JP4721723B2 - Temperature reduction tower for exhaust gas treatment - Google Patents

Temperature reduction tower for exhaust gas treatment Download PDF

Info

Publication number
JP4721723B2
JP4721723B2 JP2005046738A JP2005046738A JP4721723B2 JP 4721723 B2 JP4721723 B2 JP 4721723B2 JP 2005046738 A JP2005046738 A JP 2005046738A JP 2005046738 A JP2005046738 A JP 2005046738A JP 4721723 B2 JP4721723 B2 JP 4721723B2
Authority
JP
Japan
Prior art keywords
exhaust gas
tower
receiving chamber
temperature
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005046738A
Other languages
Japanese (ja)
Other versions
JP2006231145A (en
Inventor
晋二 東
典生 前田
和夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2005046738A priority Critical patent/JP4721723B2/en
Publication of JP2006231145A publication Critical patent/JP2006231145A/en
Application granted granted Critical
Publication of JP4721723B2 publication Critical patent/JP4721723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、都市ごみ焼却炉や溶融炉などの排ガスを水噴霧によって減温処理する排ガス処理用減温塔に関するものである。   The present invention relates to a temperature reduction tower for exhaust gas treatment for reducing the temperature of exhaust gas from municipal waste incinerators and melting furnaces by water spray.

従来、都市ごみ焼却炉や溶融炉などで発生する排ガスは、円筒形状の塔体内部を頂部から塔下部に移動させてこの間に冷却水を噴霧して熱交換させ、ガスを冷却する排ガス減温塔で処理されて、次の工程に送られるようにされている。   Conventionally, exhaust gas generated in municipal waste incinerators, melting furnaces, etc. is exhaust gas temperature reduced by moving the inside of the cylindrical tower from the top to the bottom of the tower and spraying cooling water during this time to exchange heat and cooling the gas. It is processed in the tower and sent to the next step.

この排ガス処理用の減温塔では、都市ごみ焼却炉や溶融炉などから送り込まれる排ガス中に同伴するダストが塔内壁やダクトに付着することによる障害を回避して有効に減温処理する必要がある。しかしながら、減温塔に排ガスを導入して塔内を流下する際、排ガスを導入ダクトによって減温塔の頂部に導く途中でガスの流れが方向変換することにより偏流が生じて冷却水との接触効率が悪いことや、塔内を流下する際に塔内壁との接触で同伴するダストが壁面に付着して障害を発生し易いという問題がある。そのために、塔内での排ガスの流れを整流させる必要がある。   In this temperature reduction tower for exhaust gas treatment, it is necessary to effectively reduce the temperature by avoiding obstacles caused by dust accompanying the exhaust gas sent from municipal waste incinerators and melting furnaces adhering to the tower inner walls and ducts. is there. However, when the exhaust gas is introduced into the temperature-decreasing tower and flows down in the tower, the gas flow changes direction while the exhaust gas is guided to the top of the temperature-decreasing tower by the introduction duct, resulting in drift and contact with the cooling water. There are problems that the efficiency is low and that dust accompanying the contact with the inner wall of the tower adheres to the wall surface when it flows down in the tower and easily causes a failure. Therefore, it is necessary to rectify the flow of exhaust gas in the tower.

このようなことから、その解決手段として減温塔への排ガス導入部において整流するために塔頂部に排ガス導入口を設け、その導入口に対して排ガス導入ダクトの一部を彎曲構造にすることで整流効果を得ようとするものが特許文献1によって知られている。また、塔頂部の排ガス導入口に、内部に複雑な仕切り構造を設けてなるガス導入構造部を取付けて、このガス導入構造部を介して排ガス導入ダクトを接続する構成のものが特許文献2によって知られている。   For this reason, as a means for solving this problem, an exhaust gas inlet is provided at the top of the tower for rectification at the exhaust gas inlet to the temperature reducing tower, and a part of the exhaust gas inlet duct is curved with respect to the inlet. Patent Document 1 discloses an attempt to obtain a rectifying effect. Patent Document 2 discloses a configuration in which a gas introduction structure portion having a complicated partition structure is attached to an exhaust gas introduction port at the top of the tower, and an exhaust gas introduction duct is connected via the gas introduction structure portion. Are known.

このほかに、本発明者らは、図6に示されるように、減温塔100の塔体101の頂部に排ガス導入ダクト103と連通する導入筒部102を直立させ、この導入筒部102の下端から裾広がりのテーパ筒部104を介して減温塔100の塔体101頂端に接続し、前記テーパ筒部104の内部にテーパ筒型の整流板105(整流筒)を配置する構成とすることで導入される排ガスを減温塔100内に垂直方向に流入させる方式を採用することにより、導入する排ガスを塔体101内で整流状態にて流下させ得ることを見出した。図中符号107は冷却水の噴霧ノズルである。   In addition, as shown in FIG. 6, the present inventors erect an introduction cylinder portion 102 communicating with the exhaust gas introduction duct 103 at the top of the tower body 101 of the temperature reducing tower 100, and It connects with the tower body 101 top end of the temperature-reduction tower 100 through the taper cylinder part 104 which spreads from the lower end to the bottom, and it is set as the structure which arrange | positions the taper cylinder type rectification | straightening plate 105 (rectifier cylinder) inside the said taper cylinder part 104. It was found that the exhaust gas to be introduced can be caused to flow down in a rectified state in the tower body 101 by adopting a method in which the exhaust gas introduced in this way flows vertically into the temperature reducing tower 100. Reference numeral 107 in the figure denotes a cooling water spray nozzle.

