JP5071837B2 - Method for producing graphite porous body - Google Patents
Method for producing graphite porous body Download PDFInfo
- Publication number
- JP5071837B2 JP5071837B2 JP2006180706A JP2006180706A JP5071837B2 JP 5071837 B2 JP5071837 B2 JP 5071837B2 JP 2006180706 A JP2006180706 A JP 2006180706A JP 2006180706 A JP2006180706 A JP 2006180706A JP 5071837 B2 JP5071837 B2 JP 5071837B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- porous body
- slurry
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
- Filtering Materials (AREA)
Description
本発明は、開気孔率が高く、気孔径の大きい開気孔が三次元的に貫通した構造を備え、例えば、無給油ベアリングなどの摺動材、空気清浄や水質浄化などのフィルター、触媒担体などとして好適に利用可能な黒鉛質多孔体の製造方法に関する。 The present invention has a structure in which open pores having a high pore size and a large pore diameter are three-dimensionally penetrated, such as sliding materials such as oil-free bearings, filters for air purification and water purification, catalyst carriers, etc. The present invention relates to a method for producing a graphite porous body that can be suitably used.
炭素材料は、非酸化性雰囲気において優れた耐熱性や高温強度を有し、また導電性、熱伝導性および化学的安定性も高く、各種工業材料として使用されている。また、炭素材料を多孔質化した炭素材は軽量であり、フィルター、触媒担体、断熱材あるいは電気化学的工業用部材などとして広く用いられている。 Carbon materials have excellent heat resistance and high temperature strength in a non-oxidizing atmosphere, and have high conductivity, thermal conductivity, and chemical stability, and are used as various industrial materials. In addition, a carbon material obtained by making a carbon material porous is lightweight and widely used as a filter, a catalyst carrier, a heat insulating material, an electrochemical industrial member, or the like.
無給油ベアリングは摺動時に相手材を傷つけないように摩擦係数が低い材質が必要であり、黒鉛の多孔体に合金を侵入させた合金と黒鉛との複合体からなる無給油ベアリングが開発されている。この場合、溶融合金が黒鉛材の開気孔内に注入され円滑に侵入するためには開気孔の気孔径が1〜数mm程度であることが好ましいとされている。 Oil-free bearings require a material with a low coefficient of friction so as not to damage the mating material when sliding, and oil-free bearings consisting of a composite of an alloy and graphite in which an alloy is infiltrated into a porous graphite body have been developed. Yes. In this case, in order for the molten alloy to be injected into the open pores of the graphite material and smoothly enter, the open pores preferably have a pore diameter of about 1 to several mm.
また、空気清浄フィルターや水質浄化フィルター、触媒担体などには、圧損が低く、流体との接触効率の良い多孔体が求められており、高気孔率で気孔径が大きな開気孔を有するとともに強度の大きい多孔体が望まれている。更に、耐薬品性、高熱伝導性なども要求されるので多孔体の材質としては炭素質、特に黒鉛質の多孔体が好適である。 In addition, air purification filters, water purification filters, catalyst carriers, and the like are required to have a porous body with low pressure loss and good contact efficiency with fluids, and have high porosity and large pore diameter and high strength. A large porous body is desired. Furthermore, since chemical resistance, high thermal conductivity, and the like are also required, the porous material is preferably a carbonaceous material, particularly a graphite porous material.
多孔質炭素材の製造技術としては、炭素繊維をパルプとともに抄紙して得たシートに熱硬化性樹脂溶液を含浸して積層成形し、焼成炭化する方法(例えば、特許文献1など)が知られている。しかし、この方法は高価な炭素繊維を使用するので製造コストが増大し、また気孔性状の制御が難しいという難点がある。 As a technique for producing a porous carbon material, a method of impregnating a sheet obtained by papermaking carbon fiber together with pulp with a thermosetting resin solution, forming a laminate, and firing and carbonizing (for example, Patent Document 1) is known. ing. However, since this method uses expensive carbon fibers, the manufacturing cost increases, and it is difficult to control the pore properties.
そこで、安価なα−セルロースを主成分とする有機物質の抄紙シートに熱硬化性樹脂溶液を含浸し、樹脂含浸シートを積層して熱圧成形する方法が開発されている。例えば特許文献2にはα−セルロースを主成分とする熱揮散性物質を抄紙してシート化する工程と、シートに熱硬化性樹脂溶液を含浸する工程と、含浸シートを加熱して半硬化する工程と、半硬化シートを積層し加熱しながら圧縮する工程と、焼成炭化する工程とからなる多孔質炭素材の製造方法が開示されている。 In view of this, a method has been developed in which a thermosetting resin solution is impregnated into an inexpensive paper-making sheet made of an organic substance mainly composed of α-cellulose, and the resin-impregnated sheet is laminated to perform hot pressing. For example, Patent Document 2 discloses a step of making a sheet by making a thermally volatile material containing α-cellulose as a main component, a step of impregnating the sheet with a thermosetting resin solution, and heating and semi-curing the impregnated sheet. There is disclosed a method for producing a porous carbon material comprising a step, a step of laminating a semi-cured sheet and compressing while heating, and a step of firing and carbonizing.
