general polishing apparatus having a polishing surface plate with a holder for holding a semiconductor substrate having a surface to be polished and a polishing pad attached (a motor etc. capable of changing the number of rotations is attached). Can be used. As the polishing pad, a general nonwoven fabric, foamed polyurethane, porous fluororesin, or the like can be used, and there is no particular limitation. The polishing conditions are not limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out. The pressure applied to the polishing pad of the semiconductor substrate having the surface to be polished (film to be polished) is preferably 5 to 500 g / cm 2 in order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern. Is more preferably 12 to 240 g / cm 2 .
研磨している間、研磨パッドには金属用研磨液をポンプ等で連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。研磨終了後の半導体基板は、流水中で良く洗浄した後、スピンドライヤ等を用いて半導体基板上に付着した水滴を払い落としてから乾燥させる。本発明の研磨方法では、希釈する水溶液は、次ぎに述べる水溶液と同じである。水溶液は、予め酸化剤、酸、添加剤、界面活性剤のうち少なくとも1つ以上を含有した水で、水溶液中に含有した成分と希釈される金属用研磨液の成分を合計した成分が、金属用研磨液を使用して研磨する際の成分となるようにする。水溶液で希釈して使用する場合は、溶解しにくい成分を水溶液の形で配合することができ、より濃縮した金属用研磨液を調製することができる。 During polishing, a polishing liquid for metal is continuously supplied to the polishing pad with a pump or the like. Although there is no restriction | limiting in this supply amount, it is preferable that the surface of a polishing pad is always covered with polishing liquid. The semiconductor substrate after polishing is thoroughly washed in running water, and then dried after removing water droplets adhering to the semiconductor substrate using a spin dryer or the like. In the polishing method of the present invention, the aqueous solution to be diluted is the same as the aqueous solution described below. The aqueous solution is water that contains at least one of an oxidizing agent, an acid, an additive, and a surfactant in advance, and the total amount of the components contained in the aqueous solution and the components of the metal polishing liquid to be diluted is a metal. It becomes the component at the time of grinding | polishing using the polishing liquid. When diluted with an aqueous solution and used, components that are difficult to dissolve can be blended in the form of an aqueous solution, and a more concentrated metal polishing liquid can be prepared.
濃縮された金属用研磨液に水または水溶液を加え希釈する方法としては、濃縮された金属用研磨液を供給する配管と水または水溶液を供給する配管を途中で合流させて混合し、混合し希釈された金属用研磨液を研磨パッドに供給する方法がある。混合は、圧力を付した状態で狭い通路を通して液同士を衝突混合する方法、配管中にガラス管などの充填物を詰め液体の流れを分流分離、合流させることを繰り返し行う方法、配管中に動力で回転する羽根を設ける方法など通常に行われている方法を採用することができる。 As a method of diluting by adding water or an aqueous solution to the concentrated metal polishing liquid, the pipe for supplying the concentrated metal polishing liquid and the pipe for supplying the water or aqueous solution are joined together, mixed, mixed and diluted. There is a method of supplying the polished metal polishing liquid to the polishing pad. Mixing is a method in which liquids collide with each other through a narrow passage under pressure, a method in which a filling such as a glass tube is filled in the pipe, and the flow of liquid is repeatedly separated and merged. Conventional methods such as a method of providing blades that rotate in the above can be employed.
金属用研磨液の供給速度は10〜1000ml/minが好ましく、研磨速度のウエハ面内均一性及びパターンの平坦性を満足するためには、170〜800ml/minであることがより好ましい。 The supply rate of the metal polishing liquid is preferably 10 to 1000 ml / min, and more preferably 170 to 800 ml / min in order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern.
