JP5075534B2 - ロータリコンプレッサの製造方法 - Google Patents

ロータリコンプレッサの製造方法 Download PDF

Info

Publication number
JP5075534B2
JP5075534B2 JP2007223437A JP2007223437A JP5075534B2 JP 5075534 B2 JP5075534 B2 JP 5075534B2 JP 2007223437 A JP2007223437 A JP 2007223437A JP 2007223437 A JP2007223437 A JP 2007223437A JP 5075534 B2 JP5075534 B2 JP 5075534B2
Authority
JP
Japan
Prior art keywords
cylinder
discharge
discharge passage
support member
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007223437A
Other languages
English (en)
Other versions
JP2009057840A (ja
Inventor
里  和哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007223437A priority Critical patent/JP5075534B2/ja
Publication of JP2009057840A publication Critical patent/JP2009057840A/ja
Application granted granted Critical
Publication of JP5075534B2 publication Critical patent/JP5075534B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、密閉容器内に電動要素と、この電動要素にて駆動される回転圧縮要素を設けて成るロータリコンプレッサの製造方法に関するものである。
従来よりこの種ロータリコンプレッサ、例えば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備えた内部中間圧型多段圧縮式ロータリコンプレッサでは、第1の回転圧縮要素の吸込通路から冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮される。そして、第1の回転圧縮要素で圧縮され、中間圧となった冷媒ガスは、シリンダの高圧室側より吐出ポート、吐出通路、及び、吐出消音室を順次経て、密閉容器内に吐出される。
そして、密閉容器内に吐出された中間圧の冷媒ガスは第2の回転圧縮要素の吸込通路からシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれる。この第2の回転圧縮要素で圧縮され高温高圧となった冷媒ガスは、シリンダの高圧室側より吐出ポート、吐出通路を経て吐出消音室に吐出され、その後、ロータリコンプレッサの外部に吐出されていた。
このようなロータリコンプレッサでは従来より、シリンダの厚さ寸法が薄いものが使用されているため、その厚さ内で吸込通路や吐出通路を形成することができないので、シリンダの開口面を閉塞して軸受けを有する支持部材側に吸込通路と吐出通路を形成し、シリンダにはこれら吸込通路と吐出通路をシリンダ内に連通させるための吸込ポートと吐出ポートを斜めに形成している。また、支持部材のシリンダとは反対側の面には、吐出通路の周囲を囲繞する弁座を介して吐出弁が設けられ、当該吐出弁により吐出通路が開閉可能に閉塞されていた。また、上記吐出通路の中心と弁座の中心とが一致するように形成されていた(例えば、特許文献1参照)。
特開2003−120560号公報
ところで、このようなロータリコンプレッサでは、シリンダの内径寸法を変更し、その他の部材は、既在のロータリコンプレッサの部材を出来るだけ使用して、排除容積の異なる別のロータリコンプレッサを製造することで、設計変更による製造コストの高騰を抑える試みがなされている。しかしながら、シリンダ内径寸法が縮小された場合に、既存の支持部材をそのまま転用しようとすると、シリンダの開口縁が吐出通路から離間することとなる。そのため、吐出通路をシリンダ内に連通させるための吐出ポートが長くなり、デッドスペースとなる吐出ポート内容積が拡大するという問題が生じていた。
一方、吐出ポートとベーンを収容するベーンスロットとの間の壁の強度確保のために、吐出ポートとベーンスロットの間の壁厚は薄くすることができないが、吐出通路がベーンスロットに近い位置にある場合には、係るシリンダ内径寸法の縮小により、吐出通路とシリンダとを連通させるための吐出ポートとベーンスロット間の壁が薄く長く延びる形となってしまう。そこで、従来では吐出ポートをベーンスロットから離間する方向にずらすことにより、吐出ポートとベーンスロット間の壁厚を維持して強度を確保していた。しかしながら、吐出ポートをベーンスロットから離間する方向にずらすことで、吐出通路の中心と吐出ポートの中心軸がずれてしまい、その結果、流路抵抗が増加すると云う問題が生じていた。
これらの問題を解消するためには、弁座の位置を変更することが必要となる。従って、既在の支持部材をそのまま転用することが出来ず、係る支持部材の設計変更により、支持部材加工の金型の変更等の大幅な設計変更が必要となるため、製造コストが著しく高騰すると云った問題が生じていた。
そこで、本発明は係る従来技術の課題を解決するために成されたものであり、シリンダ内径寸法の縮小に伴う設計変更を、ロータリコンプレッサの性能を維持しながら、最小限に抑えることができるロータリコンプレッサの製造方法を提供することを目的とする。