しかし、これらの方法では繊維が絡み合った空隙により多孔質体が形成されるので、板状成形体の面方向と厚さ方向では気孔構造が異なり、また曲げ強度などの強度特性も異方性が生じ、層間剥離し易くなるなどの欠点がある。更に、気孔率の高いものを得ようとすると強度が低くなり、気孔径の大きいものを得ることも困難である。 However, in these methods, a porous body is formed by voids in which fibers are entangled, so that the pore structure is different between the surface direction and the thickness direction of the plate-like molded body, and the strength characteristics such as bending strength are also anisotropic. There are drawbacks such as occurrence and delamination easily. Furthermore, when trying to obtain a product with a high porosity, the strength decreases and it is difficult to obtain a product with a large pore diameter.
また、炭素多孔体を製造する方法として、メラミン、ウレタン、フェノール樹脂などの樹脂発泡体を焼成、炭化する方法も知られているが強度が低い難点がある。そこで、特許文献3には、連続気孔を有するとともにポリカルボジイミド樹脂が含浸したメラミン樹脂発泡体、ウレタン樹脂発泡体、フェノール樹脂発泡体などの樹脂発泡体を炭化した炭素多孔体が提案されている。 Further, as a method for producing a carbon porous body, a method of firing and carbonizing a resin foam such as melamine, urethane, or phenol resin is known, but has a disadvantage that strength is low. Therefore, Patent Document 3 proposes a carbon porous body obtained by carbonizing a resin foam such as a melamine resin foam, a urethane resin foam, and a phenol resin foam having continuous pores and impregnated with a polycarbodiimide resin.
しかし、気孔率および気孔径が小さく、上記した無給油ベアリングなどの摺動材、空気清浄や水質浄化などのフィルター、触媒担体などに用いるには十分ではない。
そこで、発明者らは気孔率が高く、開気孔径の大きな多孔質性状を備え、強度特性にも優れた黒鉛質の多孔体を製造するために鋭意研究を行った結果、本発明の完成に至ったものである。 Therefore, the inventors have conducted extensive research to produce a porous graphite body having a high porosity, a large open pore diameter, and excellent strength characteristics. It has come.
すなわち、本発明の目的は、開気孔率が高く、また気孔径の大きい開気孔が三次元的に貫通した構造を備え、例えば無給油ベアリングなどの摺動材、空気清浄や水質浄化などのフィルター、触媒担体などとして好適に利用可能な黒鉛質多孔体の製造方法を提供することにある。 That is, an object of the present invention is to provide a structure in which open pores having a high pore diameter and a large pore diameter are three-dimensionally penetrated, for example, sliding materials such as oil-free bearings, filters for air purification and water purification, etc. Another object of the present invention is to provide a method for producing a graphite porous body that can be suitably used as a catalyst carrier.
上記目的を達成するための請求項1による黒鉛質多孔体の製造方法は、開気孔率が60〜85%で、気孔径1〜5mmの開気孔が三次元的に貫通した構造からなる黒鉛質多孔体で、該黒鉛質多孔体の骨格を形成する黒鉛の密度が1.0〜1.6g/cm 3 、気孔率が10〜50%、気孔径が1〜5μmである黒鉛質多孔体を製造する方法であって、黒鉛粉末100重量部に対して、熱硬化性樹脂15〜100重量部、分散媒50〜300重量部、分散剤0.5〜5重量部の割合で混合して黒鉛スラリーを調製する工程、該黒鉛スラリーを成形容器内に載置した粒径1〜6mmの球状造孔材からなるプリフォームに注入する工程、乾燥して分散媒を揮散除去し、次いで120〜200℃に加熱して樹脂成分を硬化、更に200〜250℃に加熱して造孔材を揮散して空孔を形成した後、非酸化性雰囲気中800℃以上の温度で熱処理して焼成炭化する工程、あるいは更に黒鉛化する工程からなることを特徴とする。 In order to achieve the above object, a method for producing a porous graphite material according to claim 1 has a structure in which the open porosity is 60 to 85% and the open pores having a pore diameter of 1 to 5 mm are three-dimensionally penetrated. A porous graphite body having a graphite density of 1.0 to 1.6 g / cm 3 , a porosity of 10 to 50%, and a pore diameter of 1 to 5 μm. A method of manufacturing, wherein graphite is mixed at a ratio of 15 to 100 parts by weight of a thermosetting resin, 50 to 300 parts by weight of a dispersion medium, and 0.5 to 5 parts by weight of a dispersant with respect to 100 parts by weight of graphite powder. A step of preparing a slurry, a step of pouring the graphite slurry into a preform made of a spherical pore former having a particle diameter of 1 to 6 mm placed in a molding vessel , drying to volatilize and remove the dispersion medium, and then 120 to 200 Heat to ℃ to cure resin component, and further heat to 200-250 ℃ After forming the pores by volatilization the pore forming material to be a non-oxidizing atmosphere step fired carbonization is heat-treated at 800 ° C. or higher temperatures during or further characterized by comprising a step of graphitization.