濃縮された金属用研磨液を水または水溶液などにより希釈し、研磨する方法としては、金属用研磨液を供給する配管と水または水溶液を供給する配管を独立に設け、それぞれから所定量の液を研磨パッドに供給し、研磨パッドと被研磨面の相対運動で混合しつつ研磨する方法である。または、1つの容器に、所定量の濃縮された金属用研磨液と水または水溶液を入れ混合してから、研磨パッドにその混合した金属用研磨液を供給し、研磨をする方法がある。 As a method of diluting and polishing the concentrated metal polishing liquid with water or an aqueous solution, a pipe for supplying the metal polishing liquid and a pipe for supplying water or an aqueous solution are provided independently, and a predetermined amount of liquid is supplied from each. This is a method of polishing while supplying to the polishing pad and mixing by the relative movement of the polishing pad and the surface to be polished. Alternatively, there is a method in which a predetermined amount of concentrated metal polishing liquid and water or an aqueous solution are mixed in one container, and then the mixed metal polishing liquid is supplied to a polishing pad for polishing.
本発明の別の研磨方法は、金属用研磨液が含有すべき成分を少なくとも2つの構成成分に分けて、それらを使用する際に、水または水溶液を加え希釈して研磨定盤上の研磨パッドに供給し、被研磨面と接触させて被研磨面と研磨パッドを相対運動させて研磨する方法である。
例えば、酸化剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液で構成成分(A)と構成成分(B)を希釈して使用する。
また、溶解度の低い添加剤を2つの構成成分(A)と(B)に分け、酸化剤、添加剤及び界面活性剤を1つの構成成分(A)とし、酸、添加剤、界面活性剤及び水を1つの構成成分(B)とし、それらを使用する際に水または水溶液を加え構成成分(A)と構成成分(B)を希釈して使用する。この例の場合、構成成分(A)と構成成分(B)と水または水溶液をそれぞれ供給する3つの配管が必要であり、希釈混合は、3つの配管を、研磨パッドに供給する1つの配管に結合し、その配管内で混合する方法があり、この場合、2つの配管を結合してから他の1つの配管を結合することも可能である。
なお、ここで、本発明に係る前記特定のヘテロ環誘導体は、2つの構成成分のうち、有機酸とともに、(B)に添加することが溶液経時安定性の観点から好ましい。
According to another polishing method of the present invention, a component to be contained in a metal polishing liquid is divided into at least two components, and when using them, a water or aqueous solution is added to dilute the polishing pad on a polishing platen. The surface to be polished is brought into contact with the surface to be polished, and the surface to be polished and the polishing pad are moved relative to each other for polishing.
For example, an oxidizing agent is one component (A), an acid, an additive, a surfactant, and water are one component (B), and when they are used, the component (A) The component (B) is diluted before use.
In addition, the low-solubility additive is divided into two components (A) and (B), and the oxidizing agent, additive and surfactant are one component (A), and the acid, additive, surfactant and Water is used as one component (B), and when these are used, water or an aqueous solution is added to dilute the component (A) and the component (B). In the case of this example, three pipes for supplying the component (A), the component (B), and water or an aqueous solution are required, and dilution mixing is performed on one pipe that supplies the three pads to the polishing pad. There is a method of combining and mixing in the pipe. In this case, it is also possible to combine two pipes and then connect another pipe.
Here, the specific heterocyclic derivative according to the present invention is preferably added to (B) together with the organic acid among the two constituent components from the viewpoint of solution aging stability.
例えば、溶解しにくい添加剤を含む構成成分と他の構成成分を混合し、混合経路を長くして溶解時間を確保してから、さらに水または水溶液の配管を結合する方法である。その他の混合方法は、上記したように直接に3つの配管をそれぞれ研磨パッドに導き、研磨パッドと被研磨面の相対運動により混合する方法、1つの容器に3つの構成成分を混合して、そこから研磨パッドに希釈された金属用研磨液を供給する方法である。上記した研磨方法において、酸化剤を含む1つの構成成分を40℃以下にし、他の構成成分を室温から100℃の範囲に加温し、且つ1つの構成成分と他の構成成分または水もしくは水溶液を加え希釈して使用する際に、混合した後に40℃以下とするようにすることもできる。温度が高いと溶解度が高くなるため、金属用研磨液の溶解度の低い原料の溶解度を上げるために好ましい方法である。 For example, it is a method in which a component containing an additive that is difficult to dissolve is mixed with another component, a mixing path is lengthened to ensure a dissolution time, and then a pipe for water or an aqueous solution is further combined. Other mixing methods are as described above, in which the three pipes are each guided directly to the polishing pad and mixed by the relative movement of the polishing pad and the surface to be polished, and the three components are mixed in one container. A method for supplying a diluted metal polishing liquid to a polishing pad. In the above polishing method, one constituent component containing an oxidizing agent is made 40 ° C. or lower, the other constituent components are heated in the range of room temperature to 100 ° C., and one constituent component and another constituent component or water or an aqueous solution When the mixture is diluted and used, it can be adjusted to 40 ° C. or lower after mixing. Since the solubility increases when the temperature is high, this is a preferable method for increasing the solubility of the raw material having a low solubility in the metal polishing slurry.