請求項1の発明は、密閉容器内に電動要素と、この電動要素にて駆動される回転圧縮要素を設けて成り、この回転圧縮要素を構成するシリンダと、電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、シリンダに形成されたスロット内に収納され、ローラに当接してシリンダ内を高圧室側と低圧室側とに区画するベーンと、シリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材に形成された吐出通路と、支持部材のシリンダとは反対側の面に形成され、吐出通路周囲を囲繞する吐出弁用の弁座と、高圧室側におけるシリンダの開口縁に形成され、支持部材の吐出通路に対応して当該吐出通路をシリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、シリンダの内径寸法が縮小される場合には、吐出通路を弁座の中心よりシリンダの開口縁方向に偏倚させることにより、当該吐出通路の位置を、吐出ポートの位置に合わせることを特徴とする。
請求項2の発明は、密閉容器内に電動要素と、この電動要素にて駆動される回転圧縮要素を設けて成り、この回転圧縮要素を構成するシリンダと、電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、シリンダに形成されたスロット内に収納され、ローラに当接してシリンダ内を高圧室側と低圧室側とに区画するベーンと、シリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材に形成された吐出通路と、支持部材のシリンダとは反対側の面に形成され、吐出通路周囲を囲繞する吐出弁用の弁座と、高圧室側におけるシリンダの開口縁に形成され、支持部材の吐出通路に対応して当該吐出通路をシリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、シリンダの内径寸法が縮小される場合には、吐出通路を弁座の中心よりシリンダの開口縁方向であって、且つ、弁座の中心よりスロットから離間する方向に偏倚させることにより、当該吐出通路の位置を、吐出ポートの位置に合わせることを特徴とする。
請求項1の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される回転圧縮要素を設けて成り、この回転圧縮要素を構成するシリンダと、電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、シリンダに形成されたスロット内に収納され、ローラに当接してシリンダ内を高圧室側と低圧室側とに区画するベーンと、シリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材に形成された吐出通路と、支持部材のシリンダとは反対側の面に形成され、吐出通路周囲を囲繞する吐出弁用の弁座と、高圧室側におけるシリンダの開口縁に形成され、支持部材の吐出通路に対応して当該吐出通路をシリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、シリンダの内径寸法が縮小される場合には、吐出通路を弁座の中心よりシリンダの開口縁方向に偏倚させることにより、当該吐出通路の位置を、前記吐出ポートの位置に合わせるようにしたので、シリンダ内径寸法が縮小される場合にも、弁座位置を変更すること無く、支持部材の吐出通路の位置を弁座中心よりシリンダ開口縁方向に偏倚させるだけで、吐出ポートに対して適正な位置に吐出通路を配置することが可能となる。
これにより、シリンダ内径寸法の縮小に伴う設計変更を最小限に抑えながら、吐出ポートの中心軸と吐出通路の中心を合致させて吐出ポートから吐出通路に至る部分の流路抵抗を低減することができるようになる。特に、吐出通路がシリンダの開口縁方向に移動することから、吐出通路を弁座の中心としたままシリンダの内径寸法を縮小した場合に比して吐出ポートの長さが短くなり、デッドスペースとなる吐出ポート内容積を縮小することもできるようになるものである。
請求項2の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される回転圧縮要素を設けて成り、この回転圧縮要素を構成するシリンダと、電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、シリンダに形成されたスロット内に収納され、ローラに当接してシリンダ内を高圧室側と低圧室側とに区画するベーンと、シリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材に形成された吐出通路と、支持部材のシリンダとは反対側の面に形成され、吐出通路周囲を囲繞する吐出弁用の弁座と、高圧室側におけるシリンダの開口縁に形成され、支持部材の吐出通路に対応して当該吐出通路を前記シリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、シリンダの内径寸法が縮小される場合には、吐出通路を弁座の中心よりシリンダの開口縁方向であって、且つ、弁座の中心よりスロットから離間する方向に偏倚させることにより、当該吐出通路の位置を、前記吐出ポートの位置に合わせるようにしたので、シリンダ内径寸法が縮小される場合にも、弁座位置を変更すること無く、支持部材の吐出通路の位置を弁座中心よりスロットから離間する方向に偏倚させるだけで、吐出ポートに対して適正な位置に吐出通路を配置することが可能となる。
