JP5063043B2 - Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet - Google Patents

Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet Download PDF

Info

Publication number
JP5063043B2
JP5063043B2 JP2006200625A JP2006200625A JP5063043B2 JP 5063043 B2 JP5063043 B2 JP 5063043B2 JP 2006200625 A JP2006200625 A JP 2006200625A JP 2006200625 A JP2006200625 A JP 2006200625A JP 5063043 B2 JP5063043 B2 JP 5063043B2
Authority
JP
Japan
Prior art keywords
soft
acrylic
polymer
fine particles
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006200625A
Other languages
Japanese (ja)
Other versions
JP2008024867A (en
Inventor
俊宏 笠井
治美 芝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006200625A priority Critical patent/JP5063043B2/en
Publication of JP2008024867A publication Critical patent/JP2008024867A/en
Application granted granted Critical
Publication of JP5063043B2 publication Critical patent/JP5063043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide acrylic polymer fine particles for soft molding having high plasticizer absorbability together with good processability and mechanical strength. <P>SOLUTION: The acrylic polymer fine particles for soft molding contain a polymer component (P1) able to be plasticized with diisononyl phthalate and having &ge;400,000 mass average molecular weight and have &ge;0.4mL/g amount of oil adsorption measured by using linseed oil and 8-30m<SP>2</SP>/g specific surface area measured by nitrogen gas absorption method. Acrylic soft sheets prepared by calendering the same are also provided. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、軟質ポリ塩化ビニルと同等の加工性及び風合いを有し、且つハロゲン系重合体を含有しない軟質成型品を与えることの出来る、アクリル系重合体微粒子及びこれより得られる成型品に関する。   The present invention relates to acrylic polymer fine particles having a processability and texture equivalent to that of soft polyvinyl chloride and capable of providing a soft molded product containing no halogen polymer, and a molded product obtained therefrom.

様々な産業分野で軟質樹脂による成形材料が用いられており、従来その主流となる材料はポリ塩化ビニルを可塑剤によって軟質化したいわゆる軟質ポリ塩化ビニルであったが、近年では環境保護の観点からポリ塩化ビニル樹脂から非ハロゲン系樹脂への代替が求められており、早急な代替材料の開発が求められている。
そうした代替材料の候補として可塑剤を用いない材料(オレフィン系エラストマー、ウレタン系エラストマー、スチレン系エラストマー、アクリル系エラストマー等)の開発が多く報告されているが、可塑剤を用いない場合には柔軟性の調節が自由に出来ず成型品の風合い、硬度のバリエーションが制限されてしまう。また溶融粘度や溶融張力のコントロールにも制約が出てしまう。したがって軟質ポリ塩化ビニルと同等に加工でき且つ同等の風合いを得るためには、可塑剤を用いて、自由に特性をコントロールできる材料が望まれている。
Molding materials made of soft resin have been used in various industrial fields. Conventionally, the mainstream material has been so-called soft polyvinyl chloride obtained by softening polyvinyl chloride with a plasticizer. There is a demand for an alternative from polyvinyl chloride resin to a non-halogen resin, and the development of an alternative material is urgently required.
There have been many reports on the development of materials that do not use plasticizers (olefin-based elastomers, urethane-based elastomers, styrene-based elastomers, acrylic elastomers, etc.) as candidates for such alternative materials. Can not be freely adjusted, variations in the texture and hardness of the molded product will be limited. In addition, there are restrictions on control of melt viscosity and melt tension. Therefore, in order to obtain the same texture as soft polyvinyl chloride and to obtain the same texture, a material whose characteristics can be freely controlled using a plasticizer is desired.

このような観点から、可塑剤を用いて軟質化されるアクリル系重合体が提案されている(例えば特許文献1)。また、水系媒体中での重合(乳化重合)により得たアクリル系重合体を乾燥して粉体化する前に可塑剤を投入し、その後に重合体を回収して乾燥させる方法が提案されている(特許文献2)
特開2003−3033号公報 特開2003−128711号公報
From such a viewpoint, an acrylic polymer that has been softened using a plasticizer has been proposed (for example, Patent Document 1). In addition, a method has been proposed in which a plasticizer is added before an acrylic polymer obtained by polymerization (emulsion polymerization) in an aqueous medium is dried and powdered, and then the polymer is recovered and dried. (Patent Document 2)
JP 2003-3033 A JP 2003-128711 A

しかしながら、特許文献1の方法においては、重合体の粉体構造に問題があり、粉体自身が可塑剤を多量に吸収することが出来なかった。したがって溶融混練時に可塑剤を投入する必要があり、軟質ポリ塩化ビニルを加工する場合のように、事前に可塑剤を含有した湿粉状のコンパウンドを調製することが出来ない。また重合体が吸収することができる可塑剤の量が極めて少ないため、加えることができる可塑剤の量も重合体100質量部に対して10質量部程度にとどまり、十分な軟質化が出来ないという課題があった。
また、特許文献2の方法では、特許文献1よりは多い量の可塑剤を投入することが可能であるが、目的とする製品に応じて任意の種類・量の可塑剤を配合することが出来ず、あらかじめ定められた種類・量の可塑剤が含有されたコンパウンドしか提供することが出来ないという限界がある。
However, in the method of Patent Document 1, there is a problem with the powder structure of the polymer, and the powder itself cannot absorb a large amount of plasticizer. Therefore, it is necessary to add a plasticizer at the time of melt-kneading, and a wet powder compound containing a plasticizer cannot be prepared in advance as in the case of processing soft polyvinyl chloride. In addition, since the amount of plasticizer that can be absorbed by the polymer is extremely small, the amount of plasticizer that can be added is only about 10 parts by mass with respect to 100 parts by mass of the polymer, and sufficient softening cannot be achieved. There was a problem.
Further, in the method of Patent Document 2, it is possible to add a larger amount of plasticizer than in Patent Document 1, but any kind and amount of plasticizer can be blended according to the target product. However, there is a limit that only a compound containing a predetermined type and amount of plasticizer can be provided.

以上のように、従来の可塑剤を用いて軟質化させるアクリル系の軟質成形用材料では、コンパウンド化に際して極めて少ない量の可塑剤しか吸収させることが出来ず、十分な柔軟性を与えるだけの可塑剤を含有したコンパウンドを得ることが出来ないのが現状であった。
また、前述した特許文献に示されるように、可塑剤量が少ない場合にはカレンダー加工が可能となっている例は見られるが、本発明が目的とするような高い可塑剤配合比率において、カレンダー加工などの加工適性および成型品の機械的強度などを満足することのできる重合体の提案は実現できていないのが現状であった。
すなわち本発明は、可塑剤を用いて軟質化させる軟質成形用のアクリル系重合体において、(1)高い可塑剤吸収性を有するアクリル重合体を提供すること、(2)高い可塑剤配合量においても良好な加工適性を有すること、(3)高い可塑剤配合量においても良好な機械的強度を有すること、ができる軟質成形用アクリル系重合体微粒子を提供することを目的としてなされたものである。
As described above, acrylic soft molding materials that are softened using conventional plasticizers can absorb only a very small amount of plasticizer during compounding, and plastic that provides sufficient flexibility. At present, it is impossible to obtain a compound containing an agent.
In addition, as shown in the above-mentioned patent document, there are examples in which calendering is possible when the amount of plasticizer is small, but in a high plasticizer blending ratio as intended by the present invention, calendering is possible. At present, it has not been possible to realize a polymer capable of satisfying processing suitability such as processing and mechanical strength of a molded product.
That is, the present invention provides an acrylic polymer for soft molding that is softened using a plasticizer. (1) To provide an acrylic polymer having high plasticizer absorbency; (2) In a high plasticizer content The present invention has been made for the purpose of providing acrylic polymer fine particles for soft molding capable of having good processability and (3) having good mechanical strength even at a high plasticizer content. .