請求項2による黒鉛質多孔体の製造方法は、請求項1において、前記該黒鉛スラリーを成形容器内に載置した粒径1〜6mmの球状造孔材からなるプリフォームに注入する工程に代えて、該黒鉛スラリーに粒径1〜6mmの球状造孔材を混合して石膏型内に圧縮充填する工程を行うことを特徴とする。 The method for producing a graphite porous body according to claim 2 is replaced with the method of injecting the graphite slurry into a preform made of a spherical pore-forming material having a particle diameter of 1 to 6 mm placed in a forming container in claim 1. The graphite slurry is mixed with a spherical pore former having a particle size of 1 to 6 mm and compressed into a gypsum mold .
請求項3による黒鉛質多孔体の製造方法は、請求項1または2において、前記黒鉛粉末に予めシランカップリング剤をコーティングすることを特徴とする。 The method for producing a graphite porous body according to claim 3 is characterized in that, in claim 1 or 2, the graphite powder is previously coated with a silane coupling agent .
本発明によれば、開気孔率が高く、気孔径の大きい開気孔が三次元的に貫通した構造を備えており、例えば無給油ベアリングなどの摺動材、空気清浄や水質浄化などをはじめ各種のフィルター、触媒担体などとして好適に使用することができる黒鉛質多孔体の製造方法が提供される。 According to the present invention, it has a structure in which open pores with a high open pore size and a large pore diameter are three-dimensionally penetrated, such as sliding materials such as oil-free bearings, various types of materials such as air purification and water purification. A method for producing a porous graphite material that can be suitably used as a filter, a catalyst carrier, and the like is provided.
無給油ベアリングなどの黒鉛摺動材では摺動面に露出する黒鉛部分の割合が30%程度は必要とされており、これは黒鉛質多孔体の気孔性状により左右される。また、気孔に吸蔵されたオイルが適度に表面に滲み出て摺動性を維持するためにも気孔性状が大きく影響する。 A graphite sliding material such as an oil-free bearing requires about 30% of the graphite portion exposed on the sliding surface, which depends on the porosity of the graphite porous body. In addition, the pore property greatly affects the oil occluded in the pores to ooze out to the surface and maintain the slidability.
また、空気清浄や水質浄化などに使用するフィルターや触媒担体には流体抵抗が低く、流体との接触効率を上げるために、開気孔率が高く、開気孔径の大きい気孔性状を備えた多孔体が好適である。更に、耐食性および強度特性や熱伝導性などの材質特性から黒鉛質多孔体が有用されている。 In addition, the filter and catalyst carrier used for air purification and water purification have a low fluid resistance and a porous body with a high open porosity and a large open pore diameter in order to increase the contact efficiency with the fluid. Is preferred. Further, graphite porous bodies are useful from the standpoint of material properties such as corrosion resistance, strength characteristics and thermal conductivity.
本発明により得られる黒鉛質多孔体は、これらの用途に好適な気孔性状として開気孔率が60〜85%であって、気孔径1〜5mmの開気孔が三次元的に貫通した構造を備えていることを特徴とする。 The porous graphite material obtained by the present invention has a structure in which open porosity is 60 to 85% and three-dimensionally open pores having a pore diameter of 1 to 5 mm are suitable for these applications. It is characterized by.
開気孔の気孔率が60%を下回ると例えば通気抵抗が大きくなり、一方85%を超えると強度が低くなり、使用時などに欠損し易くなる。また、開気孔の気孔径が1mmを下回ると多孔体を形成する骨格の壁が薄くなって強度が低下し、通気抵抗も大きくなる。しかし、気孔径が5mmを超えると骨格部分との接触面積が減少するために反応効率が低下することになる。 When the porosity of the open pores is less than 60%, for example, the ventilation resistance is increased. On the other hand, when the porosity is more than 85%, the strength is decreased and the voids are easily lost during use. On the other hand, when the pore diameter of the open pores is less than 1 mm, the wall of the skeleton forming the porous body becomes thin, the strength is lowered, and the ventilation resistance is also increased. However, when the pore diameter exceeds 5 mm, the contact area with the skeleton portion is reduced, so that the reaction efficiency is lowered.
このように、耐熱性、耐食性、熱伝導性、摺動性などの優れた黒鉛から構成し、その気孔性状を特定した本発明の黒鉛質多孔体は、無給油ベアリングなどの摺動材、空気清浄や水質浄化などのフィルター、触媒担体などとして極めて有用である。 Thus, the graphite porous body of the present invention, which is composed of graphite excellent in heat resistance, corrosion resistance, thermal conductivity, slidability, etc., and whose porosity is specified, is a sliding material such as an oil-free bearing, air It is extremely useful as a filter and catalyst carrier for cleaning and water purification.