特許第3537292号公報Japanese Patent No. 3537292 特開2004−113955号公報JP 2004-113955 A

前記特許文献1によって開示されている先行技術のものでは、理論的には有効であることが認められる。しかしながら、この種の方式では導入ダクトに接続される整流部として曲率中心180°以上に彎曲させた大掛かりな導通路を形成して減温塔の頂部に接続しなければならず、処理する排ガス量が多くなると全体的に大きな構造となり設置設備が高価なものになる。また、その構成上設置高さが高くなるので、この減温塔を据え付けるための建屋は背の高いものが必要になり、これに伴う建設費が嵩むという問題点がある。   It is recognized that the prior art disclosed in Patent Document 1 is theoretically effective. However, in this type of system, it is necessary to form a large conduction path bent at a center of curvature of 180 ° or more as a rectifying unit connected to the introduction duct and connect it to the top of the temperature reducing tower. As the number increases, the overall structure becomes large and the installation equipment becomes expensive. In addition, since the installation height is high due to the configuration, a building for installing the temperature reducing tower is required to be tall, and there is a problem that the construction cost increases accordingly.

また、前記特許文献2に開示される装置では、ガス処理塔(減温塔)の頂部に設置されるガス導入構造はその内部で縦横に間仕切りを配した構造的で複雑なものになっているので、導入される排ガスにダストが同伴した場合、そのダストが仕切り部分によって生じる棚状の部分に堆積付着しやすい。また、ダストが堆積した場合、その除去操作に多くの労力を要し不都合であるなどの問題がある。しかも、構造的にこのガス導入構造ではガス処理塔の排ガス導入口に対するガスの出口が片寄る構造になるので、せっかくガス導入構造部で偏流を解消しても、ガス処理塔内では再び偏流が発生し易い構造になるという問題点がある。   Further, in the apparatus disclosed in Patent Document 2, the gas introduction structure installed at the top of the gas processing tower (temperature reduction tower) has a structural and complicated structure in which partitions are arranged vertically and horizontally. Therefore, when dust is accompanied with the introduced exhaust gas, the dust tends to deposit on the shelf-like portion generated by the partition portion. In addition, when dust accumulates, there is a problem in that the removal operation requires a lot of labor and is inconvenient. In addition, this gas introduction structure has a structure in which the gas outlet with respect to the exhaust gas inlet of the gas treatment tower is offset, so even if the drift is eliminated in the gas introduction structure, the drift occurs again in the gas treatment tower. There is a problem that the structure becomes easy to do.

一方、前記図6によって示される方式の整流装置では、減温塔100の塔体101内への導入排ガスをその塔上頂部106に向かって垂直方向に送り込むことで整流できるが、そのためには導入筒部102を長くする必要がある。そのために、この方式を採用すると減温塔全体としての高さが高くなるので、減温塔を設置するための建屋も高くしなければならず、その経済性において問題点がある。   On the other hand, in the rectifier of the type shown in FIG. 6, the exhaust gas introduced into the tower body 101 of the temperature-decreasing tower 100 can be rectified by sending it vertically toward the top 106 of the tower. It is necessary to lengthen the cylinder part 102. Therefore, if this method is adopted, the overall height of the temperature-decreasing tower is increased, so that the building for installing the temperature-decreasing tower must also be increased, and there is a problem in its economic efficiency.

本発明は、これらの問題点を解消するためになされたもので、減温塔への排ガス導入部の構成を簡単な整流構造で整流機能を高め、冷却水噴霧による減温処理を有効にする排ガス処理用減温塔を提供することを目的とするものである。   The present invention has been made to solve these problems, and the structure of the exhaust gas introduction section to the temperature reduction tower is improved by a simple rectification structure to enhance the rectification function, and the temperature reduction treatment by cooling water spray is made effective. An object of the present invention is to provide a temperature reducing tower for exhaust gas treatment.

前記目的を達成するために、本発明の排ガス処理用減温塔は、
塔体の頂部から被処理排ガスを導入して塔内流下中に冷却水の噴霧によって前記排ガスを冷却処理して塔下部から排出するようにした排ガス処理用減温塔において、
塔体頂部の排ガス流入口に直結して設けられる筒形の排ガス受入れチャンバー内部には、同心円上に、周囲に環状空間を形成する円筒形の上半部と、下端縁が排ガス受入れチャンバーの内面との隙間を他の部分より少なくなるように形成されたテーパ径とされる下半部と、でなる整流筒が配置され、この整流筒の中心軸線に直交するようにして排ガス導入ダクトが前記整流筒の上半部に対向するように排ガス受入れチャンバーに接続されることを特徴とするものである(第1発明)。
In order to achieve the above-mentioned object, the exhaust gas treatment temperature reducing tower of the present invention comprises:
In the dehumidifying treatment temperature reducing tower, the exhaust gas to be treated is introduced from the top of the tower body, the exhaust gas is cooled by spraying cooling water during the flow in the tower, and discharged from the lower part of the tower.
Inside the cylindrical exhaust gas receiving chamber provided directly connected to the exhaust gas inlet at the top of the tower body, a cylindrical upper half part that forms a circular space around the concentric circle, and a lower edge is the inner surface of the exhaust gas receiving chamber And a lower half portion having a tapered diameter formed so as to have a smaller gap than the other portions, and the exhaust gas introducing duct is arranged so as to be orthogonal to the central axis of the rectifying tube. The exhaust gas receiving chamber is connected to face the upper half of the flow straightening cylinder (first invention).