本願発明の要旨は、ジイソノニルフタレートにより可塑化される質量平均分子量40万以上の重合体成分(P1)を含有し、アマニ油で測定される吸油量が0.4ml/g以上であり、窒素ガス吸着法で測定される比表面積が8〜30m/gの範囲である軟質成形用アクリル系重合体微粒子にある。
また、本発明要旨は、前記軟質成形用アクリル系重合体微粒子と可塑剤とを溶融混練して成る軟質アクリル系樹脂組成物にある。
更に本発明の要旨は、前記軟質アクリル系樹脂組成物をカレンダー加工して得られるアクリル系軟質シートにある。
The gist of the present invention is that it contains a polymer component (P1) having a mass average molecular weight of 400,000 or more plasticized by diisononyl phthalate, the oil absorption measured by linseed oil is 0.4 ml / g or more, and nitrogen gas The specific surface area measured by the adsorption method is in the acrylic polymer fine particles for soft molding having a range of 8 to 30 m 2 / g.
The gist of the present invention resides in a soft acrylic resin composition obtained by melt-kneading the above-mentioned acrylic polymer fine particles for soft molding and a plasticizer.
Further, the gist of the present invention resides in an acrylic soft sheet obtained by calendering the soft acrylic resin composition.

本発明の軟質成形用アクリル系重合体微粒子によれば、可塑剤とブレンドした際の可塑剤吸収性に極めて優れ、粉体状のコンパウンドを容易に得ることができる。これにより従来から広く用いられてきた軟質ポリ塩化ビニル用の加工設備を転用することが容易となり、作業性も向上する。またこれによって可塑剤の配合量を多くすることが可能となり、柔軟性に優れる成型品を与えることが出来る。更に可塑剤配合量が多い場合においても良好な機械的強度を維持し、かつカレンダー加工などの加工において良好な適性を有する。   According to the acrylic polymer fine particles for soft molding of the present invention, the plasticizer absorbability when blended with a plasticizer is extremely excellent, and a powdery compound can be easily obtained. Thereby, it becomes easy to divert the processing equipment for soft polyvinyl chloride which has been widely used so far, and the workability is also improved. Moreover, it becomes possible to increase the compounding quantity of a plasticizer and to give the molded article excellent in a softness | flexibility. Furthermore, even when the amount of the plasticizer is large, it maintains a good mechanical strength and has a good suitability in processing such as calendering.

以下、本発明について詳細に説明する。
アクリル系重合体微粒子(以下単に微粒子という)を可塑剤を用いて軟質化して成形する場合、事前に可塑剤と微粒子とを一様に混合し、加工機に均一に供給する必要がある。そのため微粒子の形状としては、液状の可塑剤を良好に吸収し、なおかつホッパー等から投入しやすい粉体状をしている必要がある(以下、湿粉と表現する)。すなわち微粒子はは高い吸油能を有する微粒子である必要がある。吸油量の指標としては、アマニ油による吸油量(JIS K−5101)を用いることが出来、その範囲としては0.4ml/g以上となることが必要である。
微粒子の吸油量がこれより少ない場合、可塑剤をブレンドしても十分に吸収されず、ゾル状やママコ状になってしまう。
Hereinafter, the present invention will be described in detail.
When acrylic polymer fine particles (hereinafter simply referred to as “fine particles”) are softened and molded using a plasticizer, it is necessary to uniformly mix the plasticizer and the fine particles in advance and uniformly supply them to the processing machine. Therefore, the shape of the fine particles needs to be a powder that absorbs the liquid plasticizer well and is easy to be charged from a hopper or the like (hereinafter referred to as a wet powder). That is, the fine particles need to be fine particles having a high oil absorption ability. As an index of oil absorption, oil absorption by linseed oil (JIS K-5101) can be used, and its range needs to be 0.4 ml / g or more.
When the oil absorption amount of the fine particles is smaller than this, even if the plasticizer is blended, it is not sufficiently absorbed and becomes a sol or mamaco.

一方、重合体微粒子と可塑剤とをブレンドして得られた微粒子状組成物は、長期間その状態で貯蔵してもブロッキングせず良好な粉体性状を保つ必要がある。そのためには、重合体微粒子と可塑剤とをブレンドしただけではすぐに軟質化されず、重合体のガラス転移温度を十分に高く保っていることが必要である。このためには、重合体が可塑剤によって可塑化される速度が(貯蔵温度において)十分に遅いことが必要である。
可塑化速度は、重合体と可塑剤との接触面積によりコントロールすることが可能である。接触面積の指標として比表面積を用いることが出来、その範囲は30m/g以下である必要がある。比表面積が30m/gを超えると、可塑剤との接触面積が増えすぎて貯蔵中に可塑剤が重合体を可塑化し始め、重合体微粒子のガラス転移温度が低下し、ブロッキングが発生してしまう。また、比表面積が8m/g未満となると、吸油量が増大してしまい、ゾル状やママコ状になる弊害が発生する。
On the other hand, a fine particle composition obtained by blending polymer fine particles and a plasticizer needs to maintain good powder properties without blocking even when stored in that state for a long time. For that purpose, it is necessary to keep the glass transition temperature of the polymer sufficiently high without being softened immediately by simply blending the polymer fine particles and the plasticizer. This requires that the rate at which the polymer is plasticized by the plasticizer is sufficiently slow (at storage temperature).
The plasticization rate can be controlled by the contact area between the polymer and the plasticizer. The specific surface area can be used as an indicator of the contact area, and the range needs to be 30 m 2 / g or less. When the specific surface area exceeds 30 m 2 / g, the contact area with the plasticizer increases too much, and the plasticizer begins to plasticize the polymer during storage, the glass transition temperature of the polymer fine particles decreases, and blocking occurs. End up. On the other hand, when the specific surface area is less than 8 m 2 / g, the amount of oil absorption increases, which causes a problem of becoming a sol or mamaco.

本発明で用いる微粒子は、可塑剤を良好に保持する高分子ゲルとして機能し、これにより成型品に柔軟性を付与するものである。可塑剤を良好に保持するためには、可塑剤との相溶性が良好であり、且つある程度以上の絡み合いを有する必要がある。また成形品の機械的強度を十分に発現するためにも微粒子を構成するアクリル系重合体の分子量は一定以上に高いことが好ましい。上記の観点から、アクリル系重合体は質量平均分子量が40万以上の重合体成分(P1)を含有することが必要である。質量平均分子量が40万以上の重合体成分(P1)を含有しない場合、機械的強度がやや低下する傾向にあり、特に引張試験時の強度が低下する。   The fine particles used in the present invention function as a polymer gel that favorably holds a plasticizer, thereby imparting flexibility to a molded product. In order to hold the plasticizer well, it is necessary to have good compatibility with the plasticizer and to have some degree of entanglement. In order to sufficiently exhibit the mechanical strength of the molded product, the molecular weight of the acrylic polymer constituting the fine particles is preferably higher than a certain level. From the above viewpoint, the acrylic polymer needs to contain a polymer component (P1) having a mass average molecular weight of 400,000 or more. When the polymer component (P1) having a mass average molecular weight of 400,000 or more is not contained, the mechanical strength tends to be slightly lowered, and particularly the strength at the tensile test is lowered.

ジイソノニルフタレートにより可塑化され得る重合体としては、炭素数4以上のアルキル(メタ)アクリレートを20mol%以上、好ましくは30mol%以上共重合したアクリル系重合体などがこれに該当し、具体的には、メチルメタクリレート/n−ブチルメタクリレート共重合体(共重合比率70/30〜0/100mol%)、メチルメタクリレート/i−ブチルメタクリレート共重合体(共重合比率70/30〜0/100mol%)、メチルメタクリレート/2−エチルヘキシルメタクリレート共重合体(共重合比率80/20〜0/100mol%)等が挙げられる。
重合体がジイソノニルフタレートにより可塑化され得るか否かについては、重合体を可塑剤とともに溶融混練して得られる成形品のガラス転移温度を粘弾性測定などにより測定し、ジイソノニルフタレートの添加とともにガラス転移温度の低下が認められることで確認される。例えば、メチルメタクリレート/n−ブチルメタクリレート共重合体(共重合比率60/40mol%)の場合、単独でのガラス転移温度は約58℃であるが、ジイソノニルフタレートを40質量部(重合体100質量部に対して)を添加して得られる成型品のガラス転移温度は40℃以上低下しており、可塑化されていると判断される。
Examples of the polymer that can be plasticized with diisononyl phthalate include acrylic polymers in which an alkyl (meth) acrylate having 4 or more carbon atoms is copolymerized in an amount of 20 mol% or more, preferably 30 mol% or more. , Methyl methacrylate / n-butyl methacrylate copolymer (copolymerization ratio 70/30 to 0/100 mol%), methyl methacrylate / i-butyl methacrylate copolymer (copolymerization ratio 70/30 to 0/100 mol%), methyl Methacrylate / 2-ethylhexyl methacrylate copolymer (copolymerization ratio 80/20 to 0/100 mol%) and the like can be mentioned.
Whether the polymer can be plasticized with diisononyl phthalate is determined by measuring the glass transition temperature of the molded product obtained by melt-kneading the polymer with a plasticizer by measuring viscoelasticity, etc., and adding glass with diisononyl phthalate. This is confirmed by a decrease in temperature. For example, in the case of a methyl methacrylate / n-butyl methacrylate copolymer (copolymerization ratio 60/40 mol%), the glass transition temperature alone is about 58 ° C., but 40 parts by mass of diisononyl phthalate (100 parts by mass of polymer) The glass transition temperature of the molded product obtained by adding ()) is lowered by 40 ° C. or more, and is judged to be plasticized.