この場合、黒鉛質多孔体の骨格部分を形成する黒鉛の密度が1.0〜1.6g/cm3であることが好ましい。骨格部分の黒鉛の密度が1.0g/cm3を下回ると強度が不足し、しかし密度が1.6g/cm3より大きくなると例えば無給油ベアリングに必要なオイルの吸蔵、保持が十分に行えなくなる。同様の理由から骨格部分を形成する黒鉛の気孔率は10〜50%であり、その気孔径は1〜5μmであることが好ましい。 In this case, it is preferable that the density of the graphite forming the skeleton portion of the graphite porous body is 1.0 to 1.6 g / cm 3 . When the density of the graphite in the skeletal part is less than 1.0 g / cm 3 , the strength is insufficient, but when the density is greater than 1.6 g / cm 3 , for example, the occlusion and holding of oil necessary for an oil-free bearing cannot be sufficiently performed. . For the same reason, the porosity of graphite forming the skeleton is 10 to 50%, and the pore diameter is preferably 1 to 5 μm.
これらの気孔性状を備えた黒鉛質多孔体は、黒鉛スラリーを調製し、黒鉛スラリーを球状造孔材からなるプリフォームに注入成形した後、造孔材を揮散除去する方法、あるいは黒鉛スラリーに球状造孔材を混合して石膏型に充填成形した後、造孔材を揮散除去する方法により製造することができる。 The graphite porous body having these pore properties is prepared by preparing a graphite slurry and injecting and molding the graphite slurry into a preform made of a spherical pore former, and then volatilizing and removing the pore former, or the graphite slurry is spherical. After the pore former is mixed and filled into a gypsum mold, it can be produced by a method of volatilizing and removing the pore former.
黒鉛スラリーは黒鉛粉末100重量部に対して、熱硬化性樹脂15〜100重量部、分散媒50〜300重量部、分散剤0.5〜5重量部の割合で配合して、十分に混合することにより調製する。この混合時に巻き込んだ空気や発生する気泡を除去するために減圧脱泡して気泡を除去することが好ましい。 Graphite slurry is blended in a proportion of 15 to 100 parts by weight of thermosetting resin, 50 to 300 parts by weight of a dispersion medium, and 0.5 to 5 parts by weight of a dispersing agent with respect to 100 parts by weight of graphite powder, and thoroughly mixed To prepare. In order to remove air entrained during the mixing and generated bubbles, it is preferable to remove bubbles by degassing under reduced pressure.
黒鉛粉末は天然黒鉛粉末、人造黒鉛粉末、その混合粉末などいずれも用いることができるが、流動性の高いスラリーを得るためには数μmから数十μmの粒度分布をもつ黒鉛粉末が好ましく、鱗片状で産出される天然黒鉛粉末に比べて安価で粉砕が容易な等方性人造黒鉛の粉砕品が好適である。 As the graphite powder, natural graphite powder, artificial graphite powder, mixed powder thereof, and the like can be used. In order to obtain a slurry having high fluidity, graphite powder having a particle size distribution of several μm to several tens of μm is preferable. An isotropic artificial graphite pulverized product that is cheaper and easier to pulverize than natural graphite powder produced in the form of a powder is preferred.
密度および流動性の高い黒鉛スラリーを得て、球状造孔材間の空隙にスラリーを円滑に侵入させるためには黒鉛粉末を粒度調整することが好ましく、例えば、平均粒径が30〜70μm、5〜10μm、1〜3μmの黒鉛粉末を適宜な割合で混合した混合黒鉛粉末が用いられる。 In order to obtain a graphite slurry having a high density and fluidity and to allow the slurry to smoothly enter the voids between the spherical pore formers, it is preferable to adjust the particle size of the graphite powder. For example, the average particle size is 30 to 70 μm, 5 A mixed graphite powder in which graphite powders of 10 μm and 1 μm are mixed at an appropriate ratio is used.
この場合、黒鉛粉末は、エタノールなどの有機溶媒にシランカップリング剤を溶解した溶液と混合し、乾燥してシランカップリング剤をコーティングするとバインダーとなる熱硬化性樹脂との濡れ性が向上するので好ましい。 In this case, the graphite powder is mixed with a solution in which a silane coupling agent is dissolved in an organic solvent such as ethanol, dried, and coated with the silane coupling agent, so that the wettability with the thermosetting resin as a binder is improved. preferable.
熱硬化性樹脂は、自己焼結性のない黒鉛粉末を結合するためのバインダーとして用いられ、エポキシ樹脂、フェノール樹脂、、その混合樹脂、あるいはピッチなどが使用され、残炭率が高い、例えば残炭率40%以上のフェノール樹脂やピッチが用いられる。 The thermosetting resin is used as a binder for binding graphite powder having no self-sintering property, and an epoxy resin, a phenol resin, a mixed resin thereof, pitch, or the like is used. A phenol resin or pitch having a charcoal rate of 40% or more is used.
黒鉛粉末と熱硬化性樹脂との混合割合は、黒鉛粉末100重量部に対して熱硬化性樹脂15〜100重量部の割合に設定する。熱硬化性樹脂量が15重量部を下回ると強度が不足し、100重量部を超えると黒鉛質多孔体の黒鉛骨格部が緻密化して、微細気孔が形成され難くなる。 The mixing ratio of the graphite powder and the thermosetting resin is set to a ratio of 15 to 100 parts by weight of the thermosetting resin with respect to 100 parts by weight of the graphite powder. When the amount of the thermosetting resin is less than 15 parts by weight, the strength is insufficient, and when it exceeds 100 parts by weight, the graphite skeleton of the graphite porous body is densified and it is difficult to form fine pores.