酸化剤を含まない他の成分を室温から100℃の範囲で加温して溶解させた原料は、温度が下がると溶液中に析出するため、温度が低下したその成分を用いる場合は、予め加温して析出したものを溶解させる必要がある。これには、加温し溶解した構成成分液を送液する手段と、析出物を含む液を攪拌しておき、送液し配管を加温して溶解させる手段を採用することができる。加温した成分が酸化剤を含む1つの構成成分の温度を40℃以上に高めると酸化剤が分解してくる恐れがあるので、加温した構成成分とこの加温した構成成分を冷却する酸化剤を含む1つの構成成分で混合した場合、40℃以下となるようにする。 A raw material in which other components not containing an oxidizing agent are heated and dissolved in the range of room temperature to 100 ° C. is precipitated in the solution when the temperature is lowered. It is necessary to dissolve what is deposited by heating. For this, a means for feeding a heated component solution and a means for stirring the liquid containing the precipitate, feeding the liquid, and heating and dissolving the pipe can be employed. When the temperature of one component containing an oxidant is increased to 40 ° C. or higher, the oxidant may be decomposed. Therefore, the heated component and the oxidation for cooling the heated component When mixed with one component containing an agent, the temperature is set to 40 ° C. or lower.
また本発明においては、上述したように金属用研磨液の成分を二分割以上に分割して、研磨面に供給してもよい。この場合、酸化物を含む成分と酸を含有する成分とに分割して供給する事が好ましい。また、金属用研磨液を濃縮液とし、希釈水を別にして研磨面に供給してもよい。 In the present invention, as described above, the component of the metal polishing liquid may be divided into two or more parts and supplied to the polishing surface. In this case, it is preferable to divide and supply the component containing an oxide and the component containing an acid. Alternatively, the metal polishing liquid may be a concentrated liquid, and the diluted water may be separately supplied to the polishing surface.
〔パッド〕
研磨用のパッドは、無発泡構造パッドでも発泡構造パッドでもよい。前者はプラスチック板のように硬質の合成樹脂バルク材をパッドに用いるものである。また、後者は更に独立発泡体(乾式発泡系)、連続発泡体(湿式発泡系)、2層複合体(積層系)の3つがあり、特には2層複合体(積層系)が好ましい。発泡は、均一でも不均一でもよい。
更に研磨に用いる砥粒(例えば、セリア、シリカ、アルミナ、樹脂など)を含有したものでもよい。また、それぞれに硬さは軟質のものと硬質のものがあり、どちらでもよく、積層系ではそれぞれの層に異なる硬さのものを用いることが好ましい。材質としては不織布、人工皮革、ポリアミド、ポリウレタン、ポリエステル、ポリカーボネート等が好ましい。また、研磨面と接触する面には、格子溝/穴/同心溝/らせん状溝などの加工を施してもよい。
〔pad〕
The polishing pad may be a non-foamed structure pad or a foamed structure pad. The former uses a hard synthetic resin bulk material like a plastic plate for a pad. Further, the latter further includes three types of a closed foam (dry foam system), a continuous foam (wet foam system), and a two-layer composite (laminated system), and a two-layer composite (laminated system) is particularly preferable. Foaming may be uniform or non-uniform.
Further, it may contain abrasive grains (for example, ceria, silica, alumina, resin, etc.) used for polishing. In addition, the hardness may be either soft or hard, and either may be used. In the laminated system, it is preferable to use a different hardness for each layer. The material is preferably non-woven fabric, artificial leather, polyamide, polyurethane, polyester, polycarbonate or the like. In addition, the surface contacting the polishing surface may be subjected to processing such as lattice grooves / holes / concentric grooves / helical grooves.
