JP2005232297A - Acrylic polymer fine particle and plastisol composition - Google Patents

Acrylic polymer fine particle and plastisol composition Download PDF

Info

Publication number
JP2005232297A
JP2005232297A JP2004042762A JP2004042762A JP2005232297A JP 2005232297 A JP2005232297 A JP 2005232297A JP 2004042762 A JP2004042762 A JP 2004042762A JP 2004042762 A JP2004042762 A JP 2004042762A JP 2005232297 A JP2005232297 A JP 2005232297A
Authority
JP
Japan
Prior art keywords
polymer fine
acrylic polymer
fine particles
plastisol composition
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004042762A
Other languages
Japanese (ja)
Inventor
Toshihiro Kasai
俊宏 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004042762A priority Critical patent/JP2005232297A/en
Publication of JP2005232297A publication Critical patent/JP2005232297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Sealing Material Composition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a plastisol composition useful for obtaining a molded product having excellent recovery from deformation; and to provide an acrylic polymer fine particle for constituting the plastisol composition. <P>SOLUTION: The acrylic polymer fine particle has at least one tanδ peak in each range of ≤-10°C and ≥60°C in a chart of temperature dependency of a dynamic viscoelasticity when a sheet-shaped testing piece is prepared and the viscoelasticity thereof is measured by the following measuring method: the measuring method comprising adding 100 pts. mass of diisononyl phthalate to 100 pts. mass of the acrylic polymer fine particles, homogeneously mixing and dispersing the diisononyl phthalate, casting the resultant mixture so as to have 2 mm thickness, heating the cast product at 150°C for 20 min to provide the sheet-shaped testing piece, and measuring the dynamic viscoelasticity of the testing piece at 1 Hz frequency within the range of -50 to 150°C. The plastisol composition contains the polymer fine particles. The article is obtained from the plastisol composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、優れた変形回復性を有する成形体を得る為に有用なアクリル系重合体微粒子及びそのアクリル系重合体微粒子を含むプラスチゾル組成物に関する。   The present invention relates to acrylic polymer fine particles useful for obtaining a molded article having excellent deformation recovery properties, and a plastisol composition containing the acrylic polymer fine particles.

塩化ビニル系重合体微粒子を可塑剤に分散して得られる塩化ビニル系プラスチゾル(以下塩ビゾルと略)は、低粘度ペースト状で加工しやすく、かつ加熱により変形回復性のある成形品を与えるため、様々な産業分野で広く使用されている。しかし、近年になり塩素に由来する問題点がクローズアップされ、塩ビゾルの使用そのものが問題視されている。例えば塩ビゾル製品を焼却する際に発生する塩化水素ガスは、焼却炉を著しく損傷し、また酸性雨をもたらし環境破壊の原因となる。さらに、毒性の高いダイオキシンの発生原因としても懸念されている。   Vinyl chloride plastisol (hereinafter abbreviated as PVC sol) obtained by dispersing vinyl chloride polymer particles in a plasticizer is a low-viscosity paste that is easy to process and gives a molded product that can be deformed by heating. Widely used in various industrial fields. However, in recent years, problems derived from chlorine have been highlighted, and the use of vinyl chloride sol is regarded as a problem. For example, hydrogen chloride gas generated when incinerating a PVC sol product significantly damages the incinerator and causes acid rain, causing environmental destruction. Furthermore, there is a concern as a cause of the generation of highly toxic dioxins.

そこで、近年では塩ビゾルに替わりアクリル系重合体微粒子を用いたアクリル系プラスチゾル(以下アクリルゾルと略)が提案されている。例えば特許文献1では、コアシェル構造のアクリル系重合体微粒子を用いたアクリルゾルが提案されている。また、特許文献2においても、アクリルゾルが提案されている。その他、これまでに多数のアクリルゾルに関する提案がなされている。   Therefore, in recent years, an acrylic plastisol (hereinafter abbreviated as “acrylic sol”) using acrylic polymer fine particles instead of vinyl chloride sol has been proposed. For example, Patent Document 1 proposes an acrylic sol using acrylic polymer fine particles having a core-shell structure. Patent Document 2 also proposes an acrylic sol. In addition, many proposals regarding acrylic sol have been made so far.

しかしながら、これらの提案によるアクリルゾルから得た成形体は、変形回復性が劣るので、高いレベルの変形回復性が要求される分野では使用できない。この点を改善するために、アクリルゾルにウレタン系樹脂を配合する提案がなされている(例えば特許文献3参照)。しかし、ウレタン系樹脂は、アクリルゾルのチキソ性を低下させて塗装時の作業性を著しく低下させる等の不具合がある。   However, molded articles obtained from acrylic sols according to these proposals are inferior in deformation recovery and cannot be used in fields where a high level of deformation recovery is required. In order to improve this point, the proposal which mix | blends urethane-type resin with acrylic sol is made | formed (for example, refer patent document 3). However, the urethane-based resin has problems such as reducing the thixotropy of the acrylic sol and remarkably reducing the workability during coating.

従来技術においては、アクリル系重合体単独で高レベルの変形回復性を実現することは困難である。また、特にアクリルゾルの貯蔵安定性についても高いレベルが要求される場合は、その貯蔵安定性と変形回復性の両方を高いレベルにすることは極めて困難である。さらに、成形体の強度についても高いレベルが要求される場合においても、これと変形回復性の両方を高いレベルにすることも極めて困難である。すなわち、優れた変形回復性の実現自体が困難であり、貯蔵安定性や強度との両立を図ることは更に困難なのである。
国際公開00/01748号パンフレット 特許1390600号公報 特許1518354号公報
In the prior art, it is difficult to achieve a high level of deformation recovery with an acrylic polymer alone. In particular, when a high level is also required for the storage stability of the acrylic sol, it is extremely difficult to increase both the storage stability and the deformation recovery property. Furthermore, even when a high level is required for the strength of the molded body, it is extremely difficult to make both this and the deformation recovery property high. That is, it is difficult to realize excellent deformation recovery itself, and it is further difficult to achieve both storage stability and strength.
International Publication No. 00/01748 Pamphlet Japanese Patent No. 1390600 Japanese Patent No. 1518354

本発明の目的は、優れた変形回復性を有する成形体を得る為に有用なプラスチゾル組成物及びそのプラスチゾル組成物を構成する為のアクリル系重合体微粒子を提供することにある。また、本発明の更なる目的は、その成形体の優れた変形回復性と、貯蔵安定性や強度(抗張力等)の維持との両立を図ることができるプラスチゾル組成物及びアクリル系重合体微粒子を提供することにある。   An object of the present invention is to provide a plastisol composition useful for obtaining a molded article having excellent deformation recovery properties, and acrylic polymer fine particles for constituting the plastisol composition. Another object of the present invention is to provide a plastisol composition and acrylic polymer fine particles capable of achieving both excellent deformation recovery properties of the molded product and maintenance of storage stability and strength (such as tensile strength). It is to provide.