これにより、シリンダ内径寸法の縮小に伴う設計変更を最小限に抑えながら、吐出ポートの中心軸と吐出通路の中心を合致させて吐出ポートから吐出通路に至る部分の流路抵抗を低減することができるようになる。特に、吐出通路がシリンダの開口縁方向であって、且つ、ベーンを収納するスロットから離間する方向に移動することから、吐出通路を弁座の中心としたままシリンダの内径寸法を縮小した場合に比してスロットと吐出ポートの間の壁の強度を維持することもできるようになるものである。
以下、図面に基づき本発明の実施形態を詳述する。図1は本発明の一実施例のロータリコンプレッサの縦断側面図である。本実施例に係るロータリコンプレッサは、密閉容器2内に駆動要素としての電動要素3と、この電動要素3にて駆動される第1及び第2の回転圧縮要素4、5を備えた回転圧縮機構部6を収容して、外部からの低圧冷媒を第1の回転圧縮要素4で圧縮し、密閉容器2内に吐出した後、第2の回転圧縮要素5に吸い込んで圧縮する、所謂、多段(2段)圧縮式のロータリコンプレッサである。具体的に、図1に示す本実施例のロータリコンプレッサ1は、鋼板から成る縦型円筒状の密閉容器2の内部空間の上側に電動要素3が設けられ、この電動要素3の下側に電動要素3の回転軸7により駆動される第1及び第2の回転圧縮要素4、5を備えた回転圧縮機構部6が配置されている。
上記密閉容器2は、本体を構成する円筒状を呈した筒体2Aと、この筒体2Aの電動要素3が配置される側となる一端(上端)の開口を閉塞する略椀状のエンドキャップ(蓋体)2Bと、該筒体2Aの他端(下端)の開口を閉塞する同じく略椀状のボトム(底体)2Cとで構成されている。また、エンドキャップ2Bの上面には円形の取付孔2Dが形成され、この取付孔2Dには電動要素3に電力を供給するためのターミナル(配線を省略)8が取り付けられている。また、本実施例のボトム2Cは、密閉容器2の底部に位置し、オイル溜めとして使用される。即ち、ボトム2Cの内部にはオイルが貯留され、そこから給油手段としてのオイルポンプ9によりオイルが汲み上げられ、回転軸7内の図示しないオイル孔を介して各摺動部等に供給可能に構成されている。
一方、電動要素3は、密閉容器2の筒体2Aの一端側の空間(上部空間)の内周面に沿って環状に固定されたステータ10と、このステータ10の内側に若干の間隔を設けて挿入設置されたロータ11とから構成されており、このロータ11は中心を通り鉛直方向に延びる回転軸7に固定されている。
上記ステータ10は、複数枚の電磁鋼板を積層した積層体12から成り、この積層体12の歯部に直巻き(集中巻き)方式により巻装されたステータコイル13を有している。また、ロータ11もステータ10と同様に電磁鋼板の積層体14で形成され、この積層体14内に永久磁石MGを挿入して構成されている。
他方、前記回転圧縮機構部6は、中間仕切板19を挟んで、2段目となる第2の回転圧縮要素5を密閉容器2内の電動要素3に近い側に、1段目となる第1の回転圧縮要素4を電動要素3から遠い側に配置している。即ち、本実施例のロータリコンプレッサ1では、中間仕切板19を挟んで第1の回転圧縮要素4が下側、第2の回転圧縮要素5が上側に配置されている。当該第1及び第2の回転圧縮要素4、5は、シリンダ20、22と、このシリンダ20、22内を180度の位相差を有して回転軸に設けた偏心部24、26に嵌合されて偏心回転するローラ28、30と、各ローラ28、30に当接して各シリンダ20、22内を低圧室側と高圧室側にそれぞれ区画するベーン(図示せず)と、各ベーンを常時ローラ28、30側に付勢するためのバネ部材としてのスプリング(図示せず)と、第1の回転圧縮要素4を構成するシリンダ22の一方(下側)の開口を閉塞すると共に、回転軸7の副軸受け34Aを有する下部支持部材34と、第2の回転圧縮要素5を構成するシリンダ20の一方(上側)の開口を閉塞すると共に、回転軸7の主軸受け32Aを有する上部支持部材32によって構成される。
シリンダ20の低圧室側には、上部支持部材32に形成された吸込通路40を当該シリンダ20内に連通させるための吸込ポート36が形成されると共に、この吸込ポート36と図示しないベーンを挟んで反対側となるシリンダ20の高圧室側には、吐出ポート37が形成されている。この吐出ポート37は、上部支持部材32の後述する吐出通路41に対応して、当該吐出通路41をシリンダ20内に連通させるためのものである。また、シリンダ22の低圧室側にも下部支持部材34に形成された吸込通路42を該シリンダ22内に連通させるための吸込ポート38が形成されると共に、この吸込ポート38と前述したベーンを挟んで反対側となるシリンダ20の高圧室側には、吐出ポート39が形成されている。この吐出ポート39は、下部支持部材34の吐出通路43に対応して、この吐出通路43をシリンダ22内に連通させるためのものである。
また、各シリンダ20、22には、前述したベーンをそれぞれ収納するベーンスロット21、23が形成されており(図5、図7)、ベーンスロット21、23の外側、即ち、各ベーン背面側には、バネ部材としての前記スプリングを収納する収納部21A、23Aが形成されている。
上部支持部材32及び下部支持部材34には、吸込ポート36、38を介してシリンダ20、22の内部とそれぞれ連通する吸込通路40、42と、吐出ポート37、39の内部とそれぞれ連通する前記吐出通路41、43と、上部支持部材32のシリンダ20とは反対側(上側)の面を凹陥させ、この凹陥部を上部カバー44にて閉塞することにより形成された吐出消音室50と、下部支持部材34のシリンダ22とは反対側(下側)の面を凹陥させ、この凹陥部を下部カバー46にて閉塞することにより形成された吐出消音室52とが設けられている。即ち、吐出消音室50は上部カバー44にて閉塞され、吐出消音室52は下部カバー46にて閉塞される。
上部カバー44は上部支持部材32の主軸受け32Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、周辺部が4本のボルト60により、上から上部支持部材32に固定されている。このボルト60の先端は2本がシリンダ20に、2本がシリンダ22に螺合する。同様に、下部カバー46もドーナッツ状の円形鋼板から構成されており、周辺部の4カ所をボルト65にて下から下部支持部材34に固定され、図示しない吐出ポートにて第1の回転圧縮要素4のシリンダ22内部と連通する吐出消音室52の下面開口部を閉塞する。このボルト65の先端はシリンダ20に螺合する。
図2は上部支持部材32の平面を示している。図2において、41は吐出ポート37を介してシリンダ20の内部と連通する前述した吐出通路であり、この吐出通路41は、上部支持部材32に貫通形成されている。また、54は弁座であり、上部支持部材32のシリンダ20とは反対側の面(即ち、本実施例では上面)に形成され、吐出通路41を囲繞している。この弁座54の吐出通路41と反対側となる面(上面)には吐出弁55が設けられている(図3)。尚、図2において、55Aで示す輪郭は吐出弁55の配置位置(取付位置)を示したものである。
吐出弁55は、縦長略矩形状の金属板から成る弾性部材にて構成されており、この吐出弁55の吐出通路41とは反対側(上側)には該吐出弁55の変形を規制するための吐出弁抑え板としてのバッカーバルブ55Aが配置され、上部支持部材32に取り付けられている。そして、吐出弁55の一側が弁座54に当接し、当該弁座54を介して吐出通路41を閉塞すると共に、他側は弁座54と所定の間隔を存して設けられた上部支持部材32の取付孔90にカシメピン92により固着されている。
そして、シリンダ20内で圧縮され、所定の圧力に達した冷媒ガスが、弁座54を介して吐出通路41を閉じている図3の下方から吐出通路41を閉じている吐出弁55を押し上げて吐出通路41を開き、吐出消音室50へ吐出させる。このとき、吐出弁55は他側を上部支持部材32に固着されているので弁座54に当接している一側が反り上がり、吐出弁55の開き量を規制しているバッカーバルブ55Aに当接する。冷媒ガスの吐出が終了する時期になると、吐出弁55がバッカーバルブ55Aから離れ、弁座54に当接し、吐出通路41を閉塞する。
尚、下部支持部材34にも吐出ポート39を介してシリンダ22の内部と連通する吐出通路43が貫通形成されており、当該支持部材34のシリンダ22とは反対側の面(即ち、本実施例では下面)に形成された弁座56により、当該吐出通路43が囲繞されている。この弁座56の吐出通路43と反対側となる面には吐出弁57が設けられている(図4)。
吐出弁57は、縦長略矩形状の金属板から成る弾性部材にて構成されており、この吐出弁57の吐出通路43とは反対側(下側)には吐出弁57の変形を規制するための吐出弁抑え板としてのバッカーバルブ57Aが配置され、下部支持部材34に取り付けられている。そして、吐出弁57の一側が弁座56に当接し、当該弁座56を介して吐出通路43を閉塞すると共に、他側は弁座56と所定の間隔を存して設けられた下部支持部材34の取付孔91にカシメピン93により固着されている。
そして、シリンダ22内で圧縮され、所定の圧力に達した冷媒ガスが、弁座56を介して吐出通路43を閉じている図4の上方から吐出通路43を閉じている吐出弁57を押し下げて吐出通路43を開き、吐出消音室52へ吐出させる。このとき、吐出弁57は他側を下部支持部材34に固着されているので弁座56に当接している一側が反り返り、吐出弁57の開き量を規制しているバッカーバルブ57Aに当接する。冷媒ガスの吐出が終了する時期になると、吐出弁57がバッカーバルブ57Aから離れ、弁座56に当接し、吐出通路43を閉塞する。
一方、第1の回転圧縮要素4の吐出消音室52と密閉容器2内とは連通路にて連通されている。この連通路は上部支持部材32、シリンダ20、22、中間仕切板19を貫通する図示しない孔であり、当該孔の一端が吐出消音室52の上面にて開口し、当該吐出消音室52内と連通すると共に、他端が上部支持部材32を貫通して密閉容器2内と連通している。係る構成により、第1の回転圧縮要素4で圧縮され吐出消音室52内に吐出された中間圧の冷媒が当該連通路を介して密閉容器2内に吐出されることとなる。
また、密閉容器2の筒体2Aの側面には、上部支持部材32と下部支持部材34の吸込通路40、42、吐出消音室50、上部カバー44の上側(電動要素3の下端)に対応する位置に、スリーブ70、71、72及び73がそれぞれ溶接固定されている。スリーブ70とスリーブ71は上下に隣接すると共に、スリーブ72はスリーブ70の略対角線上にある。また、スリーブ73はスリーブ70と略90度ずれた位置にある。
そして、スリーブ70内にはシリンダ20に冷媒ガスを導入するための冷媒導入管82の一端が挿入接続され、この冷媒導入管82の一端はシリンダ20の吸込通路40と連通する。冷媒導入管82は密閉容器2の上側を通過してスリーブ73に至り、他端はスリーブ73内に挿入接続されて密閉容器2内に連通する。
また、スリーブ71内にはシリンダ22に冷媒ガスを導入するための冷媒導入管84の一端が挿入接続され、この冷媒導入管84の一端はシリンダ22の吸込通路42と連通する。また、スリーブ72内には冷媒吐出管86が挿入接続され、この冷媒吐出管86の一端は吐出消音室50と連通する。
以上の構成で、次に本実施例のロータリコンプレッサ1の動作を説明する。ターミナル8及び図示されない配線を介して電動要素3のステータコイル13に通電されると、電動要素3が起動してロータ11が回転する。この回転により回転軸7と一体に設けた偏心部24、26に嵌合されたローラ28、30がシリンダ20、22内を偏心回転する。
これにより、冷媒導入管84及び下部支持部材34に形成された吸込通路42を経由して吸込ポート38からシリンダ22の低圧室側に吸入された低圧の冷媒ガスは、ローラ30と図示しないベーンの動作により圧縮されて中間圧となり、シリンダ22の高圧室側より図示しない吐出ポートを経て吐出消音室52内に吐出される。吐出消音室52に吐出された中間圧の冷媒ガスは、図示しない連通路を経て密閉容器2内に吐出される。これにより、密閉容器2内は中間圧となる。
そして、密閉容器2内の中間圧の冷媒ガスは、冷媒導入管82を通って、上部支持部材32に形成された吸込通路40を経由して吸込ポート36からシリンダ20の低圧室側に吸入される。吸込ポート36からシリンダ20の低圧室側に吸入された中間圧の冷媒ガスは、ローラ28と図示しないベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、シリンダ20の高圧室側から図示しない吐出ポート内を通り上部支持部材32に形成された吐出消音室50内に吐出される。吐出消音室50に吐出された高温高圧の冷媒ガスは、該吐出消音室50内に連通された冷媒吐出管86からロータリコンプレッサ1の外部に吐出される。
ところで、ロータリコンプレッサは使用用途等によって排除容積の最適値がそれぞれ異なるため、異なる排除容積のロータリコンプレッサが複数製造されているが、各構成部材をそれぞれ設計して製造するとコスト高となるため、既在のロータリコンプレッサの部材を出来るだけ使用して、異なる排除容積のロータリコンプレッサを製造することが好ましい。そこで、従来よりシリンダ内径寸法を変更することで排除容積を変更し、その他の部材は既在のロータリコンプレッサを使用することで、排除容積の異なるロータリコンプレッサを製造する試みがなされている。このように、シリンダの内径寸法を変更し、その他の部材は、既在のロータリコンプレッサの部材を出来るだけ使用して、排除容積の異なるロータリコンプレッサを製造することで、設計変更を極力抑えることが可能となり、製造コストを抑えることができるようになる。
図11は、従来のロータリコンプレッサの支持部材の一例としての上部支持部材132の平面図を示している。図11において、132Aは軸受け、141は吐出通路、150は吐出消音室、154は弁座、155Aは吐出弁155の配置位置、190は吐出弁155を上部支持部材132に固着するカシメピン192を取り付けるための取付孔をそれぞれ示している。また、図12は図11の吐出通路141、弁座154と、この弁座154の吐出通路141と反対側となる面(上面)に設けられた吐出弁155の配置を示す一部断面図であり、155Aは吐出弁155の抑え板としてのバッカーバルブである。図11及び図12に示すように、従来のロータリコンプレッサでは吐出通路141の軸中心が弁座154の中心と一致するように位置を合わせて製造されていた。
ここで、上述の如くシリンダ内径寸法が縮小される場合に、既存の支持部材をそのまま転用しようとすると、シリンダの開口縁が吐出通路から離間することとなる。そのため、吐出通路をシリンダ内に連通させるための吐出ポートが長くなり、デッドスペースとなる吐出ポート内容積が拡大するという問題が生じていた。
具体的に、第1の回転圧縮要素4のシリンダ22の内径寸法が縮小される場合を例に挙げて説明する。図6のAに示すシリンダ22の内径寸法が図6のBに示すように縮小されると(図6のB、Cに示す一点鎖線は縮小される前、即ちAの状態のシリンダ22の内径寸法である)、シリンダ22の内径寸法が縮小された分、シリンダ22の開口縁22Aが吐出通路43から離間することとなる。そのため、図6のB及び図9の如くシリンダ22の開口縁22Aに形成される吐出ポート39を長く形成し、離れた位置にある吐出通路43に連通させなければならなくなる。その結果、デッドスペースとなる吐出ポート39内容積が拡大する問題が発生していた。
そこで、本発明ではロータリコンプレッサを製造するにあたり、吐出通路43を弁座56の中心よりシリンダ22の開口縁22A方向に偏倚させることにより、吐出通路43の位置を吐出ポート39の位置に合わせるものとする。
具体的に、本発明では、既在のロータリコンプレッサ1のシリンダ22の内径寸法を縮小する場合において、図5及び図6のCに示すようにシリンダ22の吐出通路43の位置を弁座56の中心よりシリンダ22の開口縁方向22Aに偏倚させることにより、吐出通路43の位置を吐出ポート39の位置に合わせるように製造するものとする。これにより、弁座56の位置を変更すること無く、支持部材(下部支持部材34)の吐出通路43の位置を弁座56の中心よりシリンダ22の開口縁22A方向に偏倚させるだけで、吐出ポート39に対して適正な位置に吐出通路43を配置することが可能となる。
これにより、シリンダ22の内径寸法の縮小に伴う設計変更を最小限に抑えながら、吐出ポート39の中心軸と吐出通路43の中心を合致させて吐出ポート39から吐出通路43に至る部分の流路抵抗を低減することができるようになる。特に、吐出通路43がシリンダ22の開口縁22A方向に移動することから、吐出通路43を弁座56の中心としたままシリンダ22の内径寸法を縮小した場合に比して吐出ポート39の長さが短くなり、デッドスペースとなる吐出ポート39内容積を縮小することができる。
一方、上記において、例えば、吐出通路がベーンを収容するベーンスロットに非常に近い位置に在る場合には、シリンダの内径寸法が縮小されると、吐出ポートとベーンスロット間の壁が薄く長く延びる形となるため、ベーンスロットと吐出ポートとの間の壁の強度が低下する不都合が生じていた。
