JPS63252981A - Ceramic-macromolecule composite formed article and manufacture - Google Patents

Ceramic-macromolecule composite formed article and manufacture

Info

Publication number
JPS63252981A
JPS63252981A JP8459487A JP8459487A JPS63252981A JP S63252981 A JPS63252981 A JP S63252981A JP 8459487 A JP8459487 A JP 8459487A JP 8459487 A JP8459487 A JP 8459487A JP S63252981 A JPS63252981 A JP S63252981A
Authority
JP
Japan
Prior art keywords
ceramic
resin
polymer composite
composite molded
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8459487A
Other languages
Japanese (ja)
Inventor
三木 恭輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP8459487A priority Critical patent/JPS63252981A/en
Publication of JPS63252981A publication Critical patent/JPS63252981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、剛性が高く、しかも強靭なセラミックス−高
分子複合成形品とその製造方法に関するものである。更
に詳しくは、セラミックスと樹脂とが相互に侵入した置
網目構造を形成し、剛性と靭性に優れたセラミックス−
高分子複合成形品とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly rigid and strong ceramic-polymer composite molded product and a method for manufacturing the same. More specifically, ceramics and resin form a network structure in which they interpenetrate, and have excellent rigidity and toughness.
This article relates to a polymer composite molded article and its manufacturing method.

〔従  来  技  術〕[Subject skill]

セラミックスは、強固な化学結合で構成原子間が結合さ
れている為、剛性に優れ、耐熱性、耐化学環境性、寸法
安定性等に優れている。しかし、セラミックス材料には
、脆いという大きな欠点があり、その脆性を改善するた
めに多くの努力がなされてきた。
Ceramics have strong chemical bonds between their constituent atoms, so they have excellent rigidity, heat resistance, chemical environment resistance, and dimensional stability. However, ceramic materials have a major drawback of being brittle, and many efforts have been made to improve this brittleness.

一方、高分子材料は、分子内は共有結合によって連結し
ているが、分子間が主としてフォノ・デア・ヴアールス
結合によって結ばれている為、本質的に分子間力が弱く
、柔軟性があり、靭性には優れているが、耐熱性、剛性
、寸法安定性に劣るという大きな欠点がある。高分子材
料のこのような欠点を補う為に、高分子マトリックス中
にセラミックス粉体、セラミックス繊維、炭素繊維等を
分散させるという手段が広く行われているが、柔かい高
分子の海に硬いセラミックスの島が浮ぶという構造では
、補強効果に限界がある。ガラスクロス、カーボン繊維
のクロスに高分子材料を含浸し、固化させるという手段
も広く行われているが、成形体の形状等が限定される。
On the other hand, polymeric materials have intramolecular connections through covalent bonds, but intermolecular connections are primarily through phono der Waals bonds, so intermolecular forces are essentially weak and they are flexible. Although it has excellent toughness, it has major drawbacks such as inferior heat resistance, rigidity, and dimensional stability. To compensate for these drawbacks of polymer materials, dispersing ceramic powder, ceramic fibers, carbon fibers, etc. in a polymer matrix is widely used. A structure in which the islands float has a limit to its reinforcing effect. A method of impregnating glass cloth or carbon fiber cloth with a polymeric material and solidifying it is also widely used, but there are limitations on the shape of the molded article and the like.

セラミックスの優れた性能を出来る限り保持しつつ、し
かもセラミックスの欠点である脆性を向上することが出
来れば、セラミックスの利用範囲をさらに拡大すること
が出来る。
If the excellent performance of ceramics can be maintained as much as possible and the brittleness, which is a drawback of ceramics, can be improved, the range of use of ceramics can be further expanded.

その為、セラミックスと高分子のむ)体とを予め混合し
ておいて、混合体を成形し焼結するという手法が考えら
れるが、セラミックスの焼結温度域では殆ど総ての高分
子材料は分解してしまう為、実際には、このような成形
は不可能である。
Therefore, a method that can be considered is to mix ceramics and a body containing a polymer in advance, mold the mixture, and sinter it, but in the sintering temperature range of ceramics, almost all polymer materials In reality, such molding is impossible because it would decompose.

〔発明の目的〕[Purpose of the invention]

本発明は、従来、得ることのできなかったセラミックス
の優れた剛性、寸法安定性と高分子材料の強靭性とを兼
ね備えた複合材料を得んとして研究した結果、セラミッ
クス多孔体に樹脂を含浸し、硬化させることにより、セ
ラミックスの靭性が改善されるとの知見を得、更にこの
知見に基づき研究を進めて、本発明を完成させるに至っ
たものである0本発明の目的は、剛性、寸法安定性に優
れ、かつ軽量で、靭性の著しく優れたセラミックス−高
分子複合成形物を提供することにある。
The present invention was developed as a result of research aimed at creating a composite material that combines the excellent rigidity and dimensional stability of ceramics and the toughness of polymer materials, which could not be obtained in the past. We obtained the knowledge that the toughness of ceramics can be improved by hardening, and based on this knowledge, we proceeded with research and completed the present invention.The purpose of the present invention is to improve rigidity, dimension It is an object of the present invention to provide a ceramic-polymer composite molded product which is excellent in stability, lightweight, and has extremely excellent toughness.

〔発明の構成〕[Structure of the invention]

本発明のセラミックス−高分子複合成形品は、多孔性セ
ラミ−/クスの空孔、空隙内が高分子材料によって含浸
・充填されており、セラミックスと高分子材料とが相互
に侵入した擬網目構造を形成していることを特徴とする
The ceramic-polymer composite molded article of the present invention has a pseudo-network structure in which the pores and voids of porous ceramic/gloss are impregnated and filled with a polymer material, and the ceramic and polymer material interpenetrate. It is characterized by forming a

本発明のセラミックス−高分子複合成形品の製造方法は
、セラミックス多孔体成形物に樹脂、樹脂モノマー、未
反応樹脂又はそれらの溶液を含浸し、次いで、乾燥、重
合あるいは硬化させることを特徴としている。セラミッ
クス多孔体の成形法としては、セラミックス粉体、プラ
スチック粒子、分散剤から成る組成物を混練混合し、成
形型内へ鋳込んで成形し、乾燥後、さらにプラスチック
粒子の分散温度以上の温度でセラミックス粉体の最適焼
結温度まで加熱して、焼成するのが好ましい。
The method for producing a ceramic-polymer composite molded article of the present invention is characterized by impregnating a porous ceramic molded article with a resin, a resin monomer, an unreacted resin, or a solution thereof, and then drying, polymerizing, or hardening it. . The method for forming porous ceramic bodies involves kneading and mixing a composition consisting of ceramic powder, plastic particles, and a dispersant, casting it into a mold, forming it, drying it, and then heating it at a temperature higher than the dispersion temperature of the plastic particles. It is preferable to heat and fire the ceramic powder to the optimum sintering temperature.

セラミックス粉体に混ぜるプラスチック粒子の大きさと
形状及び含有量を選ぶことによってセラミックス多孔体
の空孔の形状、寸法及び空隙率を制御することが出来る
By selecting the size, shape, and content of the plastic particles mixed with the ceramic powder, the shape, size, and porosity of the pores in the porous ceramic body can be controlled.

セラミックス粉体として、アルミナ、ジルコニア、コー
ジライト等が好ましい、アルミナ−ジルコニア焼結体で
は、アルミナ/ジルコニアの配合比率を変えることによ
り、剛性と靭性との調節が可能である。
As the ceramic powder, alumina, zirconia, cordierite, etc. are preferable. In an alumina-zirconia sintered body, the rigidity and toughness can be adjusted by changing the alumina/zirconia blending ratio.

プラスチック粒子の材質は特に限定しないが、球状で粒
径の一様毫プラスチック粒子を得る為、乳化重合法で合
成した熱可塑性樹脂あるいは熱硬化性樹脂の粒子が好ま
しい。
The material of the plastic particles is not particularly limited, but particles of thermoplastic resin or thermosetting resin synthesized by emulsion polymerization are preferred in order to obtain spherical plastic particles of uniform particle size.

プラスチック粒子の大きさによってセラミックス多孔体
の空孔の大きさが決定されるが、プラスチック粒子の直
径として、1μm乃至100μmの寸法の粒子が好まし
い。セラミックス粉体に混合するプラスチック粒子の混
合量は容量比率で10%乃至90%、特に20%乃至8
0%の範囲内が好ましい。
Although the size of the pores in the ceramic porous body is determined by the size of the plastic particles, the diameter of the plastic particles is preferably 1 μm to 100 μm. The amount of plastic particles to be mixed with the ceramic powder is 10% to 90%, especially 20% to 8% by volume.
It is preferably within the range of 0%.

この範囲内のプラスチック粒子の寸法と混合比率を選ぶ
ことによって、樹脂の含浸が容易になり、剛性、寸法安
定性と靭性とのバランスの取れたセラミックス−高分子
複合成形品を得ることが出来る。
By selecting the size and mixing ratio of the plastic particles within this range, resin impregnation becomes easy and a ceramic-polymer composite molded article with a good balance of rigidity, dimensional stability, and toughness can be obtained.

セラミックス多孔体に含浸する樹脂は、熱可塑性樹脂の
場合、高分子溶液乃至はモノマーの形で含浸させ、含浸
後に乾燥固化あるいは重合させる。
When the resin to be impregnated into the ceramic porous body is a thermoplastic resin, it is impregnated in the form of a polymer solution or a monomer, and after the impregnation, it is dried and solidified or polymerized.

熱硬化性樹脂の場合、未反応樹脂を含浸させ、含浸後に
加熱硬化させる。
In the case of a thermosetting resin, the unreacted resin is impregnated, and after the impregnation, the resin is heated and cured.

樹脂の含浸性を良くして、欠陥を少なくし、十分に空隙
の末端にまで樹脂を含浸させる為、セラミックス多孔体
を真空で吸引し、次いで樹脂を加圧含浸させるものが好
ましい、セラミックス多孔体と含浸させる樹脂との親和
性を良くする為、セラミックス多孔体を予め、溶媒蒸気
あるいは水蒸気雰囲気中に入れる等の前処理をしておく
のが好ましい。セラミックス多孔体と樹脂との接着性を
良くスル為、セラミックス多孔体を予め、シラン系カッ
プリング剤等で処理しておくことが好ましい。
In order to improve resin impregnation, reduce defects, and sufficiently impregnate the ends of voids with resin, it is preferable to vacuum the porous ceramic body and then impregnate the resin under pressure. In order to improve the affinity between the porous ceramic body and the resin to be impregnated, it is preferable to pre-treat the porous ceramic body by placing it in a solvent vapor or water vapor atmosphere. In order to improve the adhesion between the porous ceramic body and the resin, it is preferable to treat the porous ceramic body with a silane coupling agent or the like in advance.

含浸させる樹脂としては、フェノール樹脂、エポキシ樹
脂、イミド樹脂等の熱硬化性樹脂が好ましい、これらの
樹脂を含浸し、加熱硬化させることによって、セラミッ
クスと樹脂とが相互に侵入した擬網目構造体を形成する
ことができる。
The resin to be impregnated is preferably a thermosetting resin such as a phenol resin, an epoxy resin, or an imide resin. By impregnating these resins and curing them by heating, a pseudo-network structure in which ceramics and resin interpenetrate can be formed. can be formed.

板状に成形したセラミックス多孔体に熱硬化性樹脂を含
浸させた後、複数枚を積層して、プレスして加熱硬化さ
せることにより、積層体が成形可能である。勿論、表面
に銅箔等を挿入することによって、金属箔とのMI層体
を容易にプレス成形することが出来る。
A laminate can be formed by impregnating a porous ceramic body molded into a plate shape with a thermosetting resin, then laminating a plurality of sheets, pressing them, and heating and hardening them. Of course, by inserting copper foil or the like into the surface, an MI layer with metal foil can be easily press-molded.

〔発明の効果〕〔Effect of the invention〕

本発明のセラミックス−高分子複合成形品は、剛性、耐
熱性、強靭性、寸法安定性に優れており、熱膨張率が小
さく、長期信頼性が高い。セラミックス成形品に比べて
比重が小さく、軽量であり、組合わせによって高い熱伝
導性から低い熱伝導性まで幅広く調節可能である。接着
性に優れており、積層化、多層化が可能である。靭性の
改良により、成形品の機械加工が可能となった。本発明
のセラミックス−高分子複合成形品は、回路基板等の電
子材料、耐久性を必要とする自動車部品材料等に使用す
ることが出来る。
The ceramic-polymer composite molded article of the present invention has excellent rigidity, heat resistance, toughness, and dimensional stability, has a small coefficient of thermal expansion, and has high long-term reliability. It has a lower specific gravity and is lighter than ceramic molded products, and its thermal conductivity can be adjusted over a wide range from high to low thermal conductivity depending on the combination. It has excellent adhesive properties and can be laminated or multilayered. Improved toughness allows molded parts to be machined. The ceramic-polymer composite molded product of the present invention can be used for electronic materials such as circuit boards, automobile parts materials that require durability, and the like.

〔実  施  例〕〔Example〕

アルミナ(ALCOA社製 A−163G)100重量
部に対して、平均直径10〜20μmのベンゾグアナミ
ン樹脂球型粒子(日本触媒化学工業(+2)社製 エポ
スターL)  loOmffi部と分散剤(中東油脂製
 セルナD−305)1.0重量部を加えて、ボットミ
ルで混合した。これを脱気した後、石膏型へ鋳込み、板
状に成形した。乾燥した成形体を電気炉に入れ、150
0℃で3時間、加熱焼成し、多孔性焼結体を作成した。
100 parts by weight of alumina (A-163G, manufactured by ALCOA), benzoguanamine resin spherical particles with an average diameter of 10 to 20 μm (Epostor L, manufactured by Nippon Shokubai Chemical Co., Ltd.) loOmffi part and a dispersant (Celna, manufactured by Middle East Yushi) D-305) 1.0 part by weight was added and mixed in a bot mill. After degassing this, it was cast into a plaster mold and formed into a plate shape. Place the dried molded body in an electric furnace and heat it for 150 minutes.
A porous sintered body was created by heating and firing at 0°C for 3 hours.

このアルミナ多孔体の板状成形品(50■−X5Qmm
 X 2as厚)を真空脱気し、次いで、エポキシ樹脂
(シェル社 エピコート815)を加圧含浸し、加熱硬
化させた。
A plate-shaped molded product of this porous alumina material (50mm-X5Qmm
X 2as thick) was vacuum degassed, then impregnated with an epoxy resin (Epicoat 815, manufactured by Shell Co., Ltd.) under pressure, and cured by heating.

樹脂を含浸し、硬化させたアルミナ−エポキシ樹脂複合
成形品は剛性が高く、シかも靭性があり、機械加工が可
能である。この成形品の切断面を走査型電子顕微鏡で観
察すると、アルミナ多孔体の空孔、空隙部はエポキシ樹
脂で充たされており、アルミナ網目とエポキシ樹脂網目
とが相互に侵入した擬網目状構造を形成していることが
分かった。
Alumina-epoxy resin composite molded products impregnated with resin and cured have high rigidity and toughness, and can be machined. When the cut surface of this molded product was observed with a scanning electron microscope, the pores and voids of the porous alumina material were filled with epoxy resin, and a pseudo-network structure was found in which the alumina network and the epoxy resin network interpenetrated with each other. was found to form.

Claims (7)

【特許請求の範囲】[Claims] (1)多孔性セラミックスの空孔、空隙内が高分子材料
によって含浸・充填されており、セラミックスと高分子
材料とが相互に侵入した擬網目状構造を形成しているこ
とを特徴とするセラミックス−高分子複合成形品。
(1) A ceramic characterized in that the pores and voids of the porous ceramic are impregnated and filled with a polymeric material, forming a pseudo-network structure in which the ceramic and the polymeric material interpenetrate with each other. -Polymer composite molded products.
(2)セラミックス多孔体成形物に樹脂、樹脂モノマー
、未反応樹脂又はそれらの溶液を含浸し、次いで、乾燥
、重合あるいは硬化させることを特徴とするセラミック
ス−高分子複合成形品の製造方法。
(2) A method for producing a ceramic-polymer composite molded article, which comprises impregnating a porous ceramic molded article with a resin, a resin monomer, an unreacted resin, or a solution thereof, and then drying, polymerizing, or hardening it.
(3)少なくともセラミックス粉体、プラスチック粒子
、分散剤から成る組成物を混練混合し、成形型内へ鋳込
んで成形し、乾燥後、さらにプラスチック粒子の分解温
度以上の温度で、セラミックス粉体の最適焼結温度域ま
で加熱して焼成し、セラミックス多孔体成形物を成形せ
しめ、これを冷却後、樹脂、樹脂モノマー、未反応樹脂
又はそれらの溶液を該セラミックス多孔体に含浸し、次
いで、乾燥、重合あるいは硬化させることを特徴とする
セラミックス−高分子複合成形品の製造方法。
(3) A composition consisting of at least ceramic powder, plastic particles, and a dispersant is kneaded and mixed, cast into a mold and molded, and after drying, the ceramic powder is further heated at a temperature higher than the decomposition temperature of the plastic particles. The porous ceramic body is heated and fired to the optimum sintering temperature range to form a molded porous ceramic body. After cooling, the porous ceramic body is impregnated with a resin, a resin monomer, an unreacted resin, or a solution thereof, and then dried. A method for producing a ceramic-polymer composite molded product, which comprises polymerizing or curing the product.
(4)セラミックス粉体がアルミナである、特許請求の
範囲第3項記載のセラミックス−高分子複合成形品の製
造方法。
(4) The method for producing a ceramic-polymer composite molded article according to claim 3, wherein the ceramic powder is alumina.
(5)プラスチック粒子が、直径1μm乃至100μm
の球型粒子であることを特徴とする特許請求の範囲第3
項又は第4項記載のセラミックス−高分子複合成形品の
製造方法。
(5) Plastic particles have a diameter of 1 μm to 100 μm
Claim 3, characterized in that the particles are spherical particles.
A method for producing a ceramic-polymer composite molded article according to item 1 or 4.
(6)セラミックス多孔体に含浸させる未反応樹脂が熱
硬化性樹脂である特許請求の範囲第2項、第3項、第4
項又は第5項記載のセラミックス−高分子複合成形品の
製造方法。
(6) Claims 2, 3, and 4, wherein the unreacted resin impregnated into the porous ceramic body is a thermosetting resin.
5. A method for producing a ceramic-polymer composite molded article according to item 5.
(7)熱硬化性樹脂がフェノール樹脂、エポキシ樹脂乃
至はポリイミド樹脂である特許請求の範囲第6項記載の
セラミックス−高分子複合成形品の製造方法。
(7) The method for producing a ceramic-polymer composite molded article according to claim 6, wherein the thermosetting resin is a phenol resin, an epoxy resin, or a polyimide resin.
JP8459487A 1987-04-08 1987-04-08 Ceramic-macromolecule composite formed article and manufacture Pending JPS63252981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8459487A JPS63252981A (en) 1987-04-08 1987-04-08 Ceramic-macromolecule composite formed article and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8459487A JPS63252981A (en) 1987-04-08 1987-04-08 Ceramic-macromolecule composite formed article and manufacture

Publications (1)

Publication Number Publication Date
JPS63252981A true JPS63252981A (en) 1988-10-20

Family

ID=13835008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8459487A Pending JPS63252981A (en) 1987-04-08 1987-04-08 Ceramic-macromolecule composite formed article and manufacture

Country Status (1)

Country Link
JP (1) JPS63252981A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724044A1 (en) * 1994-08-30 1996-03-01 Thomson Csf PROCESS FOR THE PROTECTION OF POROUS COMPONENTS SUBJECT TO HIGH POTENTIAL DIFFERENCES AND COMPONENTS THUS PRODUCED
EP0701808A3 (en) * 1994-09-19 1996-06-12 Univ Boston Infused ceramic network for fabricating odontoforms and dental restorations
US6159417A (en) * 1994-09-19 2000-12-12 Trustees Of Boston University Method for fabricating ceramic network material
WO2001010794A1 (en) * 1999-08-04 2001-02-15 Inax Corporation Method for production of ceramic product and ceramic product
JP2004270927A (en) * 2003-02-18 2004-09-30 Inax Corp Vibration control member and its manufacturing method
JP2012501783A (en) * 2008-09-12 2012-01-26 ミッシェル サドゥン Composite ceramic block
JPWO2017221932A1 (en) * 2016-06-23 2019-06-06 アダマンド並木精密宝石株式会社 Ceramic composite and method of manufacturing the same
US11364181B2 (en) 2017-05-19 2022-06-21 Sun Medical Co., Ltd. Inorganic-organic composite medical material and method for producing inorganic-organic composite medical material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2724044A1 (en) * 1994-08-30 1996-03-01 Thomson Csf PROCESS FOR THE PROTECTION OF POROUS COMPONENTS SUBJECT TO HIGH POTENTIAL DIFFERENCES AND COMPONENTS THUS PRODUCED
EP0700058A1 (en) * 1994-08-30 1996-03-06 Thomson-Csf Process for protection of porous components submitted to high potential differences and components manufactured by this process
WO2004075215A1 (en) * 1994-08-30 2004-09-02 Jean-Pierre Delvinquier Method for protection of porous components subject to high potential differences and components produced thus
US6271282B1 (en) 1994-09-19 2001-08-07 Trustees Of Boston University Method for fabricating endodontic orthodontic and direct restorations having infused ceramic network
US6159417A (en) * 1994-09-19 2000-12-12 Trustees Of Boston University Method for fabricating ceramic network material
US5843348A (en) * 1994-09-19 1998-12-01 Trustees Of Boston University Method for fabricating odontoforms and dental restorations having infused ceramic network
EP0701808A3 (en) * 1994-09-19 1996-06-12 Univ Boston Infused ceramic network for fabricating odontoforms and dental restorations
WO2001010794A1 (en) * 1999-08-04 2001-02-15 Inax Corporation Method for production of ceramic product and ceramic product
US6713130B1 (en) 1999-08-04 2004-03-30 Inax Corporation Method to produce a ceramic product having controlled modules of elasticity and internal friction characteristics
JP2004270927A (en) * 2003-02-18 2004-09-30 Inax Corp Vibration control member and its manufacturing method
JP2012501783A (en) * 2008-09-12 2012-01-26 ミッシェル サドゥン Composite ceramic block
US8507578B2 (en) 2008-09-12 2013-08-13 Michael Sadoun Composite ceramic block
JPWO2017221932A1 (en) * 2016-06-23 2019-06-06 アダマンド並木精密宝石株式会社 Ceramic composite and method of manufacturing the same
US11364181B2 (en) 2017-05-19 2022-06-21 Sun Medical Co., Ltd. Inorganic-organic composite medical material and method for producing inorganic-organic composite medical material

Similar Documents

Publication Publication Date Title
US8048544B2 (en) Ceramics made of preceramic paper or board structures, method of producing the same and use thereof
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
US5902756A (en) Ceramic matrix composites with integrated topcoat layers
US7166550B2 (en) Ceramic composite body of silicon carbide/boron nitride/carbon
GB2053873A (en) High temperature thermal insulation material and method for making same
JPS63252981A (en) Ceramic-macromolecule composite formed article and manufacture
CA1158259A (en) Composite material of silicon carbide and silicon and methods of producing
JPS6226886A (en) Substrate for electronic circuit comprising ceramic composite
US6517756B1 (en) Method for manufacturing bodies containing reinforcing fibers
US5248705A (en) Method of forming a porous carbonaceous preform from water-based slurry
US5238619A (en) Method of forming a porous carbonaceous preform from a water-based slurry
JP2001270792A (en) Method for producing metal/ceramic complex and method for producing ceramic porous body
JPH0578182A (en) Production of porous carbon formed product and electrode material
JPS61281088A (en) High machine processability ceramic composite body
EP0373761B1 (en) Preparation of refractory materials
Uthaman et al. Porous ceramic properties and its different fabrication process
US5435967A (en) Method of preparing an air-permeable molded body
JP2001278672A (en) Method for manufacturing ceramic material
JP3140701B2 (en) Method for producing long fiber reinforced silicon carbide composite material
JPH0350429B2 (en)
JPH04280870A (en) Lightweight highly rigid ceramic and its production thereof
JP2614749B2 (en) Manufacturing method of porous metal body
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPS61222192A (en) Substrate for electronic circuit
JP2002255649A (en) METHOD FOR MANUFACTURING HIGH-DENSITY SiC FIBER- REINFORCED SiC COMPOSITE MATERIAL