前記発明において、排ガス受入れチャンバーは、減温塔本体の直胴部よりも小径で、この排ガス受入れチャンバーが取付く排ガス流入口から前記減温塔本体の直胴部までを下拡がりのテーパ胴部により接続されているのがよい(第2発明)。   In the above invention, the exhaust gas receiving chamber has a smaller diameter than the straight body portion of the temperature-decreasing tower body, and a tapered body portion that extends downward from the exhaust gas inlet to which the exhaust gas receiving chamber is attached to the straight body portion of the temperature-decreasing tower body. (2nd invention).

前記発明において、前記排ガス導入ダクトは、排ガス受入れチャンバーに対して、その中心を通る軸線に対し50°以下の角度で接続されるのがよい(第3発明)。また、前記排ガス導入ダクトは、そのガス出口がちょうど前記整流筒の上半部外面に対向する位置となるように排ガス受入れチャンバーに対して接続されるのがよい(第4発明)。   In the present invention, the exhaust gas introduction duct is preferably connected to the exhaust gas receiving chamber at an angle of 50 ° or less with respect to an axis passing through the center thereof (third invention). Further, the exhaust gas introduction duct is preferably connected to the exhaust gas receiving chamber so that the gas outlet thereof is located at a position facing the outer surface of the upper half of the flow straightening cylinder (fourth invention).

前記発明において、排ガス受入れチャンバーと前記整流筒の上端部とは所要の間隔はなれて配置され、前記排ガス導入ダクトのガス出口から流入するガスがその整流筒の内側に分散流入できるようにされているのがよい(第5発明)。   In the present invention, the exhaust gas receiving chamber and the upper end portion of the rectifying cylinder are arranged at a predetermined interval so that the gas flowing in from the gas outlet of the exhaust gas introducing duct can be dispersedly introduced into the rectifying cylinder. (5th invention).

本発明においては、減温塔の塔本体内に導入される排ガスを排ガス流入口の手前において流動抵抗を与えて適度な圧力損失を生じさせるに際し、排ガス受入れチャンバー内で整流筒を同心円に配するとともに、その外周下端部で環状の狭隘隙間を形成して塔内へのガス流れを中央部より周囲が速い状態にして全体の流れを塔本体の中心に集まるように流動させてから、塔体内に分散させている。その結果、塔頂部に設けた排ガス流入口から塔内中心部より分散して流入させ、整流状態にすることができ、構造的に簡単にして有効性を高めることができる。   In the present invention, when the exhaust gas introduced into the tower body of the temperature reducing tower is given flow resistance before the exhaust gas inlet to cause an appropriate pressure loss, the flow straightening tubes are concentrically arranged in the exhaust gas receiving chamber. In addition, an annular narrow gap is formed at the lower end of the outer periphery so that the gas flow into the tower is faster in the periphery than the center, and the entire flow is made to flow in the center of the tower body, Are dispersed. As a result, the exhaust gas inlet provided at the top of the tower can be dispersed and introduced from the central part of the tower to be in a rectified state, and the structure can be simplified and the effectiveness can be enhanced.

本発明によれば、排ガスの導入整流構造を簡単にしてコンパクトに纏めることができるので、当該整流構造部(排ガス受入れチャンバーと整流筒)でのダストの堆積の発生を防ぐことができ、長期運転を可能にする。また、全体構造を嵩低くでき、整流状態を良好にできるので、水噴霧位置が従来の減温塔に較べて排ガス流入口に近づけて設けられることから、減温塔の高さを低くすることが可能になる。そのために、装置自体はもちろん据付建屋も低くできて設置費用を低減できるという効果を奏する。   According to the present invention, since the exhaust gas introduction rectification structure can be easily and compactly integrated, dust accumulation in the rectification structure part (exhaust gas receiving chamber and rectification cylinder) can be prevented, and long-term operation can be achieved. Enable. In addition, the overall structure can be reduced in volume and the rectification state can be improved, so that the water spray position is provided closer to the exhaust gas inlet than in the conventional temperature reduction tower, so that the height of the temperature reduction tower is reduced. Is possible. Therefore, not only the apparatus itself but also the installation building can be lowered, and the installation cost can be reduced.

また、排ガス受入れチャンバーのガス入口への排ガスの導入ダクトをより鋭角に傾斜させて接続することで、ダストの堆積を防止でき整流構造部の高さ構造を低くするのに有効である。また、整流構造にテーパ筒部を備えた整流筒を内部に設けて、複合筒状にすることで、減温塔の中心部に整流された排ガスが流動下降するようにして、偏流の発生を防止し、かつ流動ガスの分散を図っているので、塔内壁に対するダストなどの付着防止を有効にすることができるのである。   Further, by connecting the exhaust gas introduction duct to the gas inlet of the exhaust gas receiving chamber at a more acute angle, dust accumulation can be prevented and the height structure of the rectifying structure is reduced. In addition, by providing a flow straightening tube with a tapered tube portion in the flow straightening structure and making it a composite tube shape, the rectified exhaust gas flows down in the center of the temperature reducing tower, and the occurrence of drift is prevented. Therefore, it is possible to effectively prevent dust and the like from adhering to the inner wall of the tower.

次に、本発明による排ガス処理用減温塔の具体的な実施の形態について、図面を参照しつつ説明する。   Next, a specific embodiment of a temperature reducing tower for exhaust gas treatment according to the present invention will be described with reference to the drawings.