本発明の重合体では、質量平均分子量で10万以上40万未満の重合体成分(P2)を併用することが好ましい。(P2)を併用した場合、加熱溶融時の流動性が向上し、射出成型などの加工が容易になる為である。重合体の全体の分子量を下げる場合と異なり、高分子量の成分(P1)と低分子量の成分(P2)とを併用することで、機械的強度と流動性とを両立することが出来るため好ましい。   In the polymer of the present invention, a polymer component (P2) having a mass average molecular weight of 100,000 or more and less than 400,000 is preferably used in combination. This is because when (P2) is used in combination, fluidity at the time of heating and melting is improved, and processing such as injection molding becomes easy. Unlike the case of lowering the overall molecular weight of the polymer, it is preferable to use a high molecular weight component (P1) and a low molecular weight component (P2) in combination because both mechanical strength and fluidity can be achieved.

また重合体成分(P2)については、ジイソノニルフタレートにより可塑化されない重合体であることが好ましい。この理由として、低分子量の重合体は可塑剤に可塑化された場合に粘着性を発現しやすくなったり、成型品のブロッキングの原因となりやすい等の傾向がある為である。流動性を得る目的であれば高温で可塑剤に溶融する必要があるものの、常温に戻った場合に可塑化されている必要は必ずしも無い。また常温で可塑化されていない成分を含有することで、成形品の機械的強度は向上する傾向にもあるため好ましい。
なお重合体成分(P1)と重合体成分(P2)とは、相互に相溶していても相分離していても構わないが、機械的強度を重視する場合、完全に相分離しているよりも完全相溶もしくは部分相溶している方が好ましい。
The polymer component (P2) is preferably a polymer that is not plasticized with diisononyl phthalate. This is because a low molecular weight polymer tends to develop tackiness when it is plasticized to a plasticizer, or tends to cause blocking of a molded product. Although it is necessary to melt into a plasticizer at a high temperature for the purpose of obtaining fluidity, it is not always necessary to be plasticized when the temperature returns to room temperature. Moreover, it is preferable to contain a component that is not plasticized at room temperature because the mechanical strength of the molded product tends to be improved.
The polymer component (P1) and the polymer component (P2) may be mutually compatible or phase separated. However, when mechanical strength is important, they are completely phase separated. It is more preferable to be completely compatible or partially compatible.

本発明の重合体微粒子は、ガラス転移温度が0℃以下のゴム状重合体成分(P3)を含有することが好ましい。重合体を軟質化する場合、ガラス転移温度の高い重合体に対して可塑剤を加えることで軟質化する場合(外部可塑化)と、ガラス転移温度の低い重合体を与えるモノマーを共重合して軟質化する場合(内部可塑化)とがあるが、内部可塑化の場合には可塑剤が浸出してきにくいため好ましい。したがってガラス転移温度が0℃以下のゴム状重合体成分(P3)を含有させることで、同等の柔軟性を得るために必要な可塑剤の量を低減することが可能となる。また成形品の低温特性(低温での伸び、柔軟性など)を向上する上でもガラス転移温度が低いゴム状重合体を用いることが好ましい。
ゴム状重合体の含有量は、全重合体に対して最大で60質量%以下、好ましくは40質量%以下である。ゴム状重合体の含有量が多くなると、成形品の機械的強度(特に引裂強度)が低下する傾向にある為である。
The polymer fine particles of the present invention preferably contain a rubber-like polymer component (P3) having a glass transition temperature of 0 ° C. or lower. When the polymer is softened, a monomer that gives a polymer with a low glass transition temperature is copolymerized with a case where the polymer is softened by adding a plasticizer to the polymer with a high glass transition temperature (external plasticization). There is a case of softening (internal plasticization), but in the case of internal plasticization, the plasticizer hardly leaches out, which is preferable. Therefore, by including the rubber-like polymer component (P3) having a glass transition temperature of 0 ° C. or less, it is possible to reduce the amount of plasticizer necessary for obtaining the same flexibility. In order to improve the low temperature characteristics (elongation at low temperature, flexibility, etc.) of the molded product, it is preferable to use a rubbery polymer having a low glass transition temperature.
The content of the rubber-like polymer is 60% by mass or less, preferably 40% by mass or less, based on the total polymer. This is because as the content of the rubbery polymer increases, the mechanical strength (particularly tear strength) of the molded product tends to decrease.

本発明の重合体微粒子の製造方法は特に限定せず、重合方法としては乳化重合法、ソープフリー重合法、縣濁重合法、微細縣濁重合法、分散重合法、等が挙げられる。また粉体化の方法としては凝固法もしくはスプレードライ法が挙げられるが、本発明において必要とされる吸油量や比表面積を実現するためには、粉体構造を多孔質な状態で制御できるスプレードライ法が好ましい。   The method for producing the polymer fine particles of the present invention is not particularly limited, and examples of the polymerization method include an emulsion polymerization method, a soap-free polymerization method, a suspension polymerization method, a fine suspension polymerization method, and a dispersion polymerization method. The powdering method includes a coagulation method or a spray drying method. In order to realize the oil absorption and specific surface area required in the present invention, a spray that can control the powder structure in a porous state. A dry method is preferred.

本発明の重合体微粒子の製造方法として、粒子径が500nm未満のアクリル系重合体エマルションを乳化重合等の手法により製造し、その後にこれを噴霧乾燥して粉体化することが好ましい。噴霧乾燥の温度条件が同等であれば、エマルションの粒子径が大きいと比表面積は低下する傾向にある。またエマルションの粒子径が同等であれば、噴霧乾燥の温度を上げた方が粒子どうしの熱融着の度合いが高まるため比表面積は低下する傾向にある。
エマルションの粒子径が500nm以上の場合、噴霧乾燥の条件を変更しても、本発明で必要とされる比表面積や吸油量を実現することが困難となる。
As a method for producing the polymer fine particles of the present invention, it is preferable to produce an acrylic polymer emulsion having a particle diameter of less than 500 nm by a technique such as emulsion polymerization, and then spray-dry it to obtain a powder. If the spray drying temperature conditions are the same, the specific surface area tends to decrease if the particle size of the emulsion is large. If the particle diameters of the emulsions are the same, the specific surface area tends to decrease because the degree of thermal fusion between the particles increases when the spray drying temperature is increased.
When the particle diameter of the emulsion is 500 nm or more, it is difficult to realize the specific surface area and oil absorption required in the present invention even if the spray drying conditions are changed.