黒鉛スラリーを調製するための分散媒は水あるいはアセトン、メチルエチルケトン、エタノール、メタノールなどの有機溶剤が用いられ、分散媒は黒鉛粉末100重量部に対して50〜300重量部の割合で混合して分散させる。 The dispersion medium for preparing the graphite slurry is water or an organic solvent such as acetone, methyl ethyl ketone, ethanol, and methanol. The dispersion medium is mixed and dispersed at a ratio of 50 to 300 parts by weight with respect to 100 parts by weight of the graphite powder. Let
分散剤は黒鉛スラリーの流動性および黒鉛粉末の分散安定性のために用いられ、焼成時あるいは黒鉛化時の焼失による強度低下を考慮して、黒鉛粉末に対して0.5〜5重量部の割合で添加する。分散剤には界面活性剤が用いられ、陰イオン性、非イオン性、陽イオン性界面活性剤いずれも用いることができる。なお、分散媒として水やケトン系溶媒を用いる場合はポリカルボン酸型高分子界面活性剤やポリオキシエチレン誘導体界面活性剤が好適である。 The dispersant is used for the flowability of the graphite slurry and the dispersion stability of the graphite powder. In consideration of a decrease in strength due to burning during firing or graphitization, 0.5 to 5 parts by weight of the graphite powder is used. Add in proportions. A surfactant is used as the dispersant, and any of anionic, nonionic, and cationic surfactants can be used. In the case where water or a ketone solvent is used as the dispersion medium, polycarboxylic acid type polymer surfactants and polyoxyethylene derivative surfactants are suitable.
黒鉛スラリーは、上記の黒鉛粉末、熱硬化性樹脂、分散媒、分散剤を所定の量比で、攪拌機、万能混合機、捏合機などで十分に撹拌混合することにより調製する。この際、空気を巻き込んだり気泡を発生するので、脱泡処理することが好ましい。 The graphite slurry is prepared by sufficiently stirring and mixing the above graphite powder, thermosetting resin, dispersion medium, and dispersing agent in a predetermined quantitative ratio with a stirrer, a universal mixer, a mixer, or the like. At this time, since air is entrained or bubbles are generated, it is preferable to perform defoaming treatment.
このようにして調製した黒鉛スラリーを用いて、本発明による黒鉛質多孔体の第1の製造方法は、粒径1〜6mmの球状造孔材を接着剤あるいは熱圧着などで球状造孔材同士を接合して所望形状のプリフォームを作製し、成形容器内にこのプリフォームを載置して、そこに黒鉛スラリーを注入してプリフォームの空隙内によく侵入させる。 Using the graphite slurry thus prepared, the first method for producing a porous graphite body according to the present invention is to use a spherical pore former having a particle size of 1 to 6 mm by using an adhesive or thermocompression bonding. Are joined together to produce a preform having a desired shape, and this preform is placed in a molding container, and graphite slurry is poured into the preform to invade well into the gap of the preform.
球状造孔材の材質はポリエチレン、ポリスチレン、ポリエステル、ナイロン、アクリルゴムなど熱可塑性であり、熱融着するとともに比較的低温で加熱揮散するものであれば適宜に使用可能であり、比較的低温低圧で加熱融着するとともに低温で熱揮散する発泡スチレンビーズが好適に用いられる。また、球状造孔材の粒度は製造する黒鉛質多孔体の気孔性状に影響するので、用途に応じて、1〜6mmの粒径範囲のものを適宜に混合して、粒度調整して用いられる。 The material of the spherical pore former is thermoplastic such as polyethylene, polystyrene, polyester, nylon, acrylic rubber, and can be used as long as it can be heat-sealed and heated and evaporated at a relatively low temperature. Foamed styrene beads that are heat-fused and thermally evaporate at a low temperature are preferably used. In addition, since the particle size of the spherical pore-forming material affects the porosity of the graphite porous body to be produced, it is used by appropriately adjusting the particle size within the range of 1 to 6 mm depending on the application. .
黒鉛スラリーをプリフォームに侵入させた後、自然乾燥、熱風乾燥、減圧乾燥など適宜な手段で分散媒を揮散除去した後、120〜200℃の温度で加熱して樹脂成分を硬化させ、次いで200〜250℃の温度に加熱して造孔材を揮散除去させることにより空孔が形成される。この場合、加熱して揮散除去する球状造孔材の粒径およびその分布を調整することにより、製造される黒鉛質多孔体の気孔性状を制御、調整することができる。 After allowing the graphite slurry to penetrate into the preform, the dispersion medium is volatilized and removed by an appropriate means such as natural drying, hot air drying, reduced pressure drying, etc., and then heated at a temperature of 120 to 200 ° C. to cure the resin component. Holes are formed by heating to a temperature of ˜250 ° C. to volatilize and remove the pore former. In this case, by adjusting the particle size and distribution of the spherical pore former that is volatilized and removed by heating, the porosity property of the produced graphite porous body can be controlled and adjusted.