具体的に、吐出通路41がベーンスロット21に近い位置に設けられた第2の回転圧縮要素5のシリンダ20の内径寸法が縮小される場合を例に挙げて説明する。図8のAに示すシリンダ20の内径寸法が図8のBに示すように縮小されると(図8のB、Cに示す一点鎖線は縮小される前、即ちAの状態のシリンダ20の内径寸法である)、上述したシリンダ22と同様にシリンダ20の内径寸法が縮小された分、シリンダ20の開口縁20Aが吐出通路41から離間することとなる。そのため、図8のBの如くシリンダ20の開口縁20Aに形成される吐出ポート37を長く形成し、離れた位置にある吐出通路41に連通させなければならなくなる。この場合、当該吐出通路41はベーンスロット21に近い位置に設けられているため、吐出ポート37とベーンスロット21間の壁が薄く長く延びる形となり、ベーンスロット21と吐出ポート37との間の壁の強度が低下する問題が生じていた。
係る、ベーンスロット21と吐出ポート37との間の壁の強度を確保するため、従来では、図10に示すように吐出ポート37の位置をベーンスロット21から離間する方向にずらして形成していた。しかしながら、このように吐出ポート37の位置をずらすことで、吐出通路41の中心と吐出ポート37の中心軸がずれるため、当該ポート37から吐出通路41を通過する冷媒の円滑な流れが阻害され、流路抵抗が増加すると云った問題が生じていた。
そこで、本発明では図7及び図8のCに示す如く吐出通路41を弁座54の中心よりシリンダ20の開口縁20A方向であって、且つ、弁座54の中心よりベーンスロット21から離間する方向に偏倚させることにより、吐出通路41の位置を、吐出ポート37の位置に合わせるように製造するものとする。これにより、弁座54の位置を変更すること無く、支持部材(上部支持部材32)の吐出通路41の位置を変更するだけで、即ち、吐出通路41を弁座54の中心よりシリンダ20の開口縁20A方向であって、且つ、弁座54の中心よりベーンスロット21から離間する方向に偏倚させるだけで、吐出ポート37に対して適正な位置に吐出通路41を配置することが可能となる。
これにより、シリンダ20の内径寸法の縮小に伴う設計変更を最小限に抑えながら、吐出ポート37の中心軸と吐出通路41の中心を合致させて吐出ポート37から吐出通路41に至る部分の流路抵抗を低減することができるようになる。特に、この場合には、前述した、吐出通路41がシリンダ20の開口縁20A方向に移動することによるデッドスペースとなる吐出ポート37の内容積を縮小できる効果に加えて、吐出通路41がベーンを収納するベーンスロット21から離間する方向に移動することによって、吐出通路41を弁座54の中心としたままシリンダ20の内径寸法を縮小した場合に比してベーンスロット21と吐出ポート37の間の壁の強度を維持することが出来るようになる。
以上詳述したように、シリンダ20又はシリンダ22の内径寸法の縮小する場合であっても、本発明の如く吐出通路41、43の形成位置を変更することで、吐出ポート37、39の長さを短くすることが可能となる。更に、弁座54、56の位置を変更する必要が無いので、既在の支持部材をそのまま使用、若しくは、設計変更を極力抑えることができるようになる。
これにより、シリンダ内径寸法の縮小に伴う設計変更を、ロータリコンプレッサの性能を維持しながら、最小限に抑えることができるようになり、製造コストを極力低減することができるようになる。
尚、実施例では内部中間圧型多段回転圧縮機(内部中間圧型の多段圧縮式ロータリコンプレッサ1)を用いて説明したが、本発明はこれに限定されるものではなく、2段目の第2の回転圧縮要素で圧縮された高圧冷媒が密閉容器2内に吐出される内部高圧型多段回転圧縮機に適用しても有効である。
本発明の一実施例のロータリコンプレッサの縦断側面図である。(実施例1) 図1のロータリコンプレッサの第2の回転圧縮要素の上部支持部材の平面図である。 図1のロータリコンプレッサの第2の回転圧縮要素の吐出通路、弁座及び吐出弁の配置を示す一部断面図である。 図1のロータリコンプレッサの第1の回転圧縮要素の吐出通路、弁座及び吐出弁の配置を示す一部断面図である。 図1のロータリコンプレッサの第1の回転圧縮要素の吐出通路、吐出ポート、弁座及びベーンスロットの配置を示す図である。 従来から本発明に至る経緯を説明する図である。 図1のロータリコンプレッサの第2の回転圧縮要素の吐出通路、吐出ポート、弁座及びベーンスロットの配置を示す図である。 従来から本発明に至るもう一つの経緯を説明する図である。 従来のロータリコンプレッサの第1の回転圧縮要素の吐出通路、吐出ポート、弁座及びベーンスロットの配置を示す図である。 従来のロータリコンプレッサの第2の回転圧縮要素の吐出通路、吐出ポート、弁座及びベーンスロットの配置を示す図である。 従来のロータリコンプレッサの上部支持部材の平面図である。 図11のロータリコンプレッサの第2の回転圧縮要素の吐出通路、弁座及び吐出弁の配置を示す一部断面図である。
1 ロータリコンプレッサ(密閉式電動圧縮機)
2 密閉容器
2A 筒体
2B エンドキャップ
2C ボトム
3 電動要素
4 第1の回転圧縮要素
5 第2の回転圧縮要素
6 回転圧縮機構部
7 回転軸
8 ターミナル
9 オイルポンプ
10 ステータ
11 ロータ
12、14 積層体
13 ステータコイル
19 中間仕切板
20、22 シリンダ
21、23 ベーンスロット
21A、23A 収納部
24、26 偏心部
28、30 ローラ
32 上部支持部材
32A 主軸受け
34 下部支持部材
34A 副軸受け
36、38 吸込ポート
37、39 吐出ポート
40、42 吸込通路
41、43 吐出通路
44 上部カバー
46 下部カバー
50、52 吐出消音室
54、56 弁座
55、57 吐出弁
55A、57A バッカーバルブ
60、65 ボルト
70、71、72、73 スリーブ
82、84 冷媒導入管
86 冷媒吐出管
90、91 取付孔
92、93 カシメピン

Claims (2)

  1. 密閉容器内に電動要素と、該電動要素にて駆動される回転圧縮要素を設けて成り、該回転圧縮要素を構成するシリンダと、前記電動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、前記シリンダに形成されたスロット内に収納され、前記ローラに当接して前記シリンダ内を高圧室側と低圧室側とに区画するベーンと、前記シリンダの開口面を閉塞すると共に、前記回転軸の軸受けを有する支持部材と、該支持部材に形成された吐出通路と、前記支持部材の前記シリンダとは反対側の面に形成され、前記吐出通路周囲を囲繞する吐出弁用の弁座と、前記高圧室側における前記シリンダの開口縁に形成され、前記支持部材の吐出通路に対応して当該吐出通路を前記シリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、前記シリンダの内径寸法が縮小される場合、前記吐出通路を前記弁座の中心より前記シリンダの開口縁方向に偏倚させることにより、当該吐出通路の位置を、前記吐出ポートの位置に合わせることを特徴とするロータリコンプレッサの製造方法。
  2. 密閉容器内に電動要素と、該電動要素にて駆動される回転圧縮要素を設けて成り、該回転圧縮要素を構成するシリンダと、前記電動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、前記シリンダに形成されたスロット内に収納され、前記ローラに当接して前記シリンダ内を高圧室側と低圧室側とに区画するベーンと、前記シリンダの開口面を閉塞すると共に、前記回転軸の軸受けを有する支持部材と、該支持部材に形成された吐出通路と、前記支持部材の前記シリンダとは反対側の面に形成され、前記吐出通路周囲を囲繞する吐出弁用の弁座と、前記高圧室側における前記シリンダの開口縁に形成され、前記支持部材の吐出通路に対応して当該吐出通路を前記シリンダ内に連通させる吐出ポートとを備えたロータリコンプレッサを製造するにあたり、前記シリンダの内径寸法が縮小される場合、前記吐出通路を前記弁座の中心より前記シリンダの開口縁方向であって、且つ、前記弁座の中心より前記スロットから離間する方向に偏倚させることにより、当該吐出通路の位置を、前記吐出ポートの位置に合わせることを特徴とするロータリコンプレッサの製造方法。
JP2007223437A 2007-08-30 2007-08-30 ロータリコンプレッサの製造方法 Active JP5075534B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223437A JP5075534B2 (ja) 2007-08-30 2007-08-30 ロータリコンプレッサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223437A JP5075534B2 (ja) 2007-08-30 2007-08-30 ロータリコンプレッサの製造方法

Publications (2)

Publication Number Publication Date
JP2009057840A JP2009057840A (ja) 2009-03-19
JP5075534B2 true JP5075534B2 (ja) 2012-11-21

Family

ID=40553828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223437A Active JP5075534B2 (ja) 2007-08-30 2007-08-30 ロータリコンプレッサの製造方法

Country Status (1)

Country Link
JP (1) JP5075534B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668556B2 (ja) * 2011-03-18 2015-02-12 ダイキン工業株式会社 回転式圧縮機
CN106837797B (zh) * 2017-02-21 2018-11-13 广东美芝制冷设备有限公司 压缩机的排气组件和压缩机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109169A (ja) * 1996-06-19 1998-01-13 Matsushita Electric Ind Co Ltd 密閉形圧縮機
JP2002098076A (ja) * 2000-09-27 2002-04-05 Sanyo Electric Co Ltd ロータリコンプレッサ

Also Published As

Publication number Publication date
JP2009057840A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4780971B2 (ja) ロータリコンプレッサ
US9435342B2 (en) Horizontal type scroll compressor
US9441630B2 (en) Horizontal type scroll compressor having discharge guide between a main scroll and a motor housing
KR101157266B1 (ko) 로터리 콤프레셔
JP2007113542A (ja) 密閉形2段ロータリ圧縮機
JP2006152950A (ja) 多段圧縮式ロータリコンプレッサ
JP5199863B2 (ja) ロータリコンプレッサ
JP5075534B2 (ja) ロータリコンプレッサの製造方法
WO2011125652A1 (ja) ロータリコンプレッサ
JP2008128069A (ja) 密閉形2段ロータリ式圧縮機
JP2004084568A (ja) 多段圧縮式ロータリコンプレッサ及びその排除容積比設定方法
JP3935854B2 (ja) ロータリコンプレッサ
JP4508883B2 (ja) ロータリコンプレッサ
WO2019187272A1 (ja) ロータリコンプレッサ
JP2006207535A (ja) ロータリコンプレッサ
JP2006214375A (ja) ロータリコンプレッサ
JP2003201982A (ja) ロータリコンプレッサ
KR102172260B1 (ko) 구동 모터 및 이를 구비하는 압축기
JP2011074772A (ja) 回転圧縮機及びその製造方法
JP4100969B2 (ja) ロータリコンプレッサ
JP5359376B2 (ja) 圧縮機
JP3963695B2 (ja) ロータリコンプレッサの製造方法
WO2012117598A1 (ja) ロータリーコンプレッサ
JP4902187B2 (ja) 多段圧縮式ロータリコンプレッサ
JP2005113878A (ja) ロータリーコンプレッサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

R151 Written notification of patent or utility model registration

Ref document number: 5075534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3