本発明の重合体微粒子を製造する際、水系媒体中での乳化重合などが推奨されるが、その際に用いる乳化剤は重合性乳化剤であることが好ましい。重合性乳化剤とは分子中にラジカル重合可能な炭素−炭素二重結合を有する乳化剤が一般的であり、例えばメタクリロイル基、アクリロイル基、ビニル基、等を含有する乳化剤が挙げられる。重合性乳化剤を用いることで乳化剤が重合体に固定される為、加工時などに乳化剤が遊離して性能低下をもたらす可能性が低減される。例えば、カレンダー加工時に乳化剤の一部が分離して、金属ロールに少しずつ堆積してくる現象(プレートアウト)が抑制できたり、成形品を耐水試験や耐湯試験などに供した場合の白化や物性低下を抑制することが可能となる。
なお乳化剤の種別(アニオン系、ノニオン系、カチオン系)は特に問わない。
When the polymer fine particles of the present invention are produced, emulsion polymerization in an aqueous medium is recommended, and the emulsifier used at that time is preferably a polymerizable emulsifier. The polymerizable emulsifier is generally an emulsifier having a carbon-carbon double bond capable of radical polymerization in the molecule, and examples thereof include an emulsifier containing a methacryloyl group, an acryloyl group, a vinyl group, and the like. Since the emulsifier is fixed to the polymer by using the polymerizable emulsifier, the possibility that the emulsifier is liberated at the time of processing or the like and the performance is lowered is reduced. For example, the phenomenon that part of the emulsifier separates during calendering and gradually accumulates on the metal roll (plate-out) can be suppressed, or whitening when the molded product is subjected to a water resistance test or a heat resistance test, etc. It becomes possible to suppress deterioration of physical properties.
The type of emulsifier (anionic, nonionic, cationic) is not particularly limited.

本発明のアクリル系重合体は、その粒子構造については特に限定しない。重合体成分(P1)〜(P3)が独立した別個の粒子の混合状態で存在してもよく、また単一の粒子の内部に何らかの構造を持って存在しても良い。粒子内部に構造を持つ例として好ましくはコアシェル構造(多段構造)が挙げられる。例えば、コアとして重合体成分(P1)を、シェルとして重合体成分(P2)を有することが可能である。また、第1層目としてゴム状重合体成分(P3)を、第2層目として高分子量重合体成分(P1)を、第3層目として低分子量重合体成分(P2)を、順次積層してなる多段構造の粒子が可能である。
なお粒子構造をコアシェルまたは多段とする場合、製造方法としてそれぞれの重合体成分を与えると明らかに推測されるモノマー混合物を、順次滴下していくことでこのような粒子構造を与えることは古くから公知である。
The particle structure of the acrylic polymer of the present invention is not particularly limited. The polymer components (P1) to (P3) may exist in a mixed state of independent and separate particles, or may exist with some structure inside a single particle. An example having a structure inside the particle is preferably a core-shell structure (multistage structure). For example, it is possible to have the polymer component (P1) as a core and the polymer component (P2) as a shell. In addition, a rubbery polymer component (P3) is laminated as the first layer, a high molecular weight polymer component (P1) as the second layer, and a low molecular weight polymer component (P2) as the third layer. A multi-stage particle is possible.
In addition, when the particle structure is a core-shell or multi-stage, it has long been known to provide such a particle structure by sequentially dropping a monomer mixture that is clearly estimated to give each polymer component as a production method. It is.

本発明のアクリル系重合体を与える主たる単量体の例を下記に挙げる;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、tーブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の直鎖アルキルアルコールの(メタ)アクリレート類、あるいはシクロヘキシル(メタ)アクリレート等の環式アルキルアルコールの(メタ)アクリレート類。
ゴム状の重合体成分を含有させる場合、架橋剤として例えば下記の単量体を用いることが可能である。(ポリ)エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリルメタクリレート等。
その他、アクリル系単量体以外の共重合成分として、例えば屈折率を調整する等の目的でスチレンや、低温物性を付与する等の目的でシリコーン変性アクリレート類などを任意に共重合することもできる。
Examples of main monomers that give the acrylic polymer of the present invention are listed below: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (Meth) acrylates, hexyl (meth) acrylates, 2-ethylhexyl (meth) acrylates, linear alkyl alcohol (meth) acrylates such as octyl (meth) acrylate, or cyclic alkyl alcohols such as cyclohexyl (meth) acrylate (Meth) acrylates.
When the rubber-like polymer component is contained, for example, the following monomers can be used as the crosslinking agent. (Poly) ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, allyl methacrylate and the like.
In addition, as copolymerization components other than acrylic monomers, for example, styrene for the purpose of adjusting the refractive index, silicone-modified acrylates for the purpose of imparting low-temperature properties, and the like can be arbitrarily copolymerized. .

本発明の重合体微粒子は、適当な可塑剤と混合して軟質化し、成形品に供することが出来る。利用可能な可塑剤の例として、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸ジアルキル系、フタル酸ブチルベンジル等のフタル酸アルキルベンジル系、フタル酸アルキルアリール系、フタル酸ジベンジル系、フタル酸ジアリール系、リン酸トリクレシル等のリン酸トリアリール系、リン酸トリアルキル系、リン酸アルキルアリール系、アジピン酸エステル系、エーテル系、ポリエステル系、エポキシ化大豆油等の大豆油系、その他広く利用可能であるがこれらに限定されるものではない。
可塑剤の添加部数は、アクリル系重合体に十分な柔軟性を付与するために、アクリル系重合体100質量部に対して、20質量部以上とすることが好ましく、更に好ましくは30質量部以上である。また、成形品のブロッキングや経時的な可塑剤のブリードアウトを抑制することを考慮すると、アクリル系重合体100質量部に対して120質量部以下とすることが好ましく、更に好ましくは80質量部以下である。
The polymer fine particles of the present invention can be softened by mixing with an appropriate plasticizer and used for molded products. Examples of available plasticizers include dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, alkyl benzyl phthalates such as butyl benzyl phthalate, alkyl phthalates Aryl, dibenzyl phthalate, diaryl phthalate, triaryl phosphate such as tricresyl phosphate, trialkyl phosphate, alkylaryl phosphate, adipic acid ester, ether, polyester, large epoxidation Soybean oils such as soybean oil and others can be widely used, but are not limited thereto.
The number of added plasticizers is preferably 20 parts by mass or more, more preferably 30 parts by mass or more, with respect to 100 parts by mass of the acrylic polymer in order to impart sufficient flexibility to the acrylic polymer. It is. In consideration of blocking of the molded product and suppression of bleed out of the plasticizer over time, it is preferably 120 parts by mass or less, more preferably 80 parts by mass or less, with respect to 100 parts by mass of the acrylic polymer. It is.

重合体微粒子と可塑剤の混合方法は特に限定せず、加工時に同時に混合することも出来るし、また加工に先立って事前混合しておくことも可能であるが、可塑剤の配合量が多い場合には事前に混合しておく方が作業性が良好である。事前に混合するための方法としては、軟質塩化ビニルの場合と同様の設備・方法で取り扱うことが出来、例えばヘンシェルミキサーやバンバリーミキサー等を用いることが出来る。   The method of mixing the polymer fine particles and the plasticizer is not particularly limited, and can be mixed at the same time during processing, or can be pre-mixed prior to processing, but the amount of plasticizer is large It is easier to work with mixing in advance. As a method for mixing in advance, it can be handled by the same equipment and method as in the case of soft vinyl chloride, and for example, a Henschel mixer or a Banbury mixer can be used.

本発明では必要に応じてさらに炭酸カルシウム、水酸化アルミニウム、パーライト、クレー、コロイダルシリカ、マイカ粉、珪砂、珪藻土、カオリン、タルク、ベントナイト、ガラス粉末、酸化アルミニウム、フライアッシュ、シラスバルーンなどの充填材を配合しても良い。充填材を配合する目的や種類、量などは任意である。また更に必要に応じて、酸化チタン、カーボンブラック等の顔料、さらにミネラルターペン、ミネラルスピリット等の希釈剤、さらに消泡剤、防黴剤、防臭剤、抗菌剤、安定剤、加工助剤、界面活性剤、滑剤、紫外線吸収剤、香料、発泡剤、レベリング剤、接着剤、艶消し剤、等を自由に配合することが可能である。   In the present invention, if necessary, further fillers such as calcium carbonate, aluminum hydroxide, pearlite, clay, colloidal silica, mica powder, quartz sand, diatomaceous earth, kaolin, talc, bentonite, glass powder, aluminum oxide, fly ash, shirasu balloon, etc. May be blended. The purpose, type, amount, etc. of the filler are arbitrary. Furthermore, if necessary, pigments such as titanium oxide and carbon black, further diluents such as mineral turpentes and mineral spirits, further antifoaming agents, antifungal agents, deodorants, antibacterial agents, stabilizers, processing aids, interfaces Activators, lubricants, ultraviolet absorbers, fragrances, foaming agents, leveling agents, adhesives, matting agents, and the like can be freely blended.

本発明の軟質成形用重合体組成物の加工方法は特に限定しないが、軟質塩化ビニルと同様の加工方法により成形することが可能である。例えば、カレンダー成形、射出成型、Tダイ押出成形、異型押出成形、ブロー成形、真空成形、インフレーション成形など従来より知られる各種の成形方法にて成形することが可能であるが、特に好ましくはカレンダー成形である。   Although the processing method of the polymer composition for soft molding of this invention is not specifically limited, It can shape | mold by the processing method similar to soft vinyl chloride. For example, it can be molded by various conventionally known molding methods such as calendar molding, injection molding, T-die extrusion molding, profile extrusion molding, blow molding, vacuum molding, inflation molding, etc., but calendar molding is particularly preferable. It is.

本発明の軟質成形材料用樹脂組成物の用途は特に限定せず、従来の軟質塩化ビニル樹脂が用いられてきた分野に広く適用可能である。好ましくはカレンダー加工により得られるレザー分野であり、詳しくは農業用フィルム用、壁紙やドア材などの建装材用、ソファーや椅子等の家具用、衣服用、雑貨用、掲示板用、手帳等の装丁用、自動車内装用、等が挙げられる。   The use of the resin composition for a soft molding material of the present invention is not particularly limited, and can be widely applied to fields where conventional soft vinyl chloride resins have been used. Preferably in the leather field obtained by calendering, specifically for agricultural films, for building materials such as wallpaper and door materials, for furniture such as sofas and chairs, for clothes, for sundries, for bulletin boards, notebooks, etc. For binding, for automobile interiors, etc.

[重合体エマルション(E1)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した300mlの4つ口フラスコに純水80.0g、初期乳化剤としてジオクチルスルホコハク酸ナトリウム(花王(株)製、商品名「ペレックスO−TP」)0.10gを入れ、200rpmで攪拌しつつ30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、モノマー混合物(メチルメタクリレート51.4g、n−ブチルメタクリレート48.6g)の1/10量を投入し、80℃に昇温した。内温が80℃で安定した後、5.0gの純水に溶解した過硫酸カリウム0.10gを一度に添加し、発熱ピークを確認することでソープフリー重合によるシード粒子の形成を確認した。
引き続き、上記モノマー混合物の残り(9/10量)に乳化剤としてジオクチルスルホコハク酸ナトリウム(花王(株)製、商品名「ペレックスO−TP」)0.50gを溶解させ、更に純水50.0gを加えて全体をホモディスパーを用いて強制乳化させ、安定なモノマー乳化液を得た。このモノマー乳化液を、フラスコ内に30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて60分攪拌を継続した後、室温にまで冷却して重合体エマルション(E1)を得た。
[Preparation of polymer emulsion (E1)]
A 300 ml four-necked flask equipped with a thermometer, nitrogen gas inlet tube, stirring rod, dropping funnel, and condenser tube is 80.0 g of pure water and sodium dioctylsulfosuccinate as an initial emulsifier (trade name “Perex” manufactured by Kao Corporation) 0.10 g of O-TP ") was added, and nitrogen gas was sufficiently aerated for 30 minutes while stirring at 200 rpm to replace dissolved oxygen in pure water. After stopping the nitrogen gas flow, 1/10 amount of a monomer mixture (51.4 g of methyl methacrylate, 48.6 g of n-butyl methacrylate) was added, and the temperature was raised to 80 ° C. After the internal temperature was stabilized at 80 ° C., 0.10 g of potassium persulfate dissolved in 5.0 g of pure water was added at once, and the formation of seed particles by soap-free polymerization was confirmed by confirming the exothermic peak.
Subsequently, 0.50 g of sodium dioctylsulfosuccinate (trade name “Perex O-TP”, manufactured by Kao Corporation) as an emulsifier is dissolved in the remainder (9/10 amount) of the monomer mixture, and 50.0 g of pure water is further added. In addition, the whole was forcibly emulsified using a homodisper to obtain a stable monomer emulsion. The monomer emulsion was dropped into the flask at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of the dropwise addition, the mixture was continuously stirred at 80 ° C. for 60 minutes, and then cooled to room temperature to obtain a polymer emulsion (E1).

[重合体エマルション(E2)〜(E7)の調製]
重合体エマルション(E1)の調製と同様に、重合体エマルション(E2)〜(E7)を調製した。ただし、初期乳化剤の量、重合開始剤の量、モノマー混合物の組成及びそれに溶解させて用いる連鎖移動剤の量、を変更した。その一覧について表1に記載する。
[Preparation of polymer emulsions (E2) to (E7)]
Similarly to the preparation of the polymer emulsion (E1), polymer emulsions (E2) to (E7) were prepared. However, the amount of the initial emulsifier, the amount of the polymerization initiator, the composition of the monomer mixture, and the amount of the chain transfer agent used by being dissolved therein were changed. The list is shown in Table 1.

Figure 0005063043
表中の略号は下記の通り。
MMA:メチルメタクリレート
nBMA:n−ブチルメタクリレート
初期乳化剤:ジオクチルスルホコハク酸ナトリウム
連鎖移動剤:n−オクタンチオール
開始剤:過硫酸カリウム
Figure 0005063043
Abbreviations in the table are as follows.
MMA: methyl methacrylate nBMA: n-butyl methacrylate initial emulsifier: sodium dioctyl sulfosuccinate chain transfer agent: n-octanethiol initiator: potassium persulfate

[重合体エマルション(E8)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した300mlの4つ口フラスコに純水80.0g、メチルメタクリレート3.3g、n−ブチルメタクリレート2.5gを入れ、200rpmで攪拌しつつ30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、80℃に昇温し、5.0gの純水に溶解した過硫酸カリウム0.05gを一度に添加し、発熱ピークを確認することでソープフリー重合によるシード粒子の形成を確認した。
引き続き第1モノマー乳化液(メチルメタクリレート3.9g、n−ブチルアクリレート12.5g、スチレン3.0g、エチレングリコールジメタクリレート0.67g、アゾ系ラジカル重合開始剤V−65(和光純薬(株))0.20g、ジオクチルスルホコハク酸ナトリウム0.20g、純水10.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第2モノマー乳化液(メチルメタクリレート22.7g、n−ブチルメタクリレート17.3g、ジオクチルスルホコハク酸ナトリウム0.10g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第3モノマー乳化液(メチルメタクリレート38.9g、n−ブチルアクリレート1.1g、n−オクチルメルカプタン0.08g、ジオクチルスルホコハク酸ナトリウム0.20g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて60分攪拌を継続し、多層構造の一次粒子からなる重合体エマルションを得た。
[Preparation of polymer emulsion (E8)]
Into a 300 ml four-necked flask equipped with a thermometer, nitrogen gas inlet tube, stirring rod, dropping funnel, and cooling tube, put 80.0 g of pure water, 3.3 g of methyl methacrylate, and 2.5 g of n-butyl methacrylate, and at 200 rpm. While stirring, nitrogen gas was sufficiently aerated for 30 minutes to replace dissolved oxygen in pure water. After stopping the nitrogen gas flow, the temperature was raised to 80 ° C., 0.05 g of potassium persulfate dissolved in 5.0 g of pure water was added at once, and the exothermic peak was confirmed to confirm the seed particles by soap-free polymerization. Formation was confirmed.
Subsequently, the first monomer emulsion (methyl methacrylate 3.9 g, n-butyl acrylate 12.5 g, styrene 3.0 g, ethylene glycol dimethacrylate 0.67 g, azo radical polymerization initiator V-65 (Wako Pure Chemical Industries, Ltd.) ) 0.20 g, dioctyl sodium sulfosuccinate 0.20 g and pure water 10.0 g) was forcibly emulsified and added dropwise at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, a second monomer emulsion (a solution obtained by forcibly emulsifying 22.7 g of methyl methacrylate, 17.3 g of n-butyl methacrylate, 0.10 g of sodium dioctyl sulfosuccinate and 20.0 g of pure water) was dropped at a rate of 30 g / hr. Polymerization was carried out. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, a third monomer emulsion (a solution obtained by forcibly emulsifying 38.9 g of methyl methacrylate, 1.1 g of n-butyl acrylate, 0.08 g of n-octyl mercaptan, 0.20 g of sodium dioctyl sulfosuccinate, and 20.0 g of pure water) Was added dropwise at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued for 60 minutes at 80 ° C. to obtain a polymer emulsion composed of primary particles having a multilayer structure.

[重合体エマルション(E9)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した300mlの4つ口フラスコに純水80.0g、メチルメタクリレート3.3g、n−ブチルメタクリレート2.5gを入れ、200rpmで攪拌しつつ30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、80℃に昇温し、5.0gの純水に溶解した過硫酸カリウム0.05gを一度に添加し、発熱ピークを確認することでソープフリー重合によるシード粒子の形成を確認した。
引き続き第1モノマー乳化液(メチルメタクリレート3.9g、n−ブチルアクリレート12.5g、スチレン3.0g、エチレングリコールジメタクリレート0.67g、アゾ系ラジカル重合開始剤V−65(和光純薬(株))0.20g、ジオクチルスルホコハク酸ナトリウム0.20g、純水10.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第2モノマー乳化液(メチルメタクリレート22.7g、n−ブチルメタクリレート17.3g、ジオクチルスルホコハク酸ナトリウム0.10g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第3モノマー乳化液(メチルメタクリレート38.9g、n−ブチルアクリレート1.1g、n−オクチルメルカプタン0.04g、ジオクチルスルホコハク酸ナトリウム0.20g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて60分攪拌を継続し、多層構造の一次粒子からなる重合体エマルションを得た。
[Preparation of polymer emulsion (E9)]
Into a 300 ml four-necked flask equipped with a thermometer, nitrogen gas inlet tube, stirring rod, dropping funnel, and cooling tube, put 80.0 g of pure water, 3.3 g of methyl methacrylate, and 2.5 g of n-butyl methacrylate, and at 200 rpm. While stirring, nitrogen gas was sufficiently aerated for 30 minutes to replace dissolved oxygen in pure water. After stopping the nitrogen gas flow, the temperature was raised to 80 ° C., 0.05 g of potassium persulfate dissolved in 5.0 g of pure water was added at once, and the exothermic peak was confirmed to confirm the seed particles by soap-free polymerization. Formation was confirmed.
Subsequently, the first monomer emulsion (methyl methacrylate 3.9 g, n-butyl acrylate 12.5 g, styrene 3.0 g, ethylene glycol dimethacrylate 0.67 g, azo radical polymerization initiator V-65 (Wako Pure Chemical Industries, Ltd.) ) 0.20 g, dioctyl sodium sulfosuccinate 0.20 g and pure water 10.0 g) was forcibly emulsified and added dropwise at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, a second monomer emulsion (a solution obtained by forcibly emulsifying 22.7 g of methyl methacrylate, 17.3 g of n-butyl methacrylate, 0.10 g of sodium dioctyl sulfosuccinate and 20.0 g of pure water) was dropped at a rate of 30 g / hr. Polymerization was carried out. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, a third monomer emulsion (a solution obtained by forcibly emulsifying 38.9 g of methyl methacrylate, 1.1 g of n-butyl acrylate, 0.04 g of n-octyl mercaptan, 0.20 g of sodium dioctyl sulfosuccinate, and 20.0 g of pure water) Was added dropwise at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued for 60 minutes at 80 ° C. to obtain a polymer emulsion composed of primary particles having a multilayer structure.

[重合体エマルション(E10)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した300mlの4つ口フラスコに純水80.0g、メチルメタクリレート3.3g、n−ブチルメタクリレート2.5gを入れ、200rpmで攪拌しつつ30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。窒素ガス通気を停止した後、80℃に昇温し、5.0gの純水に溶解した過硫酸カリウム0.05gを一度に添加し、発熱ピークを確認することでソープフリー重合によるシード粒子の形成を確認した。
引き続き第1モノマー乳化液(メチルメタクリレート3.9g、n−ブチルアクリレート12.5g、スチレン3.0g、エチレングリコールジメタクリレート0.67g、アゾ系ラジカル重合開始剤V−65(和光純薬(株))0.20g、反応性乳化剤(花王(株)製、商品名「ラテムルS180」)0.20g、純水10.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第2モノマー乳化液(メチルメタクリレート22.7g、n−ブチルメタクリレート17.3g、反応性乳化剤(花王(株)製、商品名「ラテムルS180」)0.10g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて30分攪拌を継続した。
引き続き第3モノマー乳化液(メチルメタクリレート38.9g、n−ブチルアクリレート1.1g、n−オクチルメルカプタン0.08g、反応性乳化剤(花王(株)製、商品名「ラテムルS180」)0.20g、純水20.0g、を強制乳化させた液)を30g/hrの速度で滴下し重合を行った。重合中は内温が80℃となるよう湯浴の温度を制御した。滴下が終了後、引き続き80℃にて60分攪拌を継続し、多層構造の一次粒子からなる重合体エマルションを得た。
[Preparation of polymer emulsion (E10)]
Into a 300 ml four-necked flask equipped with a thermometer, nitrogen gas inlet tube, stirring rod, dropping funnel, and cooling tube, put 80.0 g of pure water, 3.3 g of methyl methacrylate, and 2.5 g of n-butyl methacrylate, and at 200 rpm. While stirring, nitrogen gas was sufficiently aerated for 30 minutes to replace dissolved oxygen in pure water. After stopping the nitrogen gas flow, the temperature was raised to 80 ° C., 0.05 g of potassium persulfate dissolved in 5.0 g of pure water was added at once, and the exothermic peak was confirmed to confirm the seed particles by soap-free polymerization. Formation was confirmed.
Subsequently, the first monomer emulsion (methyl methacrylate 3.9 g, n-butyl acrylate 12.5 g, styrene 3.0 g, ethylene glycol dimethacrylate 0.67 g, azo radical polymerization initiator V-65 (Wako Pure Chemical Industries, Ltd.) ) 0.20 g, a reactive emulsifier (trade name “Latemul S180” manufactured by Kao Corporation), 0.20 g, and a solution obtained by forcibly emulsifying 10.0 g of pure water) were added dropwise at a rate of 30 g / hr for polymerization. went. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, the second monomer emulsion (methyl methacrylate 22.7 g, n-butyl methacrylate 17.3 g, reactive emulsifier (trade name “Latemul S180” manufactured by Kao Corporation), 0.10 g, and pure water 20.0 g were forced. The emulsified liquid) was added dropwise at a rate of 30 g / hr for polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued at 80 ° C. for 30 minutes.
Subsequently, the third monomer emulsion (methyl methacrylate 38.9 g, n-butyl acrylate 1.1 g, n-octyl mercaptan 0.08 g, reactive emulsifier (trade name “Latemul S180” manufactured by Kao Corporation) 0.20 g, A solution obtained by forcibly emulsifying 20.0 g of pure water) was dropped at a rate of 30 g / hr to perform polymerization. During the polymerization, the temperature of the hot water bath was controlled so that the internal temperature was 80 ° C. After completion of dropping, stirring was continued for 60 minutes at 80 ° C. to obtain a polymer emulsion composed of primary particles having a multilayer structure.

[重合体微粒子(A1)〜(A11)の調製]
得られた重合体エマルションは#100メッシュナイロン濾布で濾過した後、スプレードライヤー(大河原化工機(株)L-8型)を用いて噴霧乾燥して粉体化し、重合体微粒子(A1)〜(A11)を得た。
スプレードライヤーのアトマイザ形式は回転ディスク式であり、回転数は22,000rpmで行った。その際に用いた原料エマルション、及びスプレードライヤーの運転条件を表2に示す。ここで「入口温度」とはスプレードライヤーの乾燥室に入る熱風の温度、「出口温度」とはスプレードライヤーの乾燥室の出口付近の温度をそれぞれ意味する。
また、得られた微粒子について、比表面積、吸油量、DINPによる可塑化の有無、分子量を測定した結果を併せて表2に記載する。
[Preparation of polymer fine particles (A1) to (A11)]
The obtained polymer emulsion was filtered with a # 100 mesh nylon filter cloth, and then spray-dried using a spray dryer (Okawara Koki Co., Ltd., L-8 type) to form a powder, and polymer fine particles (A1) to (A11) was obtained.
The atomizer type of the spray dryer was a rotating disk type, and the rotation speed was 22,000 rpm. Table 2 shows operating conditions of the raw material emulsion and the spray dryer used at that time. Here, “inlet temperature” means the temperature of hot air entering the drying chamber of the spray dryer, and “outlet temperature” means the temperature near the outlet of the drying chamber of the spray dryer.
The obtained fine particles are shown in Table 2 together with the results of measurement of specific surface area, oil absorption, presence / absence of plasticization by DINP, and molecular weight.

Figure 0005063043
Figure 0005063043

[比表面積測定法]
重合体微粒子の表面積を窒素吸着式表面積測定器(堀場製作所(株)製、SA−6200)を用いて測定し、重合体微粒子1gあたりの比表面積(単位:m2/g)を算出した。
[吸油量測定法]
重合体微粒子の吸油量(単位:ml/g)をJIS K−5101に記載された方法により測定した。
[重合体の分子量の測定法]
得られた重合体微粒子の分子量は、重合体のクロロホルム可溶分をゲルパーミエーションクロマトグラフィー(GPC)により測定した。分子量のピークが2つ以上検出された際には、それぞれのピークについて数値を記載した。
なお本明細書中では特に記載の無い場合、質量平均分子量を指すものとする。
[DINPによる可塑化の有無]
重合体100質量部とジイソノニルフタレート40質量部とを溶融混練し、得られた成形品のガラス転移温度を粘弾性測定により測定し、ガラス転移温度の低下が認められるか否かで判断した。
[Specific surface area measurement method]
The surface area of the polymer fine particles was measured using a nitrogen adsorption surface area measuring device (manufactured by Horiba, Ltd., SA-6200), and the specific surface area (unit: m2 / g) per 1 g of the polymer fine particles was calculated.
[Oil absorption measurement method]
The oil absorption (unit: ml / g) of the polymer fine particles was measured by the method described in JIS K-5101.
[Measurement method of molecular weight of polymer]
The molecular weight of the polymer fine particles obtained was measured by gel permeation chromatography (GPC) for the chloroform soluble matter of the polymer. When two or more molecular weight peaks were detected, a numerical value was described for each peak.
In the present specification, unless otherwise specified, the mass average molecular weight is indicated.
[Presence or absence of plasticization by DINP]
100 parts by mass of the polymer and 40 parts by mass of diisononyl phthalate were melt-kneaded, and the glass transition temperature of the obtained molded product was measured by viscoelasticity measurement, and it was judged whether or not a decrease in the glass transition temperature was observed.

[実施例1]
重合体微粒子(A1)100g、可塑剤ジイソノニルフタレート(商品名「モノサイザーDINP」、大日本インキ化学工業(株))40.0g、安定剤(商品名「アデカスタブAO−60」、旭電化工業(株))0.50g、安定剤(商品名「アデカスタブ2662」、旭電化工業(株))0.10g、の比率で計量し、ラボプラストミル(東洋精機(株)製)を用いて40℃にてブレンドを行い、粉体状のコンパウンドを調製した。得られた粉体状のコンパウンドは、小型2軸押出機を用いて溶融混練し、引き続きペレタイズを行った(押出条件はバレル温度180℃、ダイ温度160℃、スクリュー回転数100rpm)。
得られたペレットを用いてプレスシートを作成し、後述する方法によりテンシロン試験機による引張試験及び引裂試験を行った。また得られたペレットを用いて、メルトフローレート(MFR)の測定を行った。
配合処方を表3に、評価結果を表4に記載する。
また、重合体微粒子100gをラボプラストミル(東洋精機(株)製、P-200型プラネタリミキサー使用)に投入し、40℃において50rpmで攪拌しながら可塑剤(ジイソノニルフタレート)をゆっくり注入した。注入が完了した後、更に2分間攪拌を継続し、以下の湿粉化の評価を行った。
○:良好に可塑剤を吸収し、粉体状のコンパウンドが得られる
×:ゾル化、またはママコ化してしまい、粉体状のコンパウンドが得られない
更に得られた湿粉状組成物を用いて、後述する方法により耐ブロッキング性を評価した。
得られた結果を表4に示す。
[Example 1]
Polymer fine particles (A1) 100 g, plasticizer diisononyl phthalate (trade name “Monocizer DINP”, Dainippon Ink & Chemicals, Inc.) 40.0 g, stabilizer (trade name “ADK STAB AO-60”, Asahi Denka Kogyo ( Ltd.) 0.50 g, a stabilizer (trade name “Adeka Stub 2662”, Asahi Denka Kogyo Co., Ltd.) 0.10 g, and weighed at 40 ° C. using a lab plast mill (Toyo Seiki Co., Ltd.). Were blended to prepare a powdery compound. The obtained powdery compound was melt-kneaded using a small twin screw extruder and then pelletized (extruding conditions were barrel temperature 180 ° C., die temperature 160 ° C., screw rotation speed 100 rpm).
A press sheet was prepared using the obtained pellets, and a tensile test and a tear test using a Tensilon tester were performed by the method described later. Moreover, the melt flow rate (MFR) was measured using the obtained pellet.
Table 3 shows the formulation and Table 4 shows the evaluation results.
Further, 100 g of polymer fine particles were put into a lab plast mill (manufactured by Toyo Seiki Co., Ltd., using P-200 type planetary mixer), and a plasticizer (diisononyl phthalate) was slowly injected while stirring at 40 rpm at 40 ° C. After the injection was completed, stirring was continued for another 2 minutes, and the following wet powdering was evaluated.
○: The plasticizer is absorbed well and a powdery compound can be obtained. ×: The powdery compound cannot be obtained because it becomes sol or mako, and the obtained wet powder composition is used. The blocking resistance was evaluated by the method described later.
Table 4 shows the obtained results.

Figure 0005063043
表中の略号
可塑剤:ジイソノニルフタレート
安定剤1:旭電化工業(株)、商品名「アデカスタブAO-60」
安定剤2:旭電化工業(株)、商品名「アデカスタブ2662」
Figure 0005063043
Abbreviations in Table: Plasticizer: Diisononyl phthalate stabilizer 1: Asahi Denka Kogyo Co., Ltd., trade name “ADK STAB AO-60”
Stabilizer 2: Asahi Denka Kogyo Co., Ltd., trade name “ADK STAB 2662”