球状造孔材を揮散除去した後、非酸化性雰囲気中で800℃以上の温度で加熱処理して樹脂成分を焼成炭化し、あるいは更に3000℃程度の温度にまで加熱処理して黒鉛化することにより、黒鉛質多孔体を製造することができる。この製造プロセスにおいて、黒鉛粉末と熱硬化性樹脂との混合割合、プリフォームを形成する球状造孔材の粒度その体積割合などを設定することにより、開気孔率や開気孔径が制御された開気孔が三次元的に貫通した気孔性状を有する黒鉛質多孔体が製造される。 After volatilizing and removing the spherical pore former, the resin component is calcined by heating at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere, or is further graphitized by heating to a temperature of about 3000 ° C. Thus, a graphite porous body can be produced. In this manufacturing process, by setting the mixing ratio of the graphite powder and the thermosetting resin, the particle size and volume ratio of the spherical pore former forming the preform, the open porosity and the open pore diameter are controlled. A graphite porous body having a pore property in which pores penetrate three-dimensionally is produced.
本発明による黒鉛質多孔体の第2の製造方法は、上記の方法で調製した黒鉛スラリー中に粒径1〜6mmの球状造孔材を体積混合割合を調節して添加混合し、この黒鉛スラリーを石膏型内に注入し、軽く圧縮して、スラリーから分散媒を石膏型に吸収および排出除去する。この圧縮により球状造孔材同士を密着させることができる The second method for producing a porous graphite material according to the present invention is to add and mix a spherical pore former having a particle size of 1 to 6 mm in the graphite slurry prepared by the above method while adjusting the volume mixing ratio. Is poured into a gypsum mold and lightly compressed to absorb and discharge the dispersion medium from the slurry into the gypsum mold. The spherical pore former can be brought into close contact with each other by this compression.
成形後、石膏型から取り出した成形体を更に乾燥して分散媒を揮散した後、第1の製造方法と同じ方法で樹脂成分を硬化し、加熱して造孔材を揮散して空孔を形成したのち、焼成炭化し、更に黒鉛化することにより黒鉛質多孔体が製造される。 After molding, the molded body taken out from the gypsum mold is further dried to volatilize the dispersion medium, and then the resin component is cured by the same method as in the first manufacturing method, and heated to volatilize the pore former to remove the pores. After forming, it is calcined and further graphitized to produce a porous graphite body.
以下、本発明の実施例を比較例と対比して具体的に説明するが、本発明はこの実施例に何ら制約されるものではない。 Hereinafter, although the Example of this invention is described concretely compared with a comparative example, this invention is not restrict | limited to this Example at all.
実施例1
黒鉛粉末として、等方性黒鉛を粉砕した後粒度調整して、平均粒径50μmの黒鉛粉末70重量部、平均粒径7μmの黒鉛粉末10重量部、平均粒径4μmの黒鉛粉末20重量部の黒鉛粉末を作製した。この黒鉛粉末100重量部とレゾールタイプのフェノール樹脂粉末25重量部を、分散媒として水70重量部、分散剤にノニオン系界面活性剤2重量部を混合して作製した分散液に入れて撹拌し、超音波分散機により十分に撹拌混合して分散させた。その後、減圧脱泡処理して分散時に巻き込んだ気泡を脱気して、黒鉛スラリーを調製した。
Example 1
As the graphite powder, isotropic graphite was pulverized and then the particle size was adjusted to obtain 70 parts by weight of graphite powder having an average particle diameter of 50 μm, 10 parts by weight of graphite powder having an average particle diameter of 7 μm, and 20 parts by weight of graphite powder having an average particle diameter of 4 μm. A graphite powder was prepared. 100 parts by weight of this graphite powder and 25 parts by weight of a resol type phenol resin powder are placed in a dispersion prepared by mixing 70 parts by weight of water as a dispersion medium and 2 parts by weight of a nonionic surfactant in a dispersant, and stirred. The mixture was sufficiently stirred and mixed with an ultrasonic disperser. Thereafter, the degassing treatment under reduced pressure was performed to degas the bubbles entrained during dispersion to prepare a graphite slurry.
粒径3〜5mmの球状ポリスチレン発泡ビーズをφ50mm、高さ100mmのプラスチック成形容器内に50mmの高さになるようにタップ充填し、その上から軽く荷重を掛けて20vol%圧縮した。この圧縮体を110℃の乾燥炉中で1分間加熱して、ポリスチレンを融着させて、プリフォームを作製した。 A spherical polystyrene foam bead having a particle diameter of 3 to 5 mm was tap-filled into a plastic molded container having a diameter of 50 mm and a height of 100 mm so as to have a height of 50 mm, and a light load was applied from above to compress it by 20 vol%. This compressed body was heated in a drying furnace at 110 ° C. for 1 minute to fuse the polystyrene, thereby producing a preform.