〔ウエハ〕
本発明の金属用研磨液でCMPを行なう対象ウエハは、径が200mm以上であることが好ましく、特には300mm以上が好ましい。300mm以上である時に顕著に本発明の効果を発揮する。
[Wafer]
The target wafer to be subjected to CMP with the metal polishing liquid of the present invention preferably has a diameter of 200 mm or more, and particularly preferably 300 mm or more. The effect of the present invention is remarkably exhibited when the thickness is 300 mm or more.
本発明におけるより好ましい態様は以下の通りである。
(1)有機酸として一般式(1)及び一般式(2)で表される化合物群から選ばれる少なくとも1つの化合物と本発明化合物とを併用することを特徴とした金属用研磨液。
(2)有機酸として一般式(1)及び一般式(2)で表される化合物群から選ばれる少なくとも1つの化合物と本発明化合物とを併用し、かつ本発明化合物を1mmol/L以下添加することを特徴とする金属用研磨液。
(3)有機酸として一般式(1)及び一般式(2)で表される化合物群から選ばれる少なくとも1つの化合物と本発明化合物とを併用し、かつ本発明化合物を0.5mmol/L以下添加することを特徴とする金属用研磨液。
(4)押さえ圧力75g/cm2以下で研磨するための金属用研磨液として、有機酸として一般式(1)及び一般式(2)で表される化合物群から選ばれる少なくとも1つの化合物と本発明化合物とを併用し、かつ本発明化合物を0.5mmol/L以下添加することを特徴とする金属用研磨液。
More preferred embodiments in the present invention are as follows.
(1) A metal-polishing liquid comprising a compound of the present invention in combination with at least one compound selected from the group of compounds represented by formulas (1) and (2) as an organic acid.
(2) As an organic acid, the compound of the present invention is used in combination with at least one compound selected from the group of compounds represented by general formula (1) and general formula (2), and the compound of the present invention is added in an amount of 1 mmol / L or less. A metal polishing liquid characterized by the above.
(3) The organic compound is used in combination with at least one compound selected from the group of compounds represented by general formula (1) and general formula (2) as the organic acid, and the present compound is 0.5 mmol / L or less. A polishing liquid for metals characterized by being added.
(4) As a metal polishing liquid for polishing at a pressing pressure of 75 g / cm 2 or less, at least one compound selected from the group of compounds represented by the general formula (1) and the general formula (2) as an organic acid and the present A metal-polishing liquid characterized by using the inventive compound in combination and adding the present compound to 0.5 mmol / L or less.
以下、実施例により本発明を説明する。本発明はこれらの実施例により限定されるものではない。
<実施例1>
下記に示す処方(金属用研磨液1)により、研磨液を調製し、実施例1の金属用研磨液を得た。この金属用研磨液を、下記の方法により研磨試験を行って評価した。
(金属用研磨液1)
過酸化水素(酸化剤) 5g/L
グリシン(有機酸) 0.2mol/L
例示化合物I−1(特定テトラゾール誘導体) 0.2mmol/L
コロイダルシリカ(砥粒) 9g/L
純水を加えて全量 1000mL
pH(アンモニア水と硫酸で調整) 6.7
Hereinafter, the present invention will be described by way of examples. The present invention is not limited to these examples.
<Example 1>
A polishing liquid was prepared according to the following formulation (metal polishing liquid 1), and the metal polishing liquid of Example 1 was obtained. This metal polishing liquid was evaluated by conducting a polishing test by the following method.