Figure 0005063043
Figure 0005063043

[MFRの測定]
得られたペレットは、メルトインデクサー(TAKARA社、L244)を用いてメルトフローレート(MFR)を測定した。測定温度は180℃、荷重は10kgで行った。(単位:g/10分)
◎:10以上
○:1以上10未満
×:1未満
[引張試験]
得られたペレットを37tonプレス機(王子機械(株)製)および5mm厚みの平板金型を用いて溶融させプレスした(プレス機温度 上段:180℃、下段:180℃、5MPa×5分)。その後ただちに100tonプレス機(庄司鉄鋼(株)製)で冷却し(水冷、5MPa×3分)、プレスシートを作成した。なお平板金型には1mm厚のスペーサーを設けた。
得られたプレスシートは、JIS K−6251記載のダンベル形状2号型に裁断して試験片とし、テンシロン試験機により引張試験時の破断強度および初期弾性率の測定を行った。なお、試験速度は200mm/分、ロードセル定格980N、測定した時の環境温度は25℃であった。
破断強度(単位:MPa)
○:8以上
△:2以上8未満
×:2未満
初期弾性率(単位:MPa)
○:30未満
△:30以上100未満
×:100以上
[湿粉の耐ブロッキング試験]
湿粉状組成物を20gを計量し、断面積20cmの円筒状ケースに入れ、そこに荷重1kgの錘を乗せた(50g/cm)。この状態で50℃恒温槽に5日間保持した後に室温に戻し、圧力を開放した後に粉体のブロッキング状態を評価した。
◎:容器から出すと自然に粉状に戻る
○:指で揉みほぐすと粉状に戻すことができる
×:粉どうしが熱融着しており、粉状には戻らない
[Measurement of MFR]
The resulting pellets were measured for melt flow rate (MFR) using a melt indexer (TAKARA, L244). The measurement temperature was 180 ° C. and the load was 10 kg. (Unit: g / 10 minutes)
◎: 10 or more ○: 1 or more and less than 10 ×: less than 1 [tensile test]
The obtained pellets were melted and pressed using a 37-ton press (manufactured by Oji Machinery Co., Ltd.) and a 5 mm-thick flat plate mold (press machine temperature: upper stage: 180 ° C., lower stage: 180 ° C., 5 MPa × 5 minutes). Immediately after that, it was cooled with a 100 ton press (manufactured by Shoji Steel Co., Ltd.) (water cooling, 5 MPa × 3 minutes) to prepare a press sheet. The flat plate mold was provided with a 1 mm spacer.
The obtained press sheet was cut into a dumbbell shape No. 2 type described in JIS K-6251 to obtain a test piece, and the breaking strength and initial elastic modulus at the time of a tensile test were measured with a Tensilon tester. The test speed was 200 mm / min, the load cell rating was 980 N, and the environmental temperature when measured was 25 ° C.
Breaking strength (unit: MPa)
○: 8 or more Δ: 2 or more and less than 8 ×: Less than 2 Initial elastic modulus (unit: MPa)
○: Less than 30 Δ: 30 or more and less than 100 ×: 100 or more [wet powder anti-blocking test]
20 g of the wet powder composition was weighed and placed in a cylindrical case having a cross-sectional area of 20 cm 2 , and a weight with a load of 1 kg was placed thereon (50 g / cm 2 ). In this state, it was kept in a constant temperature bath at 50 ° C. for 5 days and then returned to room temperature. After releasing the pressure, the blocking state of the powder was evaluated.
◎: When it is taken out of the container, it naturally returns to powder. ○: It can be returned to powder by kneading with fingers. ×: The powder is heat-sealed and does not return to powder.

[実施例2〜7、比較例1〜4]
表3に記載の配合比率にて所定の重合体微粒子およびその他の添加剤を配合し、実施例1と同様の評価を行った。結果を表4に示す。
[Examples 2-7, Comparative Examples 1-4]
Predetermined polymer fine particles and other additives were blended at the blending ratio shown in Table 3, and the same evaluation as in Example 1 was performed. The results are shown in Table 4.

[実施例8〜10]
実施例5〜7の樹脂組成物を用いて、カレンダー加工性を評価した。
カレンダー加工性の目安として、ロール試験機によるバンク回り及びシート剥離性、プレートアウトの有無を評価した。ロール試験機は8インチテストロールを使用し、設定温度は180℃とした。
得られた結果を表5に示す。
[Examples 8 to 10]
Calendar workability was evaluated using the resin compositions of Examples 5-7.
As an indication of calendar workability, the bank periphery and sheet peelability with a roll tester and the presence or absence of plate-out were evaluated. The roll tester used an 8-inch test roll, and the set temperature was 180 ° C.
The results obtained are shown in Table 5.

Figure 0005063043
Figure 0005063043

Claims (4)

炭素数4以上のアルキル(メタ)アクリレートを20mol%以上共重合したアクリル系重合体である質量平均分子量40万以上の重合体成分(P1)を含有し、アマニ油で測定される吸油量が0.4ml/g以上であり、窒素ガス吸着法で測定される比表面積が8〜30m/gの範囲である軟質成形用アクリル系重合体微粒子と可塑剤とを溶融混練して成る軟質成形体用アクリル系樹脂組成物。 It contains a polymer component (P1) having a mass average molecular weight of 400,000 or more, which is an acrylic polymer copolymerized with 20 mol% or more of an alkyl (meth) acrylate having 4 or more carbon atoms , and the oil absorption measured with linseed oil is 0 .4ml / g or more, flexible molded having a specific surface area measured by nitrogen gas adsorption method is made by melt kneading a flexible molded body for acrylic polymer fine particles and a plasticizer in a range of 8~30m 2 / g Acrylic resin composition for body. 軟質成形体用アクリル系重合体微粒子が質量平均分子量10万以上40万未満の重合体成分(P2)を含有することを特徴とする請求項1記載の軟質成形用アクリル系樹脂組成物 Soft molded body acrylic polymer fine particles The weight average molecular weight of 100,000 or more 400,000 less of the polymer component (P2) according to claim 1 flexible molded body for acrylic resin composition, wherein the containing. 軟質成形体用アクリル系重合体微粒子がガラス転移温度が0℃以下のゴム状重合体成分(P3)を含有することを特徴とする請求項1または2記載の軟質成形用アクリル系樹脂組成物Claim 1 or 2 flexible molded body for acrylic resin composition, wherein the soft molded body acrylic polymer microparticles glass transition temperature contains 0 ℃ less rubbery polymer component (P3) . 請求項1〜3の何れか記載の軟質成形用アクリル系樹脂組成物をカレンダー加工して得られるアクリル系軟質シート。 Acrylic soft sheet obtained soft moldings for acrylic resin composition according to any one of claims 1 to 3 calendered.
JP2006200625A 2006-07-24 2006-07-24 Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet Active JP5063043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200625A JP5063043B2 (en) 2006-07-24 2006-07-24 Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200625A JP5063043B2 (en) 2006-07-24 2006-07-24 Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet

Publications (2)

Publication Number Publication Date
JP2008024867A JP2008024867A (en) 2008-02-07
JP5063043B2 true JP5063043B2 (en) 2012-10-31

Family

ID=39115841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200625A Active JP5063043B2 (en) 2006-07-24 2006-07-24 Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet

Country Status (1)

Country Link
JP (1) JP5063043B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339116B2 (en) * 1993-06-24 2002-10-28 株式会社クラレ Thermoplastic acrylic resin and method for producing the same
US6894108B1 (en) * 1999-09-20 2005-05-17 Mitsubishi Rayon Co., Ltd. Fine polymer particles for plastisol, process for producing the same, and halogen-free plastisol composition and article made with the same
JP2005232411A (en) * 2004-02-23 2005-09-02 Mitsubishi Rayon Co Ltd Acrylic plastisol composition

Also Published As

Publication number Publication date
JP2008024867A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US6433048B2 (en) Acrylic polymer fine particles and plastisol using the same
JP5958499B2 (en) (Meth) acrylic polymer particles and method for producing the same
JP5100483B2 (en) Thermoplastic resin composition and molded body
JP5162096B2 (en) Resin composition for molding material and molded article using the same
JPH0312110B2 (en)
JP3934108B2 (en) Plastisol composition, gelled film, and article
WO2007097428A1 (en) (meth)acrylic polymer particle, process for production of the particle, plastisol, and article
JP5063043B2 (en) Acrylic polymer fine particles for soft molding, soft acrylic resin composition using the same, and acrylic soft sheet
JP2002226596A (en) Method for producing acrylic polymer fine particle
JP5633716B2 (en) Acrylic resin composition and molded product
JP4077323B2 (en) Plastisol composition and molded article and article using the same
JP3934796B2 (en) Flooring
JP3946215B2 (en) Acrylic polymer fine particles
JP2009062494A (en) Thermoplastic resin composition and molded article
JP5097383B2 (en) Method for producing acrylic polymer fine particles for plastisol and acrylic blastisol composition
JP2007145957A (en) Thermoplastic resin composition for flexible molding material and injection molded article
JP2006083334A (en) Vinyl chloride copolymer resin, method for producing the same and its resin composition
JP2005232411A (en) Acrylic plastisol composition
JP2008208180A (en) Acrylic polymer fine particle, its production method, and plastisol composition, and molded article using the same
JP5348970B2 (en) Styrenic elastomer processing aid, styrene elastomer composition and molded body
JP2005232297A (en) Acrylic polymer fine particle and plastisol composition
JP2010037486A (en) Acrylic resin composition, and molded product
JP4949002B2 (en) Master batch containing foaming agent
JP2003246908A (en) Acrylic plastisol composition
JP2007238711A (en) Soft resin composition and molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R151 Written notification of patent or utility model registration

Ref document number: 5063043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250