このプリフォームを載置した成形容器内に黒鉛スラリーを注入して、プリフォームの空隙にスラリーを十分かつ均等に侵入させた後、50℃で1日乾燥した。次いで、150℃で2時間熱処理して樹脂分を硬化した後、250℃のオーブンに入れて30分間熱処理してポリスチレンビーズを揮散除去して空孔を形成させ、3〜5mm、平均4mmの開気孔を形成した。その後。窒素ガス雰囲気に保持した焼成炉に入れて1000℃の温度で焼成炭化して黒鉛質多孔体を製造した。 A graphite slurry was poured into a molding container on which this preform was placed, and the slurry was sufficiently and evenly infiltrated into the gaps of the preform, followed by drying at 50 ° C. for one day. Next, the resin was cured by heat treatment at 150 ° C. for 2 hours, and then placed in an oven at 250 ° C. for 30 minutes to volatilize and remove the polystyrene beads to form pores. A pore was formed. afterwards. The graphite porous body was produced by placing in a firing furnace maintained in a nitrogen gas atmosphere and firing and carbonizing at a temperature of 1000 ° C.
実施例2
実施例1と同じ方法で調製した黒鉛スラリーに、粒径3〜5mmの球状ポリスチレン発泡ビーズをバルク成形体の体積に対し4倍量の体積比で加えて混合し、φ50mm、高さ100mmの石膏型に流し込み、圧縮荷重を掛けた状態で50℃の温度で1日乾燥した。その後、石膏型から乾燥した成形体を取り出し、実施例1と同じ方法により樹脂成分の硬化、ポリスチレンビーズを揮散除去して空孔の形成、焼成炭化して黒鉛質多孔体を製造した。
Example 2
The graphite slurry prepared by the same method as in Example 1 was mixed with spherical polystyrene foam beads having a particle diameter of 3 to 5 mm in a volume ratio of 4 times the volume of the bulk molded product, and mixed with gypsum having a diameter of 50 mm and a height of 100 mm. It was poured into a mold and dried at a temperature of 50 ° C. for 1 day under a compression load. Thereafter, the dried molded body was taken out from the gypsum mold, and the resin component was cured and the polystyrene beads were volatilized and removed by the same method as in Example 1 to form pores and calcined to produce a graphite porous body.
実施例3
実施例1において、黒鉛粉末100重量部をアミン系シランカップリング剤1重量部をエタノールに溶解した溶液中に分散させ、濾過、乾燥してエタノールを除去した後、温度120℃で乾燥してアミン系シランカップリング剤で表面処理(コーティング)した黒鉛粉末を使用した他は、実施例1と同じ方法により黒鉛質多孔体を製造した。
Example 3
In Example 1, 100 parts by weight of graphite powder was dispersed in a solution in which 1 part by weight of an amine-based silane coupling agent was dissolved in ethanol, filtered and dried to remove ethanol, and then dried at a temperature of 120 ° C. to give an amine. A graphite porous body was produced by the same method as in Example 1 except that graphite powder surface-treated (coated) with a silane coupling agent was used.
比較例1、2
実施例1において、黒鉛スラリー中の樹脂量を10重量部(比較例1)、120重量部(比較例2)とした他は、実施例1と同じ方法で黒鉛質多孔体を製造した。
Comparative Examples 1 and 2
In Example 1, a graphite porous body was produced in the same manner as in Example 1 except that the amount of resin in the graphite slurry was 10 parts by weight (Comparative Example 1) and 120 parts by weight (Comparative Example 2).
比較例3
実施例2において、球状ポリスチレン発泡ビーズに代えて、0.2〜0.8mmの粒度に破砕したポリスチレンを使用して黒鉛スラリーに添加混合した。この際、添加量は55%までしか混合できなかった。以後、実施例2と同じ方法で黒鉛質多孔体を製造した。
Comparative Example 3
In Example 2, instead of the spherical polystyrene foam beads, polystyrene crushed to a particle size of 0.2 to 0.8 mm was used and added to the graphite slurry. At this time, the addition amount could only be mixed up to 55%. Thereafter, a graphite porous body was produced in the same manner as in Example 2.
これらの黒鉛質多孔体について、圧縮強度、開気孔率、および開気孔の気孔径(開気孔径)を測定した。また、黒鉛質多孔体の骨格部になる黒鉛の密度、気孔径、気孔率を測定した。得られた結果を表1に示した。 About these graphite porous bodies, the compressive strength, the open porosity, and the pore diameter ( open pore diameter ) of the open pores were measured. Further, the density, pore diameter, and porosity of the graphite serving as the skeleton part of the graphite porous body were measured . The obtained results are shown in Table 1.
実施例1〜3の黒鉛質多孔体は圧縮強度が高く、開気孔率および開気孔径の気孔性状も良好で開気孔率が高く、気孔径の大きい開気孔が三次元的に貫通した構造を備えており、また骨格部の黒鉛も微細気孔を有しており、無給油ベアリングなどの摺動材、空気清浄や水質浄化などのフィルター、触媒担体などとして好適に利用可能である。 The graphite porous bodies of Examples 1 to 3 have a high compressive strength, a favorable open pore ratio and open pore diameter, a high open porosity, and a structure in which large open pores are three-dimensionally penetrated. The graphite of the skeleton part also has fine pores, and can be suitably used as a sliding material such as an oil-free bearing, a filter for air purification or water purification, a catalyst carrier, and the like.
また、実施例3は黒鉛粉末がアミン系シランカップリング剤でコーティングされているので、樹脂との濡れ性が向上し、圧縮強度の向上が認められた。 In Example 3, the graphite powder was coated with an amine-based silane coupling agent, so that the wettability with the resin was improved and the compression strength was improved.
これに対し、比較例1は樹脂量が10重量部と少ないために黒鉛質多孔体が脆く、著しく圧縮強度が低かった。一方、比較例2では樹脂量が120重量部と多いために開気孔径が小さく、また骨格部の気孔が少なく摺動材として使用できるものではなかった。比較例3は造孔材が不定形であり、黒鉛スラリー中に多く添加することができず、開気孔率、開気孔径とも小さかった。 On the other hand, in Comparative Example 1, since the resin amount was as small as 10 parts by weight, the graphite porous body was brittle and the compressive strength was remarkably low. On the other hand, in Comparative Example 2, since the amount of resin was as large as 120 parts by weight, the open pore diameter was small, and the pores in the skeleton portion were few and could not be used as a sliding material. In Comparative Example 3, the pore former was indefinite, and could not be added in a large amount to the graphite slurry, and both the open porosity and the open pore diameter were small.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006180706A JP5071837B2 (en) | 2006-06-30 | 2006-06-30 | Method for producing graphite porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006180706A JP5071837B2 (en) | 2006-06-30 | 2006-06-30 | Method for producing graphite porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008007380A JP2008007380A (en) | 2008-01-17 |
JP5071837B2 true JP5071837B2 (en) | 2012-11-14 |
Family
ID=39065907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006180706A Expired - Fee Related JP5071837B2 (en) | 2006-06-30 | 2006-06-30 | Method for producing graphite porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5071837B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7966743B2 (en) * | 2007-07-31 | 2011-06-28 | Eastman Kodak Company | Micro-structured drying for inkjet printers |
US10155914B2 (en) * | 2011-02-08 | 2018-12-18 | Eugene Kverel | Solid lubricant |
KR101952581B1 (en) * | 2018-11-21 | 2019-02-27 | 한양대학교 산학협력단 | Method of fabricating porous structure |
CN115449123B (en) * | 2022-09-16 | 2023-06-06 | 吉林大学 | High-heat-conductivity carbon-based porous skeleton with microstructure surface and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3739819B2 (en) * | 1994-08-23 | 2006-01-25 | 東海カーボン株式会社 | Method for producing porous carbon material |
JP4868702B2 (en) * | 2003-10-17 | 2012-02-01 | イビデン株式会社 | Humidifying member for polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell |
JP2005270048A (en) * | 2004-03-26 | 2005-10-06 | Nagao Kk | Carrier for microorganism and method for producing the same |
JP4849824B2 (en) * | 2004-05-17 | 2012-01-11 | イビデン株式会社 | Hydrophilic porous material, method for producing hydrophilic porous material, humidifying member for polymer electrolyte fuel cell, and separator for polymer electrolyte fuel cell |
-
2006
- 2006-06-30 JP JP2006180706A patent/JP5071837B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008007380A (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999128B2 (en) | Method for producing porous body | |
KR101240112B1 (en) | Carbon fiber structured body and method for manufacturing the same | |
CN106589821B (en) | A kind of preparation method of porous mullite ceramics/epoxy resin composite material | |
JP2009525249A (en) | Impregnated ceramic foam made of recrystallized silicon carbide | |
CN115286408B (en) | Method for preparing silicon carbide composite material part through laser 3D printing based on particle grading composite technology | |
JP5662078B2 (en) | C / C composite material molded body and method for producing the same | |
US11345598B2 (en) | Method for pore stabilized carbon foam | |
EP2415735A2 (en) | Carbon fiber-reinforced carbon composite material and method for manufacturing the same | |
JP5071837B2 (en) | Method for producing graphite porous body | |
JP2007172956A (en) | Separator member for polymer electrolyte fuel cell and its manufacturing method | |
JP5068218B2 (en) | Carbon fiber reinforced silicon carbide composite material and method for producing the same | |
KR101956683B1 (en) | Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler | |
JP2011093758A (en) | Carbonaceous material | |
JPS63252981A (en) | Ceramic-macromolecule composite formed article and manufacture | |
RU2208000C1 (en) | Composite manufacture process | |
JP4192145B2 (en) | Process for producing reaction bonded silicon carbide | |
JPH06183835A (en) | Production of preform body for staple fiber-reinforced c/c composite and preform body production by the same method | |
JP2008044822A (en) | Method of manufacturing porous glassy carbon material and porous glassy carbon material | |
JPH0416331A (en) | Manufacture of screw member | |
JPS63967A (en) | Manufacture of electrode base plate for fuel cell | |
WO2020027869A2 (en) | Method to produce polymer matrix composites | |
JP3404498B2 (en) | Method for producing short fiber reinforced C / C composite | |
JP2004358431A (en) | Porous structure body, filter, and production method of porous structure body | |
JP2013087367A (en) | Method for producing c/c composite material | |
JPH06135770A (en) | Carbonaceous preformed body, its production and production of electrode substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120810 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |