JP5002823B2 - Hull Surrounding UEP Calculation Method - Google Patents

Hull Surrounding UEP Calculation Method Download PDF

Info

Publication number
JP5002823B2
JP5002823B2 JP2010154647A JP2010154647A JP5002823B2 JP 5002823 B2 JP5002823 B2 JP 5002823B2 JP 2010154647 A JP2010154647 A JP 2010154647A JP 2010154647 A JP2010154647 A JP 2010154647A JP 5002823 B2 JP5002823 B2 JP 5002823B2
Authority
JP
Japan
Prior art keywords
uep
hull
peripheral
calculating
function expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010154647A
Other languages
Japanese (ja)
Other versions
JP2012018038A (en
Inventor
尚 中村
利治 木村
尚史 赤木
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2010154647A priority Critical patent/JP5002823B2/en
Publication of JP2012018038A publication Critical patent/JP2012018038A/en
Application granted granted Critical
Publication of JP5002823B2 publication Critical patent/JP5002823B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、水上艦艇や潜水艦等の船体のの周囲に発生するUEP(Underwater Electric Potential)を推定計算する、船体の周辺UEP計算方法に関する。   The present invention relates to a hull peripheral UEP calculation method for estimating and calculating UEP (Underwater Electric Potential) generated around a hull such as surface ships and submarines.

電解溶液中にイオン化傾向の異なる2つの金属が存在すると、当該2つの金属間に電位差が生じ、水中電界が発生する。これを船舶について見ると、船体は様々な異種金属で構成されている(船体は例えば鋼、プロペラは例えば銅)ため、海水中(すなわち電解溶液中)に存在すると、船体とプロペラとの間に電位差が生じ、水中電界が発生する。この水中電界に起因する水中電位を一般にUEPという。   When two metals having different ionization tendencies exist in the electrolytic solution, a potential difference is generated between the two metals, and an underwater electric field is generated. Looking at this for ships, the hull is composed of various dissimilar metals (the hull is steel, for example, and the propeller is copper, for example). A potential difference occurs, and an underwater electric field is generated. The underwater potential resulting from this underwater electric field is generally referred to as UEP.

イオン化傾向の大きい船体の金属は陽イオンとなって海水中に溶け出すため、船体の金属は腐食する。そのため、船体の腐食を防止するための手段として、船体の代わりに犠牲となる保護亜鉛を船体周辺に張る流電陽極方式や、船体電位を一定に保つように電流を通電させて腐食を防止する外部電源防食方式がある。これらの方式により、船体の腐食は防止できるものの、いずれの方式でも、船体周辺の海水中にUEPが発生する。   The metal in the hull, which has a high ionization tendency, becomes cations and dissolves in the seawater, so the metal in the hull corrodes. Therefore, as a means to prevent hull corrosion, the galvanic anode method in which sacrificial protective zinc is stretched around the hull instead of the hull, and current is applied to keep the hull potential constant to prevent corrosion. There is an external power supply anticorrosion system. Although these methods can prevent hull corrosion, UEP is generated in seawater around the hull in any method.

船体から発生するこれら船体の周辺UEPを任意に設定した位置で推定計算するには、まず、船体の電流発生源となる電極の位置及び電極間の電流値を決める必要がある。従来は、技術者が船体の電極の位置及び電極間の電流値の条件を少しずつ変化させて、電気影像法や境界要素法によりUEPを繰り返し計算し、UEPセンサで計測した船体周辺UEPの計測値と最も一致するように船体の電極の位置及び電極間の電流値を決定していた。   In order to estimate and calculate the peripheral UEP around these hulls generated from the hull at an arbitrarily set position, it is first necessary to determine the position of the electrode serving as the current generation source of the hull and the current value between the electrodes. Conventionally, an engineer repeatedly changes the position of the hull electrodes and the current value between the electrodes, repeatedly calculates UEP using the electro-image method or boundary element method, and measures the surrounding UEP measured by the UEP sensor. The position of the hull electrode and the current value between the electrodes were determined so as to most closely match the values.

上記の方法では、複雑な船体の電極の位置や個数を技術者が決定する必要がある。また決定した電極の位置や個数により電流値が異なり、船体全体の電流発生源の大きさを定量的に把握することはできない。さらに計測時の空気、海水、海底の導電率が必要となる。   In the above method, it is necessary for an engineer to determine the positions and the number of electrodes of a complicated hull. In addition, the current value varies depending on the determined position and number of electrodes, and it is impossible to quantitatively grasp the size of the current generation source of the entire hull. In addition, the conductivity of air, seawater, and seabed during measurement is required.

本発明はこうした状況を認識してなされたものであり、その目的は、船体の電極配置や電流値を決めることなく、また技術者の技能や経験と関係なく簡単かつ短時間に、任意の位置におけるUEPを推定計算できる船体の周辺UEP計算方法を提供することにある。   The present invention has been made in view of such a situation, and the purpose of the present invention is to determine an arbitrary position in a simple and short time regardless of the skill and experience of the engineer without determining the electrode arrangement and current value of the hull. It is an object of the present invention to provide a hull peripheral UEP calculation method capable of estimating and calculating UEP.

本発明のある態様は、船体の周辺UEP計算方法である。この方法は、
船体の発生するUEPを計算する方法であって、
船体外部のUEPセンサにより計測した前記船体の周辺UEP、及び前記船体と前記UEPセンサとの相対位置を基に、前記船体の電気モーメントに対応する、所定の調和関数展開法における前記船体の周辺UEPの計算式の各展開係数を、最適パラメータ探索法により算出するステップと、
算出した各展開係数を基に、任意に設定した推定面又は推定線における、前記船体の電気モーメントによる前記船体の周辺UEPを推定計算するステップとを有する。
One aspect of the present invention is a hull periphery UEP calculation method. This method
A method for calculating a UEP generated by a hull,
The peripheral UEP of the hull in a predetermined harmonic function expansion method corresponding to the electric moment of the hull based on the peripheral UEP of the hull measured by the UEP sensor outside the hull and the relative position of the hull and the UEP sensor. A step of calculating each expansion coefficient of the calculation formula by an optimal parameter search method;
And a step of estimating and calculating a peripheral UEP of the hull by an electric moment of the hull in an arbitrarily set estimation plane or estimation line based on each calculated expansion coefficient.

ある態様の方法において、前記UEPセンサは、互いに直交するX,Y,Z方向の少なくともいずれかにおける2点間の電位差をUEPとして計測するものであるとよい。   In a method of a certain mode, the UEP sensor may measure a potential difference between two points in at least one of X, Y, and Z directions orthogonal to each other as UEP.

ある態様の方法において、前記所定の調和関数展開法における前記計算式は、前記船体の周辺UEPを任意の2点間の電位差として表したものであるとよい。   In the method of a certain aspect, the calculation formula in the predetermined harmonic function expansion method may represent the peripheral UEP of the hull as a potential difference between any two points.

ある態様の方法において、前記所定の調和関数展開法における前記計算式は、前記船体の周辺UEPを任意の2点間の電界の積分として表したものであるとよい。   In the method of an aspect, the calculation formula in the predetermined harmonic function expansion method may be a representation of the surrounding UEP of the hull as an integral of an electric field between any two points.

ある態様の方法において、前記所定の調和関数展開法が長球調和関数展開法であるとよい。   In a certain aspect of the method, the predetermined harmonic function expansion method may be a long sphere harmonic function expansion method.

ある態様の方法において、前記所定の調和関数展開法が偏球調和関数展開法であるとよい。   In a certain aspect of the method, the predetermined harmonic function expansion method may be an eccentric spherical harmonic function expansion method.

ある態様の方法において、前記所定の調和関数展開法が球調和関数展開法であるとよい。   In a certain aspect of the method, the predetermined harmonic function expansion method may be a spherical harmonic function expansion method.

ある態様の方法において、前記最適パラメータ探索法が最小二乗法であるとよい。   In the method of an aspect, the optimal parameter search method may be a least square method.

ある態様の方法において、前記最適パラメータ探索法が遺伝的アルゴリズムであるとよい。   In the method of an embodiment, the optimal parameter search method may be a genetic algorithm.

ある態様の方法において、前記最適パラメータ探索法が最急降下法であるとよい。   In the method of an embodiment, the optimum parameter search method may be a steepest descent method.

ある態様の方法において、前記最適パラメータ探索法が焼き鈍し法であるとよい。   In a method according to an aspect, the optimum parameter search method may be an annealing method.

なお、以上の構成要素の任意の組合せ、本発明の表現を装置やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation obtained by converting the expression of the present invention between apparatuses and systems are also effective as an aspect of the present invention.

本発明によれば、船体の周辺UEP及び前記船体とUEPセンサとの相対位置さえ取得できれば、船体の電極配置や電流値を決めることなく、また技術者の技能や経験と関係なく簡単かつ短時間に、任意の位置におけるUEPを推定計算できる。また、船体の電気モーメントの大きさから、船体全体の電流発生源の大きさを定量的に把握できる。更に、船体の電気モーメントを打ち消すような電流を強制的に通電することにより船体の周辺UEPを打ち消すといった応用にも有効である。   According to the present invention, as long as the peripheral UEP of the hull and the relative position between the hull and the UEP sensor can be obtained, the electrode arrangement and current value of the hull are not determined, and it is simple and short regardless of the skill and experience of the engineer. In addition, the UEP at an arbitrary position can be estimated and calculated. In addition, the magnitude of the current source of the entire hull can be quantitatively grasped from the magnitude of the electric moment of the hull. Furthermore, the present invention is also effective for applications such as canceling the UEP around the hull by forcibly applying a current that cancels the electrical moment of the hull.

本発明の実施の形態に係る船体の周辺UEP計算方法の流れを示すフローチャート。The flowchart which shows the flow of the surrounding UEP calculation method of the hull which concerns on embodiment of this invention. 長球調和関数展開法に用いられる長球座標の模式図。The schematic diagram of the long sphere coordinate used for the long sphere harmonic function expansion method. 偏球調和関数展開法に用いられる偏球座標の模式図。The schematic diagram of the oblate ball coordinate used for the oblate ball harmonic function expansion method. 球調和関数展開法に用いられる球座標の模式図。The schematic diagram of the spherical coordinate used for the spherical harmonic function expansion method.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態に係る船体の周辺UEP計算方法の流れを示すフローチャートである。ここでは、船体の電気モーメント(電気双極子モーメント等の電気多重極モーメント)に対応した各展開係数を算出する際に用いる最適パラメータ探索法に、最小二乗法を使用した場合の一例を示す。各ステップは、基本的に、コンピュータとソフトウェアの協働によって実現される。以下、詳細に説明する。   FIG. 1 is a flowchart showing a flow of a hull periphery UEP calculation method according to an embodiment of the present invention. Here, an example in which the least square method is used as the optimum parameter search method used when calculating each expansion coefficient corresponding to the electric moment of the hull (electric multipole moment such as electric dipole moment) is shown. Each step is basically realized by the cooperation of a computer and software. Details will be described below.

始めに、海中又は海底に設置されたUEPセンサにより船体の周辺UEPを計測するとともに、GPS(Global Positioning System)等の測位システムにより船体中心とUEPセンサとの相対位置を計測する(STl)。なお、UEPセンサは2点間の電位差を計測する構造になっている。ここで、座標軸について、船体中心を原点とし、首尾線前方向をX軸、右横方向をY軸、垂直下方向をZ軸と定義する。   First, the peripheral UEP of the hull is measured by a UEP sensor installed in the sea or on the seabed, and the relative position between the hull center and the UEP sensor is measured by a positioning system such as GPS (Global Positioning System) (STl). The UEP sensor is configured to measure a potential difference between two points. Here, with respect to the coordinate axes, the center of the hull is defined as the origin, the forward direction of the tail line is defined as the X axis, the right lateral direction is defined as the Y axis, and the vertical downward direction is defined as the Z axis.

続いて、下記のデータを入力する(ST2)。
Subsequently, the following data is input (ST2).

なお、3軸UEPセンサの各軸方向両端の間隔をl(m)としているが、各軸方向について間隔は同じでなくてもよい。また、3軸UEPセンサに替えて1軸UEPセンサあるいは2軸UEPセンサを使用することも可能である。その場合は、UEP計測データとしては、1軸方向あるいは2軸方向のデータのみを入力する。もっとも、1軸UEPセンサよりも2軸UEPセンサ、2軸UEPセンサよりも3軸UEPセンサを用いた方が、後述の展開係数の算出精度は高い。また、1軸〜3軸UEPセンサは、1つのみでもよいし、2つ以上としてもよい。UEPセンサの個数を増やすほど、後述の展開係数の算出精度が高まる。   In addition, although the space | interval of each axial direction both ends of a triaxial UEP sensor is set to l (m), the space | interval may not be the same about each axial direction. Moreover, it is also possible to use a 1-axis UEP sensor or a 2-axis UEP sensor instead of the 3-axis UEP sensor. In this case, only the data in the 1-axis direction or the 2-axis direction is input as the UEP measurement data. However, the calculation accuracy of the later-described expansion coefficient is higher when the 2-axis UEP sensor is used than the 1-axis UEP sensor and the 3-axis UEP sensor is used rather than the 2-axis UEP sensor. Further, the number of 1-axis to 3-axis UEP sensors may be one, or two or more. As the number of UEP sensors is increased, the calculation accuracy of the expansion coefficient described later increases.

次に、各種調和関数展開法における次数nn,位数mm(nn≧mm)を設定する(ST3)。なお、調和関数展開法は、例えば、長球調和関数展開法や偏球調和関数展開法、球調和関数展開法である。長球調和関数展開法に用いられる長球座標を図2に、偏球調和関数展開法に用いられる偏球座標を図3に、球調和関数展開法に用いられる球座標を図4に示す。なお、cは例えば船体長の半分とする。   Next, the order nn and the order mm (nn ≧ mm) in various harmonic function expansion methods are set (ST3). The harmonic function expansion method is, for example, a long sphere harmonic function expansion method, an oblate spherical harmonic function expansion method, or a spherical harmonic function expansion method. FIG. 2 shows the long spherical coordinates used in the long spherical harmonic expansion method, FIG. 3 shows the eccentric spherical coordinates used in the partial spherical harmonic expansion method, and FIG. 4 shows the spherical coordinates used in the spherical harmonic expansion method. For example, c is half of the hull length.

ここで、任意の2点間のUEPを算出するには、2点間の電位を求めた後両者の差分を計算する方法と、2点間の電界を積分する方法がある。まず、2点間の電位の差分を計算する方法を用いた各種調和関数展開法における計算式を示す。   Here, in order to calculate UEP between two arbitrary points, there are a method of calculating the difference between the two points after obtaining the potential between the two points, and a method of integrating the electric field between the two points. First, calculation formulas in various harmonic function expansion methods using a method of calculating a potential difference between two points will be shown.

長球調和関数展開法においては、
となる。
In the long spherical harmonic expansion method,
It becomes.

偏球調和関数展開法においては、
となる。
In the oblate spherical harmonic expansion method,
It becomes.

球調和関数展開法においては、
となる。
In the spherical harmonic expansion method,
It becomes.

続いて、電界を任意の2点間で積分する方法を用いた各種調和関数展開法における計算式を示す。   Subsequently, calculation formulas in various harmonic function expansion methods using a method of integrating an electric field between two arbitrary points will be shown.

長球調和関数展開法においては、
となる。
In the long spherical harmonic expansion method,
It becomes.

偏球調和関数展開法においては、
となる。
In the oblate spherical harmonic expansion method,
It becomes.

球調和関数展開法においては、
となる。
In the spherical harmonic expansion method,
It becomes.

上記の数2〜数7において、
である。
In the above formulas 2 to 7,
It is.

上記の数2〜数7は総括的に、
と表すことができる。従って、各種調和関数展開法の展開係数Dtを求めることができれば、任意の2点間の電位差Ekを推定計算できることになる。なお、同じ調和関数展開法であれば、2点間の電位を求めた後両者の差分を計算する方法による展開係数と、2点間の電界を積分する方法による展開係数、例えば数2と数5による展開係数Dtは同じものとなる。
The above numbers 2 to 7 are summarized as follows:
It can be expressed as. Therefore, if the expansion coefficient D t of various harmonic function expansion methods can be obtained, the potential difference E k between any two points can be estimated and calculated. If the same harmonic function expansion method is used, the expansion coefficient obtained by calculating the difference between the two points after obtaining the potential between the two points, and the expansion coefficient obtained by integrating the electric field between the two points, for example, Equations 2 and The expansion coefficient D t by 5 is the same.

上記の数9における位置の関数を、船体中心とUEPセンサとの相対位置の計測データを基に算出する(ST4)。次に、最小二乗法の行列式を作成する(ST5)。   The function of the position in Equation 9 is calculated based on the measurement data of the relative position between the hull center and the UEP sensor (ST4). Next, a least squares determinant is created (ST5).

行列式は、
となり、これを解くことにより、各種調和関数展開法の展開係数Dtが算出される(ST6)。なお、ここでは最適パラメータ探索法に最小二乗法を使用した場合の一例を示しているが、ST5は、遺伝的アルゴリズム(GA:Genetic Algorithms)や最急降下法、焼き鈍し法(SA)等の他の公知の最適パラメータ探索法を使用しても展開係数Dtを算出することができる。
The determinant is
By solving this, the expansion coefficient D t of various harmonic function expansion methods is calculated (ST6). Here, an example in which the least square method is used for the optimum parameter search method is shown, but ST5 is another method such as genetic algorithm (GA), steepest descent method, annealing method (SA), etc. The expansion coefficient D t can also be calculated using a known optimum parameter search method.

次に、推定面又は推定線を設定して(ST7)、推定面又は推定線上の各設定点jにおける位置の関数を算出する(ST8)。   Next, an estimation plane or an estimation line is set (ST7), and a function of the position at each set point j on the estimation plane or the estimation line is calculated (ST8).

各設定点jにおけるUEPを
により算出する(ST9)。
UEP at each set point j
(ST9).

本実施の形態によれば、船体の周辺UEP計測データ及び船体とUEPセンサの相対位置さえ取得できれば、複雑な船体の電極配置や電流値、海水等の導電率を決めることなく、誰でも簡単にかつ短時間に任意の位置におけるUEPを推定計算できる。また原点に配置される電気モーメントの大きさから、船体全体の電流発生源の大きさを定量的に把握できる。更に船体の電気モーメントを打ち消すような電流を強制的に通電することにより、船体の周辺UEPを打ち消すといった応用も可能となる。   According to the present embodiment, as long as the peripheral UEP measurement data of the hull and the relative position of the hull and the UEP sensor can be acquired, anyone can easily determine the conductivity of the hull electrode arrangement, current value, seawater, etc. In addition, UEP at an arbitrary position can be estimated and calculated in a short time. In addition, the magnitude of the current source of the entire hull can be quantitatively grasped from the magnitude of the electric moment arranged at the origin. Furthermore, by forcibly applying a current that cancels the electrical moment of the hull, an application such as canceling the peripheral UEP of the hull becomes possible.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

5 船体 5 hull

Claims (11)

船体の発生するUEP(Underwater Electric Potential)を計算する方法であって、
船体外部のUEPセンサにより計測した前記船体の周辺UEP、及び前記船体と前記UEPセンサとの相対位置を基に、前記船体の電気モーメントに対応する、所定の調和関数展開法における前記船体の周辺UEPの計算式の各展開係数を、最適パラメータ探索法により算出するステップと、
算出した各展開係数を基に、任意に設定した推定面又は推定線における、前記船体の電気モーメントによる前記船体の周辺UEPを推定計算するステップとを有する、船体の周辺UEP計算方法。
A method for calculating UEP (Underwater Electric Potential) generated by a hull,
The peripheral UEP of the hull in a predetermined harmonic function expansion method corresponding to the electric moment of the hull based on the peripheral UEP of the hull measured by the UEP sensor outside the hull and the relative position of the hull and the UEP sensor. A step of calculating each expansion coefficient of the calculation formula by an optimal parameter search method;
A method for calculating a surrounding UEP for a hull, including a step of estimating and calculating a surrounding UEP of the hull by an electric moment of the hull in an arbitrarily set estimation plane or estimated line based on each calculated expansion coefficient.
前記UEPセンサは、互いに直交するX,Y,Z方向の少なくともいずれかにおける2点間の電位差をUEPとして計測するものである、請求項1記載の船体の周辺UEP計算方法。   The hull peripheral UEP calculation method according to claim 1, wherein the UEP sensor measures a potential difference between two points in at least one of X, Y, and Z directions orthogonal to each other as a UEP. 前記所定の調和関数展開法における前記計算式は、前記船体の周辺UEPを任意の2点間の電位差として表したものである、請求項1又は2記載の船体の周辺UEP計算方法。   3. The method for calculating a peripheral UEP for a hull according to claim 1 or 2, wherein the calculation formula in the predetermined harmonic function expansion method represents the peripheral UEP of the hull as a potential difference between any two points. 前記所定の調和関数展開法における前記計算式は、前記船体の周辺UEPを任意の2点間の電界の積分として表したものである、請求項1又は2記載の船体の周辺UEP計算方法。   3. The method for calculating a peripheral UEP for a hull according to claim 1 or 2, wherein the calculation formula in the predetermined harmonic function expansion method represents the peripheral UEP of the hull as an integral of an electric field between two arbitrary points. 前記所定の調和関数展開法が長球調和関数展開法である、請求項1から4のいずれか記載の船体の周辺UEP計算方法。   The hull peripheral UEP calculation method according to any one of claims 1 to 4, wherein the predetermined harmonic function expansion method is a long sphere harmonic function expansion method. 前記所定の調和関数展開法が偏球調和関数展開法である、請求項1から4のいずれか記載の船体の周辺UEP計算方法。   The hull peripheral UEP calculation method according to any one of claims 1 to 4, wherein the predetermined harmonic function expansion method is an oblate ball harmonic function expansion method. 前記所定の調和関数展開法が球調和関数展開法である、請求項1から4のいずれか記載の船体の周辺UEP計算方法。   The hull peripheral UEP calculation method according to claim 1, wherein the predetermined harmonic function expansion method is a spherical harmonic function expansion method. 前記最適パラメータ探索法が最小二乗法である請求項1から7のいずれか記載の船体の周辺UEP計算方法。   The method for calculating a surrounding UEP for a hull according to any one of claims 1 to 7, wherein the optimum parameter search method is a least square method. 前記最適パラメータ探索法が遺伝的アルゴリズムである請求項1から7のいずれか記載の船体の周辺UEP計算方法。   The method for calculating a surrounding UEP for a hull according to any one of claims 1 to 7, wherein the optimum parameter search method is a genetic algorithm. 前記最適パラメータ探索法が最急降下法である請求項1から7のいずれか記載の船体の周辺UEP計算方法。   The method for calculating a surrounding UEP for a hull according to any one of claims 1 to 7, wherein the optimum parameter search method is a steepest descent method. 前記最適パラメータ探索法が焼き鈍し法である請求項1から7のいずれか記載の船体の周辺UEP計算方法。   The method for calculating a peripheral UEP for a hull according to any one of claims 1 to 7, wherein the optimum parameter search method is an annealing method.
JP2010154647A 2010-07-07 2010-07-07 Hull Surrounding UEP Calculation Method Active JP5002823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154647A JP5002823B2 (en) 2010-07-07 2010-07-07 Hull Surrounding UEP Calculation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154647A JP5002823B2 (en) 2010-07-07 2010-07-07 Hull Surrounding UEP Calculation Method

Publications (2)

Publication Number Publication Date
JP2012018038A JP2012018038A (en) 2012-01-26
JP5002823B2 true JP5002823B2 (en) 2012-08-15

Family

ID=45603400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154647A Active JP5002823B2 (en) 2010-07-07 2010-07-07 Hull Surrounding UEP Calculation Method

Country Status (1)

Country Link
JP (1) JP5002823B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869946B2 (en) * 1996-08-13 1999-03-10 防衛庁技術研究本部長 A method for determining the electrical conductivity under the sea floor by measuring the underwater electric field associated with a ship
JP2916617B2 (en) * 1997-02-25 1999-07-05 防衛庁技術研究本部長 Underwater current control system for ships
JP3741978B2 (en) * 2001-07-18 2006-02-01 日本電気株式会社 Electric field sensor
JP4516724B2 (en) * 2003-05-22 2010-08-04 Necネットワーク・センサ株式会社 Electrode unit for electric field sensor and electric field sensor
JP4515230B2 (en) * 2004-09-06 2010-07-28 ユニバーサル特機株式会社 Moving object position estimation detection method, apparatus, and moving object position estimation detection program
JP2006250703A (en) * 2005-03-10 2006-09-21 Universal Shipbuilding Corp Conductivity estimation method, system, and apparatus for seabed matter and program for conductivity estimation method for seabed matter
JP2008290626A (en) * 2007-05-25 2008-12-04 Universal Shipbuilding Corp Monitor of on-water or underwater cruising body

Also Published As

Publication number Publication date
JP2012018038A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
Woldemedhin et al. Evaluation of the maximum pit size model on stainless steels under thin film electrolyte conditions
JP6696083B2 (en) Area displacement calculation system, area displacement calculation method, and area displacement calculation program
JP6191145B2 (en) Offset estimation apparatus and program
JP2007127589A (en) Electric field detection method and device, and program for electric field detection method; and mobile position etc. estimation detection method and device, and program for mobile position etc. estimation detection method
KR101304579B1 (en) Device and method for measuring position of moving object in water
CN104569627B (en) What ship corroded associated static magnetic field prediction model under water tests mould method
BR112018006565A2 (en) device for determining current distribution through the anodes of an aluminum reduction cell
JP2010266342A (en) Metal corrosion diagnostic method
EP4089396A1 (en) Monitoring steel support structures for offshore wind turbines
JP5002823B2 (en) Hull Surrounding UEP Calculation Method
WO2015045608A1 (en) Electrolytic protection system and pump device provided with same
JP5055561B2 (en) Hull Surrounding UEP Calculation Method
JP6120307B2 (en) Electrocorrosion monitoring method and apparatus for metal structure
JP4494268B2 (en) Detecting buoy
JP2008297600A (en) Electrolytic protection method
JP4815859B2 (en) Magnetic model calculation method
JP5162760B2 (en) Hull magnetism reduction method and apparatus
JP5574768B2 (en) Mobile object position estimation detection system and mobile object position estimation detection method
JP2008175683A (en) Apparatus for bias error prediction of sensor
JP4515230B2 (en) Moving object position estimation detection method, apparatus, and moving object position estimation detection program
JP2021039036A (en) State quantity estimation method and state quantity estimation device and program
CN110501694B (en) Underwater node passive motion speed estimation method based on Doppler frequency shift estimation
JP5802988B2 (en) Hull magnetism estimation apparatus and method
JPH10237682A (en) System for controlling underwater current of ship
Soh et al. Corrosion Monitoring for Offshore Wind Farm's Substructures by using Electrochemical Noise Sensors

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120418

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350