JP5078320B2 - Temperature reduction tower - Google Patents

Temperature reduction tower Download PDF

Info

Publication number
JP5078320B2
JP5078320B2 JP2006302044A JP2006302044A JP5078320B2 JP 5078320 B2 JP5078320 B2 JP 5078320B2 JP 2006302044 A JP2006302044 A JP 2006302044A JP 2006302044 A JP2006302044 A JP 2006302044A JP 5078320 B2 JP5078320 B2 JP 5078320B2
Authority
JP
Japan
Prior art keywords
combustion exhaust
tower
exhaust gas
tower body
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006302044A
Other languages
Japanese (ja)
Other versions
JP2008114189A (en
Inventor
敏正 鈴木
征司 小林
信 大竹
公人 平井
誠 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Holdings Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006302044A priority Critical patent/JP5078320B2/en
Publication of JP2008114189A publication Critical patent/JP2008114189A/en
Application granted granted Critical
Publication of JP5078320B2 publication Critical patent/JP5078320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature reduction tower which controls detention due to drift and secondary flow in a tower body of a temperature reduction tower. <P>SOLUTION: The temperature reduction tower has the cylindrical tower body 20, a combustion exhaust-gas introduction part 30 arranged at the upper part of the tower body 20, a combustion exhaust-gas supplying pipe 40 arranged at the combustion exhaust-gas introduction part 30, a combustion exhaust-gas exhausting pipe 50 and a water spray nozzle 60 arranged in the tower body 20. The combustion exhaust-gas introduction part 30 is formed by a roofed cylindrical diffusion part 31 and a rectification part 32 of inverted head-cut conical form arranged at the lower part of the diffusion part 31, while the combustion exhaust-gas supplying pipe 40 is held inclined and upwards to be connected to the side 34 of the rectification part 32. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、焼却炉やガス化溶融炉などから排出される高温の燃焼排ガスを水の気化熱を利用して減温させる減温塔に関する。   The present invention relates to a temperature reducing tower that reduces the temperature of high-temperature combustion exhaust gas discharged from an incinerator, a gasification melting furnace, or the like using the heat of vaporization of water.

一般に、都市ごみや産業廃棄物などの廃棄物を焼却する焼却炉や、ガス化溶融するキルン式ガス化溶融炉などから排出される高温の燃焼排ガスの中には、多量の灰やダストが含有されている。このため、燃焼排ガスの中の灰やダストを集塵機で除去する必要があり、多くの場合、バグフィルタによる集塵が行われている。   In general, a large amount of ash and dust is contained in high-temperature combustion exhaust gas emitted from incinerators that incinerate waste such as municipal waste and industrial waste, and kiln type gasification and melting furnaces that gasify and melt. Has been. For this reason, it is necessary to remove the ash and dust in combustion exhaust gas with a dust collector, and in many cases, dust collection by a bag filter is performed.

ところが、バグフィルタは、一般に、可燃性の繊維質の濾布を用いているために耐熱性が低く、燃焼排ガスの温度が250℃を超えることは好ましくない。このため、バグフィルタの前段に廃熱ボイラを設置して燃焼排ガスの冷却を行ったり(例えば、特許文献1参照。)、或いは、バグフィルタの前段に燃焼排ガス冷却塔を設置して燃焼排ガスの冷却を行っている(例えば、特許文献2参照。)。   However, since the bag filter generally uses a flammable fibrous filter cloth, the bag filter has low heat resistance, and it is not preferable that the temperature of the combustion exhaust gas exceeds 250 ° C. For this reason, a waste heat boiler is installed in the front stage of the bag filter to cool the combustion exhaust gas (see, for example, Patent Document 1), or a combustion exhaust gas cooling tower is installed in the front stage of the bag filter to reduce the combustion exhaust gas. Cooling is performed (for example, refer to Patent Document 2).

この燃焼排ガス冷却塔は、図10に示すように、400℃前後の燃焼排ガスgを排ガス導入管123から整流塔124に導入し、塔本体121の内部に設けたノズル122から冷却水wを噴霧して燃焼排ガスgを所定の温度(例えば、200℃以下)に冷却するようにしている。   As shown in FIG. 10, this combustion exhaust gas cooling tower introduces combustion exhaust gas g of around 400 ° C. into the rectifying tower 124 from the exhaust gas introduction pipe 123 and sprays the cooling water w from the nozzle 122 provided inside the tower main body 121. Thus, the combustion exhaust gas g is cooled to a predetermined temperature (for example, 200 ° C. or lower).

ところが、この燃焼排ガス冷却塔は、燃焼排ガスgを塔本体121に導入する排ガス導入管123が整流塔124の側面に略水平に設けられているため、燃焼排ガスg中の灰が排ガス導入管123内に堆積し易いばかりでなく、灰fの堆積によって燃焼排ガスgのガス流れや流速が変わってしまう。   However, in this flue gas cooling tower, the flue gas introduction pipe 123 for introducing the flue gas g into the tower body 121 is provided substantially horizontally on the side surface of the rectifying tower 124, so that the ash in the flue gas g is removed from the flue gas introduction pipe 123. In addition to being easily deposited inside, the gas flow and flow velocity of the combustion exhaust gas g change due to the accumulation of ash f.

このため、塔本体121内に導入された燃焼排ガスgが偏流を起こしたり、或いは燃焼排ガスgの二次流れに起因する滞留が生じ易くなり、上記ノズル122から噴霧された冷却水wとの接触も均一に行われ難くなると云う問題がある。
特開2002−102647号公報 特開2004−267856号公報
For this reason, the flue gas g introduced into the tower main body 121 is liable to drift or stay due to the secondary flow of the flue gas g, and contact with the cooling water w sprayed from the nozzle 122. However, there is a problem that it is difficult to perform uniformly.
JP 2002-102647 A JP 2004-267856 A

本発明は、上記のような問題を解消するためになされたものであり、その目的とするところは、減温塔の塔本体内における燃焼排ガスの偏流や、二次流れに起因する滞留の発生を抑制することができる減温塔を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to generate a drift of combustion exhaust gas in the tower body of the temperature-decreasing tower and a stay due to the secondary flow. An object of the present invention is to provide a temperature reducing tower that can suppress the above.

請求項1に係る発明は、筒状の塔本体と、該塔本体の上部に設けられ、かつ、有蓋円筒状の拡散部と、該拡散部の下部に設けた倒立裁頭円錐状の整流部より形成された燃焼排ガス導入部と、該燃焼排ガス導入部に設けた燃焼排ガス供給管と、前記塔本体の下部に、当該塔本体に対して斜め上向きに設けた燃焼排ガス排出管と、前記塔本体に設けた水噴霧ノズルを備えた減温塔において、前記燃焼排ガス供給管を斜め上向きにして前記燃焼排ガス導入部の倒立裁頭円錐状の整流部の側面に接続させ、かつ、燃焼排ガス排出管を、その先端開口部が前記塔本体の軸心上に位置するように前記塔本体内に突設させたことを特徴とする減温塔である。 Invention, a tubular column body, provided we are at the top of the tower body and a lidded cylindrical diffusion section, an inverted truncated cone-shaped rectifier provided on the lower portion of the diffusing unit according to claim 1 A flue gas introduction part formed from the combustion part, a flue gas supply pipe provided in the flue gas introduction part, a flue gas exhaust pipe provided obliquely upward with respect to the tower body at the bottom of the tower body , In a temperature-decreasing tower provided with a water spray nozzle provided in the tower body, the combustion exhaust gas supply pipe is connected obliquely upward and connected to the side surface of the inverted conical rectification section of the combustion exhaust gas introduction section , and the combustion exhaust gas The temperature reducing tower is characterized in that the discharge pipe is protruded in the tower main body so that a tip opening portion thereof is located on the axial center of the tower main body .

請求項1に記載の本発明は、筒状の塔本体と、該塔本体の上部に設けた燃焼排ガス導入部と、該燃焼排ガス導入部に設けた燃焼排ガス供給管と、前記塔本体の下部に設けた燃焼排ガス排出管と、前記塔本体に設けた水噴霧ノズルを備えた減温塔において、前記燃焼排ガス導入部を、有蓋円筒状の拡散部と、該拡散部の下部に設けた倒立裁頭円錐形状の整流部により形成すると共に、前記燃焼排ガス供給管を斜め上向きにして前記整流部の側面に接続させたので、燃焼排ガス流入管から燃焼排ガス導入部内に噴出された燃焼排ガスは、燃焼排ガス導入部の有蓋円筒状の拡散部の天井の略中央に衝突して反転しながら周囲に拡散し、有蓋円筒状の拡散内で拡散した燃焼排ガスは、整流部の裁頭円錐形状の斜面に沿って流下しながら整流されるようになった。   The present invention according to claim 1 includes a cylindrical tower main body, a combustion exhaust gas introduction part provided at the upper part of the tower main body, a combustion exhaust gas supply pipe provided at the combustion exhaust gas introduction part, and a lower part of the tower main body In the temperature reduction tower provided with the combustion exhaust gas discharge pipe provided in the column and the water spray nozzle provided in the tower body, the combustion exhaust gas introduction part is provided with a covered cylindrical diffusion part and an inverted part provided at the lower part of the diffusion part. Since it is formed by a truncated conical rectification unit and connected to the side surface of the rectification unit with the combustion exhaust gas supply pipe obliquely upward, the combustion exhaust gas ejected from the combustion exhaust gas inflow tube into the combustion exhaust gas introduction unit is Combustion exhaust gas that collides with the center of the ceiling of the covered cylindrical diffusion part of the combustion exhaust gas introduction part and diffuses to the surroundings while reversing, and diffused in the diffusion of the covered cylindrical part is the slope of the truncated cone shape of the rectification part Rectified while flowing down along It became.

このため、燃焼排ガス導入部より塔本体内に流入する燃焼排ガスの偏流や二次流れに起因する滞留を防止することが可能になった。その上、水噴霧ノズルより噴霧された水との接触も均一に行われるようになった。   For this reason, it has become possible to prevent the stagnant due to the drift or secondary flow of the combustion exhaust gas flowing into the tower body from the combustion exhaust gas introduction section. In addition, contact with the water sprayed from the water spray nozzle is also performed uniformly.

請求項2に記載の本発明は、前記燃焼排ガス排出管を、その先端開口部が前記塔本体の略軸心上に位置するように設けたので、上記燃焼排ガス導入部との相乗効果により、塔本体内における燃焼排ガスの偏流や二次流れに起因する滞留をより一層防止することが可能になった。   In the present invention according to claim 2, since the flue gas exhaust pipe is provided so that a tip opening thereof is positioned substantially on the axial center of the tower body, a synergistic effect with the flue gas introduction portion is obtained. It has become possible to further prevent stagnation due to the drift or secondary flow of combustion exhaust gas in the tower body.

請求項3に記載の本発明は、前記燃焼排ガス排出管を、前記塔本体に対して斜め上向きに設けたので、後段に位置するバグフィルタとの間隔を狭めることも可能になった。   According to the third aspect of the present invention, since the flue gas exhaust pipe is provided obliquely upward with respect to the tower main body, it is also possible to narrow the interval with the bag filter located at the subsequent stage.

請求項4に記載の本発明は、前記塔本体の内径をDとしたとき、前記燃焼排ガス導入部の内径D1 をD/2〜3D/2、前記塔本体と前記燃焼排ガス導入部を接続させる接続部の内径D2 をD/3〜D/2とし、且つ、D1 ≧D2 とするため、燃焼排ガス導入部から塔本体へ燃焼排ガスをスムーズに流動させることが可能になり、偏流や二次流れに起因する滞留を防止することが可能になった。 The present invention described in claim 4, when the inner diameter of the column body and is D, the combustion exhaust gas introducing portion of an inner diameter D 1 of the D / 2~3D / 2, connected to the flue gas inlet section and the tower body Since the inner diameter D 2 of the connecting portion is set to D / 3 to D / 2 and D 1 ≧ D 2 , it becomes possible to smoothly flow the combustion exhaust gas from the combustion exhaust gas introduction portion to the tower main body, And retention due to the secondary flow can be prevented.

請求項5に記載の本発明は、前記燃焼排ガス供給管の傾斜角θ1 を45°〜65°に設定するので、燃焼排ガス供給管から燃焼排ガス導入部の有蓋円筒状の拡散部の天井の略中央に向けて燃焼排ガスを衝突させることが可能になった。このため、塔本体の軸心に向けて燃焼排ガスを反転させることが可能になり、偏流や二次流れに起因する滞留を防止することが可能になった。また、燃焼排ガス供給管自体が所定の傾斜角を持っているので、灰の堆積を防止することが可能になるばかりでなく、灰の堆積に起因する燃焼排ガスのガス流れや流速の変動を防止することが可能になった。 According to the fifth aspect of the present invention, since the inclination angle θ 1 of the flue gas supply pipe is set to 45 ° to 65 °, the ceiling of the covered cylindrical diffusion portion of the covered flue gas introduction section from the flue gas supply pipe is provided. It became possible to make combustion exhaust gas collide toward the center. For this reason, it became possible to reverse combustion exhaust gas toward the axial center of a tower main body, and it became possible to prevent the residence resulting from a drift and a secondary flow. In addition, since the flue gas supply pipe itself has a predetermined inclination angle, it is possible not only to prevent ash accumulation but also to prevent fluctuations in the gas flow and flow velocity of the flue gas due to ash accumulation. It became possible to do.

請求項6に記載の本発明は、前記燃焼排ガス導入部における整流部の傾斜角θ2 を45°〜65°に設定するので、整流部の絞り効果によって燃焼排ガスを円滑に整流することが可能になるのみならず、灰の堆積を防止することが可能になった。 According to the sixth aspect of the present invention, since the inclination angle θ 2 of the rectification unit in the combustion exhaust gas introduction unit is set to 45 ° to 65 °, the combustion exhaust gas can be smoothly rectified by the throttling effect of the rectification unit. In addition, it became possible to prevent ash accumulation.

請求項7に記載の本発明は、請求項1において、前記燃焼排ガス排出管の傾斜角θ3 を45°〜65°に設定したので、灰の堆積を防止することが可能になった。また、後段に位置するバグフィルタとの間隔を狭めることも可能になった。 According to the seventh aspect of the present invention, since the inclination angle θ 3 of the flue gas exhaust pipe is set to 45 ° to 65 ° in the first aspect, ash accumulation can be prevented. In addition, it has become possible to reduce the distance from the bag filter located in the subsequent stage.

以下、本発明の実施の形態を図面を用いて説明する。
図1に示すように、減温塔10は、円筒状の縦長な塔本体20と、塔本体20の上部に設けた燃焼排ガス導入部(「チャンバ」ともいう。)30と、燃焼排ガス導入部30に接続させた燃焼排ガス供給管40と、塔本体20の下部に設けた燃焼排ガス排出管50と、塔本体20に設けたスプレーノズル(水噴霧ノズルと称する。)60により形成されている。また、塔本体20の底部には、灰排出装置(図示せず)を設け、塔本体20の底部に溜まった灰を定期的に排出するようになっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the temperature reducing tower 10 includes a cylindrical vertically long tower body 20, a combustion exhaust gas introduction section (also referred to as “chamber”) 30 provided on the top of the tower body 20, and a combustion exhaust gas introduction section. 30, a flue gas supply pipe 40 connected to 30, a flue gas exhaust pipe 50 provided in the lower part of the tower body 20, and a spray nozzle (referred to as a water spray nozzle) 60 provided in the tower body 20. Further, an ash discharge device (not shown) is provided at the bottom of the tower main body 20 so that the ash accumulated at the bottom of the tower main body 20 is periodically discharged.

燃焼排ガス導入部30は、有蓋円筒状の拡散部31と、拡散部31の下部に設けた倒立裁頭円錐形状の整流部32により形成され、整流部32の出口32aは、円筒状又は径が徐々に拡大する接続部33を介して塔本体20の上端20aに接続している。そして、燃焼排ガス供給管40を倒立裁頭円錐形状の整流部32の側面34に接続させ、燃焼排ガス供給管40から供給された燃焼排ガスgが有蓋円筒状の拡散部31の水平な天井31aの略中央に衝突するようにしている。尚、燃焼排ガス供給管40は、図3に示すように、塔本体20の軸心Cの付近に向けられている。   The flue gas introduction part 30 is formed by a covered cylindrical diffusion part 31 and an inverted truncated conical rectification part 32 provided at the lower part of the diffusion part 31, and the outlet 32 a of the rectification part 32 has a cylindrical shape or a diameter. It connects with the upper end 20a of the tower main body 20 via the connection part 33 which expands gradually. The combustion exhaust gas supply pipe 40 is connected to the side surface 34 of the inverted truncated conical rectification unit 32, and the combustion exhaust gas g supplied from the combustion exhaust gas supply pipe 40 is formed on the horizontal ceiling 31 a of the covered cylindrical diffusion part 31. Colliding with approximately the center. The combustion exhaust gas supply pipe 40 is directed to the vicinity of the axis C of the tower body 20 as shown in FIG.

ここで、燃焼排ガス供給管40は、図1に示すように、水平面G2 に対して所定の角度θ1 だけ上向きに傾斜するように設けられているが、傾斜角θ1 としては、45°〜65°の範囲が好ましい。更には50°〜60°の範囲が好ましい。燃焼排ガス供給管40の傾斜角θ1 が45°未満の場合は、燃焼排ガス供給管40内に灰が堆積し易くなるほか、前段の廃熱ボイラ等との間隔が広がる虞れがある。逆に、燃焼排ガス供給管40の傾斜角θ1 が65°を超える場合は、塔本体20と干渉し易くなるため、設置が難しくなる。 Here, as shown in FIG. 1, the flue gas supply pipe 40 is provided so as to be inclined upward by a predetermined angle θ 1 with respect to the horizontal plane G 2 , and the inclination angle θ 1 is 45 °. A range of ˜65 ° is preferred. Furthermore, the range of 50 ° to 60 ° is preferable. When the inclination angle θ 1 of the combustion exhaust gas supply pipe 40 is less than 45 °, ash is likely to be deposited in the combustion exhaust gas supply pipe 40 and there is a possibility that the interval with the waste heat boiler in the previous stage may be widened. On the other hand, when the inclination angle θ 1 of the combustion exhaust gas supply pipe 40 exceeds 65 °, it becomes easy to interfere with the tower body 20, so that installation becomes difficult.

また、燃焼排ガス導入部30における整流部32の傾斜面34は、水平面G1 に対して所定の角度θ2 だけ傾斜しているが、傾斜角θ2 としては、45°〜65°の範囲が好ましい。更には50°〜60°の範囲が好ましい。整流部32の傾斜角度θ2 が45°未満の場合は、整流部32内に灰が堆積し易くなる。逆に、整流部32の傾斜角度θ2 が65°を超える場合は、整流部32の高さが高くなる。 Further, the inclined surface 34 of the rectifying unit 32 in the combustion exhaust gas introducing unit 30 is inclined by a predetermined angle θ 2 with respect to the horizontal plane G 1 , and the inclination angle θ 2 is in a range of 45 ° to 65 °. preferable. Furthermore, the range of 50 ° to 60 ° is preferable. When the inclination angle θ 2 of the rectifying unit 32 is less than 45 °, ash is easily deposited in the rectifying unit 32. Conversely, when the inclination angle θ 2 of the rectifying unit 32 exceeds 65 °, the height of the rectifying unit 32 increases.

上記塔本体20は、円筒状の胴部21と、胴部21の上部に設けた裁頭円錐形状の拡大部22と、胴部21の下部に設けた倒立裁頭円錐形状の縮径部23により形成され、前記拡大部22に複数本の水噴霧ノズル60を設けている。これらの水噴霧ノズル60は、前記拡大部22の周方向に所定の間隔を置いて設けられ、かつ、その先端が塔本体20の軸心Cに向けられている(図2参照。)。   The tower body 20 includes a cylindrical barrel portion 21, a truncated cone-shaped enlarged portion 22 provided on the upper portion of the barrel portion 21, and an inverted truncated cone-shaped reduced diameter portion 23 provided on the lower portion of the barrel portion 21. A plurality of water spray nozzles 60 are provided in the enlarged portion 22. These water spray nozzles 60 are provided at predetermined intervals in the circumferential direction of the enlarged portion 22, and their tips are directed to the axis C of the tower body 20 (see FIG. 2).

水噴霧ノズル60は、二流体式圧力噴霧型のノズルであり、高圧空気aによってノズル先端の微細孔61から水wを噴霧するようになっている。この水噴霧ノズル60は、図5に示すように、L字形のノズル部62と、ノズル部62に接続させた二重管63により形成され、二重管63を構成している内管63aから水wを供給し、外管63bから高圧空気aを供給するようになっている。水噴霧ノズル60は、L字形のノズル部62が鉛直下向きになるように前記拡大部22に取り付けられている。また、上記水噴霧ノズル60は、筒形のカバー64によって覆われており、燃焼排ガス中の灰が付着しないようになっている。カバー64は、ノズル部62の直下に開口部65を有する一方、外管63bに設けた放射状の支持体66によって支持されている。   The water spray nozzle 60 is a two-fluid pressure spray type nozzle, and sprays water w from the fine hole 61 at the tip of the nozzle by high-pressure air a. As shown in FIG. 5, the water spray nozzle 60 is formed by an L-shaped nozzle portion 62 and a double tube 63 connected to the nozzle portion 62, and from an inner tube 63 a constituting the double tube 63. Water w is supplied, and high-pressure air a is supplied from the outer pipe 63b. The water spray nozzle 60 is attached to the enlarged portion 22 so that the L-shaped nozzle portion 62 faces vertically downward. The water spray nozzle 60 is covered with a cylindrical cover 64 so that ash in the combustion exhaust gas does not adhere. The cover 64 has an opening 65 immediately below the nozzle portion 62, and is supported by a radial support 66 provided on the outer tube 63b.

更に、燃焼排ガス排出管50は、塔本体20の胴部21を貫通するように斜め上向きに設けられ、その先端開口部51が胴部21の下端部21aと同一水平面(図示せず)に位置すると共に、塔本体20の軸心C付近上に位置するようになっている。尚、燃焼排ガス排出管50は、図4に示すように、塔本体20の軸心C付近に向けられている。   Further, the flue gas exhaust pipe 50 is provided obliquely upward so as to penetrate the trunk portion 21 of the tower body 20, and the tip opening 51 is located on the same horizontal plane (not shown) as the lower end portion 21 a of the trunk portion 21. At the same time, it is positioned near the axis C of the tower body 20. The combustion exhaust gas discharge pipe 50 is directed to the vicinity of the axis C of the tower body 20 as shown in FIG.

この燃焼排ガス排出管50は、水平面G3 に対して所定の角度θ3 だけ傾斜しているが、傾斜角θ3 としては、45°〜65°の範囲が好ましい。更には50°〜60°の範囲が好ましい。燃焼排ガス排出管50の傾斜角θ3 が45°未満の場合は、燃焼排ガス排出管50内に灰が堆積し易くなる。逆に、燃焼排ガス排出管50の傾斜角θ3 が65°を超える場合は、塔本体20と干渉し易くなる。尚、燃焼排ガス排出管50は、図4に示すように、塔本体20の軸心C付近に向けて設けられている。 The flue gas discharge pipe 50 is inclined by a predetermined angle theta 3 with respect to the horizontal plane G 3, as the inclination angle theta 3, is preferably in the range of 45 ° to 65 °. Furthermore, the range of 50 ° to 60 ° is preferable. When the inclination angle θ 3 of the flue gas exhaust pipe 50 is less than 45 °, ash is likely to accumulate in the flue gas exhaust pipe 50. On the contrary, when the inclination angle θ 3 of the combustion exhaust gas discharge pipe 50 exceeds 65 °, it is easy to interfere with the tower body 20. The combustion exhaust gas discharge pipe 50 is provided toward the vicinity of the axis C of the tower body 20 as shown in FIG.

また、塔本体20の胴部21の直径をDとしたとき、燃焼排ガス導入部30における有蓋円筒状の拡散部31の直径D1 及び接続部33の直径D2 は、次のように設定されている。
1 =D/2〜3D/2 ・・・・ (1)
2 =D/3〜D/2 ・・・・ (2)
但し、D1 ≧D2
Further, when the diameter of the barrel portion 21 of the column body 20 is D, the diameter D 2 of diameter D 1 and the connecting portion 33 of the lidded cylindrical spreading section 31 in the flue gas inlet section 30 may be configured as follows ing.
D 1 = D / 2 to 3D / 2 (1)
D 2 = D / 3 to D / 2 (2)
However, D 1 ≧ D 2

また、この減温塔10に供給される燃焼排ガスの流量は、7.5〜12.5m/sとなっている。   Further, the flow rate of the combustion exhaust gas supplied to the temperature reducing tower 10 is 7.5 to 12.5 m / s.

今、図6に示すように、廃熱ボイラや燃焼排ガス冷却塔(図示せず)から燃焼排ガス供給管40に供給された燃焼排ガスgは、斜め上向きに傾斜している燃焼排ガス供給管40から燃焼排ガス導入部30の有底円筒状の拡散部31の天井31aに向けて噴出され、有底円筒状の拡散部31の水平な天井31aの略中央に衝突する。   As shown in FIG. 6, the flue gas g supplied from the waste heat boiler or the flue gas cooling tower (not shown) to the flue gas supply pipe 40 is from the flue gas supply pipe 40 inclined obliquely upward. It is ejected toward the ceiling 31a of the bottomed cylindrical diffusion part 31 of the combustion exhaust gas introduction part 30 and collides with the approximate center of the horizontal ceiling 31a of the bottomed cylindrical diffusion part 31.

有底円筒状の拡散部31の天井31aの略中央に衝突した燃焼排ガスgは、有底円筒状の拡散部31の天井31aで反転しながら周囲に拡散する。拡散部31の天井31aに沿って拡散した燃焼排ガスgは、燃焼排ガス導入部30における倒立裁頭円錐形状の整流部32に沿って流下し、燃焼排ガス導入部30と塔本体20とを接続する円筒状又は径が徐々に拡大する接続部33より塔本体20内に流入する。   The flue gas g that collides with the approximate center of the ceiling 31a of the bottomed cylindrical diffusion part 31 diffuses around while being reversed at the ceiling 31a of the bottomed cylindrical diffusion part 31. The combustion exhaust gas g diffused along the ceiling 31a of the diffusion part 31 flows down along the inverted truncated conical rectification part 32 in the combustion exhaust gas introduction part 30, and connects the combustion exhaust gas introduction part 30 and the tower body 20. It flows into the tower main body 20 from the connecting portion 33 having a cylindrical shape or a diameter gradually increasing.

接続部33より塔本体20に流入した燃焼排ガスgは、塔本体20の拡大部22に沿ってなだらかに広がりながら塔本体20の軸心Cにほぼ並行な流れとなって流下し、塔本体20の軸心C付近に先端開口部51を有する燃焼排ガス排出管50を通って後段のバグフィルタ(図示せず)に供給される。   The flue gas g flowing into the tower main body 20 from the connecting portion 33 flows down along the enlarged portion 22 of the tower main body 20 and flows in a flow almost parallel to the axis C of the tower main body 20, and flows down. Is supplied to a bag filter (not shown) in the subsequent stage through a flue gas exhaust pipe 50 having a front end opening 51 in the vicinity of the axial center C.

他方、塔本体20の拡大部22の周方向に設けた複数本の水噴霧ノズル60の先端にある微細孔(図示せず)から鉛直下向きに水wが噴霧されているため、図2に示すように、塔本体20の横断面内に均一に水wが拡散する。このため、塔本体20内を流下する燃焼排ガスgが塔本体20内に均一に拡散した水wによってムラなく均一に冷却される(例えば、400℃前後→200℃以下)。この時、水噴霧ノズル60から噴霧された水wは、燃焼排ガスgによって加熱されて蒸発し、塔本体20の内壁に付着することもない。塔本体20内で冷却された燃焼排ガスgは、塔本体20の下部に設けた燃焼ガス排出管50から次工程に供給される。   On the other hand, since water w is sprayed vertically downward from fine holes (not shown) at the tips of a plurality of water spray nozzles 60 provided in the circumferential direction of the enlarged portion 22 of the tower body 20, as shown in FIG. As described above, the water w is uniformly diffused in the cross section of the tower body 20. For this reason, the combustion exhaust gas g flowing down in the tower main body 20 is uniformly cooled by the water w uniformly diffused in the tower main body 20 (for example, around 400 ° C. → 200 ° C. or less). At this time, the water w sprayed from the water spray nozzle 60 is heated and evaporated by the combustion exhaust gas g and does not adhere to the inner wall of the tower body 20. The combustion exhaust gas g cooled in the tower body 20 is supplied to the next process from the combustion gas discharge pipe 50 provided at the lower part of the tower body 20.

(実施例)
図7は、本発明に係る減温塔の熱流動線図である。この熱流動線図によれば、本発明に係る減温塔は、燃焼排ガスの偏流や二次流れによる滞留が殆どないことが分かる。
(Example)
FIG. 7 is a heat flow diagram of the temperature reducing tower according to the present invention. According to this heat flow diagram, it can be seen that the temperature reducing tower according to the present invention has almost no stagnant combustion gas due to a drift or secondary flow.

これに対し、燃焼排ガス導入部が円筒形の場合(比較例1)は、図8に示すように、出口側(燃焼排ガス流出側)に気流が偏流し、出口側対面に二次流れによる滞留領域ができる。   On the other hand, when the combustion exhaust gas introduction part is cylindrical (Comparative Example 1), as shown in FIG. 8, the air flow is unevenly distributed on the outlet side (combustion exhaust gas outflow side), and the secondary flow is retained on the outlet side. An area is created.

また、燃焼排ガス導入部の接線方向に排ガスを供給すると(比較例2)、図9に示すように、燃焼排ガス導入部内で旋回した流れが発生し、この旋回流が塔本体内に流入するため、塔本体内部に旋回流が発生している。尚、この熱流動に使用した解析コードは、STAR−CD Ver.3.24である。   When exhaust gas is supplied in the tangential direction of the combustion exhaust gas introduction part (Comparative Example 2), as shown in FIG. 9, a swirling flow is generated in the combustion exhaust gas introduction part, and this swirling flow flows into the tower body. A swirling flow is generated inside the tower body. The analysis code used for this heat flow is STAR-CD Ver. 3.24.

本発明に係る減温塔の断面図である。It is sectional drawing of the temperature reduction tower which concerns on this invention. 図1のX−X断面図である。It is XX sectional drawing of FIG. 図1の矢印Z方向の矢視図である。It is an arrow view of the arrow Z direction of FIG. 図1のY−Y断面図である。It is YY sectional drawing of FIG. 水噴霧ノズルの一部断面を含む側面図である。It is a side view including a partial cross section of a water spray nozzle. 本発明に係る減温塔の作用説明図である。It is action | operation explanatory drawing of the temperature reduction tower which concerns on this invention. 本発明に係る減温塔の熱流動線図である。It is a heat | fever flow diagram of the temperature reduction tower which concerns on this invention. 比較例1の熱流動線図である。2 is a heat flow diagram of Comparative Example 1. FIG. 比較例2の熱流動線図である。6 is a heat flow diagram of Comparative Example 2. FIG. 従来の排ガス冷却塔の断面図である。It is sectional drawing of the conventional waste gas cooling tower.

符号の説明Explanation of symbols

20 塔本体
30 燃焼排ガス導入部
31 有蓋円筒状の拡散部
32 倒立裁頭円錐形状の整流部
34 整流部の側面
40 燃焼排ガス供給管
50 燃焼排ガス排出管
60 水噴霧ノズル
20 Tower body 30 Combustion exhaust gas introduction part 31 Covered cylindrical diffusion part 32 Inverted truncated conical rectification part 34 Side face of rectification part 40 Combustion exhaust gas supply pipe 50 Combustion exhaust gas discharge pipe 60 Water spray nozzle

Claims (1)

筒状の塔本体と、該塔本体の上部に設けられ、かつ、有蓋円筒状の拡散部と、該拡散部の下部に設けた倒立裁頭円錐状の整流部より形成された燃焼排ガス導入部と、該燃焼排ガス導入部に設けた燃焼排ガス供給管と、前記塔本体の下部に、当該塔本体に対して斜め上向きに設けた燃焼排ガス排出管と、前記塔本体に設けた水噴霧ノズルを備えた減温塔において、
前記燃焼排ガス供給管を斜め上向きにして前記燃焼排ガス導入部の倒立裁頭円錐状の整流部の側面に接続させ、かつ、燃焼排ガス排出管を、その先端開口部が前記塔本体の軸心上に位置するように前記塔本体内に突設させたことを特徴とする減温塔。
A cylindrical column body, are found provided on the top of the tower body and a lidded cylindrical diffusion section, the combustion exhaust gas introduced formed from an inverted truncated conical rectifying portion provided in the lower part of the diffusing section A combustion exhaust gas supply pipe provided in the combustion exhaust gas introduction part, a combustion exhaust gas exhaust pipe provided obliquely upward with respect to the tower main body at a lower portion of the tower main body, and a water spray nozzle provided in the tower main body In the temperature reduction tower equipped with
The flue gas supply pipe is obliquely upward and connected to the side surface of the inverted truncated conical rectifier of the flue gas introduction part , and the flue gas exhaust pipe has a tip opening on the axis of the tower body. A temperature-decreasing tower, wherein the tower body is provided so as to protrude from the tower body .
JP2006302044A 2006-11-07 2006-11-07 Temperature reduction tower Active JP5078320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302044A JP5078320B2 (en) 2006-11-07 2006-11-07 Temperature reduction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302044A JP5078320B2 (en) 2006-11-07 2006-11-07 Temperature reduction tower

Publications (2)

Publication Number Publication Date
JP2008114189A JP2008114189A (en) 2008-05-22
JP5078320B2 true JP5078320B2 (en) 2012-11-21

Family

ID=39500605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302044A Active JP5078320B2 (en) 2006-11-07 2006-11-07 Temperature reduction tower

Country Status (1)

Country Link
JP (1) JP5078320B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5829789B2 (en) * 2009-07-15 2015-12-09 大川原化工機株式会社 Rectifier of cooling tower for high temperature gas cooling
JP5943820B2 (en) 2012-11-30 2016-07-05 三菱重工業株式会社 Spray drying apparatus and exhaust gas treatment system for dehydrated filtrate
JP2019122934A (en) * 2018-01-18 2019-07-25 千代田化工建設株式会社 Exhaust gas treatment method and exhaust gas treatment equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605269Y2 (en) * 1982-03-24 1985-02-18 石川島播磨重工業株式会社 Fully evaporative gas cooling tower
JP3537292B2 (en) * 1997-07-14 2004-06-14 株式会社クボタ Exhaust gas cooling tower
JP4737841B2 (en) * 2001-01-30 2011-08-03 株式会社Ihi環境エンジニアリング Gas cooling tower
JP4406210B2 (en) * 2003-03-06 2010-01-27 メタウォーター株式会社 Exhaust gas cooling tower
JP2005226876A (en) * 2004-02-10 2005-08-25 Babcock Hitachi Kk Exhaust gas heat decreasing tower
JP4721723B2 (en) * 2005-02-23 2011-07-13 株式会社タクマ Temperature reduction tower for exhaust gas treatment
JP4427474B2 (en) * 2005-03-28 2010-03-10 株式会社神鋼環境ソリューション Temperature reduction tower

Also Published As

Publication number Publication date
JP2008114189A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
KR102282782B1 (en) exhaust gas treatment device
RU2158391C2 (en) Waste gas cleaner
RU2536140C2 (en) Gasifier (versions)
JP5078320B2 (en) Temperature reduction tower
KR20090019377A (en) The air distribution nozzle for fluidizing of fluidized bed boiler and its assembling method
JP6659471B2 (en) Exhaust gas treatment equipment
CN105910115B (en) A kind of incinerator for waste liquid
US10920981B2 (en) Burner head for exhaust gas processing apparatus, manufacturing method of the same, combustion chamber for exhaust gas processing apparatus, and manufacturing method and maintenance method of the same
JP4427474B2 (en) Temperature reduction tower
JP4524270B2 (en) Exhaust gas cooling facility and control method thereof
CN216079868U (en) Quench tower and solid useless gasification melting system
RU2686895C2 (en) System of combustion chamber and device for selective non-catalytic reduction and nozzle
CN214891297U (en) Boiler tail gas waste heat recovery device
JP3611307B2 (en) Exhaust gas cooling system for melting furnace
JP2019124420A (en) chimney
JP5087509B2 (en) Temperature reduction tower
KR102082112B1 (en) Apparatus for disposing an exhaust gas in a converter
KR101019635B1 (en) Scrubber having detachable burning wall
JP4679612B2 (en) Combustion gas discharge chimney
CN208260532U (en) A kind of gas cleaning reactor and flue gas purification system
JP2002219323A (en) Gas temperature lowering column
RU58664U1 (en) INSTALLATION FOR THERMAL WASTE DISPOSAL OF GAS-WASTE (OPTIONS)
KR800000825B1 (en) Smoke clarifier
SU964345A1 (en) Burner
RU2530132C1 (en) Method of cooling, humidification and purification of blast furnace gas and device for its implementation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250