(Metal polishing liquid 1)
Hydrogen peroxide (oxidant) 5g / L
Glycine (organic acid) 0.2 mol / L
Illustrative compound I-1 (specific tetrazole derivative) 0.2 mmol / L
Colloidal silica (abrasive) 9g / L
Add pure water, total volume 1000mL
pH (adjusted with aqueous ammonia and sulfuric acid) 6.7
(研磨試験)
研磨パッド: IC1400XY−K Groove(ロデール社)
研磨機: LGP−612(LapmaSterSFT社)
押さえ圧力: 75g/cm2
研磨液供給速度: 200ml/min
銅ブランケットウエハ: 厚さ1.4μmの銅膜を形成したウエハ(200mm)
タンタルブランケットウエハ: 厚さ1μmのタンタル膜を形成したウエハ(200mm)
パターンウエハ: セマテック社製CMP854パターンウエハ(200mm)
研磨パッド/ウエハの回転数:95/120rpm
定盤温調: 20℃
(Polishing test)
Polishing pad: IC1400XY-K Groove (Rodale)
Polishing machine: LGP-612 (LapmaSterSFT)
Holding pressure: 75 g / cm 2
Polishing liquid supply rate: 200 ml / min
Copper blanket wafer: Wafer (200 mm) on which a copper film with a thickness of 1.4 μm is formed
Tantalum blanket wafer: Wafer (200 mm) on which a tantalum film with a thickness of 1 μm is formed
Pattern wafer: CMP854 pattern wafer (200 mm) manufactured by Sematec
Polishing pad / wafer rotation speed: 95/120 rpm
Surface plate temperature control: 20 ° C
(評価方法)
研磨速度: 銅またはタンタルブランケットウエハ面上の任意の49箇所に対し、金属膜のCMP前後での膜厚さを電気抵抗値から換算して、平均研磨速度を求めた。
ディッシング: パターンウエハに対し、非配線部の銅が完全に研磨されるまでの時間に加えて、該時間の50%に相当する時間研磨し、ラインアンドスペース部(ライン100μm、スペース100μm)のディッシングを触針式段差計で測定した。
上記研磨液を用いてCMPを行って得られた研磨速度、ディッシング及び銅とタンタルの研磨速度比を下記表3に示した。
(Evaluation method)
Polishing rate: The average polishing rate was determined by converting the film thickness of the metal film before and after CMP from an electric resistance value at any 49 locations on the copper or tantalum blanket wafer surface.
Dishing: In addition to the time until the copper in the non-wiring portion is completely polished, the pattern wafer is polished for a time corresponding to 50% of the time, and the dishing of the line and space portion (line 100 μm, space 100 μm) is performed. Was measured with a stylus profilometer.
Table 3 below shows the polishing rate, dishing, and the polishing rate ratio of copper and tantalum obtained by performing CMP using the above polishing liquid.
<実施例2〜5及び比較例1〜6>
実施例1における金属用研磨液1の処方において、特定テトラゾール誘導体である例示化合物I−1及び有機酸であるグリシンを、それぞれ表3に記載の化合物とした他は、実施例1と同様にして実施例2〜5及び比較例1〜6の金属用研磨液を調製し、実施例1と同様に研磨試験を行った。結果を下記表3に併記する。
<Examples 2-5 and Comparative Examples 1-6>
In the formulation of the metal polishing slurry 1 in Example 1, Exemplified Compound I-1 which is a specific tetrazole derivative and glycine which is an organic acid were changed to the compounds shown in Table 3, respectively, in the same manner as in Example 1. The metal polishing liquids of Examples 2 to 5 and Comparative Examples 1 to 6 were prepared, and the polishing test was conducted in the same manner as in Example 1. The results are also shown in Table 3 below.
表3に示されるように、本発明の特定テトラゾール誘導体を含有する本発明の金属用研磨液は、ベンゾトリアゾールや無置換の1H−テトラゾールなどの、本発明の特定の官能基を有しないヘテロ環誘導体を含有する研磨液に対して、研磨速度及びディッシングに優れることがわかる。また、本発明の金属用研磨液は、銅とタンタルの研磨選択比が高いことが明らかとなった。 As shown in Table 3, the metal polishing liquid of the present invention containing the specific tetrazole derivative of the present invention is a heterocycle having no specific functional group of the present invention such as benzotriazole or unsubstituted 1H-tetrazole. It can be seen that the polishing liquid containing the derivative is excellent in polishing rate and dishing. Moreover, it became clear that the polishing liquid for metals of this invention has a high polishing selectivity of copper and tantalum.