本発明者らは、前述した従来技術の課題に対して鋭意検討を行った結果、成形体の粘弾性において特定の低温側と特定の高温側のそれぞれにtanδピークを与えるようなアクリル系重合体微粒子を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies on the above-described problems of the prior art, the present inventors have found that an acrylic polymer that gives a tan δ peak to each of a specific low temperature side and a specific high temperature side in the viscoelasticity of the molded body. The inventors have found that the above problems can be solved by using fine particles, and have completed the present invention.

すなわち本発明は、下記測定方法でシート状試験片を作製してその動的粘弾性を測定した場合、動的粘弾性の温度依存性のチャートにおいてtanδピークが−10℃以下と60℃以上にそれぞれ少なくとも1つずつ存在することを特徴とするアクリル系重合体微粒子である。
[測定方法] アクリル系重合体微粒子100質量部に対してジイソノニルフタレート100質量部を添加し均質に混合分散させ、2mm厚にキャストして150℃×20分の加熱を行ってシート状試験片を作製し、この試験片の動的粘弾性を周波数1Hzにて−50〜150℃の範囲で測定する。
That is, in the present invention, when a sheet-like test piece is prepared by the following measurement method and the dynamic viscoelasticity is measured, the tan δ peak is −10 ° C. or lower and 60 ° C. or higher in the temperature dependence chart of the dynamic viscoelasticity. At least one each is an acrylic polymer fine particle characterized in that it exists.
[Measurement Method] 100 parts by mass of acrylic polymer fine particles are added with 100 parts by mass of diisononyl phthalate, mixed and dispersed homogeneously, cast to a thickness of 2 mm, and heated at 150 ° C. for 20 minutes to obtain a sheet-like test piece. The dynamic viscoelasticity of the test piece is prepared and measured in the range of −50 to 150 ° C. at a frequency of 1 Hz.

さらに本発明は、上記アクリル系重合体微粒子を含むプラスチゾル組成物;そのプラスチゾル組成物から得られる物品;並びに、そのプラスチゾル組成物から得られる自動車用アンダーボディーコート、自動車用ボディーシーラー又は自動車用マスチック接着剤である。   Furthermore, the present invention provides a plastisol composition comprising the above-mentioned acrylic polymer fine particles; an article obtained from the plastisol composition; and an automobile underbody coat, an automobile body sealer or an automobile mastic adhesive obtained from the plastisol composition. It is an agent.

本発明においては、特定の低温側にtanδピークを付与し、かつ特定の高温側にtanδピークを付与し、少なくとも2つ以上のtanδピークを持つ成形体が得られるので、アクリル系重合体から得られるプラスチゾル組成物の課題であった変形回復性を向上でき、また同時に、貯蔵安定性や強度(抗張力等)の維持をも両立することが可能となる。よって、本発明の工業的意義および地球環境保全にもたらす効果は著大である。   In the present invention, since a tan δ peak is imparted to a specific low temperature side and a tan δ peak is imparted to a specific high temperature side, and a molded product having at least two tan δ peaks is obtained, it is obtained from an acrylic polymer. It is possible to improve the deformation recovery which has been a problem of the plastisol composition to be obtained, and at the same time, it is possible to simultaneously maintain the storage stability and strength (such as tensile strength). Therefore, the industrial significance of the present invention and the effect on global environmental conservation are significant.

本発明のアクリル系重合体微粒子に対して、例えば、可塑剤と必要に応じて添加剤を配合することにより、アクリル系プラスチゾル組成物が得られる。このプラスチゾル組成物は、加熱によって種々の形状の成形体へと加工できる。このように、本発明のアクリル系重合体微粒子を利用して得た成形体は、従来のものと比較して変形回復性が極めて優れたものとなる。なお、変形回復性の評価は、引張試験機で一定量の伸び歪みを加えたり解放したりする引張ヒステリシス試験を使用して、歪み−応力曲線(S−S曲線)の往路と復路との面積比から算出する方法により実施している。具体的には、後に詳述する実施例に記載の方法で評価した。   For example, an acrylic plastisol composition can be obtained by blending the acrylic polymer fine particles of the present invention with a plasticizer and, if necessary, an additive. This plastisol composition can be processed into various shaped articles by heating. As described above, the molded body obtained by using the acrylic polymer fine particles of the present invention is extremely excellent in deformation recovery compared to the conventional one. In addition, the deformation recovery property is evaluated by using a tensile hysteresis test in which a certain amount of elongation strain is applied or released by a tensile tester, and the area between the forward path and the return path of the strain-stress curve (SS curve). It is implemented by the method of calculating from the ratio. Specifically, it evaluated by the method as described in the Example explained in full detail later.

本発明のアクリル系重合体微粒子は、特定の測定方法による動的粘弾性の温度依存性のチャートにおいてtanδピークが−10℃以下と60℃以上にそれぞれ少なくとも1つずつ存在することを特徴とする。ここで、tanδピークが−10℃以下に無い場合は、十分な強度は得られるものの変形回復性が低位となる。また、tanδピークが60℃以上に無い場合は、ある程度の変形回復性は得られるものの、強い拘束成分が無いので高いレベルの変形回復性は得られず、また強度が低いので容易に破断してしまう。また、−10℃以下の最大のtanδの値(D1)と60℃以上の最大のtanδの値(D2)の比(D1/D2)が高いほど、更に変形回復性は良好となる。   The acrylic polymer fine particles of the present invention are characterized in that at least one tan δ peak is present at −10 ° C. or lower and 60 ° C. or higher, respectively, in a temperature dependence chart of dynamic viscoelasticity by a specific measuring method. . Here, when the tan δ peak is not below −10 ° C., sufficient strength is obtained, but the deformation recovery property is low. Also, when the tan δ peak is not above 60 ° C., a certain degree of deformation recovery is obtained, but since there is no strong restraining component, a high level of deformation recovery is not obtained, and since the strength is low, it easily breaks. End up. In addition, the higher the ratio (D1 / D2) of the maximum tan δ value (D1) of −10 ° C. or lower and the maximum tan δ value (D2) of 60 ° C. or higher is, the better the deformation recovery is.

この動的粘弾性の測定は、具体的には、アクリル系重合体微粒子100質量部に対してジイソノニルフタレート100質量部を添加し均質に混合分散させ、2mm厚にキャストして150℃×20分の加熱を行ってシート状試験片を作製し、この試験片に対して周波数1Hzにて−50〜150℃の範囲で行う。   Specifically, the dynamic viscoelasticity is measured by adding 100 parts by mass of diisononyl phthalate to 100 parts by mass of acrylic polymer fine particles, mixing and dispersing uniformly, casting to 2 mm thickness, and 150 ° C. × 20 minutes. A sheet-like test piece is produced by heating the above, and the test piece is carried out at a frequency of 1 Hz in a range of −50 to 150 ° C.

このような特定の動的粘弾性を示すアクリル系重合体微粒子を製造する為の手法は特に限定されず、多数の手法がある。例えば、コアシェル重合体のシェルを重合する際に多量の重合開始剤を投入したり、連鎖移動剤を投与する方法がある。これら手法により、柔軟なコア成分の物性的寄与が大幅にアップするので、変形回復性が飛躍的に向上するものと考えられる。とりわけ、D1/D2が0.5以上の場合は変形回復性が顕著に良好となるので、適用できる用途範囲が拡大する。   The method for producing such acrylic polymer fine particles exhibiting a specific dynamic viscoelasticity is not particularly limited, and there are many methods. For example, there is a method in which a large amount of a polymerization initiator is added or a chain transfer agent is administered when the shell of the core-shell polymer is polymerized. By these methods, the physical contribution of the flexible core component is greatly increased, so it is considered that the deformation recovery property is dramatically improved. In particular, when D1 / D2 is 0.5 or more, the deformation recovery property is remarkably improved, and the applicable range of application is expanded.

さらに、アクリル系重合体微粒子は、その分散液の経時的な粘度変化が少ないことが好ましい。具体的には、アクリル系重合体微粒子100質量部に対してジイソノニルフタレート100質量部を添加し均質に混合分散させた分散液の粘度について、分散液調製後2時間以内に25℃にて剪断速度20s-1で測定した初期粘度(η1)と、さらにこれを35℃にて10日貯蔵し、その後25℃に戻して再び剪断速度20s-1で測定した粘度(η2)との比(η2/η1)が2.0以下であることが好ましい。この場合は、優れた変形回復性を実現すると共に貯蔵安定性の維持もできる。 Furthermore, it is preferable that the acrylic polymer fine particles have little change in viscosity over time of the dispersion. Specifically, with respect to the viscosity of the dispersion obtained by adding 100 parts by mass of diisononyl phthalate to 100 parts by mass of the acrylic polymer fine particles and uniformly mixing and dispersing, the shear rate at 25 ° C. within 2 hours after the preparation of the dispersion. an initial viscosity measured at 20s -1 (η1), and further stores 10 days this at 35 ° C., then the ratio of the viscosity measured at a shear rate of 20s -1 again returned to 25 ℃ (η2) (η2 / η1) is preferably 2.0 or less. In this case, excellent deformation recovery can be realized and storage stability can be maintained.

このような特定の粘度特性(η2/η1)を示すアクリル系重合体微粒子を製造する為の手法は特に限定されず、多数の手法がある。例えば、コアシェル重合体の粒子表面の極性を大幅にアップする方法、シェルを重合する際に水溶性塩の重合開始剤を多量に投入する方法等が挙げられる。   The method for producing such acrylic polymer fine particles exhibiting such specific viscosity characteristics (η2 / η1) is not particularly limited, and there are many methods. Examples thereof include a method for significantly increasing the polarity of the particle surface of the core-shell polymer, and a method for adding a large amount of a water-soluble salt polymerization initiator when the shell is polymerized.

上述した動的粘弾性や粘度特性を示すアクリル系重合体微粒子は、均一構造の粒子ではなく、何らかの層(又は相)構造を有する粒子である。均一構造の粒子では、そのような動的粘弾性を実現することは不可能である。好ましい構造の例としては、組成が異なる複数の重合体層からなるコアシェル構造または多段構造、あるいは重合体組成が連続的に変化するグラディエント型構造が挙げられる。これらの粒子構造を効果的に用いることにより、動的粘弾性を制御し易くなる。   The above-mentioned acrylic polymer fine particles showing dynamic viscoelasticity and viscosity characteristics are not particles having a uniform structure but particles having a certain layer (or phase) structure. It is impossible to achieve such dynamic viscoelasticity with uniformly structured particles. Examples of a preferable structure include a core-shell structure or a multistage structure composed of a plurality of polymer layers having different compositions, or a gradient structure in which the polymer composition changes continuously. By effectively using these particle structures, the dynamic viscoelasticity can be easily controlled.

アクリル系重合体を得るために使用可能なモノマーの例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、i−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の直鎖アルキルアルコールの(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート等の環式アルキルアルコールの(メタ)アクリレート類;メタクリル酸、アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、メタクリル酸 2−サクシノロイルオキシエチル−2−メタクリロイルオキシエチルコハク酸、メタクリル酸 2−マレイノロイルオキシエチル−2−メタクリロイルオキシエチルマレイン酸、メタクリル酸 2−フタロイルオキシエチル−2−メタクリロイルオキシエチルフタル酸、メタクリル酸 2−ヘキサヒドロフタロイルオキシエチル−2−メタクリロイルオキシエチルヘキサヒドロフタル酸等のカルボキシル基含有モノマー;アリルスルホン酸等のスルホン酸基含有モノマー;2−(メタ)アクリロイルオキシエチルアシッドフォスフェート等のリン酸基含有(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類;アセトアセトキエチル(メタ)アクリレート等のカルボニル基含有(メタ)アクリレート類;N−ジメチルアミノエチル(メタ)アクリレート、N−ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート類;などが挙げられる。ただし本発明は、これらの例に限定されるものではない。   Examples of monomers that can be used to obtain acrylic polymers include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) ) (Meth) acrylates of linear alkyl alcohols such as acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate; (meth) of cyclic alkyl alcohols such as cyclohexyl (meth) acrylate Acrylates: methacrylic acid, acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, methacrylic acid 2-succinoloyloxyethyl-2-methacryloyloxyethyl succinic acid, methacrylic acid 2-malenoyloxyethyl-2 -Methacryloy Carboxyl group-containing monomers such as ruoxyethylmaleic acid, methacrylic acid 2-phthaloyloxyethyl-2-methacryloyloxyethylphthalic acid, methacrylic acid 2-hexahydrophthaloyloxyethyl-2-methacryloyloxyethylhexahydrophthalic acid; Sulfonic acid group-containing monomers such as allylsulfonic acid; Phosphoric acid group-containing (meth) acrylates such as 2- (meth) acryloyloxyethyl acid phosphate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Hydroxyl group-containing (meth) acrylates such as acrylate; carbonyl group-containing (meth) acrylates such as acetoacetoxyethyl (meth) acrylate; N-dimethylaminoethyl (meth) acrylate, N-diethylamino ester Amino group-containing (meth) acrylates such as til (meth) acrylate; and the like. However, the present invention is not limited to these examples.

アクリル系重合体微粒子を製造する方法は特に限定されず、例えば、乳化重合法、ソープフリー重合法、縣濁重合法、微細縣濁重合法、分散重合法等が挙げられる。中でも好ましいのは、乳化重合法、ソープフリー重合法である。これらの方法によればコアシェル構造など粒子の構造を制御することが容易である。ただし、本発明は、これらの方法に限定されるものではない。   The method for producing the acrylic polymer fine particles is not particularly limited, and examples thereof include an emulsion polymerization method, a soap-free polymerization method, a suspension polymerization method, a fine suspension polymerization method, and a dispersion polymerization method. Of these, emulsion polymerization and soap-free polymerization are preferred. According to these methods, it is easy to control the particle structure such as the core-shell structure. However, the present invention is not limited to these methods.

アクリル系重合体微粒子は、乾燥粉体としての性状や構造は問わない。例えば、重合で得られた一次粒子が多数集合して凝集粒子(二次粒子)を形成していても構わないし、またそれ以上の高次構造も可能である。ただし、このような凝集構造の場合、一次粒子同士が強固に結合せず、緩く凝集している状態が好ましい。これにより、可塑剤中での一次粒子の微細で均一で分散が達成される為である。   The acrylic polymer fine particles may have any properties or structure as a dry powder. For example, a large number of primary particles obtained by polymerization may be aggregated to form aggregated particles (secondary particles), and higher-order structures are also possible. However, in the case of such an agglomerated structure, it is preferable that the primary particles are not firmly bonded to each other and are loosely aggregated. This is because fine and uniform dispersion of the primary particles in the plasticizer is achieved.

本発明のプラスチゾル組成物は、以上説明した本発明のアクリル系重合体微粒子を含むことを特徴とする。具体的には、アクリル系重合体微粒子に対して、例えば、可塑剤と必要に応じて添加剤を配合して均一に分散させることにより、プラスチゾル組成物が得られる。   The plastisol composition of the present invention includes the acrylic polymer fine particles of the present invention described above. Specifically, a plastisol composition can be obtained by, for example, blending and uniformly dispersing a plasticizer and, if necessary, an additive with respect to the acrylic polymer fine particles.

可塑剤としては、代表的には、動的粘弾性の測定方法の場合と同様に、ジイソノニルフタレートを用いる。ただし、これ以外にも、例えばフタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸ジアルキルエステル;フタル酸ブチルベンジル等のフタル酸アルキルベンジル;フタル酸アルキルアリール;フタル酸ジベンジル;フタル酸ジアリール;リン酸トリクレシル等のリン酸トリアリール系、リン酸トリアルキル系、リン酸アルキルアリール系等のリン酸エステル;アジピンジブチル等の脂肪族二塩基酸エステル;ジブチルグリコールアジペート等のエーテル含有化合物;ポリエステル系可塑剤、エポキシ化大豆油等の大豆油系可塑剤等を可塑剤として用いることができる。これらの可塑剤は1種を単独で用いるだけでなく、2種以上の可塑剤を混合して用いることも可能である。可塑剤の配合量は、アクリル系重合体微粒子100質量部に対して50〜300質量部が好ましく、60〜200質量部がより好ましい。   As the plasticizer, typically, diisononyl phthalate is used as in the method of measuring dynamic viscoelasticity. However, other than these, for example, dialkyl phthalates such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisononyl phthalate and diisodecyl phthalate; alkyl benzyl phthalates such as butyl benzyl phthalate; alkyl aryl phthalates; Dibenzyl phthalate; diaryl phthalate; triaryl phosphates such as tricresyl phosphate; phosphate esters such as trialkyl phosphates and alkylaryl phosphates; aliphatic dibasic acid esters such as adipine dibutyl; dibutyl glycol adipate Ether-containing compounds such as polyester plasticizers, soybean oil plasticizers such as epoxidized soybean oil, and the like can be used as plasticizers. These plasticizers can be used alone or in combination of two or more plasticizers. The blending amount of the plasticizer is preferably 50 to 300 parts by mass, more preferably 60 to 200 parts by mass with respect to 100 parts by mass of the acrylic polymer fine particles.

プラスチゾル組成物には、必要に応じて、さらに炭酸カルシウム、水酸化アルミニウム、パーライト、クレー、コロイダルシリカ、マイカ粉、珪砂、珪藻土、カオリン、タルク、ベントナイト、ガラス粉末、酸化アルミニウム、フライアッシュ、シラスバルーンなどの充填材を配合しても良い。充填材を配合する目的や種類、量などは任意である。また、充填材は表面処理などが施されていても良い。   For plastisol compositions, calcium carbonate, aluminum hydroxide, pearlite, clay, colloidal silica, mica powder, quartz sand, diatomaceous earth, kaolin, talc, bentonite, glass powder, aluminum oxide, fly ash, shirasu balloon, if necessary You may mix | blend fillers, such as. The purpose, type, amount, etc. of the filler are arbitrary. Further, the filler may be subjected to a surface treatment or the like.

また、更に必要に応じて、酸化チタン、カーボンブラック等の顔料、さらにミネラルターペン、ミネラルスピリット等の希釈剤、さらに消泡剤、防黴剤、防臭剤、抗菌剤、界面活性剤、滑剤、紫外線吸収剤、香料、発泡剤、レベリング剤、接着剤等を自由に配合することが可能である。   In addition, if necessary, pigments such as titanium oxide and carbon black, further diluents such as mineral terpenes and mineral spirits, further antifoaming agents, antifungal agents, deodorants, antibacterial agents, surfactants, lubricants, ultraviolet rays Absorbers, fragrances, foaming agents, leveling agents, adhesives and the like can be freely blended.

本発明のアクリル系プラスチゾル組成物は、従来塩ビゾルが用いられていた用途分野をはじめ、ひろく利用可能である。具体的には、自動車アンダーコート、自動車ボディーシーラ、自動車マスチック接着剤、タイルカーペットバッキング材、クッションフロア、壁紙、鋼板塗料、玩具、手袋、食品サンプル、靴、建材用など各種接着材、各種シーラ、ガスケット、防水シート、自動車内層表皮材、帆布、テーブルクロス、合成皮革、消しゴム、スクリーン印刷用塗料等が挙げられる。中でも、特に自動車アンダーコートは耐チッピング性が要求されるため、本発明のような変形回復性に優れるアクリルゾルは好適である。また、自動車ボディーシーラーやマスチック接着剤は高速変形(振動)に対する追従性が要求されるため、本発明のような変形回復性に優れるアクリルゾルは好適である。   The acrylic plastisol composition of the present invention can be widely used in fields of application where a conventional vinyl chloride sol has been used. Specifically, automotive undercoats, automotive body sealers, automotive mastic adhesives, tile carpet backing materials, cushion floors, wallpaper, steel plate paints, toys, gloves, food samples, shoes, building materials, various adhesives, various sealers, Gaskets, waterproof sheets, automobile inner layer skin materials, canvas, table cloths, synthetic leather, erasers, screen printing paints, and the like. Among them, since an automobile undercoat is particularly required to have chipping resistance, an acrylic sol excellent in deformation recovery as in the present invention is suitable. In addition, since an automobile body sealer and a mastic adhesive are required to follow high-speed deformation (vibration), an acrylic sol excellent in deformation recovery as in the present invention is suitable.

以下、本発明を実施例に従い具体的に説明する。   Hereinafter, the present invention will be specifically described according to examples.

[重合体微粒子(A1)の調製]
温度計、窒素ガス導入管、攪拌棒、滴下漏斗、冷却管を装備した500mlの4つ口フラスコに、純水100gを入れ、30分間十分に窒素ガスを通気し、純水中の溶存酸素を置換した。次に、窒素ガスの通気を停止した後、200rpmで攪拌しながら80℃に昇温した。内温が80℃に達した時点で、5.0gの純水に溶解した過硫酸カリウム0.01gを一度に添加した。次いで、第1滴下としてモノマー(メチルメタクリレート36.0g、n−ブチルメタクリレート34.0g)と乳化剤(ジオクチルスルホコハク酸ナトリウムをモノマー100gあたり1.0g)を均一に溶解した混合液を20g/hrの速度で滴下し、引き続き80℃にて1時間攪拌を継続して、コア重合体ラテックスを得た。
[Preparation of polymer fine particles (A1)]
100 g of pure water is put into a 500 ml four-necked flask equipped with a thermometer, nitrogen gas introduction tube, stirring rod, dropping funnel, and cooling tube, and nitrogen gas is thoroughly bubbled for 30 minutes to dissolve dissolved oxygen in the pure water. Replaced. Next, after stopping the aeration of nitrogen gas, the temperature was raised to 80 ° C. while stirring at 200 rpm. When the internal temperature reached 80 ° C., 0.01 g of potassium persulfate dissolved in 5.0 g of pure water was added all at once. Next, a mixture solution in which a monomer (methyl methacrylate 36.0 g, n-butyl methacrylate 34.0 g) and an emulsifier (1.0 g of sodium dioctylsulfosuccinate per 100 g of monomer) were uniformly dissolved as a first drop was added at a rate of 20 g / hr. Then, stirring was continued at 80 ° C. for 1 hour to obtain a core polymer latex.

さらに、そのコア重合体ラテックスに、10.0gの純水に溶解した過硫酸カリウム0.20gを一度に添加した。次いで、第2滴下としてモノマー(メチルメタクリレート28.7g、メタクリル酸1.3g)と乳化剤(ジオクチルスルホコハク酸ナトリウムをモノマー100gあたり1.0g)を均一に溶解した混合液を、20g/hrの速度で滴下し、引き続き80℃にて1時間攪拌を継続して、コアシェル重合体ラテックスを得た。   Further, 0.20 g of potassium persulfate dissolved in 10.0 g of pure water was added to the core polymer latex at once. Next, as a second drop, a mixed solution in which the monomer (methyl methacrylate 28.7 g, methacrylic acid 1.3 g) and the emulsifier (sodium dioctylsulfosuccinate 1.0 g per 100 g monomer) were uniformly dissolved was added at a rate of 20 g / hr. Then, stirring was continued at 80 ° C. for 1 hour to obtain a core-shell polymer latex.

このコアシェル重合体ラテックスを室温まで冷却した後、スプレードライヤー(大河原化工機(株)製L8型)を用いて、入口温度170℃、出口温度65℃、アトマイザ回転数25000rpmにて噴霧乾燥し、重合体微粒子(A1)を得た。   After cooling the core-shell polymer latex to room temperature, it is spray-dried at an inlet temperature of 170 ° C., an outlet temperature of 65 ° C., and an atomizer speed of 25000 rpm using a spray dryer (L8 type, manufactured by Okawara Chemical Co., Ltd.). Combined fine particles (A1) were obtained.

[重合体微粒子(A2)の調製]
第1滴下と第2滴下のモノマー組成を夫々表1に記載の組成に変更したことを除き、重合体微粒子(A1)の場合と同様にして重合体微粒子(A2)を調製した。すなわち、モノマーに対する乳化剤の添加量、モノマーの滴下速度、噴霧乾燥の条件などは重合体微粒子(A1)の場合と同一である。
[Preparation of polymer fine particles (A2)]
Polymer fine particles (A2) were prepared in the same manner as in the case of the polymer fine particles (A1) except that the monomer compositions of the first drop and the second drop were changed to the compositions shown in Table 1, respectively. That is, the amount of emulsifier added to the monomer, the dropping rate of the monomer, the spray drying conditions, and the like are the same as in the case of the polymer fine particles (A1).

[重合体微粒子(A3)の調製]
第1滴下と第2滴下のモノマー組成を夫々表1に記載の組成に変更したこと、及び、第2滴下の直前の過硫酸カリウム溶液の滴下は行わなかったことを除き、重合体微粒子(A1)の場合と同様にして重合体微粒子(A3)を調製した。
[Preparation of polymer fine particles (A3)]
Polymer fine particles (A1) except that the monomer composition of the first and second drops was changed to the composition shown in Table 1 and that the potassium persulfate solution was not dropped immediately before the second drop. Polymer fine particles (A3) were prepared in the same manner as in the above.

[重合体微粒子(A4)の調製]
国際公開00/01748号パンフレットの実施例中に(A3)として例示された重合体微粒子の製造方法に従い、重合体微粒子(A4)を調製した。
[Preparation of polymer fine particles (A4)]
Polymer fine particles (A4) were prepared according to the method for producing polymer fine particles exemplified as (A3) in the examples of the pamphlet of International Publication No. 00/01748.

[重合体微粒子(A5)及び(A6)の調製]
第1滴下と第2滴下のモノマー組成を夫々表1に記載の組成に変更したことを除き、重合体微粒子(A4)の場合と同様にして重合体微粒子(A5)及び重合体微粒子(A6)を調製した。
[Preparation of polymer fine particles (A5) and (A6)]
The polymer fine particles (A5) and the polymer fine particles (A6) are the same as the polymer fine particles (A4) except that the monomer compositions of the first drop and the second drop are changed to the compositions shown in Table 1, respectively. Was prepared.

[実施例1〜3及び比較例1〜3:プラスチゾル組成物の調製]
表2に示した各重合体微粒子100質量部あたり可塑剤としてジイソノニルフタレート(DINP)を100質量部投入し、真空ミキサー((株)シンキー製ARV−200)にて脱泡攪拌(10秒間大気圧で混合した後、20mmHgに減圧して50秒間混合)を行い、均一なプラスチゾル組成物を得た。得られたプラスチゾル組成物につき、以下に示す項目について評価を行った。その評価結果を表2に示す。
[Examples 1-3 and Comparative Examples 1-3: Preparation of plastisol compositions]
100 parts by mass of diisononyl phthalate (DINP) as a plasticizer per 100 parts by mass of each polymer fine particle shown in Table 2 was added and defoamed with a vacuum mixer (ARV-200, manufactured by Sinky Corporation) for 10 seconds at atmospheric pressure And mixing for 50 seconds under reduced pressure to 20 mmHg) to obtain a uniform plastisol composition. For the obtained plastisol composition, the following items were evaluated. The evaluation results are shown in Table 2.

(貯蔵安定性(η2/η1))
プラスチゾル組成物を調製後、2時間以内に25℃にて粘度を測定した(初期粘度η1)。さらに、これを35℃の恒温室に10日間貯蔵し、25℃に戻して再び粘度を測定した(貯蔵後粘度η2)。これらの粘度測定は、プラスチゾル組成物をテフロン処理された鉄板(厚さ約1mm)上に約2mm厚になるようにキャストし、これをギヤーオーブンで150℃×20分加熱して得たシート状成形体を粘度測定用試験片とし、EMD型粘度計(東機産業(株)製、コーン角度3度)を用いて、測定温度25℃、剪断速度20s-1にて実施した。このようにして測定した初期粘度η1と貯蔵後粘度η2の値から、貯蔵安定性として「η2/η1」を算出し、以下の基準で評価した。
「◎」: η2/η1が2未満。
「○」: η2/η1が2以上6未満。
「×」: η2/η1が6以上(またはη2測定不能)。
(Storage stability (η2 / η1))
After preparing the plastisol composition, the viscosity was measured at 25 ° C. within 2 hours (initial viscosity η1). Furthermore, this was stored in a constant temperature room at 35 ° C. for 10 days, returned to 25 ° C., and the viscosity was measured again (viscosity η2 after storage). These viscosities were measured by casting the plastisol composition onto a Teflon-treated iron plate (thickness: about 1 mm) to a thickness of about 2 mm, and heating it in a gear oven at 150 ° C. for 20 minutes. The molded body was used as a test piece for viscosity measurement, and an EMD viscometer (manufactured by Toki Sangyo Co., Ltd., cone angle: 3 °) was used at a measurement temperature of 25 ° C. and a shear rate of 20 s −1 . From the values of the initial viscosity η1 and the post-storage viscosity η2 measured in this way, “η2 / η1” was calculated as storage stability and evaluated according to the following criteria.
“◎”: η2 / η1 is less than 2.
“◯”: η2 / η1 is 2 or more and less than 6.
“×”: η2 / η1 is 6 or more (or η2 cannot be measured).

(粘弾性測定(tanδピーク温度、tanδ1/tanδ2))
上記のようにして得たシート状成形体を、幅10mm×長さ20mmの短冊形状に切り出し、粘弾性測定装置((株)ユービーエム製、Rheosol−G3000)を用い、周波数1Hzにて、−50〜150℃(昇温速度4℃/分)にわたって動的粘弾性の測定を行った(掴み部:各5mm)。捻り角度は、材料の硬さの変化により自動調整を行った。得られた動的粘弾性の温度依存性のチャートには1つ以上のtanδピークが認められ、低温側から「tanδ1」、「tanδ2」、とし、それぞれのピークを与える温度を読み取った。
(Viscoelasticity measurement (tan δ peak temperature, tan δ1 / tan δ2))
The sheet-like molded body obtained as described above was cut into a strip shape having a width of 10 mm and a length of 20 mm, and a viscoelasticity measuring device (manufactured by UBM, Rheosol-G3000) was used at a frequency of 1 Hz, − The dynamic viscoelasticity was measured over 50 to 150 ° C. (temperature increase rate: 4 ° C./min) (gripping part: 5 mm each). The twist angle was automatically adjusted by changing the hardness of the material. One or more tan δ peaks were observed in the obtained temperature dependence chart of dynamic viscoelasticity, and “tan δ1” and “tan δ2” were taken from the low temperature side, and the temperature giving each peak was read.

なお、tanδが明瞭な2ピークを描かず、ブロードな分布を示す場合もあるが、その場合、明らかに肩と見られる領域がある場合はそこをピークとし、明らかな肩が見られない場合には2つのtanδがほぼ一致しているとみなした。また、tanδ1とtanδ2のそれぞれのピークの高さをチャートから読み取り、その比を「tanδ1/tanδ2」として算出した。この数値が高いほどシート状成形物において軟質成分が機械的特性に寄与する比率が高く、tanδ1/tanδ2が0.5以上であると特にゴム的特性が顕著となる。   There are cases where tan δ does not draw a clear two peak and shows a broad distribution, but in that case, if there is a region that is clearly seen as a shoulder, it is the peak, and there is no obvious shoulder Considered that the two tan δ's almost coincided. Further, the heights of the respective peaks of tan δ1 and tan δ2 were read from the chart, and the ratio was calculated as “tan δ1 / tan δ2”. The higher this value is, the higher the ratio of the soft component that contributes to the mechanical properties in the sheet-like molded product, and the rubber-like properties become particularly remarkable when tan δ1 / tan δ2 is 0.5 or more.

(抗張力)
上記のようにして得たシート状成形体を、JIS K−7113記載の手法に従いダンベル形状2号型に裁断して試験片とし、テンシロン測定器により引張破断強度の測定を行い、以下の基準で評価した。なお、試験速度は200mm/分、ロードセル定格1000N、測定した時の環境温度は25℃とした。
「◎」:3.0MPa以上。
「○」:1.5MPa以上3.0MPa未満。
「×」:1.5MPa未満。
(tensile strength)
The sheet-like molded body obtained as described above was cut into a dumbbell-shaped No. 2 mold according to the method described in JIS K-7113, and a tensile breaking strength was measured with a Tensilon measuring instrument. evaluated. The test speed was 200 mm / min, the load cell rating was 1000 N, and the environmental temperature when measured was 25 ° C.
“◎”: 3.0 MPa or more.
“◯”: 1.5 MPa or more and less than 3.0 MPa.
“X”: less than 1.5 MPa.

(変形回復率)
上記のようにして得たシート状成形体を、15mm×80mmの短冊形状に切り出し、テンシロン測定機により引張変形のヒステリシス試験を行った。ここで、引張速度は50mm/分、変位量は伸度にして40%、測定温度は25℃とした。このヒステリシス試験を連続して5回繰り返したが、2回目の試験における往路(引張り時)のS−S曲線が与える面積(S1)と復路(戻り時)のS−S曲線が与える面積(S2)を計算し、ヒステリシス貯蔵率=S2/S1×100(%)を算出し、これを変形回復性の指標とし、以下の基準で評価した。
「◎」:ヒステリシス貯蔵60%以上。
「○」:ヒステリシス貯蔵40%以上60%未満。
「×」:ヒステリシス貯蔵40%未満。
(Deformation recovery rate)
The sheet-like molded body obtained as described above was cut into a strip shape of 15 mm × 80 mm, and a tensile deformation hysteresis test was performed using a Tensilon measuring machine. Here, the tensile speed was 50 mm / min, the displacement was 40% in terms of elongation, and the measurement temperature was 25 ° C. This hysteresis test was repeated 5 times in succession, but the area (S1) given by the SS curve in the forward path (during tension) and the area given by the SS curve in the return path (during return) (S2). ) And hysteresis storage rate = S2 / S1 × 100 (%) was calculated, and this was used as an index for deformation recovery, and evaluated according to the following criteria.
“◎”: Hysteresis storage 60% or more.
"(Circle)": Hysteresis storage 40% or more and less than 60%.
"X": Hysteresis storage is less than 40%.

Figure 2005232297
Figure 2005232297

Figure 2005232297
(各例の考察)
実施例1は、用いるモノマー類は従来技術と同等であるが、軟質成分の比率を増量するとともに、ラテックス粒子表面の極性を大幅に上げる等、従来にない重合技術を用いることで、変形回復性と貯蔵安定性を同時に高いレベルで両立することを可能にした例である。実施例1の粘弾性チャートを図1に示す。このチャートから明らかなように、成形体中のtanδは明瞭な2つのピークを形成しており、そのうち低温側のピークは十分に低い温度域に出現している。これにより成形体はゴム的な回復性を有しており、表2に記載に通り変形回復性は極めて良好であった。また同時に、高温側のtanδピークは十分に高い温度域に出現しており、高い抗張力を維持することも可能であった。また、ラテックス粒子の表面極性を大幅にアップすることで、プラスチゾル貯蔵時の粘度上昇を従来にないレベルで抑制することが出来た。
Figure 2005232297
(Consideration of each example)
In Example 1, the monomers used are the same as in the prior art, but the deformation recovery properties are improved by using an unprecedented polymerization technique such as increasing the ratio of the soft component and greatly increasing the polarity of the latex particle surface. It is an example that makes it possible to achieve both high and storage stability at the same time. The viscoelasticity chart of Example 1 is shown in FIG. As is apparent from this chart, tan δ in the molded body forms two distinct peaks, of which the peak on the low temperature side appears in a sufficiently low temperature range. As a result, the molded article had rubber-like recoverability, and the deformation recovery ability was very good as shown in Table 2. At the same time, the tan δ peak on the high temperature side appeared in a sufficiently high temperature range, and it was possible to maintain a high tensile strength. In addition, by greatly increasing the surface polarity of latex particles, an increase in viscosity during plastisol storage could be suppressed to an unprecedented level.

実施例2は、重合体微粒子(A1)のコア部をさらに軟質化した例である。粘弾性チャートは省略するが、図1と同様、明瞭な2つのtanδピークが出現した。得られた成形体の変形回復性も極めて良好であり、抗張力も高かった。また、プラスチゾルの粘度上昇も大幅に抑制出来た。   Example 2 is an example in which the core portion of the polymer fine particles (A1) is further softened. Although the viscoelasticity chart is omitted, two clear tan δ peaks appeared as in FIG. The resulting molded article had very good deformation recovery and high tensile strength. In addition, the increase in viscosity of plastisol could be significantly suppressed.

実施例3は、重合体微粒子(A1)のコア部をさらに軟質化したものであるが、粒子表面の極性をあまり上げていない例である。この場合も粘弾性チャートにおいて図1と同様、明瞭な2つのtanδピークが出現した。ただし、粒子表面の極性が十分に上がっていないため、高温側のtanδピークが実施例1及び2ほどは高くなかった。得られた成形体の変形回復性は極めて良好であるが、抗張力は実施例1及び2に比較するとやや低い。ただし、十分に実用可能なレベルである。また、プラスチゾルの粘度上昇は実施例1及び2に比較するとやや低位だが、十分に実用可能なレベルである。   Example 3 is an example in which the core part of the polymer fine particles (A1) is further softened, but the polarity of the particle surface is not increased so much. Also in this case, two clear tan δ peaks appeared in the viscoelasticity chart as in FIG. However, since the polarity of the particle surface was not sufficiently increased, the tan δ peak on the high temperature side was not as high as in Examples 1 and 2. Although the deformation recovery property of the obtained molded body is very good, the tensile strength is slightly low as compared with Examples 1 and 2. However, this level is sufficiently practical. The increase in viscosity of plastisol is slightly lower than that in Examples 1 and 2, but it is at a sufficiently practical level.

比較例1は、代表的な先行技術である国際公開00/01748号パンフレットに記載の実施例を追試したものである。比較例1の粘弾性チャートを図2に示す。この先行技術のアクリル系コアシェル構造粒子からプラスチゾルを調製し、さらにシート状成形体を測定すると、成形体の粘弾性測定で見られるtanδが十分に離れた低温側と高温側とに出現しておらず(図2参照)。また、成形体の変形回復性が低位であった。したがって、この比較例のように、低温側のtanδが十分に低くなっていないケースにおいては、優れた変形回復性が得られないことを確認できた。   Comparative Example 1 is a trial of an example described in the pamphlet of International Publication No. 00/01748, which is a typical prior art. A viscoelasticity chart of Comparative Example 1 is shown in FIG. When a plastisol was prepared from the acrylic core-shell structure particles of the prior art and the sheet-like molded body was measured, tan δ observed in the viscoelasticity measurement of the molded body appeared on the low-temperature side and the high-temperature side sufficiently separated. (See FIG. 2). Further, the deformability of the molded product was low. Therefore, it was confirmed that excellent deformation recovery was not obtained in the case where tan δ on the low temperature side was not sufficiently low as in this comparative example.

比較例2は、比較例1のコアシェル重合体微粒子のコア部の軟質化、すなわちできるだけ低温側のtanδを低くすることで変形回復性を改良する可能性を確認する為の例である。この例においては、表2に記載の通り、たしかに低温側のtanδは−15℃にまで低下したが、逆に高温側のtanδピークも36℃にまで低下してしまった。これにより成形体の変形回復性は悪くないものの、抗張力が極めて低位となり、実用性能としては不十分である。また、プラスチゾルの貯蔵安定性も低下してしまい、変形回復性との両立ができない、という従来技術の課題も確認できた。   Comparative Example 2 is an example for confirming the possibility of improving the deformation recovery property by softening the core portion of the core-shell polymer fine particles of Comparative Example 1, that is, by reducing tan δ on the low temperature side as much as possible. In this example, as shown in Table 2, the tan δ on the low temperature side decreased to −15 ° C., but the tan δ peak on the high temperature side also decreased to 36 ° C. As a result, the deformation recovery property of the molded product is not bad, but the tensile strength is extremely low, which is insufficient as practical performance. Moreover, the storage stability of plastisol also decreased, and it was also possible to confirm the problem of the prior art that it was impossible to achieve both deformation recovery properties.

比較例3は、比較例1のコアシェル重合体微粒子のコア部の硬質化、すなわちできるだけ高温側のtanδを高くすることで変形回復性を改良する可能性を確認する為の例である。この例においては、表2に記載の通り、たしかに高温側のtanδは89℃にまで上昇したが、逆に低温側のtanδピークも−6℃にまで上昇してしまった。これにより抗張力は悪くないものの、変形回復性が極めて低位となった。   Comparative Example 3 is an example for confirming the possibility of improving the deformation recovery property by hardening the core portion of the core-shell polymer fine particles of Comparative Example 1, that is, by increasing tan δ on the high temperature side as much as possible. In this example, as shown in Table 2, the tan δ on the high temperature side rose to 89 ° C, but the tan δ peak on the low temperature side also rose to -6 ° C. As a result, although the tensile strength was not bad, the deformation recovery property was extremely low.

実施例1における粘弾性チャートである。2 is a viscoelasticity chart in Example 1. 比較例1における粘弾性チャートである。3 is a viscoelasticity chart in Comparative Example 1.

Claims (5)

下記測定方法でシート状試験片を作製してその動的粘弾性を測定した場合、動的粘弾性の温度依存性のチャートにおいてtanδピークが−10℃以下と60℃以上にそれぞれ少なくとも1つずつ存在することを特徴とするアクリル系重合体微粒子。
[測定方法] アクリル系重合体微粒子100質量部に対してジイソノニルフタレート100質量部を添加し均質に混合分散させ、2mm厚にキャストして150℃×20分の加熱を行ってシート状試験片を作製し、この試験片の動的粘弾性を周波数1Hzにて−50〜150℃の範囲で測定する。
When a sheet-like test piece was prepared by the following measurement method and its dynamic viscoelasticity was measured, at least one tan δ peak was −10 ° C. or lower and 60 ° C. or higher in the temperature dependence chart of dynamic viscoelasticity. Acrylic polymer fine particles characterized by being present.
[Measurement Method] 100 parts by mass of acrylic polymer fine particles are added with 100 parts by mass of diisononyl phthalate, mixed and dispersed homogeneously, cast to a thickness of 2 mm, and heated at 150 ° C. for 20 minutes to obtain a sheet-like test piece. The dynamic viscoelasticity of the test piece is prepared and measured in the range of −50 to 150 ° C. at a frequency of 1 Hz.
アクリル系重合体微粒子100質量部に対してジイソノニルフタレート100質量部を添加し均質に混合分散させた分散液の粘度について、分散液調製後2時間以内に25℃にて剪断速度20s-1で測定した初期粘度(η1)と、さらにこれを35℃にて10日貯蔵し、その後25℃に戻して再び剪断速度20s-1で測定した粘度(η2)との比(η2/η1)が2.0以下である請求項1記載のアクリル系重合体微粒子。 The viscosity of a dispersion obtained by adding 100 parts by mass of diisononyl phthalate to 100 parts by mass of acrylic polymer fine particles and mixing and dispersing it uniformly was measured at 25 ° C. and a shear rate of 20 s −1 within 2 hours after the preparation of the dispersion. The ratio (η2 / η1) between the initial viscosity (η1) and the viscosity (η2) measured at a shear rate of 20 s −1 after being stored at 35 ° C. for 10 days and then returned to 25 ° C. is 2. The acrylic polymer fine particle according to claim 1, which is 0 or less. 請求項1または2記載のアクリル系重合体微粒子を含むプラスチゾル組成物。   A plastisol composition comprising the acrylic polymer fine particles according to claim 1. 請求項3記載のプラスチゾル組成物から得られる物品。   An article obtained from the plastisol composition of claim 3. 請求項3記載のプラスチゾル組成物から得られる自動車用アンダーボディーコート、自動車用ボディーシーラー又は自動車用マスチック接着剤。   An underbody coat for automobiles, a body sealer for automobiles or a mastic adhesive for automobiles obtained from the plastisol composition according to claim 3.
JP2004042762A 2004-02-19 2004-02-19 Acrylic polymer fine particle and plastisol composition Pending JP2005232297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042762A JP2005232297A (en) 2004-02-19 2004-02-19 Acrylic polymer fine particle and plastisol composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042762A JP2005232297A (en) 2004-02-19 2004-02-19 Acrylic polymer fine particle and plastisol composition

Publications (1)

Publication Number Publication Date
JP2005232297A true JP2005232297A (en) 2005-09-02

Family

ID=35015579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042762A Pending JP2005232297A (en) 2004-02-19 2004-02-19 Acrylic polymer fine particle and plastisol composition

Country Status (1)

Country Link
JP (1) JP2005232297A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024373A (en) * 2008-07-22 2010-02-04 Mitsubishi Rayon Co Ltd Plastisol composition and article
JP2013024801A (en) * 2011-07-25 2013-02-04 Dexerials Corp Method for measuring dynamic viscoelasticity of particulate material
CN109762425A (en) * 2018-12-28 2019-05-17 常州华科聚合物股份有限公司 A kind of acrylic emulsion and its preparation method and application with core-shell structure and high thixotropic
CN110204642A (en) * 2019-04-24 2019-09-06 武汉仕全兴新材料科技股份有限公司 A kind of alkali-thickening type hydroxyl acrylic emulsion and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024373A (en) * 2008-07-22 2010-02-04 Mitsubishi Rayon Co Ltd Plastisol composition and article
JP2013024801A (en) * 2011-07-25 2013-02-04 Dexerials Corp Method for measuring dynamic viscoelasticity of particulate material
KR20140040825A (en) 2011-07-25 2014-04-03 데쿠세리아루즈 가부시키가이샤 Method for measuring dynamic viscoelasticity of particulate material
US9459197B2 (en) 2011-07-25 2016-10-04 Dexerials Corporation Method for measuring dynamic viscoelasticity of particulate material
CN109762425A (en) * 2018-12-28 2019-05-17 常州华科聚合物股份有限公司 A kind of acrylic emulsion and its preparation method and application with core-shell structure and high thixotropic
CN110204642A (en) * 2019-04-24 2019-09-06 武汉仕全兴新材料科技股份有限公司 A kind of alkali-thickening type hydroxyl acrylic emulsion and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3621885B2 (en) Acrylic polymer fine particles and plastisol using the same
JP5958499B2 (en) (Meth) acrylic polymer particles and method for producing the same
US20070037929A1 (en) Highly elastic polyvinyl chloride composition and products prepared using the same
JP6296118B2 (en) Acrylic polymer and method for producing plastisol composition
JP3684198B2 (en) Polymer fine particles for acrylic plastisol, method for producing the same, non-halogen plastisol composition and article using the same
JP5339505B2 (en) Method for producing latex and acrylic sol composition
JP3621918B2 (en) Method for producing acrylic polymer fine particles
JP2006219559A (en) Acrylic polymer fine particle and plastisol composition using the same
JP2005232297A (en) Acrylic polymer fine particle and plastisol composition
JP3946215B2 (en) Acrylic polymer fine particles
JP2011079935A (en) Paste resin composition
JP4077323B2 (en) Plastisol composition and molded article and article using the same
JP3839880B2 (en) Acrylic sol
JP4190954B2 (en) Acrylic plastisol composition and article obtained using the same
JP5097383B2 (en) Method for producing acrylic polymer fine particles for plastisol and acrylic blastisol composition
JP2006299195A (en) Plastisol composition
JP4861615B2 (en) Acrylic plastisol composition and molded article
JP2006225504A (en) (meth)acrylic polymer aggregate particle for acrylic sol
JP2005060574A (en) Acrylic plastisol composition
JP2005239769A (en) Acrylic polymer fine particle and production method therefor, and plastisol composition
JP5349380B2 (en) Plastisol composition comprising acrylic polymer fine particles
JP2005232411A (en) Acrylic plastisol composition
JP2005263846A (en) Acrylic plastisol composition
JP5288540B2 (en) Plastisol compositions and articles
JP2005264045A (en) Acrylic plastisol composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A02 Decision of refusal

Effective date: 20091007

Free format text: JAPANESE INTERMEDIATE CODE: A02