図1には本実施形態の排ガス処理用減温塔の全体概要図が、図2には排ガス処理用減温塔の要部を示す模式斜視図が、図3には要部の縦断面図(a)と平面図(b)が、それぞれ示されている。   FIG. 1 is an overall schematic diagram of an exhaust gas treatment desuperheating tower according to the present embodiment, FIG. 2 is a schematic perspective view showing the main part of the exhaust gas desuperheating tower, and FIG. 3 is a longitudinal sectional view of the main part. (A) and plan view (b) are shown respectively.

本実施形態の排ガス処理用減温塔1は、概ね円筒形の塔本体2の上頂部に排ガス流入口3が設けられ、下部には処理済みガス出口4が設けられている。前記排ガス流入口3の上部には内部に整流筒6を配置される排ガス受入れチャンバー5が直結されており、その排ガス受入れチャンバー5に例えば都市ごみ焼却炉で発生する排ガスの導入ダクト10が接続されるように構成されている。なお、前記塔本体2の上頂部に設けられる排ガス流入口3とその塔本体2の直胴部との間は下拡がりのテーパ胴部2′によって繋がれている。   In the temperature reduction tower 1 for exhaust gas treatment of the present embodiment, an exhaust gas inlet 3 is provided at the top of the generally cylindrical tower body 2 and a treated gas outlet 4 is provided at the bottom. An exhaust gas receiving chamber 5 in which a flow straightening cylinder 6 is disposed is directly connected to the upper part of the exhaust gas inlet 3, and an exhaust gas introduction duct 10 generated in, for example, a municipal waste incinerator is connected to the exhaust gas receiving chamber 5. It is comprised so that. The exhaust gas inlet 3 provided at the upper top of the tower body 2 and the straight body portion of the tower body 2 are connected by a taper body portion 2 'that extends downward.

前記排ガス受入れチャンバー5は、排ガス流入口3の口径に合わせた筒形(この実施形態では塔本体2に対応させて円筒形にされている)で、頂部を天板5aにて覆われている。この排ガス受入れチャンバー5の内部には、同心円で整流筒6が配置されている。なお、整流筒6は排ガス受入れチャンバー5の内壁面に基端を取付けられた図示されない複数の支持部材によって同軸心上に位置するように設けられる。   The exhaust gas receiving chamber 5 has a cylindrical shape corresponding to the diameter of the exhaust gas inlet 3 (in this embodiment, a cylindrical shape corresponding to the tower body 2), and the top is covered with a top plate 5a. . Inside the exhaust gas receiving chamber 5, a rectifying cylinder 6 is disposed concentrically. The rectifying cylinder 6 is provided so as to be positioned coaxially by a plurality of support members (not shown) having base ends attached to the inner wall surface of the exhaust gas receiving chamber 5.

前記整流筒6は、上半部6aを円筒形に形成され、下半部6bを下拡がりのテーパ筒形に形成されて一体構造にされている。したがって、この整流筒6の上半部6a外周面と排ガス受入れチャンバー5の内周面との間には環状空間部20が形成される。また、前記下半部6bの下端周縁6cと排ガス受入れチャンバー5の内壁面との間には排ガスとともに流入するダストが堆積しないで落下し得る環状間隙30が形成される。なお、その下半部6bのテーパ面はダストに対する安息角(例えば軸心に対して20°程度の傾斜角)が確保できる形状とされている。   The flow straightening cylinder 6 has an upper half 6a formed in a cylindrical shape, and a lower half 6b formed in a taper cylinder extending downward to form an integral structure. Therefore, an annular space 20 is formed between the outer peripheral surface of the upper half 6 a of the flow straightening cylinder 6 and the inner peripheral surface of the exhaust gas receiving chamber 5. Further, an annular gap 30 is formed between the lower edge 6c of the lower half 6b and the inner wall surface of the exhaust gas receiving chamber 5 so that dust flowing in along with the exhaust gas can fall without being deposited. In addition, the taper surface of the lower half part 6b is made into the shape which can ensure the angle of repose with respect to dust (for example, inclination angle of about 20 degrees with respect to an axial center).

また、前記整流筒6の上半部6aの上縁6a′と排ガス受入れチャンバー5の天板部5aとは、排ガスの導入ダクト10から流入する排ガスが整流筒6に接して分散されて、その整流筒6の内側に流入できる状態を作る間隙40が得られるように配置される。   Further, the upper edge 6a 'of the upper half 6a of the flow straightening cylinder 6 and the top plate 5a of the exhaust gas receiving chamber 5 are arranged so that the exhaust gas flowing from the exhaust gas introduction duct 10 is dispersed in contact with the flow straightening cylinder 6, It arrange | positions so that the gap | interval 40 which makes the state which can flow in into the inside of the rectification | straightening cylinder 6 will be obtained.

一方、この減温塔1に排ガスを導入するガス入口8は、前記排ガス受入れチャンバー5内の整流筒6の上半部6a外周面に対向するように設けられる。このガス入口8に接続される排ガスの導入ダクト10は、排ガス受入れチャンバー5の軸心線Cに対して50°以下の角度で接続される。排ガスの導入ダクト10は、こうすることにより、同伴するダストが導入ダクト10内で付着堆積することなくガスとともに送り込まれる。したがって、ガス入口8へ排ガスの導入ダクト10の取付傾斜角度は、設置条件において可能であれば、より鋭角にすることが好ましい。なお、前記ガス入口8に対する排ガスの導入ダクト10の取付角度は50°を越えて水平状態に近づくとダストの付着堆積現象が発生し易くなり好ましくない。   On the other hand, the gas inlet 8 for introducing the exhaust gas into the temperature reducing tower 1 is provided so as to face the outer peripheral surface of the upper half 6a of the flow straightening cylinder 6 in the exhaust gas receiving chamber 5. The exhaust gas introduction duct 10 connected to the gas inlet 8 is connected to the axis C of the exhaust gas receiving chamber 5 at an angle of 50 ° or less. In this way, the exhaust gas introduction duct 10 is sent together with the gas without the accompanying dust being deposited and deposited in the introduction duct 10. Therefore, it is preferable to make the attachment inclination angle of the exhaust gas introduction duct 10 to the gas inlet 8 more acute if possible in the installation conditions. In addition, if the mounting angle of the exhaust gas introduction duct 10 with respect to the gas inlet 8 exceeds 50 ° and approaches a horizontal state, it is not preferable because a dust deposition phenomenon tends to occur.