Claims (3)
A metal polishing liquid used for chemical mechanical planarization of a semiconductor device, comprising at least one tetrazole derivative represented by the following chemical formula:
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048470A JP5080012B2 (en) | 2006-02-24 | 2006-02-24 | Polishing liquid for metal |
KR1020060129467A KR20070088245A (en) | 2006-02-24 | 2006-12-18 | Polishing liquid for metals |
US11/648,618 US20070200089A1 (en) | 2006-02-24 | 2007-01-03 | Polishing liquid for metals |
TW096105714A TWI422669B (en) | 2006-02-24 | 2007-02-15 | Polishing liquid for metals |
US12/877,010 US20100330809A1 (en) | 2006-02-24 | 2010-09-07 | Polishing liquid for metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006048470A JP5080012B2 (en) | 2006-02-24 | 2006-02-24 | Polishing liquid for metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007227758A JP2007227758A (en) | 2007-09-06 |
JP5080012B2 true JP5080012B2 (en) | 2012-11-21 |
Family
ID=38549248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006048470A Expired - Fee Related JP5080012B2 (en) | 2006-02-24 | 2006-02-24 | Polishing liquid for metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5080012B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007266075A (en) * | 2006-03-27 | 2007-10-11 | Fujifilm Corp | Polishing liquid for metal |
JP2007266077A (en) * | 2006-03-27 | 2007-10-11 | Fujifilm Corp | Polishing liquid for metal |
JP2007273900A (en) * | 2006-03-31 | 2007-10-18 | Fujifilm Corp | Polishing solution for metal |
JPWO2011077973A1 (en) * | 2009-12-21 | 2013-05-02 | 日立化成株式会社 | Abrasive for polishing copper and polishing method using the same |
CN103249525B (en) * | 2010-12-06 | 2016-01-06 | 株式会社Moresco | Polished glass substrate composition and polishing slurries |
JP5333571B2 (en) * | 2010-12-24 | 2013-11-06 | 日立化成株式会社 | Polishing liquid and substrate polishing method using the polishing liquid |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4505891B2 (en) * | 1999-09-06 | 2010-07-21 | Jsr株式会社 | Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices |
JP2006049790A (en) * | 2004-07-01 | 2006-02-16 | Fuji Photo Film Co Ltd | Polishing liquid for metal, and polishing method |
-
2006
- 2006-02-24 JP JP2006048470A patent/JP5080012B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007227758A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI422669B (en) | Polishing liquid for metals | |
KR101290090B1 (en) | Aqueous polishing liquid and chemical mechanical polishing method | |
JP5121273B2 (en) | Polishing liquid for metal and polishing method | |
JP2006179845A (en) | Polishing solution for metal, and polishing method | |
JP2006100538A (en) | Polishing composition and polishing method using the same | |
JP2006269600A (en) | Chemical mechanical polishing method and polishing liquid used therefor | |
JP4448787B2 (en) | Polishing liquid for metal and polishing method | |
JP4070622B2 (en) | Polishing liquid for metal and polishing method | |
JP5080012B2 (en) | Polishing liquid for metal | |
JP2006049790A (en) | Polishing liquid for metal, and polishing method | |
JP2007088024A (en) | Polishing method | |
JP2007317714A (en) | Metal polishing solution | |
JP2007081316A (en) | Polishing liquid for metal and chemical mechanical polishing method | |
JP2004231748A (en) | Metal polishing solution and polishing method | |
JP2004235326A (en) | Polishing solution for metal and polishing method | |
JP2007088284A (en) | Aqueous polishing slurry and chemical mechanical polishing method | |
JP2004235319A (en) | Polishing solution for metal and polishing method | |
JP4162502B2 (en) | Polishing liquid for metal and polishing method | |
JP2007266076A (en) | Polishing liquid for metal | |
JP2006100570A (en) | Polishing composition and polishing method using the same | |
JP2006086353A (en) | Polishing solution for copper and polishing method | |
JP2006093580A (en) | Chemical mechanical polishing method | |
JP4028402B2 (en) | Polishing liquid for metal and polishing method | |
JP2008300858A (en) | Polishing solution for metal, and polishing method | |
JP2006100550A (en) | Polishing solution material for metals, and polishing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120820 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120830 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5080012 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |