WO2015045608A1 - Electrolytic protection system and pump device provided with same - Google Patents

Electrolytic protection system and pump device provided with same Download PDF

Info

Publication number
WO2015045608A1
WO2015045608A1 PCT/JP2014/069869 JP2014069869W WO2015045608A1 WO 2015045608 A1 WO2015045608 A1 WO 2015045608A1 JP 2014069869 W JP2014069869 W JP 2014069869W WO 2015045608 A1 WO2015045608 A1 WO 2015045608A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sacrificial anode
seawater
protection system
heating
Prior art date
Application number
PCT/JP2014/069869
Other languages
French (fr)
Japanese (ja)
Inventor
玲緒 小林
大橋 健也
将宏 伊藤
千葉 由昌
孝義 宮地
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US14/903,449 priority Critical patent/US20160326657A1/en
Priority to EP14849248.1A priority patent/EP3051004A1/en
Publication of WO2015045608A1 publication Critical patent/WO2015045608A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/04Controlling or regulating desired parameters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/22Monitoring arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/31Immersed structures, e.g. submarine structures

Definitions

  • the present invention relates to an anticorrosion system and a pump device including the same, and more particularly to an electrocorrosion system suitable using a sacrificial anode and a pump device including the same.
  • Patent Document 1 An example of corrosion protection of equipment used in a conventional seawater environment is described in Patent Document 1.
  • the stainless steel portion and It is made of a metal material with a standard electrode potential lower than that of the two-phase stainless steel of the corrosion-protected part on the surface of the two-phase stainless steel material part that is joined and integrally constitutes the conductor on the side in contact with the seawater fluid.
  • One or more sacrificial anodes are installed and electrically connected.
  • Patent Document 2 describes that a sacrificial anode is provided in a seawater intake pump
  • Patent Document 3 describes that a magnesium alloy is used as a sacrificial anode material.
  • JP 2005-194624 A Japanese Patent Laid-Open No. 2003-34886 JP-A-10-306388
  • the sacrificial anode is made longer by limiting the corrosion-preventing site by the sacrificial anode, but against unexpected corrosion occurring outside the limited site. It will be difficult to respond.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to extend the life of a sacrificial anode used in a pump device such as a seawater pump, and to extend the life of an anticorrosion system of the seawater pump device. is there.
  • the anticorrosion system includes a metal member to be protected against corrosion, a temperature-controllable sacrificial anode electrically connected to the metal member, and the metal member to be protected against corrosion. And a temperature control device for controlling the temperature of the sacrificial anode.
  • the metal member to be anticorrosion is a casing of the pump device, and the sacrificial anode is attached to the portion where the casing is immersed in the electrolyte in a conductive state with the casing. is there.
  • the temperature of the sacrificial anode used in a pump device such as a seawater pump can be controlled to a temperature different from the ambient seawater temperature in which the pump device is immersed, the elution rate of the sacrificial anode can be controlled, and sacrificial The life of the anode can be extended. Thereby, lifetime of a pump apparatus and the cathodic protection system with which it is provided can be extended.
  • FIG. 13 is a flowchart showing a measurement method using the measurement apparatus shown in FIG. 12, and FIG. 13A shows a case where the sacrificial anode is cooled, and FIG. 13B shows a case where the sacrificial anode is heated.
  • sacrificial anode type anticorrosion method measures to suppress the occurrence of corrosion in metal materials
  • sacrificial anode type anticorrosion method is a method of bringing a sacrificial anode, which is relatively easy to install and has a low material cost, into contact with an object, and has been widely used in recent years.
  • the cathodic protection method is a corrosion prevention method for controlling electron transfer in the corrosive action.
  • a metal material having a low standard electrode potential that is, a lower potential
  • a metal material having a low standard potential elutes metal ions so as to have the same potential as the metal material to be protected in a solution environment, and transfers electrons to the metal material side to be protected.
  • the metal material to be protected against corrosion moves the potential to the cathode side where the anodic dissolution reaction is reduced by receiving an electron supply, thereby suppressing the anodic corrosion reaction.
  • a sacrificial anode is a base metal material having a low standard potential that is brought into contact with the metal material to be protected.
  • Corrosion-proof metal materials include cast iron, rolled steel, carbon steel for machine structural use, die steel, nickel cast iron and other steel materials, copper alloys such as bronze and brass, and nickel-based alloys such as cupronickel and monel. Austenitic stainless steel, ferritic stainless steel, duplex stainless steel, martensitic stainless steel, precipitation hardened stainless steel, and other stainless rolled steel or cast steel are also subject to corrosion protection.
  • a material for the sacrificial anode carbon steel, aluminum, zinc, magnesium, and alloys containing these non-ferrous metals as main components are used. The sacrificial anode is consumed with the elution reaction.
  • the seawater pump impeller that is subject to corrosion prevention is brought into contact with a sacrificial anode that has a low standard potential and a large area. Suppress corrosion.
  • FIG. 1 is a diagram showing a seawater desalination system 80
  • FIG. 1 is an overall schematic configuration diagram of the seawater desalination system 80
  • FIG. 2 is an enlarged view of a portion X of the pump device shown in FIG.
  • the seawater desalination system 80 includes a seawater intake pump 30 as a pump device.
  • the seawater 5 is led through the water conduit 41 to the suction tank 42 provided near the coast 40.
  • the main part including the suction part of the pump device 30 is immersed in the suction tank 42.
  • a discharge pipe 43 is connected to the discharge side of the pump device 30, and the discharge pipe 43 is led to a two-layer filter 44 that filters foreign matters such as sand in the seawater sucked by the pump device 30.
  • the seawater 5 filtered by the two-layer filter 44 is guided to the filtered seawater tank 45. And it is supplied to the security filter 47 by the pump 46 provided in the filtration seawater tank 45. Seawater from which foreign matters such as iron particles have been removed by the safety filter 47 is sent to a high-pressure pump 49 to which a power recovery turbine 50 is connected. Seawater pressurized by the high-pressure pump 49 is supplied to the RO membrane (reverse osmosis membrane) module 52 via the pipe 48, salt is removed, and the fresh water is stored in the production water tank 54 via the pipe 53. .
  • RO membrane reverse osmosis membrane
  • the concentrated water concentrated by reducing the water content in the RO membrane module 52 is guided from the pipe 51 to the power recovery turbine 50 and recovered as part of the power for driving the high-pressure pump 49.
  • the concentrated water that has been recovered in power and brought to a low pressure is sent out of the seawater desalination system 80 through the pipe 55.
  • the inner and outer surfaces of the pumping pipe of the pump device 30 are immersed in seawater.
  • the inner surfaces of the high pressure pump 49 and the pump 46 are in contact with seawater. Therefore, it is in an environment where corrosion is likely to occur.
  • a metal pipe is used for a pipe portion downstream from the high-pressure pump 49, and seawater flows at an internal pressure of 5 MPa or more.
  • corrosion phenomena that depend on the salt concentration occur over time, especially in the flanges that are pipe joints and in the welds where the surface texture and surface roughness are uneven, the corrosion rate is high. May develop.
  • the anticorrosion system 70 of this embodiment is necessary.
  • the seawater intake pump which is the pump device 30 is a vertical shaft pump in this embodiment, and a suction bell mouth 34 is attached to the tip.
  • a pump casing 33 is flange-connected to the suction bell mouth 34, and the impeller casing 33 is flange-connected to the guide blade 32 on the downstream side.
  • a pumping pipe (column pipe) 31 is flanged by a flange 35 further downstream of the guide vane 32.
  • An installation portion 39 for fixing the seawater intake pump 30 is attached to the intermediate portion in the axial direction of the pumping pipe 31, and the installation portion 39 is fixed to a base plate 42 a that covers the upper portion of the suction tank 42.
  • the suction bell mouth 34, the impeller casing 33, the guide blade 32, and the pumping pipe 31 constitute a casing.
  • the rotating shaft 36 extends in the vertical direction, and an impeller 38 is attached to the lowermost end portion of the rotating shaft 36 and is fixed to the rotating shaft 36 by an impeller nut or the like.
  • a guide vane inner wall portion 37 having a smaller diameter as it goes downstream is disposed in order to form a guide vane channel.
  • the measuring unit 20 includes a sacrificial anode 3 and a heating / cooling unit 11, and the heating / cooling unit 11 is attached to one surface of the sacrificial anode 3 via a heat conductive sheet 10.
  • the sacrificial anode 3, the heat conductive sheet 10, and the heating / cooling unit 11 are fixed to the outer wall surface of the column pipe 31 by a conductive fixture 4 such as a bolt.
  • a temperature detector 12 is attached to the sacrificial anode 3. Details of the anticorrosion system 70 provided in the seawater intake pump 30 will be described later.
  • the potential and current density of the metal in the sea water are determined by a specific polarization curve.
  • an electric potential at the intersection of the two kinds of polarization curves (a hybrid electric potential) is generated, and an anticorrosion current flows at a current density at the intersection.
  • the polarization of the metal is caused by an electrochemical reaction at the interface between the electrolyte and the metal. Since this electrochemical reaction depends on temperature, the polarization curve also depends on temperature. In other words, it is possible to design an optimal cathodic protection system while taking other influences into account using temperature as a control parameter.
  • Figures 3 to 6 show the measurement results of polarization characteristics for each material.
  • artificial seawater Aquamarine manufactured by Yashima Pharmaceutical
  • V 0 (m / s)
  • pH 8.2
  • FIG. 3 is a graph obtained by logarithmically approximating the cathode polarization characteristics of stainless steel SUS316L, and is a result of measurement using seawater temperature as a parameter.
  • Stainless steel SUS316L is a material conventionally used for the column pipe 31 of the seawater intake pump 30 shown in FIG. 1, and was tested as a metal candidate for corrosion protection. From the potential of the stainless steel SUS316L pipe using the cathodic protection system and the potential of the sacrificial anode attached to the pipe, the current between the pipe and the sacrificial anode is determined by the cathode polarization curve shown in FIG. It is obtained from the intersection of polarization curves.
  • the cathode polarization of stainless steel SUS316L has a slight difference in polarization voltage due to the difference in seawater temperature up to a current density of about 10 1 ( ⁇ A / cm 2 ), but the current density is 10 1 to 10 2 ( ⁇ A / cm 2). ) Increases in temperature dependence, and the amount of change in the polarization voltage also increases. When the current density exceeds 10 2 ( ⁇ A / cm 2 ), the temperature dependence of the polarization voltage remains, but the amount of change is relatively small.
  • FIG. 4 shows the result of testing the duplex stainless steel S31803, which is another candidate material for the piping material, in the same manner as in FIG. Seawater temperature was used as a parameter.
  • Duplex stainless steel S31803 is increasingly used as a material for seawater pumps that require more corrosion resistance.
  • the polarization voltage becomes highly temperature-dependent when the current density is between 10 1 and 10 2 ( ⁇ A / cm 2 ), and the amount of change in the polarization voltage is large.
  • the seawater temperature is 40 ° C. between the current density of 10 1 to 10 2 ( ⁇ A / cm 2 ) where the change of the polarization voltage is large, the polarization voltage becomes the largest. . In other words, the current density is the smallest under the same voltage condition.
  • FIG. 5 shows a logarithmic approximation of the anodic polarization characteristics of a zinc alloy that is a candidate material for a sacrificial anode. It is the result of having tested seawater temperature as a parameter. The test conditions are the same as in the cathode polarization characteristics test.
  • ZAP-A (EL) hereinafter referred to as zinc alloy
  • This zinc alloy has a composition obtained by adding aluminum as an alloy element to pure zinc.
  • the current density is lowest when the seawater temperature is 40 ° C., and when the seawater temperature is 30 to 50 ° C., compared to when the seawater temperature is 20 to 25 ° C.
  • the current density is greatly reduced. Therefore, in the case of a sacrificial anode made of zinc alloy, it can be seen that the life of the sacrificial anode may be extended if the temperature of the seawater in contact with the sacrificial anode is 30 to 50 ° C. Furthermore, the longest life can be expected at 40 ° C.
  • FIG. 6 shows a logarithmic approximation of the anodic polarization characteristics of carbon steel as another candidate material for the sacrificial anode.
  • the seawater temperature is shown as a parameter.
  • the test conditions are the same as in the test of FIG. SS400 was used as carbon steel.
  • the carbon steel shown in FIG. 6 unlike the case of the zinc alloy shown in FIG. 5, when compared with the same potential, the carbon steel has a lower current density as the temperature of seawater in contact with the carbon steel is lower. Yes. Therefore, when carbon steel is used for the sacrificial anode, a long life can be expected by making the temperature of seawater in contact with the carbon steel as low as possible.
  • FIG. 7 is obtained by combining FIG. 3 and FIG.
  • a logarithmic approximation curve 100 of cathode polarization of stainless steel SUS316L at 25 ° C. and a logarithmic approximation curve 101 of anodic polarization of zinc alloy at 25 ° C. are shown as representatives.
  • the potential and current density during anticorrosion can be estimated quickly by calculation.
  • the intersection of the cathode curve 100 and the anode curve 101 at 25 ° C. is approximated by the following equation 1 for the cathode curve 100 and the following equation 2 for the anode curve 101.
  • Approximation methods such as logarithmic approximation, linear approximation, polynomial approximation, and exponential approximation can be used. Further, by using these approximate expressions, the potential distribution and the current density distribution can be obtained by simulation and designed by a known method such as a finite element method or a boundary element method. Note that the polarization curve may be used without approximation, and in that case, the potential and current density during corrosion prevention can be estimated with high accuracy.
  • a current is generated using the potential difference in the electrolyte between the metal member to be protected and the sacrificial anode as a driving force.
  • the electrolyte may be fresh water, brackish water, saline, salt water, etc. in addition to seawater.
  • the sodium chloride concentration in seawater is about 0.24% to 2.96%, and there are differences in concentration depending on the sea area.
  • an aqueous solution containing any ionic species can be applied as the electrolyte.
  • the current density generated in the sacrificial anode is obtained under the condition that the seawater temperature and the temperature of the sacrificial anode and the cathode material as the structural material are all the same.
  • the temperature of the sacrificial anode can be adjusted. Below, the test result at the time of changing the temperature of a sacrificial anode with respect to seawater temperature is demonstrated.
  • FIG. 8 is a schematic diagram showing a first test device 61 of an anticorrosion system simulating a seawater intake pump
  • FIG. 9 is a schematic diagram showing a second test device 62.
  • both surfaces of the anticorrosion target simulation member (pipe simulation member) 1 and the sacrificial anode 3, which are cathode materials, are in contact with the artificial seawater 6.
  • the container 21 in which the artificial seawater 6 is stored in a predetermined amount is installed in the water bath 8 in which the water 7 is accommodated.
  • a test piece of the piping simulation member 1 is suspended by using the cable 15e as a support member.
  • the sacrificial anode 3 is suspended in the container 21 using the cable 15f as a support member.
  • a heating / cooling section 11 is attached to one surface of the sacrificial anode 3 via a heat conductive sheet 10.
  • the heating / cooling unit 11 is connected to the control unit 13 by a cable 15b.
  • the sacrificial anode 3 is provided with a temperature detector 12a, and temperature information detected by the temperature detector 12a is input to the control unit 13 via the cable 15c.
  • the control unit 13 is connected to the power source 14 by a cable 15a.
  • the piping simulation member 1 and the sacrificial anode 3 are connected by cables 15e and 15f through a non-resistance ammeter 9.
  • the second test apparatus 62 includes the same components as the first test apparatus 61, and further includes a second temperature detector 12b.
  • the second temperature detector 12b detects the temperature of the artificial seawater 6, and the temperature information detected by the second temperature detector 12b is input to the control unit 13 using the cable 15d.
  • the pipe simulation member 1 and the sacrificial anode 3 are electrically connected using the non-resistance ammeter 9 and the cables 15e and 15f. 3 can be fixed by, for example, a conductive fixture 4 such as a bolt, or the piping simulation member 1 and the sacrificial anode 3 can be directly brought into contact with each other. With these configurations, the sacrificial anode 3 can make the pipe simulation member 1 lower than the immersion potential of the pipe simulation member itself.
  • the temperature control device 17 is provided so that the temperature of the portion of the sacrificial anode 3 in contact with the artificial seawater 6 can be controlled.
  • the temperature control device 17 includes a measurement unit 20 attached to the sacrificial anode 3 and a control device 16 disposed in a portion simulating the seawater intake pump installation unit.
  • the measurement unit 20 includes a heating / cooling unit 11 and temperature detectors 12 a and 12 b, and the control device 16 includes a control unit 13 and a power source 14.
  • the heating / cooling unit 11 was installed in a place where it was in thermal contact with the sacrificial anode 3 using a heating wire sealed so as not to touch the artificial seawater 6 directly.
  • the heating / cooling unit 11 may be a Peltier element or a heat exchanger.
  • heat conductive grease may be used.
  • thermocouple with a sheath was used for the temperature detectors 12a and 12b.
  • Various methods such as a thermocouple without a sheath and a resistance thermometer can be used instead of the sheathed thermocouple.
  • Temperature information measured by the temperature detectors 12a and 12b was input to the control unit 13, and the surface temperature of the sacrificial anode 3 was controlled to a predetermined temperature by feedback control.
  • the temperature information was visualized and displayed by a display device attached to an image processing device (not shown) provided in the control device 16. This temperature information was used to monitor the surface temperature of the sacrificial anode 3. In addition, after recording temperature information in a recording device, it was made possible to output it as information.
  • the temperature detector 12 was disposed on the surface where the sacrificial anode 3 was in contact with the artificial seawater 6 so that the temperature of the portion where the sacrificial anode 3 was in contact with the artificial seawater 6 could be measured. In this case, the area of the temperature detectors 12a and 12b is made as small as possible.
  • the control unit 13 controls the output of the heating / cooling unit 11 based on information from the temperature detectors 12a and 12b.
  • the power source 14 supplies power to the sacrificial anode 3 and the control unit 13.
  • the control unit 13 and the power source 14 are preferably installed in a part away from the sacrificial anode 3 like the test devices 61 and 62, and are provided in a place where the artificial seawater 6 is not directly touched.
  • FIG. 8 is a flowchart showing a procedure for controlling the temperature control device 17 when performing the anticorrosion test using the first test device 61.
  • the first temperature detector 12 a that measures the temperature of the sacrificial anode 3 is installed in a portion where the sacrificial anode 3 is in contact with the artificial seawater 6.
  • step S110 the minimum value of the test range determined in advance according to the material of the sacrificial anode 3 to be used (when heating means is used as the heating / cooling section 11) or the maximum value (when cooling means is used as the heating / cooling section 11) ) the set temperature T 0 to be, input from the control unit 13.
  • a sacrificial anode 3 with a first temperature detector 12a attached to a portion in contact with the artificial seawater 6 measures the temperature T 1 of the sacrificial anode 3 (step S120).
  • the control unit 13 controls the temperature using the heating / cooling unit 11 so that the deviation between the two temperatures T 0 and T 1 is reduced (step S130).
  • the temperature T 1 ′ of the sacrificial anode 3 is measured using the first temperature detector 12a (step S140).
  • the set temperatures T 0 and T 1 ′ are compared in step S150. If the difference between the two temperatures T 0 and T 1 ′ is within the allowable temperature range, the flow is terminated and the process proceeds to the next temperature measurement point. If the temperature difference is outside the allowable temperature range, the process returns to step S120. When measurement is completed at all measurement points, the test is terminated.
  • the second temperature detector 12b for measuring the artificial seawater temperature T 2 in the vicinity of the sacrificial anode 3 shown in FIG. 8 was installed.
  • the same thing as the 1st temperature detector 12a was used for the 2nd temperature detector 12b.
  • the temperature signals detected by the two temperature detectors 12 a and 12 b were input to the control unit 13.
  • the controller 13 controlled the temperature of the sacrificial anode 3 so that the difference (absolute value) in the detected temperature was within a predetermined range.
  • FIG. 11 is a flowchart showing a test method using the second test apparatus 62. That is, in step S210, the seawater temperature T 2 and to any of 25,30,40,50 ° C., heated as the minimum value (heating and cooling unit 11 of the previously obtained test range according to the material of the sacrificial anode 3 to be used A difference ⁇ T from the temperature T 1 which is a maximum value (when a cooling means is used as the heating / cooling section 11) or a maximum value (when using the means) is input from the control section 13. Next, to measure the sea water temperature T 2 using the second temperature detector 12b for measuring the sea water temperature T 2 in the vicinity of the sacrificial anode 3 (step S220).
  • the control unit 13 uses the heating / cooling unit to control the temperature so that the temperature difference ⁇ T between the two temperatures T 2 and T 1 approaches a predetermined value (step S240). Subsequently, the temperature T 1 ′ of the sacrificial anode 3 is measured using the first temperature detector 12a (step S250).
  • the temperature T 1 'of the sea water temperature T 2 and the sacrificial anode second temperature detector 12b detects, compared at step S260. If the difference between the two temperatures T 2 and T 1 ′ is within an allowable range of a predetermined temperature difference ⁇ T, the flow ends, and the process proceeds to a temperature measurement point where the next temperature difference ⁇ T is obtained. If the difference between the two temperatures T 2 and T 1 ′ is outside the set temperature allowable temperature range, the process returns to step S230. When measurement is completed at all measurement points (step S260), the test is terminated.
  • the piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured.
  • seawater internal pumps in consideration of the case where the temperature rise by power supplied from the impeller, the seawater temperature T 2 has been tested also rise to 50 ° C..
  • the test results for each test are shown in Table 1 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
  • Table 2 summarizes the test results.
  • “X” indicates that the operating temperature of the sacrificial anode 3 is not suitable
  • “ ⁇ ” indicates that the operating temperature of the sacrificial anode 3 is appropriate
  • “ ⁇ ” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective.
  • the appropriate / inappropriate operating temperature of the sacrificial anode 3 was determined to be the range in which the current density was reduced when the temperature T1 of the sacrificial anode 3 was changed between 20 and 50 ° C.
  • a temperature signal by the second temperature detector 12b detects that detects seawater temperature T 2 for detecting the temperature T 1 of the sacrificial anode 3, the temperature T of the sacrificial anode 3 1 was temperature controlled to be lower than the sea water temperature T 2. Further, the piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured. The test results for each test are shown in Table 3 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
  • Table 4 The test results are summarized in Table 4.
  • “x” indicates that the operating temperature of the sacrificial anode 3 is not suitable
  • “ ⁇ ” indicates that the operating temperature of the sacrificial anode 3 is appropriate
  • “ ⁇ ” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective. Note that “ ⁇ ” indicates that the test was not performed because it was predicted that no effect could be obtained.
  • Suitable / unsuitable operating temperature of the sacrificial anode 3 based on the current density at the temperature T 1 of the sea water temperature T 2 and the sacrificial anode 3 are identical, and suitable if lower than the current density it It was judged.
  • Table 6 The test results are summarized in Table 6.
  • “x” indicates that the operating temperature of the sacrificial anode 3 is not suitable
  • “ ⁇ ” indicates that the operating temperature of the sacrificial anode 3 is appropriate
  • “ ⁇ ” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective.
  • D series This is a case where duplex stainless steel S30803 is used for the piping simulation member 1 serving as the cathode material, and structural carbon steel SS400 is used for the sacrificial anode 3.
  • the seawater temperature T 2 was varied between 10 ⁇ 50 ° C.
  • the temperature T 1 of the sacrificial anode 3 is varied between 20 ⁇ 50 ° C..
  • the temperature T 1 of the sacrificial anode 3 was changed between 10 to 50 ° C. using a cooling means.
  • a temperature signal by the second temperature detector 12b detects that detects seawater temperature T 2 for detecting the temperature T 1 of the sacrificial anode 3
  • the temperature T of the sacrificial anode 3 1 was temperature controlled to be lower than the sea water temperature T 2.
  • the piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured.
  • the test results for each test are shown in Table 7 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
  • Table 8 The test results are summarized in Table 8.
  • X indicates that the operating temperature of the sacrificial anode 3 is not suitable
  • indicates that the operating temperature of the sacrificial anode 3 is appropriate
  • indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective.
  • “-” Indicates that the test was not performed because it was predicted that no effect could be obtained.
  • test devices 61 and 62 using the piping simulation member 1 can be applied to the anticorrosion system of the pump device 30 as they are.
  • the temperature control method if the seawater temperature is measured instead of the artificial seawater temperature, the temperature of the sacrificial anode 3 can be set, corrected, and used for optimum temperature control.
  • FIG. 12 Shown in FIG. 12 is a front sectional view of the third test apparatus 63 of the anticorrosion system divertable to an actual machine.
  • FIG. 13 is a flowchart showing a test method using the third test apparatus 63.
  • the current i 0 is detected by the non-resistance ammeter 9, and the temperature T 0 of the sacrificial anode 3 is detected by the first temperature detector 12a (step S330).
  • a sacrificial anode 3 on cooling in the heating and cooling unit 11 step S340
  • n + 1 th i.e. enters the first loop
  • detects a current i 1 at no resistance ammeter 9, at a first temperature detector 12a for detecting the sacrificial anode temperature T 1 step S360.
  • i 0 and i 1 are compared (step S370). If i 1 is small, T 1 and T min are compared (step S380).
  • step S340 If T 1 is higher, cooling is performed again by the heating / cooling unit 11 (step S340). , after heating at a heating and cooling unit 11 for the lower the better of T 1 returns to a predetermined temperature range (step S390), each (n + 1) th, i.e. enters the second loop (step S350), the temperature control similar Repeat. Further, by comparing the i 1 and i 0 (step S400), if the difference between them is in the allowable temperature range is determined that the current value becomes minimum, to maintain the temperature T 1 of the sacrificial anode 3 (step S410), End the temperature control flow and move to the next temperature measurement point.
  • i 1 is large, it is determined that the cooling is excessive, and after heating by the heating / cooling unit 11 (step S390), the n + 1th, that is, the second loop is entered (step S350), and the temperature control is similarly repeated. When measurement is completed at all measurement points, the test is terminated. When the sacrificial anode 3 shown in FIG. 13B is heated, the heating and cooling in the description of FIG.
  • step S381 compares the T n and T max, heated by the heating and cooling unit 11 the lower the better of T n (S341), - heating because the higher the direction of T n return to a predetermined temperature range
  • step S311 each enters the (n + 1) th loop (step S350), and the temperature control is similarly repeated.
  • the material of the piping simulation member 1 was stainless steel SUS316L, and the sacrificial anode 3 was a zinc alloy (test number E1).
  • the temperature of the sacrificial anode 3 is controlled by using the heating / cooling unit 11 so that the current value detected by the non-resistance ammeter 9 that measures the current value of the sacrificial anode 3 and the piping simulation member 1 becomes smaller.
  • the current density becomes smaller when the temperature of the sacrificial anode 3 becomes 30 ° C. to 50 ° C.
  • the current density shows the minimum value.
  • the material of the piping simulation member 1 was stainless steel SUS316L, and the sacrificial anode 3 was carbon steel (test number E2). Other configurations are the same as those of the test number E1.
  • the current density becomes smaller when the temperature of the sacrificial anode 3 is set lower than the temperature of the artificial seawater 6.
  • the current density shows the minimum value.
  • the stainless steel SUS316L and the cast iron FC200 were used as materials for the piping simulation member 1, and the sacrificial anode 3 was made of a zinc alloy (test number E3).
  • a clearance jig is brought into contact with stainless steel.
  • a clearance was provided.
  • an external power source type anticorrosion using a platinum electrode was combined.
  • Stainless steel and carbon steel were electrically connected in parallel to the external power supply, and both were subject to corrosion protection.
  • the overall corrosion is suppressed by controlling the current density of the cast iron FC200 surface to be 5 to 100 ⁇ A / cm 2 . Crevice corrosion is suppressed by controlling the current density of the clearance of stainless steel SUS316L to be 5 to 100 ⁇ A / cm 2 .
  • the anticorrosion system according to the present invention is applied to the pump device 30 shown in FIG. 1
  • the first test apparatus 61 is applied to an actual machine.
  • the surface of both the column pipe 31 and the sacrificial anode 3 which are cathode materials is made to contact seawater.
  • the column pipe 31 and the sacrificial anode 3 are fixed by a conductive fixture 4 such as a bolt at a portion not in contact with seawater.
  • the sacrificial anode 3 makes the column pipe 31 lower than the immersion potential of the column pipe material itself.
  • a temperature control device 17 having a measuring unit 20 attached to the sacrificial anode 3 and a control device 16 disposed in the seawater intake pump installation unit is provided.
  • the measuring unit 20 includes a heating / cooling unit 11 and a temperature detector 12, and the control device 16 includes a control unit 13 and a power source 14.
  • a characteristic feature of this embodiment is that it has a non-resistance ammeter 9 (not shown in FIG. 2) for measuring a current value in an electrical conduction portion between the column pipe 31 and the sacrificial anode 3.
  • the sacrificial anode 3 is disposed on the outer peripheral surface portion of the column pipe 31.
  • the sacrificial anode 3 is electrically connected to the column pipe 31 by the conductive fixture 4 and fixed.
  • a heating / cooling unit 11 is disposed via a heat conductive sheet 10 in close contact with the sacrificial anode 3.
  • a temperature detector 12 is disposed on the side surface of the sacrificial anode 3.
  • the heating / cooling unit 11 and the temperature detector 12 are connected to the control unit 13 by cables 15b and 15c, respectively.
  • the cables 15b and 15c have functions of signal transmission / reception and power supply.
  • the control unit 13 is connected to the power source 14 by a cable 15a.
  • the heating / cooling unit 11, the temperature detector 12, the control unit 13, the power source 14, and the cables 15a to 15c are collectively referred to as a temperature control device 17.
  • the sacrificial anode 3 and the measuring unit 20 are also installed on the inner surface of the column pipe 31.
  • a recess is provided on the inner surface of the column pipe 31 and the measuring unit including the sacrificial anode 3 inside thereof. 20 is disposed.
  • the surface of the sacrificial anode 3 and the inner wall surface of the column pipe 31 are on the same plane.
  • a hole is formed in the column pipe 31 to form an opening.
  • a flange may be disposed in the opening, and the flange and the measurement unit 20 may be integrated.
  • the column pipe 31, the flange, and the sacrificial anode 3 are electrically connected.
  • an external power supply type anti-corrosion method in which electrodes are provided on the outer peripheral surface portion and the inner peripheral surface portion of the column pipe 31 and a voltage is applied between the column pipe 31 and the electrode. In this case, the column pipe 31 and the electrode are insulated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

The purpose of the present invention is to increase the life of sacrificial anodes used in pump devices such as seawater pumps is increased, and increase the life of electrolytic protection systems for seawater pump devices. A pump device (30) is provided with a protection system (70) having a measurement unit (20) in a part of a column pipe (33) that is immersed in seawater and a temperature control device (17) at the location where the pump device (30) is installed. In this protection system (70), a sacrificial anode (3) that is connected electrically to the column pipe (33) and can be temperature-controlled is attached via a heating and cooling unit (11) and a heat conducting sheet (10). A temperature control device (17) controls the temperature of the sacrificial anode (3) by means of the heating and cooling unit (11) attached via the heat conducting sheet (10) on the sacrificial anode (3) on the basis of the temperature of the sacrificial anode (3) measured by the measurement unit (20).

Description

電気防食システムおよびそれを備えたポンプ装置Electrocorrosion protection system and pump device provided with the same
 本発明は、電気防食システムおよびそれを備えたポンプ装置に係り、特に犠牲陽極を用いて好適な電気防食システムおよびそれを備えたポンプ装置に関する。 The present invention relates to an anticorrosion system and a pump device including the same, and more particularly to an electrocorrosion system suitable using a sacrificial anode and a pump device including the same.
 従来の海水環境で使用される機器の防食の例が、特許文献1に記載されている。この公報では、膨張黒鉛製シール材を装着してなる二相系ステンレス鋼製機器の防食のために、シール材が装着された二相系ステンレス鋼部の近傍にあって、該ステンレス鋼部と接合され、一体的に電導体を構成している二相系ステンレス鋼材部の海水流体と接触する側の表面に、被防食部の二相系ステンレス鋼よりも標準電極電位が低い金属材料からなる犠牲陽極を1個以上設置し、電気的に接続している。 An example of corrosion protection of equipment used in a conventional seawater environment is described in Patent Document 1. In this publication, in order to prevent corrosion of a duplex stainless steel device equipped with an expanded graphite sealing material, in the vicinity of the duplex stainless steel portion where the sealing material is mounted, the stainless steel portion and It is made of a metal material with a standard electrode potential lower than that of the two-phase stainless steel of the corrosion-protected part on the surface of the two-phase stainless steel material part that is joined and integrally constitutes the conductor on the side in contact with the seawater fluid. One or more sacrificial anodes are installed and electrically connected.
 また、犠牲陽極を海水取水ポンプに設けることが特許文献2に、犠牲陽極材料としてマグネシウム合金を用いることが特許文献3に記載されている。 Further, Patent Document 2 describes that a sacrificial anode is provided in a seawater intake pump, and Patent Document 3 describes that a magnesium alloy is used as a sacrificial anode material.
特開2005-194624号公報JP 2005-194624 A 特開2003-34886号公報Japanese Patent Laid-Open No. 2003-34886 特開平10‐306388号公報JP-A-10-306388
 上記特許文献1や特許文献3に記載の犠牲陽極では、犠牲陽極の表面積または設置位置を変更しないと溶出速度を制御することが出来ない。すなわち、犠牲陽極の寿命を所定値以上にするためには、予め測定した単位時間当たりの犠牲陽極の減少量に必要寿命を掛け合わせた量以上の陽極材料が必要となり、多大な犠牲陽極を設置しなければならない。その結果、犠牲陽極の取り付け場所に余裕がある、または犠牲陽極の追加等が容易な熱交換器等ではそれほど困難性はないが、海水ポンプ等の犠牲陽極の設置場所に制限が多い場合には、多大な犠牲陽極の設置位置を確保することが困難である。また、犠牲陽極を流れる防食電流の大きさは、電解質や防食対象の材質や形状、犠牲陽極の形状により決定されるので、防食対象に応じた適切な防食システム設計が制約される。 In the sacrificial anode described in Patent Document 1 and Patent Document 3, the elution rate cannot be controlled unless the surface area or the installation position of the sacrificial anode is changed. In other words, in order to increase the life of the sacrificial anode to a predetermined value or more, an amount of anode material more than the amount obtained by multiplying the reduction amount of the sacrificial anode per unit time measured in advance by the required life is required, and a large number of sacrificial anodes are installed Must. As a result, there is not enough difficulty in the heat exchanger etc. where there is room for the sacrificial anode installation or the addition of the sacrificial anode is easy, but there are many restrictions on the installation location of the sacrificial anode such as a seawater pump. It is difficult to secure a large installation position of the sacrificial anode. Moreover, since the magnitude of the anticorrosion current flowing through the sacrificial anode is determined by the electrolyte, the material and shape of the anticorrosion object, and the shape of the sacrificial anode, the design of an appropriate anticorrosion system according to the anticorrosion object is restricted.
 また、特許文献2に記載の海水取水ポンプ装置では、犠牲陽極による防食部位を限定することにより犠牲陽極の長寿命化を図っているが、限定された部位以外での思わぬ腐食の発生に対しては対応が困難となる。 Moreover, in the seawater intake pump device described in Patent Document 2, the sacrificial anode is made longer by limiting the corrosion-preventing site by the sacrificial anode, but against unexpected corrosion occurring outside the limited site. It will be difficult to respond.
 本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、海水ポンプ等のポンプ装置に用いる犠牲陽極を長寿命化して、海水ポンプ装置の電気防食システムを長寿命化することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to extend the life of a sacrificial anode used in a pump device such as a seawater pump, and to extend the life of an anticorrosion system of the seawater pump device. is there.
 上記目的を達成する本発明の特徴は、電気防食システムが、防食対象の金属部材と、この金属部材に電気的に導通して取り付けた温度制御可能な犠牲陽極と、前記防食対象の金属部材と前記犠牲陽極の温度を制御する温度制御装置とを備えることにある。 A feature of the present invention that achieves the above object is that the anticorrosion system includes a metal member to be protected against corrosion, a temperature-controllable sacrificial anode electrically connected to the metal member, and the metal member to be protected against corrosion. And a temperature control device for controlling the temperature of the sacrificial anode.
 また他の特徴は、この電気防食システムを備えたポンプ装置で、防食対象の金属部材がポンプ装置のケーシングであり、ケーシングが電解質に浸漬する部分にケーシングと導通状態で犠牲陽極を取り付けたことにある。 Another feature is that the metal member to be anticorrosion is a casing of the pump device, and the sacrificial anode is attached to the portion where the casing is immersed in the electrolyte in a conductive state with the casing. is there.
 本発明によれば、海水ポンプ等のポンプ装置に用いる犠牲陽極の温度を、このポンプ装置が浸漬される周囲海水温と異なる温度に制御可能としたので、犠牲陽極の溶出速度を制御でき、犠牲陽極を長寿命化できる。これにより、ポンプ装置及びそれが備える電気防食システムを長寿命化できる。 According to the present invention, since the temperature of the sacrificial anode used in a pump device such as a seawater pump can be controlled to a temperature different from the ambient seawater temperature in which the pump device is immersed, the elution rate of the sacrificial anode can be controlled, and sacrificial The life of the anode can be extended. Thereby, lifetime of a pump apparatus and the cathodic protection system with which it is provided can be extended.
本発明の一実施形態に係る防食システムを有するポンプ装置を備えた海水淡水化システムの全体概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram of the seawater desalination system provided with the pump apparatus which has the corrosion prevention system which concerns on one Embodiment of this invention. 図1に示すポンプ装置の部分拡大図である。It is the elements on larger scale of the pump apparatus shown in FIG. ステンレス鋼SUS316Lの海水中でのカソード分極曲線を説明するグラフである。It is a graph explaining the cathode polarization curve in the seawater of stainless steel SUS316L. 二相ステンレス鋼S31803の海水中でのカソード分極曲線を説明するグラフである。It is a graph explaining the cathode polarization curve in the seawater of duplex stainless steel S31803. 亜鉛合金の海水中でのアノード分極曲線を説明するグラフである。It is a graph explaining the anodic polarization curve in the seawater of a zinc alloy. 炭素鋼の海水中でのアノード分極曲線を説明するグラフである。It is a graph explaining the anodic polarization curve in the seawater of carbon steel. 防食電流を説明するグラフである。It is a graph explaining anticorrosion current. 犠牲陽極に流れる電流密度を測定する第1の試験装置の模式図である。It is a schematic diagram of the 1st testing apparatus which measures the current density which flows into a sacrificial anode. 犠牲陽極に流れる電流密度を測定する第2の試験装置の模式図である。It is a schematic diagram of the 2nd testing apparatus which measures the current density which flows into a sacrificial anode. 図8に示した測定装置を用いた計測方法を示すフローチャートである。It is a flowchart which shows the measuring method using the measuring apparatus shown in FIG. 図9に示した測定装置を用いた計測方法を示すフローチャートである。It is a flowchart which shows the measuring method using the measuring apparatus shown in FIG. 本発明の一実施例に係る防食システムの概略構成図である。It is a schematic block diagram of the anticorrosion system which concerns on one Example of this invention. 図12に示した測定装置を用いた計測方法を示すフローチャートであり、図13(a)に犠牲陽極を冷却する場合を、図13(b)に犠牲陽極を加熱する場合を示す。FIG. 13 is a flowchart showing a measurement method using the measurement apparatus shown in FIG. 12, and FIG. 13A shows a case where the sacrificial anode is cooled, and FIG. 13B shows a case where the sacrificial anode is heated.
 金属材料を海水中のような腐食が発生しやすい環境下で使用する機器、例えば海水淡水化ポンプ設備の取水ポンプのケーシング材として使用する場合には、金属材料に腐食の発生を抑制する対策として、犠牲陽極方式の電気防食法や外部電源方式の電気防食法、表面被覆法、高耐食性材料法のいずれかを主として用いている。この中で、犠牲陽極方式の電気防食法は、比較的設置が容易で、材料コスト等も廉価な犠牲陽極を対象物に接触させるもので、近年多く使用されている。 When using metal materials as equipment for use in environments where corrosion is likely to occur, such as in seawater, such as intake pump casing materials for seawater desalination pump facilities, measures to suppress the occurrence of corrosion in metal materials Any one of sacrificial anode type anticorrosion method, external power source type anticorrosion method, surface coating method, and high corrosion resistance material method is mainly used. Among them, the sacrificial anode type anticorrosion method is a method of bringing a sacrificial anode, which is relatively easy to install and has a low material cost, into contact with an object, and has been widely used in recent years.
 電気防食法は、腐食作用における電子移動を制御する防食方法である。犠牲陽極方式の電気防食法では、防食の対象となる機器の構造部材として用いられる金属材料に対し、標準電極電位が低い、すなわちより電位が卑な金属材料を接触させる。標準電位が卑な金属材料は、溶液環境中で防食対象の金属材料と同じ電位になるように金属イオンを溶出し、電子を防食対象の金属材料側に移送する。その際、防食対象の金属材料は、電子供給を受けてアノード溶解反応が減少するカソード側に電位を移動させ、アノード腐食反応を抑制する。この防食対象の金属材料に接触させる標準電位が低い卑な金属材料が犠牲陽極である。 The cathodic protection method is a corrosion prevention method for controlling electron transfer in the corrosive action. In the sacrificial anode type anticorrosion method, a metal material having a low standard electrode potential, that is, a lower potential, is brought into contact with a metal material used as a structural member of a device to be protected against corrosion. A metal material having a low standard potential elutes metal ions so as to have the same potential as the metal material to be protected in a solution environment, and transfers electrons to the metal material side to be protected. At that time, the metal material to be protected against corrosion moves the potential to the cathode side where the anodic dissolution reaction is reduced by receiving an electron supply, thereby suppressing the anodic corrosion reaction. A sacrificial anode is a base metal material having a low standard potential that is brought into contact with the metal material to be protected.
 防食対象の金属材料は、鋳鉄や圧延鋼、機械構造用炭素鋼、ダイス鋼、ニッケル鋳鉄等の鉄鋼材料、青銅や黄銅等の銅合金、キュプロニッケルやモネルなどのニッケル基合金である。また、オーステナイト系ステンレス鋼やフェライト系ステンレス鋼、二相系ステンレス鋼、マルテンサイト系ステンレス鋼、析出硬化系ステンレス鋼等のステンレスの圧延鋼または鋳造鋼も防食対象となる。一方、犠牲陽極の材料としては、炭素鋼やアルミニウム、亜鉛、マグネシウム、およびこれら非鉄金属を主成分とする合金が用いられる。なお、犠牲陽極は溶出反応にともない消耗する。また、防食の対象となる機器の構造部材は腐食する可能性を有しているので、防食の対象となる海水ポンプのインペラ等では、標準電位が卑でかつ大面積を有する犠牲陽極に接触させて、腐食を抑制する。 Corrosion-proof metal materials include cast iron, rolled steel, carbon steel for machine structural use, die steel, nickel cast iron and other steel materials, copper alloys such as bronze and brass, and nickel-based alloys such as cupronickel and monel. Austenitic stainless steel, ferritic stainless steel, duplex stainless steel, martensitic stainless steel, precipitation hardened stainless steel, and other stainless rolled steel or cast steel are also subject to corrosion protection. On the other hand, as a material for the sacrificial anode, carbon steel, aluminum, zinc, magnesium, and alloys containing these non-ferrous metals as main components are used. The sacrificial anode is consumed with the elution reaction. In addition, since the structural members of equipment that is subject to corrosion prevention have the potential to corrode, the seawater pump impeller that is subject to corrosion prevention is brought into contact with a sacrificial anode that has a low standard potential and a large area. Suppress corrosion.
 このような犠牲陽極を用いた防食システムおよび防食システムを有するポンプ装置の例を、以下図面を用いて説明する。図1は、海水淡水化システム80を示す図であり、図1は海水淡水化システム80の全体概略構成図である。図2は、図1に示すポンプ装置のX部拡大図である。海水淡水化システム80は、ポンプ装置として海水取水ポンプ30を備えている。 Examples of the anticorrosion system using such a sacrificial anode and a pump apparatus having the anticorrosion system will be described below with reference to the drawings. FIG. 1 is a diagram showing a seawater desalination system 80, and FIG. 1 is an overall schematic configuration diagram of the seawater desalination system 80. FIG. 2 is an enlarged view of a portion X of the pump device shown in FIG. The seawater desalination system 80 includes a seawater intake pump 30 as a pump device.
 海水淡水化システム80では、導水路41を通じて海水5を海岸40近くに設けた吸込み槽42に導いている。吸込み槽42には、ポンプ装置30の吸込み部を含む主要部が浸漬されている。ポンプ装置30の吐出側には吐出配管43が接続されており、吐出配管43はポンプ装置30が吸込んだ海水中の砂等の異物をろ過する二層ろ過器44に導かれている。 In the seawater desalination system 80, the seawater 5 is led through the water conduit 41 to the suction tank 42 provided near the coast 40. The main part including the suction part of the pump device 30 is immersed in the suction tank 42. A discharge pipe 43 is connected to the discharge side of the pump device 30, and the discharge pipe 43 is led to a two-layer filter 44 that filters foreign matters such as sand in the seawater sucked by the pump device 30.
 二層ろ過器44で濾過された海水5は、ろ過海水槽45に導かれる。そして、ろ過海水槽45に備えられたポンプ46により、保安フィルタ47に供給される。保安フィルタ47で鉄粒などの異物が除去された海水は、動力回収タービン50が接続された高圧ポンプ49に送られる。高圧ポンプ49で加圧された海水は、配管48を経由してRO膜(逆浸透膜)モジュール52に供給され、塩分等を除去されて真水となって配管53を経て生産水槽54に蓄えられる。一方、RO膜モジュール52で水分を減少させて濃縮された濃縮水は、配管51から動力回収タービン50に導かれ、高圧ポンプ49を駆動する動力の一部として回収される、動力回収タービン50で動力回収されて低圧となった濃縮水は、配管55からこの海水淡水化システム80外に送られる。 The seawater 5 filtered by the two-layer filter 44 is guided to the filtered seawater tank 45. And it is supplied to the security filter 47 by the pump 46 provided in the filtration seawater tank 45. Seawater from which foreign matters such as iron particles have been removed by the safety filter 47 is sent to a high-pressure pump 49 to which a power recovery turbine 50 is connected. Seawater pressurized by the high-pressure pump 49 is supplied to the RO membrane (reverse osmosis membrane) module 52 via the pipe 48, salt is removed, and the fresh water is stored in the production water tank 54 via the pipe 53. . On the other hand, the concentrated water concentrated by reducing the water content in the RO membrane module 52 is guided from the pipe 51 to the power recovery turbine 50 and recovered as part of the power for driving the high-pressure pump 49. The concentrated water that has been recovered in power and brought to a low pressure is sent out of the seawater desalination system 80 through the pipe 55.