前述のようにされる排ガス受入れチャンバー5が直結される塔本体2の内部では、前記整流筒6とその排ガス受入れチャンバー5とによって整流された排ガスが、排ガス流入口3から塔本体2内部に流下する上部位置に冷却水の噴霧ノズル15が配置されている。この噴霧ノズル15には、塔本体2の外部から冷却水供給管16によって冷却水が供給され、流下する排ガスに冷却水を噴霧して冷却するようにされている。   Inside the tower body 2 to which the exhaust gas receiving chamber 5 directly connected as described above is connected, the exhaust gas rectified by the rectifying cylinder 6 and the exhaust gas receiving chamber 5 flows down from the exhaust gas inlet 3 into the tower body 2. The cooling water spray nozzle 15 is arranged at the upper position. Cooling water is supplied to the spray nozzle 15 from the outside of the tower body 2 through a cooling water supply pipe 16, and the cooling water is sprayed onto the flowing exhaust gas to cool it.

このように構成される本実施形態の排ガス処理用減温塔1においては、導入される排ガスが、次のようにして整流され減温される。   In the exhaust gas treatment temperature reducing tower 1 of the present embodiment configured as described above, the introduced exhaust gas is rectified and reduced in temperature as follows.

排ガスは導入ダクト10によって減温塔1の塔頂部に設けられた排ガス受入れチャンバー5のガス入口8から内部に送り込まれると、まずそのガス入口8から流出するとその前方に位置する整流筒6の上半部6a外周面に衝突してその周面に沿って少なくとも二方に分かれて流動する。それに加えて上下方向に分散するガス流れは、上昇する排ガスが排ガス受入れチャンバー5の天板5a部分によって流動方向を変えられて整流筒6の内側に流入する。また、整流筒6の外周面に沿って流動して下降する排ガスの流れは、その整流筒6の下半部6bのテーパ面に沿って下部の間隙30に向かって流動する。   When exhaust gas is sent into the interior from the gas inlet 8 of the exhaust gas receiving chamber 5 provided at the top of the temperature reducing tower 1 by the introduction duct 10, when the exhaust gas flows out from the gas inlet 8 first, It collides with the outer peripheral surface of the half 6a and flows in at least two directions along the peripheral surface. In addition to this, in the gas flow dispersed in the vertical direction, the rising exhaust gas is changed in the flow direction by the top plate 5 a portion of the exhaust gas receiving chamber 5 and flows into the rectifying cylinder 6. Further, the flow of the exhaust gas flowing and descending along the outer peripheral surface of the rectifying cylinder 6 flows toward the lower gap 30 along the tapered surface of the lower half 6 b of the rectifying cylinder 6.

こうして流入する排ガスは、ガス入口8から内部に吐出した途端に概ね整流筒6の外周面に接触して流れの向きを変えられ、次いでその整流筒6と排ガス受入れチャンバー5の内面との間に形成される環状空間部20を移動することにより流動抵抗を付加されて減速される。そして、環状空間部20からテーパ面に沿って下降する流れは、整流筒6の下半部6bにおける下端縁6cに沿った環状間隙30部分でのオリフィス効果で大きな抵抗が加えられることから、大部分のガス流れは整流筒6の上方に形成される空間部40側に流動する。この空間部40に達する排ガスは、当該部分で天板5aの内面に接触して向きを変え、整流筒6の内側空間部に流動させられる。この整流筒6の内側空間部では、整流筒6の上縁6a′の周囲から一斉の内向きに方向変換してガスが流動するので、この入口部で抵抗が与えられ、そのまま減速されてガス流入口3に向かって流下することになる。   As soon as the exhaust gas flowing in this way is discharged into the inside from the gas inlet 8, the flow direction is changed by contacting the outer peripheral surface of the rectifying cylinder 6, and then between the rectifying cylinder 6 and the inner surface of the exhaust gas receiving chamber 5. By moving the annular space 20 formed in the flow, a flow resistance is added and the speed is reduced. The flow descending from the annular space 20 along the taper surface is greatly affected by the orifice effect at the annular gap 30 portion along the lower end edge 6c of the lower half 6b of the rectifying cylinder 6. The partial gas flow flows to the space 40 side formed above the rectifying cylinder 6. The exhaust gas reaching the space 40 changes its direction by contacting the inner surface of the top plate 5a at that portion, and is caused to flow into the inner space of the rectifying cylinder 6. In the inner space portion of the rectifying cylinder 6, the gas flows in the same direction inward from the periphery of the upper edge 6a 'of the rectifying cylinder 6, so that a resistance is given at this inlet, and the gas is decelerated as it is. It will flow down toward the inflow port 3.

一方、整流筒6の外周に沿って下向きに移動するガス流は、下方の環状間隙30部分で環状空間部20とガス流入口3側との圧力差により圧力エネルギーが速度エネルギーに変換されてガス流入口3から塔本体2内に噴出される。したがって、整流筒6の内部から流下する大部分のガス流は、その周囲を環状間隙30部分から噴出される流速の速いガス流れによって取り囲まれた状態となって流下する。   On the other hand, the gas flow moving downward along the outer periphery of the rectifying cylinder 6 is converted into gas energy by converting pressure energy into velocity energy due to a pressure difference between the annular space 20 and the gas inlet 3 side at the lower annular gap 30 portion. It is ejected from the inlet 3 into the tower body 2. Therefore, most of the gas flow flowing down from the inside of the rectifying cylinder 6 flows down in a state surrounded by a gas flow having a high flow velocity ejected from the annular gap 30 portion.

その結果、環状間隙30部分と整流筒6の内部とを通じて塔本体2内に流入する排ガスは、いずれも塔本体2の軸心を取り巻く部分、言い換えると塔本体2の内部中心を取り巻く周囲に送り込まれ、偏流を起こすことなく塔本体2内に流入し、テーパ胴部2′を通じて排ガス受入れチャンバー5よりも広い面積の直胴部分に移行するので、急速に速度を落してそのまま分散整流されて塔本体内を流下することになる。   As a result, the exhaust gas flowing into the tower body 2 through the annular gap 30 and the inside of the rectifying cylinder 6 is sent to the part surrounding the axial center of the tower body 2, in other words, the periphery surrounding the inner center of the tower body 2. As a result, the gas flows into the tower body 2 without causing a drift, and moves to the straight body portion having a larger area than the exhaust gas receiving chamber 5 through the tapered body portion 2 '. It will flow down the body.

こうして整流状態で塔本体2内に流入した排ガスは、直胴部の上方位置に設けられた噴霧ノズル15から噴出される噴霧冷却水と接触して熱交換され、冷却されて塔本体2下部のガス出口4から導管によって次の処理工程に送り出されるのである。そして、塔内を排ガスが整流されて流動することにより、冷却水の噴霧水滴は適当時間塔内に滞留して排ガスとの熱交換を良くし、完全蒸発することになる。したがって、塔内壁に付着することがなく、壁面腐食などが発生するのを回避することができるのである。   The exhaust gas flowing into the tower main body 2 in the rectified state in this way is contacted with the spray cooling water ejected from the spray nozzle 15 provided at the upper position of the straight body portion to be heat-exchanged and cooled to cool the lower part of the tower main body 2. The gas is discharged from the gas outlet 4 to the next processing step through a conduit. Then, the exhaust gas is rectified and flows in the tower, so that the spray water droplets of the cooling water stay in the tower for an appropriate time, improve heat exchange with the exhaust gas, and completely evaporate. Therefore, it does not adhere to the inner wall of the tower, and it is possible to avoid the occurrence of wall corrosion.

塔本体2内に流入する排ガスは、前述のようにして整流状態で流入することになるので、当然偏流が生じないから、同伴するダストも塔内壁に付着することが解消される。また、排ガスは整流されて塔内を流動することになるので、噴霧冷却水によって凝集された同伴ダストは、そのまま塔内下部に落下して収集を容易にすることができ、壁面に付着して堆積するのを回避することができる。   Since the exhaust gas flowing into the tower body 2 flows in a rectified state as described above, naturally no drift occurs, so that accompanying dust is also prevented from adhering to the inner wall of the tower. Also, since the exhaust gas is rectified and flows in the tower, the entrained dust that is agglomerated by the spray cooling water can fall to the lower part of the tower as it is and can be easily collected, and is attached to the wall surface. It is possible to avoid deposition.

ちなみに、本実施形態の排ガス処理用減温塔1について、その被処理排ガスの整流化を検証するために、前述の排ガス受入れチャンバー5と整流筒6を備えたものにより、排ガス受入れチャンバー5から塔本体2内でのガス流れの速度分布を確認した。これを、図4に排ガス処理用減温塔におけるガス流れの速度分布を示す正面図(a)とその右側面図(b)によって示している。   Incidentally, in order to verify the rectification of the exhaust gas to be treated for the exhaust gas treatment temperature-decreasing tower 1 of the present embodiment, the tower including the exhaust gas receiving chamber 5 and the rectifying cylinder 6 described above is used. The velocity distribution of the gas flow in the main body 2 was confirmed. This is shown in FIG. 4 by a front view (a) and a right side view (b) showing the velocity distribution of the gas flow in the temperature reduction tower for exhaust gas treatment.

この速度分布図によれば、排ガスは排ガス受入れチャンバー5を経て排ガス流入口3から塔本体2内に流入すると、速やかに整流状態になり、塔内を流下していることが確認できる。なお、塔本体2内で上下方向に多段にわたり縞状に現れているのは、それぞれ各位置での速度分布を示している。   According to this velocity distribution chart, when the exhaust gas flows into the tower body 2 from the exhaust gas inlet 3 through the exhaust gas receiving chamber 5, it can be confirmed that the exhaust gas quickly enters a rectified state and flows down in the tower. In addition, what appears in stripes in multiple stages in the vertical direction in the tower body 2 indicates the velocity distribution at each position.

また、図5に前記減温塔における冷却水の噴霧による水粒子の軌跡を示す正面図(a)と側面図(b)によって、前記実施形態の排ガス処理用減温塔1内での整流状態で流動する排ガスに対する噴霧冷却水の水粒子(図中塔体の軸心線相当部分に現れている実線が水粒子の軌跡である)が、確実に熱交換されて蒸発し、冷却効果を高めることができることを確認できる。つまり、水滴(水粒子)は塔体の中間位置に達するまでに蒸発していることが判り、冷却効果が高いことが示されている。   Moreover, the rectification | straightening state in the temperature-reduction tower 1 for exhaust gas treatment of the said embodiment is shown by the front view (a) and side view (b) which show the locus | trajectory of the water particle by spraying of the cooling water in the said temperature-reduction tower in FIG. The water particles of the spray cooling water against the exhaust gas flowing in (the solid line appearing in the portion corresponding to the axial center line of the tower body in the figure is the trajectory of the water particles) are surely heat-exchanged and evaporated to enhance the cooling effect I can confirm that I can. That is, it can be seen that the water droplets (water particles) have evaporated before reaching the intermediate position of the tower body, which indicates that the cooling effect is high.

上述の排ガス処理用減温塔は、円筒形のものについて記載したが、本発明の趣旨に則すれば、円筒形に限定されるものではなく、必要に応じて多角形とすることも可能である。   Although the above-described temperature reduction tower for exhaust gas treatment has been described with respect to a cylindrical shape, it is not limited to a cylindrical shape in accordance with the gist of the present invention, and may be a polygon as necessary. is there.

本実施形態の排ガス処理用減温塔の全体概要図Overall schematic diagram of the temperature reduction tower for exhaust gas treatment of this embodiment 排ガス処理用減温塔の要部を示す模式斜視図Schematic perspective view showing the main part of a temperature reducing tower for exhaust gas treatment 要部の縦断面図(a)と平面図(b)Longitudinal section (a) and plan view (b) 本実施形態の排ガス処理用減温塔におけるガス流れの速度分布を示す正面図(a)とその右側面図(b)The front view (a) which shows the velocity distribution of the gas flow in the temperature-reduction tower for exhaust gas treatment of this embodiment, and the right view (b) 本実施形態の排ガス処理用減温塔における冷却水の噴霧による水粒子の軌跡を示す正面図(a)と側面図(b)The front view (a) and side view (b) which show the locus of the water particle by spraying of the cooling water in the temperature reducing tower for exhaust gas treatment of this embodiment 先に検討した排ガス処理用減温塔の整流装置の模式図Schematic diagram of the rectifier of the cooling tower for exhaust gas treatment, which was examined earlier

符号の説明Explanation of symbols

1 排ガス処理用減温塔
2 塔本体
3 排ガス流入口
5 排ガス受入れチャンバー
6 整流筒
6a 整流筒の上半部
6b 整流筒の下半部
8 ガス入口
10 排ガスの導入ダクト
15 冷却水の噴霧ノズル
20 排ガス受入れチャンバー内の環状空間部
30 排ガス受入れチャンバー内の環状間隙
40 整流筒上側の空間部
DESCRIPTION OF SYMBOLS 1 Temperature-reduction tower for exhaust gas treatment 2 Tower main body 3 Exhaust gas inlet 5 Exhaust gas receiving chamber 6 Rectification cylinder 6a Upper half part of a rectification cylinder 6b Lower half part of a rectification cylinder 8 Gas inlet 10 Exhaust gas introduction duct 15 Cooling water spray nozzle 20 Annular space 30 in the exhaust gas receiving chamber 30 Annular gap in the exhaust gas receiving chamber 40 A space above the rectifying cylinder

Claims (5)

塔体の頂部から被処理排ガスを導入して塔内流下中に冷却水の噴霧によって前記排ガスを冷却処理して塔下部から排出するようにした排ガス処理用減温塔において、
塔体頂部の排ガス流入口に直結して設けられる筒形の排ガス受入れチャンバー内部には、同心円上に、周囲に環状空間を形成する円筒形の上半部と、下端縁が排ガス受入れチャンバーの内面との隙間を他の部分より少なくなるように形成されたテーパ径とされる下半部と、でなる整流筒が配置され、この整流筒の中心軸線に直交するようにして排ガス導入ダクトが前記整流筒の上半部に対向するように排ガス受入れチャンバーに接続されることを特徴とする排ガス処理用減温塔。
In the dehumidifying treatment temperature reducing tower, the exhaust gas to be treated is introduced from the top of the tower body, the exhaust gas is cooled by spraying cooling water during the flow in the tower, and discharged from the lower part of the tower.
Inside the cylindrical exhaust gas receiving chamber provided directly connected to the exhaust gas inlet at the top of the tower body, a cylindrical upper half part that forms a circular space around the concentric circle, and a lower edge is the inner surface of the exhaust gas receiving chamber And a lower half portion having a tapered diameter formed so as to have a smaller gap than the other portions, and the exhaust gas introducing duct is arranged so as to be orthogonal to the central axis of the rectifying tube. A temperature reducing tower for exhaust gas treatment, which is connected to an exhaust gas receiving chamber so as to face the upper half of the flow straightening cylinder.
前記排ガス受入れチャンバーは、減温塔本体の直胴部よりも小径で、この排ガス受入れチャンバーが取付く排ガス流入口から前記減温塔本体の直胴部までを下拡がりのテーパ胴部により接続されている請求項1に記載の排ガス処理用減温塔。   The exhaust gas receiving chamber is smaller in diameter than the straight body portion of the temperature reducing tower body, and is connected by a taper body portion extending from the exhaust gas inlet to which the exhaust gas receiving chamber is attached to the straight body portion of the temperature reducing tower body. The temperature-decreasing tower for exhaust gas treatment according to claim 1. 前記排ガス導入ダクトは、排ガス受入れチャンバーに対して、その中心を通る軸線に対し50°以下の角度で接続される請求項1に記載の排ガス処理用減温塔。   The temperature reduction tower for exhaust gas treatment according to claim 1, wherein the exhaust gas introduction duct is connected to the exhaust gas receiving chamber at an angle of 50 ° or less with respect to an axis passing through the center thereof. 前記排ガス導入ダクトは、そのガス出口がちょうど前記整流筒の上半部外面に対向する位置となるように排ガス受入れチャンバーに対して接続される請求項1または3に記載の排ガス処理用減温塔。   4. The exhaust gas treatment temperature-decreasing tower according to claim 1, wherein the exhaust gas introduction duct is connected to the exhaust gas receiving chamber so that a gas outlet thereof is positioned just opposite to an outer surface of the upper half of the flow straightening cylinder. . 排ガス受入れチャンバーと前記整流筒の上端部とは、所要の間隔はなれて配置され、前記排ガス導入ダクトのガス出口から流入するガスがその整流筒の内側に分散流入できるようにされている請求項1に記載の排ガス処理用減温塔。   2. The exhaust gas receiving chamber and the upper end portion of the flow straightening cylinder are arranged at a predetermined interval so that gas flowing from the gas outlet of the exhaust gas introduction duct can flow inwardly into the flow straightening cylinder. 2. A temperature reducing tower for treating exhaust gas according to 1.
JP2005046738A 2005-02-23 2005-02-23 Temperature reduction tower for exhaust gas treatment Active JP4721723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046738A JP4721723B2 (en) 2005-02-23 2005-02-23 Temperature reduction tower for exhaust gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046738A JP4721723B2 (en) 2005-02-23 2005-02-23 Temperature reduction tower for exhaust gas treatment

Publications (2)

Publication Number Publication Date
JP2006231145A JP2006231145A (en) 2006-09-07
JP4721723B2 true JP4721723B2 (en) 2011-07-13

Family

ID=37039373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046738A Active JP4721723B2 (en) 2005-02-23 2005-02-23 Temperature reduction tower for exhaust gas treatment

Country Status (1)

Country Link
JP (1) JP4721723B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078320B2 (en) * 2006-11-07 2012-11-21 三井造船株式会社 Temperature reduction tower
JP5829789B2 (en) * 2009-07-15 2015-12-09 大川原化工機株式会社 Rectifier of cooling tower for high temperature gas cooling
CN106823759A (en) * 2017-02-28 2017-06-13 中国恩菲工程技术有限公司 Defluorinate chlorine device
JP6948065B2 (en) * 2018-01-18 2021-10-13 株式会社環健スーパーテクノ chimney

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143290A (en) * 1980-03-14 1981-11-07 Krupp Koppers Gmbh Coke dry quenching tower
JPS58151426U (en) * 1982-03-31 1983-10-11 日本酸素株式会社 adsorption tower
JP2001201038A (en) * 2000-01-20 2001-07-27 Chugai Ro Co Ltd Method of cooling exhaust gas and exhaust gas cooling tower
JP2004061024A (en) * 2002-07-30 2004-02-26 Tsukishima Kikai Co Ltd Gas treatment tower

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045690B2 (en) * 1982-03-04 1985-10-11 川崎製鉄株式会社 Manufacturing method of ultra-thin steel sheet for cans with small in-plane anisotropy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143290A (en) * 1980-03-14 1981-11-07 Krupp Koppers Gmbh Coke dry quenching tower
JPS58151426U (en) * 1982-03-31 1983-10-11 日本酸素株式会社 adsorption tower
JP2001201038A (en) * 2000-01-20 2001-07-27 Chugai Ro Co Ltd Method of cooling exhaust gas and exhaust gas cooling tower
JP2004061024A (en) * 2002-07-30 2004-02-26 Tsukishima Kikai Co Ltd Gas treatment tower

Also Published As

Publication number Publication date
JP2006231145A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4845568B2 (en) Wet flue gas desulfurization equipment
JP4721723B2 (en) Temperature reduction tower for exhaust gas treatment
US10072900B2 (en) Heat exchanger distributor with intersecting streams
WO2011126072A1 (en) Wet flue gas desulfurization device
TWI651122B (en) Electric mist eliminator for flue gas purification
JP4836702B2 (en) Air washer
CN105944551B (en) Double pH spray desulfurizing towers biphase rectification drainage sets
CN202983935U (en) Reversed spraying nozzle for wet-method smoke washing
CN103008138B (en) A kind of reverse spray type wet flue gas Washing spray nozzle
JP2013000631A (en) Wet process flue gas desulfurization apparatus and method
EP0966318A1 (en) Compact water collector
CN109893955A (en) Desulphurization system restrains demister
CN216062585U (en) Counter-flow wet dust-removing tower
JP5078320B2 (en) Temperature reduction tower
US8128743B2 (en) Gas scrubber with adapted drop separators
JP4427474B2 (en) Temperature reduction tower
CN205412551U (en) Low resistance forced water cooling drips type tubular defroster
CN209501966U (en) A kind of wet-esp temperature rising integrated device
CN209997407U (en) flue gas treatment device
JP3537292B2 (en) Exhaust gas cooling tower
CN220317456U (en) Evaporation device
CN213314291U (en) Deacidifying reaction tower
CN210717624U (en) Compact quench tower
JP2005226876A (en) Exhaust gas heat decreasing tower
CN219551254U (en) A tubular cooling device for high temperature gas rapid cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4721723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250