JP5055561B2 - Hull Surrounding UEP Calculation Method - Google Patents

Hull Surrounding UEP Calculation Method Download PDF

Info

Publication number
JP5055561B2
JP5055561B2 JP2010184214A JP2010184214A JP5055561B2 JP 5055561 B2 JP5055561 B2 JP 5055561B2 JP 2010184214 A JP2010184214 A JP 2010184214A JP 2010184214 A JP2010184214 A JP 2010184214A JP 5055561 B2 JP5055561 B2 JP 5055561B2
Authority
JP
Japan
Prior art keywords
uep
hull
calculation
peripheral
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010184214A
Other languages
Japanese (ja)
Other versions
JP2012040958A (en
Inventor
尚 中村
利治 木村
尚史 赤木
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2010184214A priority Critical patent/JP5055561B2/en
Publication of JP2012040958A publication Critical patent/JP2012040958A/en
Application granted granted Critical
Publication of JP5055561B2 publication Critical patent/JP5055561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、水上艦艇や潜水艦等の船体のの周囲に発生するUEP(Underwater Electric Potential)を推定計算する、船体の周辺UEP計算方法に関する。   The present invention relates to a hull peripheral UEP calculation method for estimating and calculating UEP (Underwater Electric Potential) generated around a hull such as surface ships and submarines.

電解溶液中にイオン化傾向の異なる2つの金属が存在すると、当該2つの金属間に電位差が生じ、水中電界が発生する。これを船舶について見ると、船体は様々な異種金属で構成されている(船体は例えば鋼、プロペラは例えば銅)ため、海水中(すなわち電解溶液中)に存在すると、船体とプロペラとの間に電位差が生じ、水中電界が発生する。この水中電界に起因する水中電位を一般にUEPという。   When two metals having different ionization tendencies exist in the electrolytic solution, a potential difference is generated between the two metals, and an underwater electric field is generated. Looking at this for ships, the hull is composed of various dissimilar metals (the hull is steel, for example, and the propeller is copper, for example). A potential difference occurs, and an underwater electric field is generated. The underwater potential resulting from this underwater electric field is generally referred to as UEP.

イオン化傾向の大きい船体の金属は陽イオンとなって海水中に溶け出すため、船体の金属は腐食する。そのため、船体の腐食を防止するための手段として、船体の代わりに犠牲となる保護亜鉛を船体周辺に張る流電陽極方式や、船体電位を一定に保つように電流を通電させて腐食を防止する外部電源防食方式がある。これらの方式により、船体の腐食は防止できるものの、いずれの方式でも、船体周辺の海水中にUEPが発生する。   The metal in the hull, which has a high ionization tendency, becomes cations and dissolves in the seawater, so the metal in the hull corrodes. Therefore, as a means to prevent hull corrosion, the galvanic anode method in which sacrificial protective zinc is stretched around the hull instead of the hull, and current is applied to keep the hull potential constant to prevent corrosion. There is an external power supply anticorrosion system. Although these methods can prevent hull corrosion, UEP is generated in seawater around the hull in any method.

船体から発生するこれら船体の周辺UEPを任意に設定した位置で推定計算するには、まず、船体の電流発生源となる電極の位置及び電極間の電流値を決める必要がある。従来は、技術者が船体の電極の位置及び電極間の電流値の条件を少しずつ変化させて、電気影像法や境界要素法によりUEPを繰り返し計算し、UEPセンサで計測した船体周辺UEPの計測値と最も一致するように船体の電極の位置及び電極間の電流値を決定していた。   In order to estimate and calculate the peripheral UEP around these hulls generated from the hull at an arbitrarily set position, it is first necessary to determine the position of the electrode serving as the current generation source of the hull and the current value between the electrodes. Conventionally, an engineer repeatedly changes the position of the hull electrodes and the current value between the electrodes, repeatedly calculates UEP using the electro-image method or boundary element method, and measures the surrounding UEP measured by the UEP sensor. The position of the hull electrode and the current value between the electrodes were determined so as to most closely match the values.

従来の方法は、基本的に手動計算であるため、電流値を決めるのに多大な時間と労力がかかり、電極の数を多く設定することは現実的に不可能である。また、算出した電流値も実際の電流値との誤差が大きくならざるを得ない。更に、技術者の技量が結果に大きく影響する。   Since the conventional method is basically manual calculation, it takes a lot of time and labor to determine the current value, and it is practically impossible to set a large number of electrodes. Also, the calculated current value must have a large error from the actual current value. In addition, the skill of the engineer greatly affects the results.

本発明はこうした状況を認識してなされたものであり、その目的は、技術者の技能や経験と関係なく簡単かつ短時間に、任意の位置におけるUEPを正確に推定計算できる船体の周辺UEP計算方法を提供することにある。   The present invention has been made in recognition of such a situation, and the purpose of the invention is to calculate the peripheral UEP of the hull that can accurately estimate the UEP at an arbitrary position in a simple and short time regardless of the skill and experience of the engineer. It is to provide a method.

本発明のある態様は、船体の周辺UEP計算方法である。この方法は、
船体の発生するUEPを計算する方法であって、
船体の複数の電極位置を設定する電極位置設定ステップと、
前記複数の電極のうち任意の2つを選択した電極組合せを所定数だけ設定する電極組合せ設定ステップと、
前記複数の電極の各々に対応する、電気影像法における複数の仮想電極位置を設定する仮想電極位置設定ステップと、
前記船体外部のUEPセンサにより計測した前記船体の周辺UEP、並びに前記複数の電極及び前記複数の仮想電極と前記UEPセンサとの相対位置を基に、電気影像法による前記船体の周辺UEPの計算式における、前記電極組合せ設定ステップで設定した電極組合せの電極間に流れる電流値を、最適パラメータ探索法により算出する電流値算出ステップと、
算出した前記電流値を基に、任意に設定した推定面又は推定線における、前記船体から発生する前記船体の周辺UEPを推定計算するUEP計算ステップとを有する。
One aspect of the present invention is a hull periphery UEP calculation method. This method
A method for calculating a UEP generated by a hull,
An electrode position setting step for setting a plurality of electrode positions of the hull;
An electrode combination setting step of setting a predetermined number of electrode combinations selected from any two of the plurality of electrodes;
A virtual electrode position setting step for setting a plurality of virtual electrode positions in the electro-image method corresponding to each of the plurality of electrodes;
A calculation formula for the peripheral UEP of the hull by electro-image method based on the peripheral UEP of the hull measured by the UEP sensor outside the hull, and the relative positions of the plurality of electrodes, the plurality of virtual electrodes, and the UEP sensor. A current value calculation step for calculating a current value flowing between electrodes of the electrode combination set in the electrode combination setting step by an optimum parameter search method;
A UEP calculation step of estimating and calculating a peripheral UEP of the hull generated from the hull on an arbitrarily set estimation plane or estimation line based on the calculated current value.

ある態様の方法において、前記UEPセンサは、互いに直交するX,Y,Z方向の少なくともいずれかにおける2点間の電位差をUEPとして計測するものであるとよい。   In a method of a certain mode, the UEP sensor may measure a potential difference between two points in at least one of X, Y, and Z directions orthogonal to each other as UEP.

ある態様の方法において、電気影像法による前記計算式は、前記船体の周辺UEPを任意の2点間の電位差として表したものであるとよい。   In the method of an aspect, the calculation formula based on the electric image method may represent the peripheral UEP of the hull as a potential difference between any two points.

ある態様の方法において、電気影像法による前記計算式は、前記船体の周辺UEPを任意の2点間の電界の積分として表したものであるとよい。   In the method of an aspect, the calculation formula based on the electric image method may represent the peripheral UEP of the hull as an integral of an electric field between any two points.

ある態様の方法において、
前記仮想電極位置設定ステップで設定する仮想電極位置は、海底下及び海面上の位置を含み、
電気影像法による前記計算式は、空気の導電率、海水の導電率、及び海底下の導電率を含むとよい。
In some embodiments of the method,
The virtual electrode position set in the virtual electrode position setting step includes a position under the seabed and the sea surface,
The calculation formula based on the electric image method may include air conductivity, seawater conductivity, and conductivity under the seabed.

ある態様の方法において、前記最適パラメータ探索法が最小二乗法であるとよい。   In the method of an aspect, the optimal parameter search method may be a least square method.

ある態様の方法において、前記最適パラメータ探索法が遺伝的アルゴリズムであるとよい。   In the method of an embodiment, the optimal parameter search method may be a genetic algorithm.

ある態様の方法において、前記最適パラメータ探索法が最急降下法であるとよい。   In the method of an embodiment, the optimum parameter search method may be a steepest descent method.

ある態様の方法において、前記最適パラメータ探索法が焼き鈍し法であるとよい。   In a method according to an aspect, the optimum parameter search method may be an annealing method.

なお、以上の構成要素の任意の組合せ、本発明の表現を装置やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation obtained by converting the expression of the present invention between apparatuses and systems are also effective as an aspect of the present invention.

本発明によれば、電流値の算出及びUEPの推定計算が自動化可能なため、技術者の技能や経験と関係なく簡単かつ短時間に、任意の位置におけるUEPを正確に推定計算することができる。また、電極の数に実質的に制限がない。更に、電極間の電流値が把握可能なため、逆向きの電流を強制的に通電することにより船体の周辺UEPを打ち消すといった応用にも有効である。   According to the present invention, current value calculation and UEP estimation calculation can be automated, so UEP at an arbitrary position can be accurately estimated and calculated in a short time regardless of the skill and experience of an engineer. . Further, the number of electrodes is not substantially limited. Furthermore, since the current value between the electrodes can be grasped, it is also effective in applications such as canceling the peripheral UEP around the hull by forcibly applying a reverse current.

本発明の実施の形態に係る船体の周辺UEP計算方法の流れを示すフローチャート。The flowchart which shows the flow of the surrounding UEP calculation method of the hull which concerns on embodiment of this invention. 電気影像法の電極組合せt(船体の電極P0 t+とP0 t-の組合せ)における仮想電極の配置例説明図。FIG. 6 is an explanatory diagram illustrating an example of arrangement of virtual electrodes in an electrode combination t (a combination of hull electrodes P 0 t + and P 0 t− ) of an electric image method.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態に係る船体の周辺UEP計算方法の流れを示すフローチャートである。ここでは、電極間の電流値を算出する際に用いる最適パラメータ探索法に、最小二乗法を使用した場合の一例を示す。各ステップは、基本的に、コンピュータとソフトウェアの協働によって実現される。以下、詳細に説明する。   FIG. 1 is a flowchart showing a flow of a hull periphery UEP calculation method according to an embodiment of the present invention. Here, an example in which the least square method is used as the optimum parameter search method used when calculating the current value between the electrodes is shown. Each step is basically realized by the cooperation of a computer and software. Details will be described below.

始めに、海中又は海底に設置されたUEPセンサにより船体の周辺UEPを計測するとともに、GPS(Global Positioning System)等の測位システムにより船体中心とUEPセンサとの相対位置を計測する(STl)。なお、UEPセンサは2点間の電位差を計測する構造になっている。ここで、座標軸について、船体中心を原点とし、首尾線前方向をX軸、右横方向をY軸、垂直下方向をZ軸と定義する。   First, the peripheral UEP of the hull is measured by a UEP sensor installed in the sea or on the seabed, and the relative position between the hull center and the UEP sensor is measured by a positioning system such as GPS (Global Positioning System) (STl). The UEP sensor is configured to measure a potential difference between two points. Here, with respect to the coordinate axes, the center of the hull is defined as the origin, the forward direction of the tail line is defined as the X axis, the right lateral direction is defined as the Y axis, and the vertical downward direction is defined as the Z axis.

続いて、下記のデータを入力する(ST2)。
Subsequently, the following data is input (ST2).

なお、3軸UEPセンサの各軸方向両端の間隔をl(m)としているが、各軸方向について間隔は同じでなくてもよい。また、3軸UEPセンサに替えて1軸UEPセンサあるいは2軸UEPセンサを使用することも可能である。その場合は、UEP計測データとしては、1軸方向あるいは2軸方向のデータのみを入力する。もっとも、1軸UEPセンサよりも2軸UEPセンサ、2軸UEPセンサよりも3軸UEPセンサを用いた方が、後述の展開係数の算出精度は高い。また、1軸〜3軸UEPセンサは、1つのみでもよいし、2つ以上としてもよい。UEPセンサの個数を増やすほど、後述の展開係数の算出精度が高まる。   In addition, although the space | interval of each axial direction both ends of a triaxial UEP sensor is set to l (m), the space | interval may not be the same about each axial direction. Moreover, it is also possible to use a 1-axis UEP sensor or a 2-axis UEP sensor instead of the 3-axis UEP sensor. In this case, only the data in the 1-axis direction or the 2-axis direction is input as the UEP measurement data. However, the calculation accuracy of the later-described expansion coefficient is higher when the 2-axis UEP sensor is used than the 1-axis UEP sensor and the 3-axis UEP sensor is used rather than the 2-axis UEP sensor. Further, the number of 1-axis to 3-axis UEP sensors may be one, or two or more. As the number of UEP sensors is increased, the calculation accuracy of the expansion coefficient described later increases.

続いて、船体における複数の電極の位置を設定する(ST3)。電極の位置は、任意に設定することができ、例えば保護亜鉛や異種金属、外部電源防食装置の電極等の位置により決定してもよいし、等価的に船体前後(船首、船尾)に配置してもよい。   Subsequently, the positions of a plurality of electrodes in the hull are set (ST3). The position of the electrode can be arbitrarily set. For example, it may be determined depending on the position of the protective zinc, dissimilar metal, electrode of the external power source anticorrosion device, etc., or equivalently disposed in the front and rear of the hull (the bow and stern). May be.

設定した複数の電極のうち任意の2つを選択した電極組合せをtt個だけ設定する(ST4)。なお、1つの電極から2つ以上の電極に流れる電流経路又は2つ以上の電極から1つの電極に流れる電流経路も設定可能である。次に、電極の材料のイオン化傾向等から2つの電極間の正負(電流の入側と出側)も決めておく。   Only tt electrode combinations in which any two of the set electrodes are selected are set (ST4). A current path flowing from one electrode to two or more electrodes or a current path flowing from two or more electrodes to one electrode can also be set. Next, the positive / negative (current input side and output side) between the two electrodes is also determined from the ionization tendency of the electrode material.

次に、電気影像法における仮想電極の次数nnを設定する(ST5)。ここで、電気影像法の電極組合せt(船体の電極P0 t+とP0 t-の組合せ)における仮想電極の配置例を図2に示す。本図に示すように、次数1では、下記の仮想電極が作成される。
Next, the order nn of the virtual electrode in the electric image method is set (ST5). Here, FIG. 2 shows an arrangement example of the virtual electrodes in the electrode combination t (the combination of the hull electrodes P 0 t + and P 0 t− ) of the electric imaging method. As shown in this figure, in order 1, the following virtual electrodes are created.

また、次数nでは、下記の仮想電極が作成される。
In the order n, the following virtual electrodes are created.

このように、次数が1増加する毎に仮想電極は4つ増えることになる。この仮想電極を全ての電極組合せに対して作成する(ST6)。なお、各電極の座標情報は以下のとおりである。
Thus, every time the order increases by 1, the number of virtual electrodes increases by four. This virtual electrode is created for all electrode combinations (ST6). The coordinate information of each electrode is as follows.

続いて、空気の導電率σA、海水の導電率σW、海底下の導電率σGを入力する(ST7)。 Subsequently, the electrical conductivity σ A of air, the electrical conductivity σ W of seawater, and the electrical conductivity σ G under the seabed are input (ST7).

ここで、任意の2点間のUEPを算出するには、2点間の電位を求めた後両者の差分を計算する方法と、2点間の電界を積分する方法がある。まず、2点間の電位の差分を計算する方法を用いた電気影像法における計算式を示す。   Here, in order to calculate UEP between two arbitrary points, there are a method of calculating the difference between the two points after obtaining the potential between the two points, and a method of integrating the electric field between the two points. First, the calculation formula in the electric image method using the method of calculating the potential difference between two points will be shown.

続いて、電界を任意の2点間で積分する方法を用いた電気影像法における計算式を示す。
Subsequently, a calculation formula in the electric image method using the method of integrating the electric field between two arbitrary points will be shown.

上記の数5〜数10において、
である。
In the above formulas 5 to 10,
It is.

上記の数5〜数10は総括的に、
と表すことができる。従って、各電極組合せtの電極間に流れる電流値Itを求めることができれば、任意の2点間の電位差Ekを推定計算できることになる。なお、数5〜7による2点間の電位を求めた後両者の差分を計算する方法による電流値Itと、数8〜10による2点間の電界を積分する方法による電流値Itは同じものとなる。
The above formulas 5 to 10 are generally
It can be expressed as. Therefore, if it is possible to obtain a current value I t flowing between the electrodes of each electrode combination t, it becomes possible to estimate calculating the potential difference E k between any two points. Note that the current value I t according to the method of calculating the difference between the two sought after potential between two points by the number 5-7, the current value I t is by way of integrating the electric field between two points by the number 8-10 It will be the same.

上記の数12における位置の関数を、船体中心とUEPセンサとの相対位置の計測データ及び各電極位置を基に算出する(ST8)。次に、最小二乗法の行列式を作成する(ST9)。   The function of the position in Equation 12 is calculated based on the measurement data of the relative position between the hull center and the UEP sensor and each electrode position (ST8). Next, a least squares determinant is created (ST9).

行列式は、
となり、これを解くことにより、各電極組合せの電極間に流れる電流値Itが算出される(ST10)。なお、ここでは最適パラメータ探索法に最小二乗法を使用した場合の一例を示しているが、ST9は、遺伝的アルゴリズム(GA:Genetic Algorithms)や最急降下法、焼き鈍し法(SA)等の他の公知の最適パラメータ探索法を使用しても電流値Itを算出することができる。
The determinant is
Next, by solving this current value I t flowing between the electrodes the electrode combination is calculated (ST10). Here, an example in which the least square method is used for the optimum parameter search method is shown, but ST9 is another method such as genetic algorithm (GA), steepest descent method, annealing method (SA), etc. even using known optimal parameter search method can calculate a current value I t.

次に、推定面又は推定線を設定して(ST11)、推定面又は推定線上の各設定点jにおける位置の関数を算出する(ST12)。   Next, an estimation plane or an estimation line is set (ST11), and a function of the position at each set point j on the estimation plane or the estimation line is calculated (ST12).

各設定点jにおけるUEPを
により算出する(ST13)。
UEP at each set point j
(ST13).

本実施の形態によれば、電流値の算出及びUEPの推定計算が自動化されているため、電極が多くても、技術者の技能や経験と関係なく簡単かつ短時間に、電極間の電流値を把握することができ、任意の位置におけるUEPを正確に推定計算することができる。また、電極間の電流値が把握可能なため、逆向きの電流を強制的に通電することにより船体の周辺UEPを打ち消すといった応用にも有効である。   According to the present embodiment, since the calculation of the current value and the estimation calculation of UEP are automated, even if there are many electrodes, the current value between the electrodes can be easily and quickly regardless of the skill and experience of the technician. And UEP at an arbitrary position can be accurately estimated and calculated. In addition, since the current value between the electrodes can be grasped, it is also effective in applications such as canceling the peripheral UEP around the hull by forcibly applying a reverse current.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

5 船体 5 hull

Claims (9)

船体の発生するUEP(Underwater Electric Potential)を計算する方法であって、
船体の複数の電極位置を設定する電極位置設定ステップと、
前記複数の電極のうち任意の2つを選択した電極組合せを所定数だけ設定する電極組合せ設定ステップと、
前記複数の電極の各々に対応する、電気影像法における複数の仮想電極位置を設定する仮想電極位置設定ステップと、
前記船体外部のUEPセンサにより計測した前記船体の周辺UEP、並びに前記複数の電極及び前記複数の仮想電極と前記UEPセンサとの相対位置を基に、電気影像法による前記船体の周辺UEPの計算式における、前記電極組合せ設定ステップで設定した電極組合せの電極間に流れる電流値を、最適パラメータ探索法により算出する電流値算出ステップと、
算出した前記電流値を基に、任意に設定した推定面又は推定線における、前記船体から発生する前記船体の周辺UEPを推定計算するUEP計算ステップとを有する、船体の周辺UEP計算方法。
A method for calculating UEP (Underwater Electric Potential) generated by a hull,
An electrode position setting step for setting a plurality of electrode positions of the hull;
An electrode combination setting step of setting a predetermined number of electrode combinations selected from any two of the plurality of electrodes;
A virtual electrode position setting step for setting a plurality of virtual electrode positions in the electro-image method corresponding to each of the plurality of electrodes;
A calculation formula for the peripheral UEP of the hull by electro-image method based on the peripheral UEP of the hull measured by the UEP sensor outside the hull, and the relative positions of the plurality of electrodes, the plurality of virtual electrodes, and the UEP sensor. A current value calculation step for calculating a current value flowing between electrodes of the electrode combination set in the electrode combination setting step by an optimum parameter search method;
A hull peripheral UEP calculation method comprising: a UEP calculation step of estimating and calculating a peripheral UEP of the hull generated from the hull on an arbitrarily set estimation plane or estimation line based on the calculated current value.
前記UEPセンサは、互いに直交するX,Y,Z方向の少なくともいずれかにおける2点間の電位差をUEPとして計測するものである、請求項1記載の船体の周辺UEP計算方法。   The hull peripheral UEP calculation method according to claim 1, wherein the UEP sensor measures a potential difference between two points in at least one of X, Y, and Z directions orthogonal to each other as a UEP. 電気影像法による前記計算式は、前記船体の周辺UEPを任意の2点間の電位差として表したものである、請求項1又は2記載の船体の周辺UEP計算方法。   3. The method of calculating a surrounding UEP for a hull according to claim 1 or 2, wherein the calculation formula based on the electric image method represents the surrounding UEP of the hull as a potential difference between any two points. 電気影像法による前記計算式は、前記船体の周辺UEPを任意の2点間の電界の積分として表したものである、請求項1又は2記載の船体の周辺UEP計算方法。   The method of calculating a surrounding UEP for a hull according to claim 1 or 2, wherein the calculation formula based on the electric image method represents the surrounding UEP of the hull as an integral of an electric field between two arbitrary points. 前記仮想電極位置設定ステップで設定する仮想電極位置は、海底下及び海面上の位置を含み、
電気影像法による前記計算式は、空気の導電率、海水の導電率、及び海底下の導電率を含む、請求項1から4のいずれか記載の船体の周辺UEP計算方法。
The virtual electrode position set in the virtual electrode position setting step includes a position under the seabed and the sea surface,
5. The method for calculating a surrounding UEP for a hull according to any one of claims 1 to 4, wherein the calculation formula based on the electric image method includes an electrical conductivity of air, an electrical conductivity of seawater, and an electrical conductivity under the seabed.
前記最適パラメータ探索法が最小二乗法である請求項1から5のいずれか記載の船体の周辺UEP計算方法。   The hull periphery UEP calculation method according to claim 1, wherein the optimum parameter search method is a least square method. 前記最適パラメータ探索法が遺伝的アルゴリズムである請求項1から5のいずれか記載の船体の周辺UEP計算方法。   6. The hull peripheral UEP calculation method according to claim 1, wherein the optimum parameter search method is a genetic algorithm. 前記最適パラメータ探索法が最急降下法である請求項1から5のいずれか記載の船体の周辺UEP計算方法。   6. The hull peripheral UEP calculation method according to claim 1, wherein the optimum parameter search method is a steepest descent method. 前記最適パラメータ探索法が焼き鈍し法である請求項1から5のいずれか記載の船体の周辺UEP計算方法。   6. The hull peripheral UEP calculation method according to claim 1, wherein the optimum parameter search method is an annealing method.
JP2010184214A 2010-08-19 2010-08-19 Hull Surrounding UEP Calculation Method Active JP5055561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184214A JP5055561B2 (en) 2010-08-19 2010-08-19 Hull Surrounding UEP Calculation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184214A JP5055561B2 (en) 2010-08-19 2010-08-19 Hull Surrounding UEP Calculation Method

Publications (2)

Publication Number Publication Date
JP2012040958A JP2012040958A (en) 2012-03-01
JP5055561B2 true JP5055561B2 (en) 2012-10-24

Family

ID=45897752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184214A Active JP5055561B2 (en) 2010-08-19 2010-08-19 Hull Surrounding UEP Calculation Method

Country Status (1)

Country Link
JP (1) JP5055561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802988B2 (en) * 2013-11-22 2015-11-04 防衛省技術研究本部長 Hull magnetism estimation apparatus and method

Also Published As

Publication number Publication date
JP2012040958A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
CN109598264B (en) Object grabbing method and device
JP2007127589A (en) Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
KR101304579B1 (en) Device and method for measuring position of moving object in water
AU2019211746A1 (en) Devices, methods, and systems for underwater surveying
JP6365862B2 (en) Electrocorrosion diagnostic method and diagnostic device for metal structure
JP5055561B2 (en) Hull Surrounding UEP Calculation Method
CN104569627B (en) What ship corroded associated static magnetic field prediction model under water tests mould method
JP6120307B2 (en) Electrocorrosion monitoring method and apparatus for metal structure
CN106527454B (en) A kind of long-range submarine navigation device depth-setting control method of no steady-state error
WO2015045608A1 (en) Electrolytic protection system and pump device provided with same
JP5002823B2 (en) Hull Surrounding UEP Calculation Method
NO20160104A1 (en) Method for detection of electric fields surrounding a structure in an electrically conducting medium
JP2007299312A (en) Object three-dimensional position estimating device
JP5162760B2 (en) Hull magnetism reduction method and apparatus
JP4815859B2 (en) Magnetic model calculation method
JP2008175683A (en) Apparatus for bias error prediction of sensor
JP2008008691A (en) Tracking processing apparatus, and method and program therefor
JP5574768B2 (en) Mobile object position estimation detection system and mobile object position estimation detection method
JP4515230B2 (en) Moving object position estimation detection method, apparatus, and moving object position estimation detection program
JP7255804B2 (en) State quantity estimation method, state quantity estimation device, and program
JP4977861B2 (en) Deriving method of demagnetizing coil combination
JP6579132B2 (en) Potential distribution estimation method and potential distribution estimation apparatus
JP5802988B2 (en) Hull magnetism estimation apparatus and method
Soh et al. Corrosion Monitoring for Offshore Wind Farm's Substructures by using Electrochemical Noise Sensors
JP5034056B2 (en) UEP visualization method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350