 ここで、詳細を後述するように、ポンプ装置30の揚水管の内外面は海水に浸漬する。また、高圧ポンプ49やポンプ46の内面は、海水に接している。そのため、腐食が発生しやすい環境下にある。さらに、高圧ポンプ49から下流の配管部分は金属配管が用いられており、5MPa以上の内圧で海水が流動している。これらの金属配管では、塩濃度に依存する腐食現象が時間経過とともに発生し、特に、配管結合部であるフランジ部や、表面組織と表面粗さが不均一となる溶接部では反応速度が大きな腐食が進展する場合がある。これらの腐食の発生を防止するために、本実施形態の防食システム70が必要となっている。 Here, as will be described in detail later, the inner and outer surfaces of the pumping pipe of the pump device 30 are immersed in seawater. The inner surfaces of the high pressure pump 49 and the pump 46 are in contact with seawater. Therefore, it is in an environment where corrosion is likely to occur. Furthermore, a metal pipe is used for a pipe portion downstream from the high-pressure pump 49, and seawater flows at an internal pressure of 5 MPa or more. In these metal pipes, corrosion phenomena that depend on the salt concentration occur over time, especially in the flanges that are pipe joints and in the welds where the surface texture and surface roughness are uneven, the corrosion rate is high. May develop. In order to prevent the occurrence of such corrosion, the anticorrosion system 70 of this embodiment is necessary.
 ポンプ装置30である海水取水ポンプは、本実施例では立軸ポンプであり、先端部に吸込みベルマウス34が取り付けられている。吸込みベルマウス34には、ポンプケーシング33がフランジ接続されており、羽根車ケーシング33は下流側で案内羽根32とフランジ接続されている。案内羽根32のさらに下流側には揚水管(コラムパイプ)31がフランジ35でフランジ接続されている。揚水管31の軸方向中間部には、海水取水ポンプ30を固定するための据え付け部39が取り付けられており、据え付け部39は吸込み槽42の上部を覆うベース板42aに固定される。吸込みベルマウス34及び羽根車ケーシング33、案内羽根32、揚水管31は、ケーシングを構成する。 The seawater intake pump which is the pump device 30 is a vertical shaft pump in this embodiment, and a suction bell mouth 34 is attached to the tip. A pump casing 33 is flange-connected to the suction bell mouth 34, and the impeller casing 33 is flange-connected to the guide blade 32 on the downstream side. A pumping pipe (column pipe) 31 is flanged by a flange 35 further downstream of the guide vane 32. An installation portion 39 for fixing the seawater intake pump 30 is attached to the intermediate portion in the axial direction of the pumping pipe 31, and the installation portion 39 is fixed to a base plate 42 a that covers the upper portion of the suction tank 42. The suction bell mouth 34, the impeller casing 33, the guide blade 32, and the pumping pipe 31 constitute a casing.
 一方、ケーシング内部では、回転軸36が鉛直方向に延びており、回転軸36の最下端部には羽根車38が取り付けられており、羽根車ナット等で回転軸36に固定されている。案内羽根32の内周側には案内羽根流路を形成するために下流に行くに従い小径となる案内羽根内壁部37が配置されている。計測部20は、犠牲陽極3や加熱・冷却部11を有し、犠牲陽極3の一方の面には、熱伝導シート10を介して加熱・冷却部11が取り付けられる。コラムパイプ31の外壁面に、例えばボルト等の導電性固定具4により、犠牲陽極3、熱伝導シート10及び加熱・冷却部11が固定される。また、犠牲陽極3には温度検出器12が取り付けられている。海水取水ポンプ30に設けた防食システム70の詳細は、後述する。 On the other hand, inside the casing, the rotating shaft 36 extends in the vertical direction, and an impeller 38 is attached to the lowermost end portion of the rotating shaft 36 and is fixed to the rotating shaft 36 by an impeller nut or the like. On the inner peripheral side of the guide vane 32, a guide vane inner wall portion 37 having a smaller diameter as it goes downstream is disposed in order to form a guide vane channel. The measuring unit 20 includes a sacrificial anode 3 and a heating / cooling unit 11, and the heating / cooling unit 11 is attached to one surface of the sacrificial anode 3 via a heat conductive sheet 10. The sacrificial anode 3, the heat conductive sheet 10, and the heating / cooling unit 11 are fixed to the outer wall surface of the column pipe 31 by a conductive fixture 4 such as a bolt. A temperature detector 12 is attached to the sacrificial anode 3. Details of the anticorrosion system 70 provided in the seawater intake pump 30 will be described later.
 次に、犠牲陽極3の消耗量に関する重要な指標である分極曲線について、説明する。以下に、上記犠牲陽極及び陰極となる構造材料のいくつかについて、分極曲線を測定した結果を示す。海水中における金属の電位と電流密度は、固有の分極曲線で定まる。2種の金属が海水中で接すると、2種の分極曲線の交点の電位(混成電位)となり、交点の電流密度で防食電流が流れる。金属の分極は、電解質と金属の界面での電気化学反応に起因する。この電気化学反応が温度に依存するので、分極曲線も温度に依存する。すなわち、温度を制御パラメータとして、他の影響を考慮しながら最適な電気防食システムを設計することが可能になる。 Next, the polarization curve that is an important index regarding the consumption amount of the sacrificial anode 3 will be described. Below, the result of having measured the polarization curve about some of the structural materials used as the said sacrificial anode and cathode is shown. The potential and current density of the metal in the sea water are determined by a specific polarization curve. When two kinds of metals come into contact with each other in seawater, an electric potential at the intersection of the two kinds of polarization curves (a hybrid electric potential) is generated, and an anticorrosion current flows at a current density at the intersection. The polarization of the metal is caused by an electrochemical reaction at the interface between the electrolyte and the metal. Since this electrochemical reaction depends on temperature, the polarization curve also depends on temperature. In other words, it is possible to design an optimal cathodic protection system while taking other influences into account using temperature as a control parameter.
 図3~図6に各材料について、分極特性を測定した結果を示す。分極特性の測定に当たっては、海水として人工海水(八洲薬品製アクアマリン)を使用した。また試験条件は、溶存酸素を大気飽和とし、海水の流速VをV=0(m/s)、pHを8.2に調整した。電気伝導度ECはEC=5(S/m)とした。 Figures 3 to 6 show the measurement results of polarization characteristics for each material. In measuring the polarization characteristics, artificial seawater (Aquamarine manufactured by Yashima Pharmaceutical) was used as seawater. The test conditions were adjusted so that dissolved oxygen was saturated with air, the flow rate V of seawater was V = 0 (m / s), and the pH was 8.2. The electrical conductivity EC was EC = 5 (S / m).
 図3は、ステンレス鋼SUS316Lのカソード分極特性を対数近似したグラフであり、海水温度をパラメータとして測定した結果である。ステンレス鋼SUS316Lは、図1に示した海水取水ポンプ30のコラムパイプ31等に従来から使用されている材料であり、防食対象の金属候補として試験した。電気防食システムを使用するステンレス鋼SUS316L製の配管の電位、および配管に付設した犠牲陽極の電位から、配管と犠牲陽極間の電流は、図3に示したカソード分極曲線と後述する犠牲陽極のアノード分極曲線の交点から求まる。 FIG. 3 is a graph obtained by logarithmically approximating the cathode polarization characteristics of stainless steel SUS316L, and is a result of measurement using seawater temperature as a parameter. Stainless steel SUS316L is a material conventionally used for the column pipe 31 of the seawater intake pump 30 shown in FIG. 1, and was tested as a metal candidate for corrosion protection. From the potential of the stainless steel SUS316L pipe using the cathodic protection system and the potential of the sacrificial anode attached to the pipe, the current between the pipe and the sacrificial anode is determined by the cathode polarization curve shown in FIG. It is obtained from the intersection of polarization curves.
 ステンレス鋼SUS316Lのカソード分極は、電流密度が10(μA/cm)程度までは海水温度の違いによる分極電圧の違いはわずかであるが、電流密度が10~10(μA/cm)間で温度依存性が高くなると共に、その分極電圧の変化量も大きくなる。そして、電流密度が10(μA/cm)を超えると分極電圧の温度依存性は残るが、変化量は比較的少なくなる。 The cathode polarization of stainless steel SUS316L has a slight difference in polarization voltage due to the difference in seawater temperature up to a current density of about 10 1 (μA / cm 2 ), but the current density is 10 1 to 10 2 (μA / cm 2). ) Increases in temperature dependence, and the amount of change in the polarization voltage also increases. When the current density exceeds 10 2 (μA / cm 2 ), the temperature dependence of the polarization voltage remains, but the amount of change is relatively small.
 図4に、配管材料の他の候補材である二相ステンレス鋼S31803について、図3と同様に試験した結果を、カソード分極特性を対数近似したグラフで示す。海水温度をパラメータとした。二相ステンレス鋼S31803は、より耐食性を求められる海水ポンプの材料として利用が進んでいる。この図4においても、分極電圧は、電流密度が10~10(μA/cm)間で温度依存性が高くなると共に、その分極電圧の変化量も大きい。また、図3、図4のいずれにおいても、分極電圧の変化が大きい電流密度が10~10(μA/cm)間で、海水温度が40℃の場合に、最も分極電圧が大きくなる。換言すれば、同一の電圧条件では、電流密度が最も小さくなる。 FIG. 4 shows the result of testing the duplex stainless steel S31803, which is another candidate material for the piping material, in the same manner as in FIG. Seawater temperature was used as a parameter. Duplex stainless steel S31803 is increasingly used as a material for seawater pumps that require more corrosion resistance. In FIG. 4 as well, the polarization voltage becomes highly temperature-dependent when the current density is between 10 1 and 10 2 (μA / cm 2 ), and the amount of change in the polarization voltage is large. Further, in both FIG. 3 and FIG. 4, when the seawater temperature is 40 ° C. between the current density of 10 1 to 10 2 (μA / cm 2 ) where the change of the polarization voltage is large, the polarization voltage becomes the largest. . In other words, the current density is the smallest under the same voltage condition.
 図5に、犠牲陽極の候補材である亜鉛合金について、アノード分極特性を対数近似したグラフを示す。海水温度をパラメータとして試験した結果である。試験条件は、カソード分極特性の試験と同じである。亜鉛合金としては、三井住友金属伸銅製のZAP-A(EL)(以下、亜鉛合金と称す)を使用した。この亜鉛合金は、純亜鉛にアルミニウムを合金元素として添加した組成を有している。 FIG. 5 shows a logarithmic approximation of the anodic polarization characteristics of a zinc alloy that is a candidate material for a sacrificial anode. It is the result of having tested seawater temperature as a parameter. The test conditions are the same as in the cathode polarization characteristics test. As the zinc alloy, ZAP-A (EL) (hereinafter referred to as zinc alloy) manufactured by Sumitomo Mitsui Metals Copper Alloy was used. This zinc alloy has a composition obtained by adding aluminum as an alloy element to pure zinc.
 図5において、同一の電位で比較すると、海水温度が40℃の場合に電流密度が最低になり、海水温度が30~50℃の場合には、海水温度が20~25℃の場合に比べ、大幅に電流密度が減少している。したがって、亜鉛合金製の犠牲陽極の場合には、犠牲陽極に接する海水温度が30~50℃となるようにすれば、犠牲陽極を長寿命化できる可能性があることが分かる。さらに、40℃であれば最も長寿命を期待できる。 In FIG. 5, when compared at the same potential, the current density is lowest when the seawater temperature is 40 ° C., and when the seawater temperature is 30 to 50 ° C., compared to when the seawater temperature is 20 to 25 ° C. The current density is greatly reduced. Therefore, in the case of a sacrificial anode made of zinc alloy, it can be seen that the life of the sacrificial anode may be extended if the temperature of the seawater in contact with the sacrificial anode is 30 to 50 ° C. Furthermore, the longest life can be expected at 40 ° C.
 図6に、犠牲陽極の他の候補材としての炭素鋼のアノード分極特性を対数近似したグラフを示す。海水温度をパラメータにして示している。試験条件は図5の試験と同じである。炭素鋼として、SS400を使用した。図6に示した炭素鋼の場合、図5に示した亜鉛合金の場合と異なり、同一の電位で比較すると、炭素鋼はこの炭素鋼が接する海水温度が低ければ低いほど電流密度が減少している。したがって、炭素鋼を犠牲陽極に使用する場合には、炭素鋼に接する海水温度をできるだけ低くすることにより、長寿命化が期待できる。 FIG. 6 shows a logarithmic approximation of the anodic polarization characteristics of carbon steel as another candidate material for the sacrificial anode. The seawater temperature is shown as a parameter. The test conditions are the same as in the test of FIG. SS400 was used as carbon steel. In the case of the carbon steel shown in FIG. 6, unlike the case of the zinc alloy shown in FIG. 5, when compared with the same potential, the carbon steel has a lower current density as the temperature of seawater in contact with the carbon steel is lower. Yes. Therefore, when carbon steel is used for the sacrificial anode, a long life can be expected by making the temperature of seawater in contact with the carbon steel as low as possible.
 次に上記結果を参照して、陰極材としてオーステナイト系ステンレス鋼であるSUS316Lを、犠牲陽極として亜鉛合金を使用した例について、発生する電流密度の海水温度による変化を求める具体的な方法を図7を用いて説明する。図7は、図3と図5を組み合わせることにより得られる。図が煩雑になるのを避けるため、ステンレス鋼SUS316Lの25℃におけるカソード分極の対数近似曲線100と、亜鉛合金の25℃におけるアノード分極の対数近似曲線101を、代表して示す。 Next, referring to the above results, a specific method for obtaining a change in generated current density due to seawater temperature in an example in which SUS316L, which is austenitic stainless steel, is used as a cathode material and a zinc alloy is used as a sacrificial anode is shown in FIG. Will be described. FIG. 7 is obtained by combining FIG. 3 and FIG. In order to avoid complication of the figure, a logarithmic approximation curve 100 of cathode polarization of stainless steel SUS316L at 25 ° C. and a logarithmic approximation curve 101 of anodic polarization of zinc alloy at 25 ° C. are shown as representatives.
 海水温度25℃、犠牲陽極(亜鉛合金)温度25℃の条件でSUS316Lと亜鉛合金を海水中で短絡させたときの電位と電流密度は、図7の交点から-1.074Vと97.0μA/cmとなる。同様に、亜鉛合金の20℃、30℃、40℃、50℃のアノード分極の対数近似曲線との交点を求めると、カソード曲線100上に記載した黒丸の位置となる。これらの各温度における両曲線の交点から、各温度における電位と電流密度が求まる。 The potential and current density when SUS316L and zinc alloy are short-circuited in seawater under the conditions of seawater temperature 25 ° C. and sacrificial anode (zinc alloy) temperature 25 ° C. are −1.074 V and 97.0 μA / cm 2 . Similarly, when the intersection of the zinc alloy with the logarithmic approximate curve of anodic polarization at 20 ° C., 30 ° C., 40 ° C., and 50 ° C. is obtained, the position of the black circle described on the cathode curve 100 is obtained. From the intersection of both curves at each temperature, the potential and current density at each temperature are obtained.
 ここで、近似式を用いると、計算により速やかに防食時の電位と電流密度を見積もることができる。例えば、25℃におけるカソード曲線100とアノード曲線101の交点付近を、カソード曲線100については下記式1で、アノード曲線101については下記式2で近似する。この両式を、連立方程式として解けば、交点における電位と電流密度が求まる。 Here, if an approximate expression is used, the potential and current density during anticorrosion can be estimated quickly by calculation. For example, the intersection of the cathode curve 100 and the anode curve 101 at 25 ° C. is approximated by the following equation 1 for the cathode curve 100 and the following equation 2 for the anode curve 101. By solving these two equations as simultaneous equations, the potential and current density at the intersection can be obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 近似方法としては対数近似のほか、線形近似、多項式近似、指数近似などの方法を使用できる。また、これらの近似式を用いることで有限要素法や境界要素法などの既知の方法により電位分布および電流密度分布をシミュレーションにより求め、設計することができる。なお、分極曲線を近似しないで使用してもよく、その場合高精度に防食時の電位と電流密度を見積もることができる。 Approximation methods such as logarithmic approximation, linear approximation, polynomial approximation, and exponential approximation can be used. Further, by using these approximate expressions, the potential distribution and the current density distribution can be obtained by simulation and designed by a known method such as a finite element method or a boundary element method. Note that the polarization curve may be used without approximation, and in that case, the potential and current density during corrosion prevention can be estimated with high accuracy.
 ここで、犠牲陽極方式の電気防食システムでは、防食対象の金属部材と犠牲陽極の電解質中での電位差を駆動力として電流が発生する。電解質としては、海水以外に淡水、汽水、食塩水、塩水などでもよい。一般に、塩化ナトリウム濃度で区分すると0.05%未満が淡水、0.05%以上0.35%未満が汽水、0.35%以上0.5%未満が食塩水、0.5%以上が塩水と呼称される。海水の塩化ナトリウム濃度は0.24%から2.96%程度であり、海域により濃度差がある。一方、電解質として、任意のイオン種を含む水溶液を適用可能である。 Here, in the sacrificial anode type cathodic protection system, a current is generated using the potential difference in the electrolyte between the metal member to be protected and the sacrificial anode as a driving force. The electrolyte may be fresh water, brackish water, saline, salt water, etc. in addition to seawater. Generally, when classified by sodium chloride concentration, less than 0.05% is fresh water, 0.05% or more and less than 0.35% is brackish water, 0.35% or more and less than 0.5% is saline, and 0.5% or more is salt water. It is called. The sodium chloride concentration in seawater is about 0.24% to 2.96%, and there are differences in concentration depending on the sea area. On the other hand, an aqueous solution containing any ionic species can be applied as the electrolyte.
 上記図3ないし図7においては、海水温度と犠牲陽極及び構造材である陰極材の温度がすべて同じである条件で、犠牲陽極に発生する電流密度を求めている。本発明では、犠牲陽極の消耗量を抑制するために、犠牲陽極のみ温度を調整可能にしている。以下に、犠牲陽極の温度を海水温度に対して変化させた場合の試験結果について説明する。 3 to 7, the current density generated in the sacrificial anode is obtained under the condition that the seawater temperature and the temperature of the sacrificial anode and the cathode material as the structural material are all the same. In the present invention, in order to suppress the consumption amount of the sacrificial anode, only the temperature of the sacrificial anode can be adjusted. Below, the test result at the time of changing the temperature of a sacrificial anode with respect to seawater temperature is demonstrated.
 図8に、海水取水ポンプを模擬した電気防食システムの第1の試験装置61を模式図で示し、図9に第2の試験装置62を模式図で示す。双方の試験装置61、62では、陰極材である防食対象模擬部材(配管模擬部材)1と犠牲陽極3の双方の表面を、人工海水6に接するようにした。 FIG. 8 is a schematic diagram showing a first test device 61 of an anticorrosion system simulating a seawater intake pump, and FIG. 9 is a schematic diagram showing a second test device 62. In both the test apparatuses 61 and 62, both surfaces of the anticorrosion target simulation member (pipe simulation member) 1 and the sacrificial anode 3, which are cathode materials, are in contact with the artificial seawater 6.
 すなわち、第1の試験装置61では、水7が収容されたウォーターバス8内に人工海水6が所定量だけ蓄えられた容器21を設置する。容器21内には、ケーブル15eを支持部材に兼用して配管模擬部材1の試片が吊り下げられている。同様に犠牲陽極3が、ケーブル15fを支持部材に兼用して、容器21内に吊り下げられている。犠牲陽極3の一方の面には、熱伝導シート10を介して加熱・冷却部11が取り付けられている。加熱・冷却部11は、ケーブル15bにより制御部13に接続されている。犠牲陽極3には、温度検出器12aが付設されており、温度検出器12aが検出した温度情報はケーブル15cを介して制御部13に入力される。制御部13は、ケーブル15aにより電源14に接続されている。配管模擬部材1と犠牲陽極3は、無抵抗電流計9を介して、ケーブル15e、15fで接続されている。 That is, in the first test apparatus 61, the container 21 in which the artificial seawater 6 is stored in a predetermined amount is installed in the water bath 8 in which the water 7 is accommodated. In the container 21, a test piece of the piping simulation member 1 is suspended by using the cable 15e as a support member. Similarly, the sacrificial anode 3 is suspended in the container 21 using the cable 15f as a support member. A heating / cooling section 11 is attached to one surface of the sacrificial anode 3 via a heat conductive sheet 10. The heating / cooling unit 11 is connected to the control unit 13 by a cable 15b. The sacrificial anode 3 is provided with a temperature detector 12a, and temperature information detected by the temperature detector 12a is input to the control unit 13 via the cable 15c. The control unit 13 is connected to the power source 14 by a cable 15a. The piping simulation member 1 and the sacrificial anode 3 are connected by cables 15e and 15f through a non-resistance ammeter 9.
 第2の試験装置62は、上記第1の試験装置61と同じ構成要素を備えると共に、さらに第2の温度検出器12bも備えている。第2の温度検出器12bは、人工海水6の温度を検出するもので、第2の温度検出器12bが検出した温度情報は、ケーブル15dを用いて制御部13に入力される。 The second test apparatus 62 includes the same components as the first test apparatus 61, and further includes a second temperature detector 12b. The second temperature detector 12b detects the temperature of the artificial seawater 6, and the temperature information detected by the second temperature detector 12b is input to the control unit 13 using the cable 15d.
 なお、上記試験装置61、62では、配管模擬部材1と犠牲陽極3とを無抵抗電流計9とケーブル15e、15fとを用いて電気的に導通させているが、配管模擬部材1と犠牲陽極3とを、例えば、ボルト等の導電性固定具4で固定したり、直接、配管模擬部材1と犠牲陽極3を接触させたりすることもできる。これらの構成により、犠牲陽極3は、配管模擬部材1を配管模擬部材自身の浸漬電位より低くすることができる。 In the test apparatuses 61 and 62, the pipe simulation member 1 and the sacrificial anode 3 are electrically connected using the non-resistance ammeter 9 and the cables 15e and 15f. 3 can be fixed by, for example, a conductive fixture 4 such as a bolt, or the piping simulation member 1 and the sacrificial anode 3 can be directly brought into contact with each other. With these configurations, the sacrificial anode 3 can make the pipe simulation member 1 lower than the immersion potential of the pipe simulation member itself.
 第1、第2の試験装置61、62では、温度制御装置17を設け、犠牲陽極3の人工海水6に接している部分の温度を制御できるようにした。温度制御装置17は、犠牲陽極3に付設する計測部20と海水取水ポンプ設置部を模擬した部分に配置される制御装置16とを有している。計測部20は、加熱・冷却部11および温度検出器12a、12bで構成され、制御装置16は制御部13と電源14で構成される。 In the first and second test devices 61 and 62, the temperature control device 17 is provided so that the temperature of the portion of the sacrificial anode 3 in contact with the artificial seawater 6 can be controlled. The temperature control device 17 includes a measurement unit 20 attached to the sacrificial anode 3 and a control device 16 disposed in a portion simulating the seawater intake pump installation unit. The measurement unit 20 includes a heating / cooling unit 11 and temperature detectors 12 a and 12 b, and the control device 16 includes a control unit 13 and a power source 14.
 加熱・冷却部11には、直接人工海水6に触れないようシールした電熱線を用い、犠牲陽極3と熱的に接触する場所に設置した。なお加熱・冷却部11には、ペルチェ素子や熱交換器などを用いることもできる。加熱・冷却部11と犠牲陽極3との間の熱抵抗を減少させるために、図8及び図9に示すように、熱伝導シート10で接着するのがよい。または、熱伝導グリスを用いてもよい。 The heating / cooling unit 11 was installed in a place where it was in thermal contact with the sacrificial anode 3 using a heating wire sealed so as not to touch the artificial seawater 6 directly. The heating / cooling unit 11 may be a Peltier element or a heat exchanger. In order to reduce the thermal resistance between the heating / cooling section 11 and the sacrificial anode 3, it is preferable to bond with a heat conductive sheet 10 as shown in FIGS. Alternatively, heat conductive grease may be used.
 温度検出器12a、12bには、シース入りの熱電対を用いた。シース入り熱電対の代わりに、シース無しの熱電対や抵抗式温度計など、種々の方法を用いることができる。温度検出器12a、12bで測定した温度情報を制御部13に入力して、フィードバック制御により犠牲陽極3の表面温度を所定の温度に制御した。 A thermocouple with a sheath was used for the temperature detectors 12a and 12b. Various methods such as a thermocouple without a sheath and a resistance thermometer can be used instead of the sheathed thermocouple. Temperature information measured by the temperature detectors 12a and 12b was input to the control unit 13, and the surface temperature of the sacrificial anode 3 was controlled to a predetermined temperature by feedback control.
 温度情報は、制御装置16に設けた図示しない画像処理装置に付設した表示装置で可視化して表示した。この温度情報は、犠牲陽極3の表面温度を監視するのに使用した。なお、温度情報を記録装置に記録した後、情報として出力することもできるようにした。温度検出器12は、犠牲陽極3が人工海水6と接する部分の温度を測定できるよう、犠牲陽極3が人工海水6と接する面に配置した。この場合、温度検出器12a、12bの面積をできるだけ小さくする。 The temperature information was visualized and displayed by a display device attached to an image processing device (not shown) provided in the control device 16. This temperature information was used to monitor the surface temperature of the sacrificial anode 3. In addition, after recording temperature information in a recording device, it was made possible to output it as information. The temperature detector 12 was disposed on the surface where the sacrificial anode 3 was in contact with the artificial seawater 6 so that the temperature of the portion where the sacrificial anode 3 was in contact with the artificial seawater 6 could be measured. In this case, the area of the temperature detectors 12a and 12b is made as small as possible.
 制御部13は、温度検出器12a、12bからの情報に基づき加熱・冷却部11の出力を制御する。電源14は、犠牲陽極3及び制御部13に電力を供給する。制御部13および電源14は、上記試験装置61、62のように犠牲陽極3から離れた部分に設置するのがよく、直接人工海水6に触れない場所に設ける。 The control unit 13 controls the output of the heating / cooling unit 11 based on information from the temperature detectors 12a and 12b. The power source 14 supplies power to the sacrificial anode 3 and the control unit 13. The control unit 13 and the power source 14 are preferably installed in a part away from the sacrificial anode 3 like the test devices 61 and 62, and are provided in a place where the artificial seawater 6 is not directly touched.
 図8に、第1の試験装置61を用いて防食試験をする際に、温度制御装置17を制御する手順を、フローチャートで示す。なお、第1の試験装置61では、犠牲陽極3が人工海水6に接している部分に、犠牲陽極3の温度を測定する第1の温度検出器12aを設置した。 FIG. 8 is a flowchart showing a procedure for controlling the temperature control device 17 when performing the anticorrosion test using the first test device 61. In the first test apparatus 61, the first temperature detector 12 a that measures the temperature of the sacrificial anode 3 is installed in a portion where the sacrificial anode 3 is in contact with the artificial seawater 6.
 ステップS110で、使用する犠牲陽極3の材質に応じて予め求めた試験範囲の最小値(加熱・冷却部11として加熱手段を用いる場合)または最大値(加熱・冷却部11として冷却手段を用いる場合)となる設定温度Tを、制御部13から入力する。次に、犠牲陽極3が人工海水6に接している部分に取り付けた第1の温度検出器12aを用いて、犠牲陽極3の温度Tを測定する(ステップS120)。制御部13は加熱・冷却部11を用いて2つの温度T、Tの偏差が少なくなるように温度制御する(ステップS130)。続いて、第1の温度検出器12aを用いて、犠牲陽極3の温度T’を測定する(ステップS140)。設定温度TとT’とをステップS150で比較する。2つの温度T,T’の差が許容温度範囲であれば、フローを終了し、次の温度計測点に移行する。温度差が許容温度範囲外であれば、ステップS120に戻る。全ての計測点での計測が終わったら、試験を終了する。 In step S110, the minimum value of the test range determined in advance according to the material of the sacrificial anode 3 to be used (when heating means is used as the heating / cooling section 11) or the maximum value (when cooling means is used as the heating / cooling section 11) ) the set temperature T 0 to be, input from the control unit 13. Next, a sacrificial anode 3 with a first temperature detector 12a attached to a portion in contact with the artificial seawater 6 measures the temperature T 1 of the sacrificial anode 3 (step S120). The control unit 13 controls the temperature using the heating / cooling unit 11 so that the deviation between the two temperatures T 0 and T 1 is reduced (step S130). Subsequently, the temperature T 1 ′ of the sacrificial anode 3 is measured using the first temperature detector 12a (step S140). The set temperatures T 0 and T 1 ′ are compared in step S150. If the difference between the two temperatures T 0 and T 1 ′ is within the allowable temperature range, the flow is terminated and the process proceeds to the next temperature measurement point. If the temperature difference is outside the allowable temperature range, the process returns to step S120. When measurement is completed at all measurement points, the test is terminated.
 図9に示した第2の試験装置62では、図8に示した第1の試験装置61の構成に加え、犠牲陽極3の近傍の人工海水温度Tを測定する第2の温度検出器12bを設置した。第2の温度検出器12bには、第1の温度検出器12aと同様のものを用いた。2つの温度検出器12a、12bが検出した温度信号を、制御部13に入力した。この第2の試験装置62を用いた試験では、検出温度の差(絶対値)が所定範囲内になるように、犠牲陽極3の温度を制御部13が制御した。 In the second test device 62 shown in FIG. 9, the first addition to the configuration of the test apparatus 61, the second temperature detector 12b for measuring the artificial seawater temperature T 2 in the vicinity of the sacrificial anode 3 shown in FIG. 8 Was installed. The same thing as the 1st temperature detector 12a was used for the 2nd temperature detector 12b. The temperature signals detected by the two temperature detectors 12 a and 12 b were input to the control unit 13. In the test using the second test apparatus 62, the controller 13 controlled the temperature of the sacrificial anode 3 so that the difference (absolute value) in the detected temperature was within a predetermined range.
 図11に、第2の試験装置62を用いた試験方法を、フローチャートで示す。すなわち、ステップS210で、海水温度Tを25、30、40、50℃のいずれかにし、使用する犠牲陽極3の材質に応じて予め求めた試験範囲の最小値(加熱・冷却部11として加熱手段を用いる場合)または最大値(加熱・冷却部11として冷却手段を用いる場合)となる温度Tとの差ΔTを、制御部13から入力する。次に、犠牲陽極3の近傍の海水温度Tを測定する第2の温度検出器12bを用いて海水温度Tを測定する(ステップS220)。 FIG. 11 is a flowchart showing a test method using the second test apparatus 62. That is, in step S210, the seawater temperature T 2 and to any of 25,30,40,50 ° C., heated as the minimum value (heating and cooling unit 11 of the previously obtained test range according to the material of the sacrificial anode 3 to be used A difference ΔT from the temperature T 1 which is a maximum value (when a cooling means is used as the heating / cooling section 11) or a maximum value (when using the means) is input from the control section 13. Next, to measure the sea water temperature T 2 using the second temperature detector 12b for measuring the sea water temperature T 2 in the vicinity of the sacrificial anode 3 (step S220).
 犠牲陽極3が人工海水6に接している部分に取り付けた第1の温度検出器12aを用いて、犠牲陽極3の温度Tを検出する(ステップS230)。制御部13は、加熱・冷却部を用いて、2つの温度T、Tの温度差ΔTが予め定めた値に近づくように温度制御する(ステップS240)。続いて、第1の温度検出器12aを用いて、犠牲陽極3の温度T’を測定する(ステップS250)。 Sacrificial anode 3 with a first temperature detector 12a attached to a portion in contact with the artificial seawater 6 detects the temperature T 1 of the sacrificial anode 3 (step S230). The control unit 13 uses the heating / cooling unit to control the temperature so that the temperature difference ΔT between the two temperatures T 2 and T 1 approaches a predetermined value (step S240). Subsequently, the temperature T 1 ′ of the sacrificial anode 3 is measured using the first temperature detector 12a (step S250).
 第2の温度検出器12bが検出した海水温度Tと犠牲陽極の温度T’とを、ステップS260で比較する。2つの温度T、T’の差が予め定めた温度差ΔTの許容範囲であればフローを終了し、次の温度差ΔTが得られる温度計測点に移行する。2つの温度T、T’の差が設定温度許容温度範囲外であれば、ステップS230に戻る。全ての計測点での計測が終わった(ステップS260)ら、試験を終了する。 The temperature T 1 'of the sea water temperature T 2 and the sacrificial anode second temperature detector 12b detects, compared at step S260. If the difference between the two temperatures T 2 and T 1 ′ is within an allowable range of a predetermined temperature difference ΔT, the flow ends, and the process proceeds to a temperature measurement point where the next temperature difference ΔT is obtained. If the difference between the two temperatures T 2 and T 1 ′ is outside the set temperature allowable temperature range, the process returns to step S230. When measurement is completed at all measurement points (step S260), the test is terminated.
 以上説明した2つの試験装置及び2つの試験方法を用いて、陰極の配管部材としてステンレス鋼SUS316Lおよび二相ステンレス鋼S31803を、犠牲陽極材として亜鉛合金及び構造用炭素鋼SS400を用いて試験した結果を以下に説明する。
(A系列)
 陰極材となる配管模擬部材1にステンレス鋼SUS316Lを、犠牲陽極3に亜鉛合金を用いた場合である。第1の試験装置61及び第1の試験方法を用いて、海水温度Tを25~50℃の間で変化させ、犠牲陽極3の温度Tを20~50℃の間で変化させた。配管模擬部材1と犠牲陽極3の間を無抵抗電流計9で接続し、配管模擬部材1と犠牲陽極3間に流れる電流密度を測定した。なお、以下の一連の試験では、ポンプ内部の海水が羽根車から与えられる動力により温度上昇する場合を考慮して、海水温度Tが50℃まで上昇する場合も試験した。試験毎の試験結果を、試験番号、設定条件(海水温度、犠牲陽極温度)及び試験結果(電流密度)として以下の表1に示す。
Results of testing using stainless steel SUS316L and duplex stainless steel S31803 as cathode piping members, zinc alloy and structural carbon steel SS400 as sacrificial anode materials using the two test apparatuses and two test methods described above Is described below.
(A series)
This is a case where stainless steel SUS316L is used for the piping simulation member 1 serving as the cathode material and zinc alloy is used for the sacrificial anode 3. Using a first test device 61 and the first test method, the seawater temperature T 2 was varied between 25 ~ 50 ° C., the temperature T 1 of the sacrificial anode 3 is varied between 20 ~ 50 ° C.. The piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured. In the following series of tests, seawater internal pumps in consideration of the case where the temperature rise by power supplied from the impeller, the seawater temperature T 2 has been tested also rise to 50 ° C.. The test results for each test are shown in Table 1 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この試験結果をまとめたのが、表2である。表2で「×」印は、犠牲陽極3の動作温度として不適であることを示しており、「〇」印は犠牲陽極3の動作温度として適切であることを、「◎」は犠牲陽極3の動作温度として特に効果が優れていることを示している。
犠牲陽極3の動作温度の適/不適は、犠牲陽極3の温度T1を20~50℃の間で変化させた場合に、電流密度が小さくなった範囲を適と判断した。
Table 2 summarizes the test results. In Table 2, “X” indicates that the operating temperature of the sacrificial anode 3 is not suitable, “◯” indicates that the operating temperature of the sacrificial anode 3 is appropriate, and “◎” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective.
The appropriate / inappropriate operating temperature of the sacrificial anode 3 was determined to be the range in which the current density was reduced when the temperature T1 of the sacrificial anode 3 was changed between 20 and 50 ° C.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示した通り、試験番号A1~A20の範囲では、犠牲陽極3の温度Tが30℃以上であって50℃以下になると、犠牲陽極3の温度Tが20℃または25℃の場合と比較して、ステンレス鋼SUS316Lの配管模擬部材1と犠牲陽極3の間の電流密度が小さくなった。本陰極材料と陽極材料の組み合わせでは、犠牲陽極3の温度Tを所定温度よりも高い温度に温度制御すれば、犠牲陽極3の長寿命化を期待できることが分かった。
(B系列)
 陰極材となる配管模擬部材1にステンレス鋼SUS316Lを、犠牲陽極3に構造用炭素鋼SS400を用いた場合である。第2の試験装置62及び第2の試験方法を用いて、海水温度Tを25~50℃の間で変化させ、犠牲陽極3の温度Tを、冷却手段としてペルチェ素子を用いて10~50℃の間で変化させた。ここで、犠牲陽極3の温度Tを検出する第1の温度検出器12aと、海水温度Tを検出する第2の温度検出器12bが検出した温度信号に基づき、犠牲陽極3の温度Tを海水温度Tより低くなるよう温度制御した。さらに配管模擬部材1と犠牲陽極3の間を無抵抗電流計9で接続し、配管模擬部材1と犠牲陽極3間に流れる電流密度を測定した。試験毎の試験結果を、試験番号、設定条件(海水温度、犠牲陽極温度)及び試験結果(電流密度)として以下の表3に示す。
As shown in Table 1, in the range of test numbers A1 to A20, when the temperature T 1 of the sacrificial anode 3 is 30 ° C. or more and 50 ° C. or less, the temperature T 1 of the sacrificial anode 3 is 20 ° C. or 25 ° C. Compared to the case, the current density between the pipe simulating member 1 of the stainless steel SUS316L and the sacrificial anode 3 was reduced. The combination of the present cathode material and anode material, when the temperature control of the temperature T 1 of the sacrificial anode 3 to a temperature higher than the predetermined temperature, it has been found that can be expected to extend the life of the sacrificial anode 3.
(B series)
This is a case where stainless steel SUS316L is used for the piping simulation member 1 serving as the cathode material, and structural carbon steel SS400 is used for the sacrificial anode 3. Using the second test device 62 and the second test method, the seawater temperature T 2 was varied between 25 - 50 ° C., the temperature T 1 of the sacrificial anode 3, using a Peltier element as the cooling means 10 through Vary between 50 ° C. Here, based on the first temperature detector 12a, a temperature signal by the second temperature detector 12b detects that detects seawater temperature T 2 for detecting the temperature T 1 of the sacrificial anode 3, the temperature T of the sacrificial anode 3 1 was temperature controlled to be lower than the sea water temperature T 2. Further, the piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured. The test results for each test are shown in Table 3 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験結果をまとめて、表4に示す。表4で「×」印は、犠牲陽極3の動作温度として不適であることを示しており、「〇」印は犠牲陽極3の動作温度として適切であることを、「◎」は犠牲陽極3の動作温度として特に効果が優れていることを示している。なお、「-」は、効果が得られないことが予測できたので、試験しなかったことを示している。犠牲陽極3の動作温度の適/不適は、海水温度Tと犠牲陽極3の温度Tとが同一であるときの電流密度を基準に、それよりも電流密度が低下していれば適と判断した。 The test results are summarized in Table 4. In Table 4, “x” indicates that the operating temperature of the sacrificial anode 3 is not suitable, “◯” indicates that the operating temperature of the sacrificial anode 3 is appropriate, and “◎” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective. Note that “−” indicates that the test was not performed because it was predicted that no effect could be obtained. Suitable / unsuitable operating temperature of the sacrificial anode 3, based on the current density at the temperature T 1 of the sea water temperature T 2 and the sacrificial anode 3 are identical, and suitable if lower than the current density it It was judged.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示した通り、試験番号B1~B18において、犠牲陽極3の温度Tが海水の温度Tより低い場合は、犠牲陽極3の温度Tが海水の温度Tに等しい場合よりも、ステンレス鋼SUS316Lの配管模擬部材1と犠牲陽極3の間の電流密度が小さくなった。本陰極材料と陽極材料の組み合わせでは、犠牲陽極3の温度Tを海水の温度Tよりも低くなるよう温度制御すれば、犠牲陽極3の長寿命化が期待できることが判明した。
(C系列)
 陰極材となる配管模擬部材1に二相ステンレス鋼S31803を、犠牲陽極3に亜鉛合金を用いた場合である。第1の試験装置61及び第1の試験方法を用いて、海水温度Tを25~50℃の間で変化させ、犠牲陽極3の温度Tを、20~50℃の間で変化させた。配管模擬部材1と犠牲陽極3の間を無抵抗電流計9で接続し、配管模擬部材1と犠牲陽極3間に流れる電流密度を測定した。試験毎の試験結果を、試験番号、設定条件(海水温度、犠牲陽極温度)及び試験結果(電流密度)として以下の表5に示す。
As shown in Table 3, in Test Nos B1 ~ B18, if the temperature T 1 of the sacrificial anode 3 is lower than the temperature T 2 of the seawater, than the temperature T 1 of the sacrificial anode 3 is equal to the temperature T 2 of the seawater The current density between the pipe simulating member 1 of the stainless steel SUS316L and the sacrificial anode 3 was reduced. The combination of the present cathode material and anode material, when the temperature controlled to a temperature T 1 of the sacrificial anode 3 is lower than the temperature T 2 of the seawater, the life of the sacrificial anode 3 has been found to be expected.
(C series)
This is a case where duplex stainless steel S31803 is used for the piping simulation member 1 serving as the cathode material, and zinc alloy is used for the sacrificial anode 3. Using the first test apparatus 61 and the first test method, the seawater temperature T 2 was changed between 25 and 50 ° C., and the temperature T 1 of the sacrificial anode 3 was changed between 20 and 50 ° C. . The piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured. The test results for each test are shown in Table 5 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験結果をまとめて、表6に示す。表6で「×」印は、犠牲陽極3の動作温度として不適であることを示しており、「〇」印は犠牲陽極3の動作温度として適切であることを、「◎」は犠牲陽極3の動作温度として特に効果が優れていることを示している。 The test results are summarized in Table 6. In Table 6, “x” indicates that the operating temperature of the sacrificial anode 3 is not suitable, “◯” indicates that the operating temperature of the sacrificial anode 3 is appropriate, and “◎” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示した通り、試験番号C1~C20の範囲では、犠牲陽極3の温度Tが30℃以上であって50℃以下になると、犠牲陽極3の温度Tが20℃または25℃の場合と比較して、二相ステンレス鋼S31803の配管模擬部材1と犠牲陽極3の間の電流密度が小さくなった。本陰極材料と陽極材料の組み合わせでは、犠牲陽極3の温度Tを所定温度、例えば30℃よりも高い温度に温度制御すれば、犠牲陽極3の長寿命化を期待できることが分かった。
(D系列)
 陰極材となる配管模擬部材1に二相ステンレス鋼S30803を、犠牲陽極3に構造用炭素鋼SS400を用いた場合である。第2の試験装置62及び第2の試験方法を用いて、海水温度Tを10~50℃の間で変化させ、犠牲陽極3の温度Tを20~50℃の間で変化させた。犠牲陽極3の温度Tを、冷却手段を用いて10~50℃の間で変化させた。ここで、犠牲陽極3の温度Tを検出する第1の温度検出器12aと、海水温度Tを検出する第2の温度検出器12bが検出した温度信号に基づき、犠牲陽極3の温度Tを海水温度Tより低くなるよう温度制御した。配管模擬部材1と犠牲陽極3の間を無抵抗電流計9で接続し、配管模擬部材1と犠牲陽極3間に流れる電流密度を測定した。試験毎の試験結果を、試験番号、設定条件(海水温度、犠牲陽極温度)及び試験結果(電流密度)として以下の表7に示す。
As shown in Table 5, in the range of test numbers C1 ~ C20, when the temperature T 1 of the sacrificial anode 3 is below a by 50 ° C. at 30 ° C. or higher, the temperature T 1 of the sacrificial anode 3 is 20 ° C. or 25 ° C. Compared to the case, the current density between the pipe simulating member 1 and the sacrificial anode 3 of the duplex stainless steel S31803 was reduced. The combination of the present cathode material and anode material, the predetermined temperature T 1 of the sacrificial anode 3 temperature, when the temperature controlled to a temperature higher than, for example, 30 ° C., were found to be expected to extend the life of the sacrificial anode 3.
(D series)
This is a case where duplex stainless steel S30803 is used for the piping simulation member 1 serving as the cathode material, and structural carbon steel SS400 is used for the sacrificial anode 3. Using the second test device 62 and the second test method, the seawater temperature T 2 was varied between 10 ~ 50 ° C., the temperature T 1 of the sacrificial anode 3 is varied between 20 ~ 50 ° C.. The temperature T 1 of the sacrificial anode 3 was changed between 10 to 50 ° C. using a cooling means. Here, based on the first temperature detector 12a, a temperature signal by the second temperature detector 12b detects that detects seawater temperature T 2 for detecting the temperature T 1 of the sacrificial anode 3, the temperature T of the sacrificial anode 3 1 was temperature controlled to be lower than the sea water temperature T 2. The piping simulation member 1 and the sacrificial anode 3 were connected by a non-resistance ammeter 9 and the current density flowing between the piping simulation member 1 and the sacrificial anode 3 was measured. The test results for each test are shown in Table 7 below as test numbers, setting conditions (seawater temperature, sacrificial anode temperature) and test results (current density).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験結果をまとめて、表8に示す。表8で「×」印は、犠牲陽極3の動作温度として不適であることを示しており、「〇」印は犠牲陽極3の動作温度として適切であることを、「◎」は犠牲陽極3の動作温度として特に効果が優れていることを示している。「-」は、効果が得られないことが予測できたので、試験しなかったことを示している。 The test results are summarized in Table 8. In Table 8, “X” indicates that the operating temperature of the sacrificial anode 3 is not suitable, “◯” indicates that the operating temperature of the sacrificial anode 3 is appropriate, and “◎” indicates the sacrificial anode 3. This shows that the operating temperature is particularly effective. “-” Indicates that the test was not performed because it was predicted that no effect could be obtained.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表7に示した通り、試験番号D1~D18において、犠牲陽極3の温度Tが海水温度Tより低い場合は、犠牲陽極3の温度Tが海水温度Tに等しい場合よりも、二相ステンレス鋼S31803と犠牲陽極3の間の電流密度が小さい。本陰極材料と陽極材料の組み合わせでは、犠牲陽極3の温度Tを海水温度Tよりも低い温度に温度制御すれば、犠牲陽極3の長寿命化を期待できることが分かった。特に犠牲陽極3の温度を10℃まで低下させれば、電流密度が最も小さくなり、犠牲陽極3の長寿命化のために最も好ましい結果が得られた。 As shown in Table 7, in Test Nos D1 ~ D18, if the temperature T 1 of the sacrificial anode 3 is lower than the sea water temperature T 2 than if the temperature T 1 of the sacrificial anode 3 is equal to the seawater temperature T 2, two The current density between the phase stainless steel S31803 and the sacrificial anode 3 is small. In the combination of the present cathode material and the anode material, it was found that the life of the sacrificial anode 3 can be expected to be increased by controlling the temperature T 1 of the sacrificial anode 3 to a temperature lower than the seawater temperature T 2 . In particular, when the temperature of the sacrificial anode 3 was lowered to 10 ° C., the current density was minimized, and the most preferable result was obtained for extending the life of the sacrificial anode 3.
 上記配管模擬部材1を使用した試験装置61、62は、そのままポンプ装置30の防食システムに適用できる。また、温度制御方法についても、人工海水温度の代わりに海水温度を測定しておけば、犠牲陽極3の温度を設定でき、修正して最適温度制御に使用できる。 The test devices 61 and 62 using the piping simulation member 1 can be applied to the anticorrosion system of the pump device 30 as they are. As for the temperature control method, if the seawater temperature is measured instead of the artificial seawater temperature, the temperature of the sacrificial anode 3 can be set, corrected, and used for optimum temperature control.
 以上の第1、第2試験装置61、62を用いた配管模擬部材1と犠牲陽極3との組み合わせ試験結果を反映して、実際のポンプ装置30への応用を考慮した防食システムを、図12に示す。図12は、実機に転用可能な防食システムの第3の試験装置63の正面断面図である。 The anticorrosion system considering the application to the actual pump device 30 reflecting the combination test result of the piping simulation member 1 and the sacrificial anode 3 using the first and second test devices 61 and 62 described above is shown in FIG. Shown in FIG. 12 is a front sectional view of the third test apparatus 63 of the anticorrosion system divertable to an actual machine.
 図13に、第3の試験装置63を用いた試験方法をフローチャートで示す。まず、図13(a)に示した、犠牲陽極3を冷却する場合について説明する。すなわち、ステップS310で、使用する犠牲陽極3の材質に応じて予め求めた試験範囲の最小値Tmaxおよび最大値Tminを設定し、制御部13から入力する。以降、温度制御ループを開始する。ループの回数はn回目としてカウントし、初期値はn=0とする(ステップS320)。まず、無抵抗電流計9で電流iを検出し、第1の温度検出器12aで犠牲陽極3の温度Tを検出する(ステップS330)。次に、加熱・冷却部11で犠牲陽極3を冷却した上で(ステップS340)、n+1回目、すなわち1回目のループに入り(ステップS350)、無抵抗電流計9で電流iを検出し、第1の温度検出器12aで犠牲陽極温度Tを検出する(ステップS360)。iとiを比較し(ステップS370)、iが小さければTとTminを比較し(ステップS380)、Tの方が高ければ再度加熱・冷却部11で冷却(ステップS340)、Tの方が低ければ所定の温度範囲に戻すため加熱・冷却部11で加熱(ステップS390)した上で、それぞれn+1回目、すなわち2回目のループに入り(ステップS350)、温度制御を同様に繰り返していく。また、iとiを比較し(ステップS400)、両者の差が許容温度範囲であれば電流値が最小となったと判断し、犠牲陽極3の温度Tを維持し(ステップS410)、温度制御フローを終了し、次の温度計測点に移行する。iが大きければ冷却過剰と判断し、加熱・冷却部11で加熱した上で(ステップS390)、n+1回目、すなわち2回目のループに入り(ステップS350)、温度制御を同様に繰り返していく。全ての計測点での計測が終わったら、試験を終了する。なお、図13(b)に示した、犠牲陽極3を加熱する場合は、図13(a)の説明における加熱と冷却を逆に読み換えて実施すればよい。但し、ステップS381においては、TとTmaxを比較し、Tの方が低ければ加熱・冷却部11で加熱(S341)、Tの方が高ければ所定の温度範囲に戻すため加熱・冷却部11で冷却(ステップS391)した上で、それぞれn+1回目のループに入り(ステップS350)、温度制御を同様に繰り返していく。 FIG. 13 is a flowchart showing a test method using the third test apparatus 63. First, the case where the sacrificial anode 3 shown in FIG. 13A is cooled will be described. That is, in step S310, the minimum value T max and the maximum value T min of the test range obtained in advance according to the material of the sacrificial anode 3 to be used are set and input from the control unit 13. Thereafter, the temperature control loop is started. The number of loops is counted as the nth, and the initial value is set to n = 0 (step S320). First, the current i 0 is detected by the non-resistance ammeter 9, and the temperature T 0 of the sacrificial anode 3 is detected by the first temperature detector 12a (step S330). Next, a sacrificial anode 3 on cooling in the heating and cooling unit 11 (step S340), n + 1 th, i.e. enters the first loop (step S350), detects a current i 1 at no resistance ammeter 9, at a first temperature detector 12a for detecting the sacrificial anode temperature T 1 (step S360). i 0 and i 1 are compared (step S370). If i 1 is small, T 1 and T min are compared (step S380). If T 1 is higher, cooling is performed again by the heating / cooling unit 11 (step S340). , after heating at a heating and cooling unit 11 for the lower the better of T 1 returns to a predetermined temperature range (step S390), each (n + 1) th, i.e. enters the second loop (step S350), the temperature control similar Repeat. Further, by comparing the i 1 and i 0 (step S400), if the difference between them is in the allowable temperature range is determined that the current value becomes minimum, to maintain the temperature T 1 of the sacrificial anode 3 (step S410), End the temperature control flow and move to the next temperature measurement point. If i 1 is large, it is determined that the cooling is excessive, and after heating by the heating / cooling unit 11 (step S390), the n + 1th, that is, the second loop is entered (step S350), and the temperature control is similarly repeated. When measurement is completed at all measurement points, the test is terminated. When the sacrificial anode 3 shown in FIG. 13B is heated, the heating and cooling in the description of FIG. However, in step S381, compares the T n and T max, heated by the heating and cooling unit 11 the lower the better of T n (S341), - heating because the higher the direction of T n return to a predetermined temperature range After cooling by the cooling unit 11 (step S391), each enters the (n + 1) th loop (step S350), and the temperature control is similarly repeated.
 配管模擬部材1の材料をステンレス鋼SUS316Lとし、犠牲陽極3を亜鉛合金とした(試験番号E1)。犠牲陽極3と配管模擬部材1の電流値を測定する無抵抗電流計9が検出した電流値がより小さくなるように、加熱・冷却部11を用いて犠牲陽極3の温度を制御する。25℃~50℃の人工海水6の温度範囲では、犠牲陽極3の温度が30℃~50℃になると電流密度がより小さくなる。そして、犠牲陽極3の温度が40℃において、電流密度が最小値を示す。 The material of the piping simulation member 1 was stainless steel SUS316L, and the sacrificial anode 3 was a zinc alloy (test number E1). The temperature of the sacrificial anode 3 is controlled by using the heating / cooling unit 11 so that the current value detected by the non-resistance ammeter 9 that measures the current value of the sacrificial anode 3 and the piping simulation member 1 becomes smaller. In the temperature range of the artificial seawater 6 of 25 ° C. to 50 ° C., the current density becomes smaller when the temperature of the sacrificial anode 3 becomes 30 ° C. to 50 ° C. When the temperature of the sacrificial anode 3 is 40 ° C., the current density shows the minimum value.
 配管模擬部材1の材料をステンレス鋼SUS316Lとし、犠牲陽極3を炭素鋼とした(試験番号E2)。その他の構成は、試験番号E1と同じである。25℃~50℃の人工海水6の温度範囲では、犠牲陽極3の温度を人工海水6の温度より低い温度とした場合に電流密度がより小さくなる。そして、犠牲陽極3の温度が10℃において、電流密度が最小値を示す。 The material of the piping simulation member 1 was stainless steel SUS316L, and the sacrificial anode 3 was carbon steel (test number E2). Other configurations are the same as those of the test number E1. In the temperature range of the artificial seawater 6 of 25 ° C. to 50 ° C., the current density becomes smaller when the temperature of the sacrificial anode 3 is set lower than the temperature of the artificial seawater 6. When the temperature of the sacrificial anode 3 is 10 ° C., the current density shows the minimum value.
 配管模擬部材1の材料としてステンレス鋼SUS316Lと鋳鉄FC200の2種を用い、犠牲陽極3を亜鉛合金とした(試験番号E3)。ステンレス鋼にすきま治具を接触させ。すきま部を設けた。さらに、白金電極を用いた外部電源方式の電気防食を組み合わせた。ステンレス鋼と炭素鋼は外部電源に対し電気的に並列で接続し、どちらも防食対象となるようにした。鋳鉄FC200の表面の電流密度が5~100μA/cmとなるよう制御して全面腐食を抑制する。ステンレス鋼SUS316Lのすきま部の電流密度が5~100μA/cmとなるよう制御して、すきま腐食を抑制する。 Two types of materials, the stainless steel SUS316L and the cast iron FC200, were used as materials for the piping simulation member 1, and the sacrificial anode 3 was made of a zinc alloy (test number E3). A clearance jig is brought into contact with stainless steel. A clearance was provided. Furthermore, an external power source type anticorrosion using a platinum electrode was combined. Stainless steel and carbon steel were electrically connected in parallel to the external power supply, and both were subject to corrosion protection. The overall corrosion is suppressed by controlling the current density of the cast iron FC200 surface to be 5 to 100 μA / cm 2 . Crevice corrosion is suppressed by controlling the current density of the clearance of stainless steel SUS316L to be 5 to 100 μA / cm 2 .
 図1に示したポンプ装置30に本発明に係る防食システムを適用した場合について、以下に説明する。上記第1の試験装置61を実機に適用する場合である。図2に示すように、陰極材であるコラムパイプ31と犠牲陽極3の双方の表面を、海水に接するようにする。また、コラムパイプ31と犠牲陽極3には、海水に接していない部分で、例えばボルトなどの導電性固定具4で固定する。犠牲陽極3は、コラムパイプ31をコラムパイプ材料自身の浸漬電位より低くする。 The case where the anticorrosion system according to the present invention is applied to the pump device 30 shown in FIG. 1 will be described below. This is a case where the first test apparatus 61 is applied to an actual machine. As shown in FIG. 2, the surface of both the column pipe 31 and the sacrificial anode 3 which are cathode materials is made to contact seawater. Further, the column pipe 31 and the sacrificial anode 3 are fixed by a conductive fixture 4 such as a bolt at a portion not in contact with seawater. The sacrificial anode 3 makes the column pipe 31 lower than the immersion potential of the column pipe material itself.
 犠牲陽極3の海水に接している部分の温度を制御するために、犠牲陽極3に付設する計測部20と海水取水ポンプ設置部に配置される制御装置16とを有する温度制御装置17を設ける。計測部20は、加熱・冷却部11および温度検出器12を有し、制御装置16は制御部13と電源14とを有している。本実施例で特徴的なのは、コラムパイプ31と犠牲陽極3の電気的導通部における電流値を測定する無抵抗電流計9(図2において図示せず)を有していることである。 In order to control the temperature of the sacrificial anode 3 in contact with seawater, a temperature control device 17 having a measuring unit 20 attached to the sacrificial anode 3 and a control device 16 disposed in the seawater intake pump installation unit is provided. The measuring unit 20 includes a heating / cooling unit 11 and a temperature detector 12, and the control device 16 includes a control unit 13 and a power source 14. A characteristic feature of this embodiment is that it has a non-resistance ammeter 9 (not shown in FIG. 2) for measuring a current value in an electrical conduction portion between the column pipe 31 and the sacrificial anode 3.
 海水取水ポンプ30では、コラムパイプ31の外周面部に犠牲陽極3が配設されている。犠牲陽極3は、導電性固定具4でコラムパイプ31と電気的に導通されるとともに固定されている。犠牲陽極3に密着させた熱伝導シート10を介して、加熱・冷却部11が配設されている。 In the seawater intake pump 30, the sacrificial anode 3 is disposed on the outer peripheral surface portion of the column pipe 31. The sacrificial anode 3 is electrically connected to the column pipe 31 by the conductive fixture 4 and fixed. A heating / cooling unit 11 is disposed via a heat conductive sheet 10 in close contact with the sacrificial anode 3.
 さらに、犠牲陽極3の側面には、温度検出器12が配設されている。加熱・冷却部11と温度検出器12は、それぞれケーブル15b、15cで制御部13に接続されている。ケーブル15b、15cは、信号の送受信と電力供給の機能を有する。制御部13は、ケーブル15aで電源14に接続されている。これら加熱・冷却部11、および温度検出器12、制御部13、電源14、ケーブル15a~15cを総称して温度制御装置17と呼ぶ。 Furthermore, a temperature detector 12 is disposed on the side surface of the sacrificial anode 3. The heating / cooling unit 11 and the temperature detector 12 are connected to the control unit 13 by cables 15b and 15c, respectively. The cables 15b and 15c have functions of signal transmission / reception and power supply. The control unit 13 is connected to the power source 14 by a cable 15a. The heating / cooling unit 11, the temperature detector 12, the control unit 13, the power source 14, and the cables 15a to 15c are collectively referred to as a temperature control device 17.
 なお、コラムパイプ31の内面部にも、犠牲陽極3と計測部20を設置する。このとき、ポンプ30内の流れに影響を与えないため、および犠牲陽極3を含む計測部20の脱落を防ぐために、コラムパイプ31の内面に凹部を設け、その内側に犠牲陽極3を含む計測部20を配設する。さらに、凹部のスペースを無駄にしないために、犠牲陽極3の表面とコラムパイプ31の内壁面が同一面上となるようにする。 The sacrificial anode 3 and the measuring unit 20 are also installed on the inner surface of the column pipe 31. At this time, in order not to affect the flow in the pump 30 and to prevent the measuring unit 20 including the sacrificial anode 3 from falling off, a recess is provided on the inner surface of the column pipe 31 and the measuring unit including the sacrificial anode 3 inside thereof. 20 is disposed. Furthermore, in order not to waste the space of the recess, the surface of the sacrificial anode 3 and the inner wall surface of the column pipe 31 are on the same plane.
 もしくは、コラムパイプ31の内周面に凹部を設ける代わりに、コラムパイプ31に孔を開けて開口部を形成する。そして、この開口部にフランジを配設し、フランジと計測部20を一体としてもよい。この場合、コラムパイプ31とフランジと犠牲陽極3の間を、電気的に導通させる。コラムパイプ31の外周面部と内周面部に電極を設置し、コラムパイプ31と電極間に電圧を印加する外部電源方式電気防食とすることもできる。この場合、コラムパイプ31と電極の間を、絶縁する。 Alternatively, instead of providing a recess on the inner peripheral surface of the column pipe 31, a hole is formed in the column pipe 31 to form an opening. A flange may be disposed in the opening, and the flange and the measurement unit 20 may be integrated. In this case, the column pipe 31, the flange, and the sacrificial anode 3 are electrically connected. It is also possible to adopt an external power supply type anti-corrosion method in which electrodes are provided on the outer peripheral surface portion and the inner peripheral surface portion of the column pipe 31 and a voltage is applied between the column pipe 31 and the electrode. In this case, the column pipe 31 and the electrode are insulated.
 以上、本発明について詳述したが、本発明は上述の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の変形が可能である。 Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention described in the claims. .
1…防食対象模擬部材(配管模擬部材)、3…犠牲陽極、4…導電性固定具、5…海水、6…人工海水、7…水、8…ウォーターバス、9…無抵抗電流計、10…熱伝導シート、11…加熱・冷却部、12、12a、12b…温度検出器、13…制御部、14…電源、15a~15f…ケーブル、16…制御装置、17…温度制御装置、20…計測部、21…容器、30…海水取水ポンプ(ポンプ装置)、31…コラムパイプ、32…案内羽根、33…羽根車ケーシング、34…吸込みベルマウス、35…フランジ、36…回転軸、37…案内羽根内壁部、38…羽根車(インペラ)、39…据え付け部、40…海岸、41…導水路、42…吸込み槽、42a…ベース板、43…吐出配管、44…二層ろ過器、45…ろ過海水槽、46…ポンプ、47…保安フィルタ、48…配管、49…高圧ポンプ、50…動力回収タービン、51…配管、52…RO膜モジュール、53…配管、54…生産水槽、55…濃縮水配管、61…第1の試験装置、62…第2の試験装置、63…第3の試験装置、70…防食システム、80…海水淡水化システム、100…カソード分極曲線、101…アノード分極曲線 DESCRIPTION OF SYMBOLS 1 ... Corrosion prevention object simulation member (pipe simulation member), 3 ... Sacrificial anode, 4 ... Conductive fixing tool, 5 ... Seawater, 6 ... Artificial seawater, 7 ... Water, 8 ... Water bath, 9 ... Non-resistance ammeter, 10 ... heat conduction sheet, 11 ... heating / cooling unit, 12, 12a, 12b ... temperature detector, 13 ... control unit, 14 ... power supply, 15a-15f ... cable, 16 ... control device, 17 ... temperature control device, 20 ... Measuring unit, 21 ... container, 30 ... seawater intake pump (pump device), 31 ... column pipe, 32 ... guide vane, 33 ... impeller casing, 34 ... suction bell mouth, 35 ... flange, 36 ... rotating shaft, 37 ... Guide vane inner wall, 38 ... impeller, 39 ... installation portion, 40 ... coast, 41 ... waterway, 42 ... suction tank, 42a ... base plate, 43 ... discharge pipe, 44 ... double-layer filter, 45 ... filtration tank, 46 ... pon , 47 ... Safety filter, 48 ... Piping, 49 ... High pressure pump, 50 ... Power recovery turbine, 51 ... Piping, 52 ... RO membrane module, 53 ... Piping, 54 ... Production water tank, 55 ... Concentrated water piping, 61 ... First Test apparatus 62 62 second test apparatus 63 third test apparatus 70 anticorrosion system 80 seawater desalination system 100 cathode polarization curve 101 anode polarization curve

Claims (12)

  1.  防食対象の金属部材と、この金属部材に電気的に導通して取り付けた温度制御可能な犠牲陽極と、前記犠牲陽極の温度を制御する温度制御装置とを備え、前記防食対象の金属部材と前記犠牲陽極を電解質中に配置したことを特徴とする電気防食システム。 A corrosion-controllable metal member, a temperature-controllable sacrificial anode electrically connected to the metal member, and a temperature control device for controlling the temperature of the sacrificial anode, An anticorrosion system characterized in that a sacrificial anode is arranged in an electrolyte.
  2.  前記犠牲陽極を少なくとも加熱または冷却する加熱・冷却部を前記犠牲陽極は有し、前記犠牲陽極の温度を測定する第1の温度検出器を前記犠牲陽極に付設し、前記温度制御装置はこの第1の温度検出器が測定した温度に基づいて前記犠牲陽極が有する加熱・冷却部を用いて前記犠牲陽極温度を制御することを特徴とする請求項1に記載の電気防食システム。 The sacrificial anode has a heating / cooling unit that at least heats or cools the sacrificial anode, and a first temperature detector for measuring the temperature of the sacrificial anode is attached to the sacrificial anode. 2. The cathodic protection system according to claim 1, wherein the sacrificial anode temperature is controlled using a heating / cooling unit of the sacrificial anode based on a temperature measured by one temperature detector.
  3.  前記犠牲陽極を少なくとも加熱または冷却する加熱・冷却部を前記犠牲陽極は有し、前記犠牲陽極の温度を測定する第1の温度検出器を前記犠牲陽極に付設し、電解質の温度を測定する第2の温度検出器を電解質中に配置し、前記温度制御装置は、前記第1の温度検出器および前記第2の温度検出器が測定した温度の差が予め定めた範囲になるように前記加熱・冷却部を用いて前記犠牲陽極の温度を制御することを特徴とする請求項1に記載の電気防食システム。 The sacrificial anode has at least a heating / cooling section for heating or cooling the sacrificial anode, a first temperature detector for measuring the temperature of the sacrificial anode is attached to the sacrificial anode, and a temperature of the electrolyte is measured. 2 temperature detectors are arranged in the electrolyte, and the temperature control device controls the heating so that the temperature difference measured by the first temperature detector and the second temperature detector falls within a predetermined range. The cathodic protection system according to claim 1, wherein the temperature of the sacrificial anode is controlled using a cooling unit.
  4.  前記犠牲陽極は当該犠牲陽極を少なくとも加熱または冷却する加熱・冷却部を有し、前記犠牲陽極の温度を測定する第1の温度検出器を前記犠牲陽極に付設し、前記犠牲陽極と前記防食対象の金属部材間に流れる電流値を測定する電流検出器を設け、前記温度制御装置に前記第1の温度検出器の検出温度に対する前記電流検出器の検出電流の許容範囲の関係を記憶させておき、前記温度制御装置はこの検出温度と検出電流の関係を用いて、前記電流検出器が測定した電流値が許容範囲に入るように、前記加熱・冷却部を制御することを特徴とする請求項1に記載の電気防食システム。 The sacrificial anode has a heating / cooling section for heating or cooling at least the sacrificial anode, and a first temperature detector for measuring the temperature of the sacrificial anode is attached to the sacrificial anode, and the sacrificial anode and the anticorrosion target A current detector for measuring the value of the current flowing between the metal members, and storing the relationship of the allowable range of the detected current of the current detector with respect to the detected temperature of the first temperature detector in the temperature control device. The temperature controller uses the relationship between the detected temperature and the detected current to control the heating / cooling unit so that the current value measured by the current detector falls within an allowable range. The cathodic protection system according to 1.
  5.  前記電解質が海水であり、前記防食対象の金属部材の材質がステンレス鋼であり、前記犠牲陽極の材質が亜鉛合金であり、前記犠牲陽極の温度を30℃以上であって50℃以下に温度制御することを特徴とする請求項1に記載の電気防食システム。 The electrolyte is seawater, the material of the metal member to be protected against corrosion is stainless steel, the material of the sacrificial anode is a zinc alloy, and the temperature of the sacrificial anode is 30 ° C. or higher and 50 ° C. or lower. The cathodic protection system according to claim 1.
  6.  前記電解質が海水であり、前記防食対象の金属部材の材質がステンレス鋼であり、前記犠牲陽極の材質が亜鉛合金であり、前記犠牲陽極の温度を30℃以上であって50℃以下に温度制御することを特徴とする請求項2に記載の電気防食システム。 The electrolyte is seawater, the material of the metal member to be protected against corrosion is stainless steel, the material of the sacrificial anode is a zinc alloy, and the temperature of the sacrificial anode is 30 ° C. or higher and 50 ° C. or lower. The cathodic protection system according to claim 2.
  7.  前記電解質が海水であり、前記防食対象の金属部材の材質がステンレス鋼であり、前記犠牲陽極の材質が炭素鋼であり、前記犠牲陽極が前記金属部材よりも低温となるよう前記温度制御装置が前記加熱・冷却部を温度制御することを特徴とする請求項1に記載の電気防食システム。 The electrolyte is seawater, the material of the metal member to be protected against corrosion is stainless steel, the material of the sacrificial anode is carbon steel, and the temperature control device is configured so that the sacrificial anode is at a lower temperature than the metal member. 2. The cathodic protection system according to claim 1, wherein the temperature of the heating / cooling unit is controlled.
  8. 前記電解質が海水であり、前記防食対象の金属部材の材質がステンレス鋼であり、前記犠牲陽極の材質が炭素鋼であり、前記犠牲陽極が前記金属部材よりも低温となるよう前記温度制御装置が前記加熱・冷却部を温度制御することを特徴とする請求項2に記載の電気防食システム。 The electrolyte is seawater, the material of the metal member to be protected against corrosion is stainless steel, the material of the sacrificial anode is carbon steel, and the temperature control device is configured so that the sacrificial anode is at a lower temperature than the metal member. The cathodic protection system according to claim 2, wherein the temperature of the heating / cooling unit is controlled.
  9.  請求項2に記載の電気防食システムを有するポンプ装置であって、前記防食対象の金属部材はこのポンプ装置のケーシングであり、前記ケーシングが電解質に浸漬する部分に前記ケーシングと導通状態で前記犠牲陽極を取り付けたことを特徴とする電気防食システムを有するポンプ装置。 3. The pump apparatus having the cathodic protection system according to claim 2, wherein the metal member to be protected is a casing of the pump apparatus, and the sacrificial anode is electrically connected to the casing in a portion where the casing is immersed in an electrolyte. The pump apparatus which has the cathodic protection system characterized by attaching.
  10.  請求項3に記載の電気防食システムを有するポンプ装置であって、前記防食対象の金属部材はこのポンプ装置のケーシングであり、前記ケーシングが電解質に浸漬する部分に前記ケーシングと導通状態で前記犠牲陽極を取り付けたことを特徴とする電気防食システムを有するポンプ装置。 The pump device having the cathodic protection system according to claim 3, wherein the metal member to be protected is a casing of the pump device, and the sacrificial anode is electrically connected to the casing in a portion where the casing is immersed in an electrolyte. The pump apparatus which has the cathodic protection system characterized by attaching.
  11.  前記電解質が海水であり、前記ケーシングの材質がステンレス鋼であり、前記犠牲陽極の材質が亜鉛合金であり、前記温度制御装置が前記犠牲陽極の温度を30℃以上であって50℃以下に温度制御することを特徴とする請求項9に記載の電気防食システムを有するポンプ装置。 The electrolyte is seawater, the casing is made of stainless steel, the sacrificial anode is made of a zinc alloy, and the temperature control device sets the temperature of the sacrificial anode to 30 ° C. or more and 50 ° C. or less. The pump device having the cathodic protection system according to claim 9, wherein the pump device is controlled.
  12.  前記電解質が海水であり、前記ケーシングの材質がステンレス鋼であり、前記犠牲陽極の材質が炭素鋼であり、前記犠牲陽極の温度が前記ケーシングの温度よりも低温となるよう前記温度制御装置が前記犠牲陽極の温度を温度制御することを特徴とする請求項9に記載の電気防食システムを有するポンプ装置。 The electrolyte is seawater, the casing is made of stainless steel, the sacrificial anode is made of carbon steel, and the temperature control device is configured so that the temperature of the sacrificial anode is lower than the temperature of the casing. 10. The pump apparatus having the cathodic protection system according to claim 9, wherein the temperature of the sacrificial anode is controlled.
PCT/JP2014/069869 2013-09-25 2014-07-28 Electrolytic protection system and pump device provided with same WO2015045608A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/903,449 US20160326657A1 (en) 2013-09-25 2014-07-28 Corrosion protection system and pump device with the same
EP14849248.1A EP3051004A1 (en) 2013-09-25 2014-07-28 Electrolytic protection system and pump device provided with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198536A JP6023029B2 (en) 2013-09-25 2013-09-25 Electrocorrosion protection system and pump device provided with the same
JP2013-198536 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015045608A1 true WO2015045608A1 (en) 2015-04-02

Family

ID=52742764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069869 WO2015045608A1 (en) 2013-09-25 2014-07-28 Electrolytic protection system and pump device provided with same

Country Status (4)

Country Link
US (1) US20160326657A1 (en)
EP (1) EP3051004A1 (en)
JP (1) JP6023029B2 (en)
WO (1) WO2015045608A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341702B2 (en) * 2014-03-14 2018-06-13 株式会社荏原製作所 Pump and pump system
WO2018114867A1 (en) * 2016-12-21 2018-06-28 Sandvik Intellectual Property Ab Use of a duplex stainless steel object
CN112113898B (en) * 2020-09-10 2024-05-07 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Device for testing galvanic corrosion sensitivity of ship in fully immersed state
CN114591756A (en) * 2022-04-11 2022-06-07 长江三星能源科技股份有限公司 Electric dehydration and desalination equipment with degassing tank and easy to maintain corrosion resistance
CN115613039B (en) * 2022-10-24 2024-04-26 中国船舶重工集团公司第七二五研究所 Sacrificial anode electrochemical performance testing device under water-moving working condition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306388A (en) 1997-05-01 1998-11-17 Nippon Boshoku Kogyo Kk Corrosion preventive method by intervention of sacrificial anode metal in supporting part of piping
JP2000273566A (en) * 1999-03-23 2000-10-03 Nippon Boshoku Kogyo Kk Aluminum alloy sacrificial anode for low temperature seawater
JP2003034886A (en) 2001-07-26 2003-02-07 Hitachi Ltd Method and system for preventing corrosion of seawater intake pump with sacrificial anode
JP2005194624A (en) 2003-12-08 2005-07-21 Sumitomo Chemical Co Ltd Corrosion prevention method for apparatus made of duplex stainless steel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026677A (en) * 1983-07-25 1985-02-09 Hitachi Ltd Control system for monitoring etching and corrosion prevension
FI119150B (en) * 1999-05-17 2008-08-15 Savcor Process Oy A method for implementing electrochemical corrosion inhibition under changing conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306388A (en) 1997-05-01 1998-11-17 Nippon Boshoku Kogyo Kk Corrosion preventive method by intervention of sacrificial anode metal in supporting part of piping
JP2000273566A (en) * 1999-03-23 2000-10-03 Nippon Boshoku Kogyo Kk Aluminum alloy sacrificial anode for low temperature seawater
JP2003034886A (en) 2001-07-26 2003-02-07 Hitachi Ltd Method and system for preventing corrosion of seawater intake pump with sacrificial anode
JP2005194624A (en) 2003-12-08 2005-07-21 Sumitomo Chemical Co Ltd Corrosion prevention method for apparatus made of duplex stainless steel

Also Published As

Publication number Publication date
JP6023029B2 (en) 2016-11-09
JP2015063734A (en) 2015-04-09
US20160326657A1 (en) 2016-11-10
EP3051004A1 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015045608A1 (en) Electrolytic protection system and pump device provided with same
US9045834B2 (en) Sacrificial anode
WO2017104498A1 (en) Sacrificial anode assembly, service life expectancy-predicting diagnostic system for sacrificial anode assembly, and pump provided with same
WO2014112511A1 (en) Test piece for monitoring pitting corrosion, apparatus for monitoring pitting corrosion and method for monitoring pitting corrosion
JP5877125B2 (en) Corrosion suppression device, seawater desalination device and pump device provided with the same
JP6095862B2 (en) Corrosion detection sensor, cooling device, cooling system, and vehicle power supply system
JP2020012189A (en) Sacrificial anode structure, apparatus for determining consumed state of sacrificial anode, and determination method
JP4793457B2 (en) Stainless steel pitting corrosion diagnostic method, stainless steel pitting corrosion diagnostic device, seawater pump pitting corrosion diagnostic method using stainless steel as a structural member, and seawater pump pitting corrosion diagnostic device using stainless steel as a structural member
JP2008297600A (en) Electrolytic protection method
US20120189425A1 (en) System and method for reducing corrosion in a compressor
JP4876011B2 (en) Plant operation method
JP2012220288A (en) Anticorrosion performance deterioration detection sensor, and hot water feeding and heating system and facility device equipped with the same
JP2015212623A (en) Water quality sensor and cooling system including the same
Knudsen et al. Corrosion of Cathodically Polarized Thermally Sprayed Aluminum in Subsea Mud at High Temperature
US20210276890A1 (en) Systems and devices for corrosion prevention and methods thereto
JP2011088542A (en) Method and device for reducing uep of ship
JP2007309052A (en) Device for preventing fouling of structure and method of preventing fouling
JP2018173032A (en) Pump, sacrificial anode, and remaining life prediction method for sacrificial anode
KR102652545B1 (en) Impressed current cathodic protection system for pipe
JP6927812B2 (en) Anticorrosion system and anticorrosion method
JP2019090362A (en) Rustproof effect detection device
Ohtsu et al. Materials Selection and Corrosion Management in a Process Containing Halides
JP4620409B2 (en) Anti-corrosion device for small-diameter piping system valve or pump inner surface
Heselmans et al. Cathodic Protection of Stainless Steels And Other Corrosion Resistant Alloys
JP5240910B2 (en) Surface current measuring device and surface current measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903449

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014849248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE