JP2916617B2 - Underwater current control system for ships - Google Patents

Underwater current control system for ships

Info

Publication number
JP2916617B2
JP2916617B2 JP9041004A JP4100497A JP2916617B2 JP 2916617 B2 JP2916617 B2 JP 2916617B2 JP 9041004 A JP9041004 A JP 9041004A JP 4100497 A JP4100497 A JP 4100497A JP 2916617 B2 JP2916617 B2 JP 2916617B2
Authority
JP
Japan
Prior art keywords
underwater
current
magnetic
magnetic field
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9041004A
Other languages
Japanese (ja)
Other versions
JPH10237682A (en
Inventor
恵 廣田
斉昭 柳沢
浩乎 七浦
利治 木村
陽子 寺西
昌之 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP9041004A priority Critical patent/JP2916617B2/en
Publication of JPH10237682A publication Critical patent/JPH10237682A/en
Application granted granted Critical
Publication of JP2916617B2 publication Critical patent/JP2916617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶が電気防食等
を目的として亜鉛板、アース板等から船体の他の部位
へ、水中を流す電流を、磁気センサにより検出し、船舶
の外板の水中部分に複数の電極を設け、上記磁気センサ
の出力によって、前記電極間を水中に流す電流を制御
し、電気防食等を目的とした水中電流を一定に保つと同
時に船体水中電界及び水中電界に伴う水中電界磁場を一
定に保つための船舶水中電流制御方式に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting the current flowing in water from a zinc plate, an earth plate, or the like to another portion of a hull by a magnetic sensor for the purpose of, for example, anticorrosion protection. A plurality of electrodes are provided in the underwater part, and the current flowing between the electrodes is controlled by the output of the magnetic sensor to maintain a constant underwater current for the purpose of cathodic protection, etc. The present invention relates to an underwater current control system for a ship to keep the accompanying underwater electric field magnetic field constant.

【0002】[0002]

【従来の技術】船舶の電気防食を目的とした従来の方式
は、外部電源防食方式と流電陽極防食方式の2方式があ
る。
2. Description of the Related Art There are two conventional systems for the purpose of cathodic protection of a ship: an external power source corrosion protection system and a galvanic anode protection system.

【0003】外部電源防食方式は、船舶の外板の水中部
分にある耐久性電極と船体との間に電位差を与え、この
電位差を、船舶の外板の水中部分に取り付けた照合電極
の出力によって制御するものである。このように、外部
電源防食方式は、照合電極、耐久性電極、電源及び制御
機から成り、船体の水中部分の電気的状態の変化に応じ
て電位差をかけることができるが、大規模な装置になる
ので、大型の商船や艦艇に用いられている。
In the external power supply corrosion protection method, a potential difference is provided between a durable electrode on the underwater portion of the outer plate of the ship and the hull, and this potential difference is generated by an output of a reference electrode attached to the underwater portion of the outer plate of the ship. To control. As described above, the external power supply corrosion protection system includes a reference electrode, a durable electrode, a power supply, and a controller, and can apply a potential difference in accordance with a change in the electrical state of the underwater portion of the hull. It is used for large merchant ships and ships.

【0004】流電陽極防食方式は、船体材料より腐食さ
れ易い亜鉛等の板を犠牲陽極として、船体の海水に接す
る部分の、腐食を防ぐべき部位と電気的に接続し、船体
の外板の水中部分に取り付けるものである。流電陽極防
食方式は亜鉛板等、固定した犠牲陽極が溶出することに
より水中に電流を流すため、亜鉛板等の表面の状態が刻
々に変化し、電流を精密に制御することは困難である
が、構成が単純であり電源や制御機を必要としないた
め、小型の舟艇や船舶に用いられている。
In the galvanic anode protection method, a plate made of zinc or the like, which is more susceptible to corrosion than the hull material, is used as a sacrificial anode, and is electrically connected to a portion of the hull in contact with seawater to be protected from corrosion. It is attached to the underwater part. In the galvanic anodic protection method, the current flows through water as a fixed sacrificial anode, such as a zinc plate, elutes, so the state of the surface of the zinc plate changes every moment, making it difficult to precisely control the current. However, since it has a simple structure and does not require a power supply or a controller, it is used for small boats and ships.

【0005】船体磁場を低減する従来の技術では、船舶
に固定設置した閉回路となったコイルに電流を通電し、
この電流値を、船舶の地球磁場に対する船首方位を検出
する磁気センサ出力により制御している。
In the prior art for reducing the magnetic field of a hull, a current is passed through a closed circuit coil fixedly installed on a ship,
This current value is controlled by a magnetic sensor output that detects the heading of the ship with respect to the earth's magnetic field.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
船舶に固定設置したコイルによる船体磁場の低減は、船
舶を構成する磁性材料による磁場を有効に低減するが、
防食電流等、船舶が水中に流している電流に伴う磁場
は、コイルの発生する磁場と空間分布が異なるため低減
することができない。すなわち、船体水中電界磁場につ
いては、これを低減することを目的とした従来技術は無
い。
However, the reduction of the hull magnetic field by the coils fixedly installed on the ship effectively reduces the magnetic field of the magnetic material constituting the ship.
The magnetic field associated with the current flowing in the water, such as an anticorrosion current, cannot be reduced because the magnetic field generated by the coil has a different spatial distribution. That is, there is no prior art for reducing the electric field magnetic field in the hull underwater.

【0007】本発明の船舶水中電流制御方式を用いるこ
とによって解決される課題を次にあげる。
Problems to be solved by using the underwater current control system for ships according to the present invention are as follows.

【0008】(イ)従来の流電陽極防食方式等、船舶外
板の水中部分に固定設置した亜鉛板によって電気防食を
計るものは、防食電流を制御することができない。船舶
外板の水中部分に設けた電極間を水中に電流を流し、そ
の電流値を磁気センサで検出し、制御することによって
防食電流を常に一定に保つことができる。
(A) A conventional galvanic protection system, such as a galvanic anode protection system, in which galvanic protection is measured by a zinc plate fixedly installed in the underwater portion of a ship's outer panel cannot control the anticorrosion current. By flowing a current into the water between the electrodes provided in the underwater portion of the ship's outer panel, and detecting and controlling the current value with a magnetic sensor, the anticorrosion current can always be kept constant.

【0009】(ロ)また、従来の船体の水中部分に固定
設置した亜鉛板、アース板等は、電気的接触抵抗、表面
抵抗等の経時変化により、過大な水中電流を船体の他の
部位へと流すことがある。この過大電流に伴い、電極が
消耗し、また過大な船体水中電界及び水中電界に伴う水
中電界磁場を発生する。この水中電界に伴う水中電界磁
場は、船舶に固定設置したコイルに電流を流す、従来の
船体磁場低減法では打ち消すことができない。これは水
中電流に起因する磁場が、船舶に固定設置したコイルに
よる磁場と空間的分布を異にするためである。本発明の
方式によれば、船舶の水中電流を一定に保ち、過大な水
中電流が流れることを防いでいるので、結果として過大
な船体水中電界及び水中電界に伴う水中電界磁場の発生
を防ぐことができる。
(B) Conventionally, a zinc plate, an earth plate, and the like fixedly installed in the underwater portion of a hull cause an excessive underwater current to flow to other parts of the hull due to a change with time in electrical contact resistance, surface resistance, and the like. And shed. The electrodes are consumed by the excessive current, and an excessive underwater electric field and an underwater electric field magnetic field associated with the underwater electric field are generated. The underwater electric field magnetic field accompanying the underwater electric field cannot be canceled by the conventional hull magnetic field reduction method in which current flows through a coil fixedly installed on a ship. This is because the magnetic field caused by the underwater current has a different spatial distribution from the magnetic field generated by the coil fixedly installed on the ship. According to the method of the present invention, since the underwater current of the ship is kept constant and an excessive underwater current is prevented from flowing, it is possible to prevent the generation of an underwater electric field magnetic field associated with an excessively large underwater electric field of the hull and the underwater electric field as a result. Can be.

【0010】(ハ)本発明の方式のように磁気センサに
よって水中電流を制御するものは、照合電極によって水
中電流を制御するものに比較して整備性が向上する。
(C) The underwater current controlled by the magnetic sensor as in the method of the present invention has improved maintainability as compared with the underwater current controlled by the reference electrode.

【0011】照合電極は、水中電界を測定するために、
海水と照合電極センサ面の接触を必要とする。このため
照合電極は船体外板の水中部分に取り付けられ、照合電
極の整備は船舶がドックに入った時に限られる。また、
異状が発生しても潜水夫等に依存しなければ点検するこ
とができない。さらに、常にセンサ面が海水に接触して
いるため、センサ面の状態が経時変化しやすく、安定に
水中電界を測定するためには高度な技術を必要とする。
The reference electrode is used to measure an underwater electric field.
Requires contact between seawater and the reference electrode sensor surface. For this reason, the reference electrode is attached to the underwater portion of the hull skin, and maintenance of the reference electrode is limited to when the ship enters the dock. Also,
Even if an abnormality occurs, it cannot be checked unless it depends on a diver or the like. Further, since the sensor surface is constantly in contact with seawater, the state of the sensor surface is liable to change with time, and a sophisticated technique is required to stably measure the underwater electric field.

【0012】これに対し、磁気センサは、測定すべき磁
場が水中から空中に連続して広がっており、水中電界の
測定のような海水との接触面を必要としない。従って、
磁気センサは水中に設ける必要がなく、磁気センサを船
内に設置することが可能である。その結果、海水中にセ
ンサを取り付ける場合に比べ環境条件が良好で傷みが少
なく、整備補修も容易である。
On the other hand, in the magnetic sensor, the magnetic field to be measured continuously extends from underwater to the air, and does not require a contact surface with seawater as in the measurement of an underwater electric field. Therefore,
The magnetic sensor does not need to be provided underwater, and the magnetic sensor can be installed in a ship. As a result, environmental conditions are better, damage is less, and maintenance and repair are easier than in the case where the sensor is mounted in seawater.

【0013】(ニ)本発明の方式のように磁気センサに
よって水中電流を制御するものは、照合電極によって水
中電流を制御するものに比較して、海水の電気抵抗率の
変化に影響されない。
(D) The underwater current controlled by the magnetic sensor as in the system of the present invention is not affected by the change in the electric resistivity of seawater, as compared with the underwater current controlled by the reference electrode.

【0014】照合電極は電極間の電界を測定するため、
河川水の吐出部分等、海水の電気抵抗率が変化する所で
は、水中電流の制御が不確定になる。本発明方式の磁気
センサは、水中電流による磁場を直接測定するため海水
の電気抵抗率の変化に影響されない。
The reference electrode measures the electric field between the electrodes.
In places where the electrical resistivity of seawater changes, such as in the discharge part of river water, the control of the underwater current becomes uncertain. Since the magnetic sensor of the present invention measures the magnetic field due to the underwater current directly, it is not affected by the change in the electric resistivity of seawater.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明による船舶水中電流制御方式は、船
舶1の水中部分に取り付けた複数の電極2、3と、水面
と離間して前記船舶1に固定設置され、前記複数の電極
間を水中に流す電流による磁場を測定するための複数の
磁気センサ4、5と、前記複数の磁気センサの出力によ
って前記複数の電極間を水中に流す電流を制御する制御
部6とを備えたことを特徴とする。
In order to solve the above-mentioned problems, a ship underwater current control system according to the first aspect of the present invention comprises a plurality of electrodes 2 and 3 mounted on an underwater portion of a ship 1 and separated from the water surface. A plurality of magnetic sensors 4 and 5 that are fixedly installed on the marine vessel 1 and measure a magnetic field due to a current flowing between the plurality of electrodes in water, and the plurality of electrodes are placed under water by outputs of the plurality of magnetic sensors. And a control unit 6 for controlling a flowing current.

【0016】請求項2の発明は、請求項1の船舶水中電
流制御方式において、前記船舶1の地球磁場に対する船
首方位及び地球磁場強度を検出する地磁気モニター用磁
気センサ8を備えており、前記制御部6は、前記地磁気
モニター用磁気センサの検出出力に基いて前記船舶を構
成する磁性材料による磁場を算出し、この磁場による算
出値を差し引いた前記磁気センサ4、5の出力によって
前記複数の電極2、3間を水中に流す電流を制御するこ
とを特徴とする。
According to a second aspect of the present invention, in the underwater current control system of the first aspect, a magnetic sensor 8 for a geomagnetism monitor for detecting the heading of the marine vessel 1 with respect to the terrestrial magnetic field and the strength of the terrestrial magnetic field is provided. The unit 6 calculates the magnetic field of the magnetic material constituting the ship based on the detection output of the geomagnetic monitoring magnetic sensor, and subtracts the calculated value based on the magnetic field from the outputs of the magnetic sensors 4 and 5 to calculate the plurality of electrodes. It is characterized in that a current flowing between two or three pieces of water is controlled.

【0017】[0017]

【発明の実施の形態】図1は本発明による船舶水中電流
制御方式の一実施の形態の構成を示す図である。図1に
おいて、1は船舶、2と3は水中に電流を流す電極、4
と5は水中電流による磁場を測定するための磁気セン
サ、6は制御増幅機(制御部)、7はマスト、8はマス
ト7に設けられて地磁気を検出するための地磁気モニタ
ー用磁気センサ、9は船舶1の船体を構成する材料と異
なる金属部位(例えば船舶1の外板の水中部分に設けら
れた犠牲陽極、アース板等)、10は防食すべき部位
(例えばスクリュウ等)である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the configuration of an embodiment of a ship underwater current control system according to the present invention. In FIG. 1, 1 is a ship, 2 and 3 are electrodes for passing current in water, 4
Reference numerals 5 and 5 denote magnetic sensors for measuring a magnetic field due to underwater current, 6 denotes a control amplifier (control unit), 7 denotes a mast, 8 denotes a magnetic sensor for terrestrial magnetism provided on the mast 7 and detects terrestrial magnetism, 9 Is a metal part different from the material constituting the hull of the marine vessel 1 (for example, a sacrificial anode or an earth plate provided in the underwater portion of the outer plate of the marine vessel 1), and 10 is a part to be protected from corrosion (for example, a screw or the like).

【0018】次に、上記構成による動作について説明す
る。まず、図1のように、船体を構成する材料と異なる
金属部位(例えば図1に示すような船舶1の外板の水中
部分に設けられた犠牲陽極、アース板等)9と、防食す
べき部位(例えばスクリュウ等)10との間に水中電流
c が流れているとする。また、防食すべき部位10
を、直交3軸座標の原点に取り、金属部位9方向にx
軸、水平方向にy軸、鉛直下方にz軸を取る。金属部位
9の座標を(xc ,0,0)とする。
Next, the operation of the above configuration will be described. First, as shown in FIG. 1, a metal part (for example, a sacrificial anode, an earth plate, or the like provided in a submerged portion of the outer plate of the marine vessel 1 as shown in FIG. water current I c is to be flowing between the sites (e.g., screw, etc.) 10. In addition, part 10 which should be protected
Is taken as the origin of the orthogonal three-axis coordinates, and x is
Axis, the y-axis in the horizontal direction, and the z-axis vertically below. The coordinates of the metal part 9 are defined as (x c , 0, 0).

【0019】船舶1の外板の水中部分に電極2、3及び
船内あるいは船外に複数の磁気センサ4、5を取り付け
る。2個の電極2、3はx軸上に取り付け、電極2の座
標は(x0 ,0,0)、電極3の座標は(x0 +x,
0,0)とする。磁気センサ4、5は船体に固定設置さ
れており、その出力及び出力の差が制御増幅機6に送ら
れる。磁気センサ4、5をz軸上、座標(x0 +x/
2,0,z1 )及び座標(x0 +x/2,0,z2 )に
取り付ける。
Electrodes 2 and 3 are mounted on the underwater portion of the outer plate of the ship 1, and a plurality of magnetic sensors 4 and 5 are mounted inside or outside the ship. The two electrodes 2 and 3 are mounted on the x-axis, and the coordinates of the electrode 2 are (x 0 , 0 , 0) and the coordinates of the electrode 3 are (x 0 + x,
0,0). The magnetic sensors 4 and 5 are fixedly installed on the hull, and the outputs and the difference between the outputs are sent to the control amplifier 6. The magnetic sensors 4 and 5 are positioned on the z-axis at coordinates (x 0 + x /
2,0, z 1 ) and coordinates (x 0 + x / 2,0, z 2 ).

【0020】金属部位9と防食すべき部位10との間に
水中を電流Ic が流れる時、電流I c による磁気センサ
4の出力h1cは次式で近似できる。
Between the metal part 9 and the part 10 to be protected
Current I in watercWhen the current flows, the current I cMagnetic sensor
Output of 4 h1cCan be approximated by the following equation.

【0021】[0021]

【数1】 (Equation 1)

【0022】この時の電流Ic による磁気センサ5の出
力h2cは次式で近似できる。
The output h 2c of the magnetic sensor 5 due to the current I c at this time can be approximated by the following equation.

【0023】[0023]

【数2】 (Equation 2)

【0024】磁気センサ5と磁気センサ4の電流Ic
よる出力の差hc は次式で表される。
The difference h c of the output due to the current I c of the magnetic sensor 5 and the magnetic sensor 4 is expressed by the following equation.

【0025】[0025]

【数3】 (Equation 3)

【0026】電極2と電極3の間に水中を電流Iが流れ
る時、電流Iによる磁気センサ4の出力h1 は次式で近
似できる。
When a current I flows underwater between the electrodes 2 and 3, the output h 1 of the magnetic sensor 4 due to the current I can be approximated by the following equation.

【0027】[0027]

【数4】 (Equation 4)

【0028】この時の電流Iによる磁気センサ5の出力
2 は次式で近似できる。
The output h 2 of the magnetic sensor 5 due to the current I at this time can be approximated by the following equation.

【0029】[0029]

【数5】 (Equation 5)

【0030】磁気センサ5と磁気センサ4の電流Iによ
る出力の差hは次式で近似される。
The difference h between the outputs of the magnetic sensor 5 and the magnetic sensor 4 due to the current I is approximated by the following equation.

【0031】[0031]

【数6】 (Equation 6)

【0032】電流Ic 及び電流Iによる磁気センサ4、
5の出力の差Δhは数3と数6の和であり、次式で近似
される。
The magnetic sensor 4 due to the current I c and the current I,
The output difference Δh of 5 is the sum of Equations 3 and 6, and is approximated by the following equation.

【0033】[0033]

【数7】 (Equation 7)

【0034】数7において、x,xc ,x0 ,z1 ,z
2 は定数であり、Iは制御可能な量であるので、Ic
変化に伴い、数7の値が変化するものを、制御増幅機6
によってIを変化させて数7を一定値に保つものであ
る。
In Equation 7, x, x c , x 0 , z 1 , z
2 is a constant, since I is an amount which can control, with the change of I c, what value of 7 is changed, control amplifying device 6
To maintain Equation 7 at a constant value.

【0035】なお、磁気センサ4及び磁気センサ5の出
力には電流I及び電流Ic による出力の他に、地球磁場
による出力があるが、地球磁場は空間的一様性が高いた
め磁気センサ4及び磁気センサ5の出力に同じように現
れ、数3及び数6の減算処理によって除かれる。
[0035] In addition to the output of the current I and the current I c in the output of the magnetic sensor 4 and the magnetic sensor 5, there are output by the Earth's magnetic field, geomagnetic field magnetic sensor 4 has high spatial uniformity And appear in the output of the magnetic sensor 5 in the same manner, and are removed by the subtraction processing of Expressions 3 and 6.

【0036】以上のようにして磁気センサ4、5の出力
により電極2、3間を水中に流す電流を制御し、船舶1
の水中電流を一定な値に保持することができる。
As described above, the current flowing between the electrodes 2 and 3 in water is controlled by the outputs of the magnetic sensors 4 and 5 to
Can be maintained at a constant value.

【0037】ここで、磁気センサ4、5周辺に磁性材料
がある場合は、マスト7に設けられた地磁気モニター用
磁気センサ8を用いて船舶1の地球磁場に対する船首方
位及び地球磁場強度を検出する。そして、制御増幅機6
は、地磁気モニター用磁気センサ8の検出出力、すなわ
ち、磁気センサ4、5周辺の磁性材料が船首方位及び地
球磁場強度の変化によって磁気センサ4、5に及ぼす磁
場を算出し、この磁場の算出値を差し引いた磁気センサ
4、5の出力により電極2、3間を水中に流す電流を制
御している。これにより、船舶1の水中電流の制御の精
度を向上することが可能である。
Here, when there is a magnetic material around the magnetic sensors 4 and 5, the heading of the ship 1 with respect to the earth magnetic field and the earth magnetic field strength are detected using the magnetic sensor 8 for geomagnetic monitoring provided on the mast 7. . And the control amplifier 6
Calculates the detection output of the magnetic sensor 8 for the geomagnetic monitor, that is, the magnetic field exerted on the magnetic sensors 4 and 5 by the change of the heading and the intensity of the earth's magnetic field by the magnetic materials around the magnetic sensors 4 and 5, and the calculated value of the magnetic field The current flowing between the electrodes 2 and 3 in water is controlled based on the outputs of the magnetic sensors 4 and 5 from which the values are subtracted. Thereby, it is possible to improve the accuracy of controlling the underwater current of the marine vessel 1.

【0038】[0038]

【発明の効果】以上説明したように、本発明の船舶水中
電流制御方式によれば、これまで照合電極、耐久性電極
等水中に多くの構成部分を設けなくては困難であった電
気防食等を目的とした水中電流の制御を、船舶の水中部
分には電極のみと、海水との接触面を必要としない複数
個の磁気センサ及び制御部によって可能にした。また、
本方式は単純な器材の構成であるので、小型の舟艇に搭
載し上記の機能を果たさせることが可能である。
As described above, according to the underwater current control system of the present invention, it is difficult to provide a large number of components such as a reference electrode and a durable electrode in the water. The underwater current control for the purpose of (1) has been made possible by only the electrodes in the underwater part of the ship and a plurality of magnetic sensors and control units that do not require a contact surface with seawater. Also,
Since this system has a simple equipment configuration, it can be mounted on a small boat to fulfill the above functions.

【0039】請求項2の発明によれば、磁気センサ周辺
に磁性材料がある場合は、船舶1の地球磁場に対する船
首方位及び地球磁場強度を地磁気モニター用磁気センサ
を用いて検出し、制御増幅機が地磁気モニター用磁気セ
ンサの検出出力に基いて磁性材料が磁気センサに及ぼす
磁場を算出し、この磁場による算出値を差し引いた磁気
センサの出力によって複数の電極間を水中に流す電流を
制御するので、磁気センサの水中電流による磁場の測定
精度を向上することができる。
According to the second aspect of the present invention, when there is a magnetic material around the magnetic sensor, the heading of the ship 1 with respect to the earth magnetic field and the intensity of the earth magnetic field are detected using the magnetic sensor for geomagnetic monitoring, and the control amplifier is used. Calculates the magnetic field exerted on the magnetic sensor by the magnetic material based on the detection output of the magnetic sensor for terrestrial magnetism, and controls the current flowing between the electrodes in water by subtracting the calculated value based on the magnetic field from the output of the magnetic sensor. In addition, the accuracy of measuring the magnetic field by the underwater current of the magnetic sensor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による船舶水中電流制御方式の一実施の
形態の構成を示す図である。
FIG. 1 is a diagram showing the configuration of an embodiment of a ship underwater current control system according to the present invention.

【図2】本発明による船舶水中電流制御方式の原理を示
した説明図である。
FIG. 2 is an explanatory diagram showing the principle of a ship underwater current control system according to the present invention.

【符号の説明】[Explanation of symbols]

1…船舶 2,3…電極 4,5…磁気センサ 6…制御増幅機(制御部) 7…マスト 8…地磁気モニター用磁気センサ 9…犠牲陽極等の金属部位 10…スクリュウ等の防食すべき部位 DESCRIPTION OF SYMBOLS 1 ... Ship 2, 3 ... Electrode 4, 5 ... Magnetic sensor 6 ... Control amplifier (control part) 7 ... Mast 8 ... Magnetic sensor for terrestrial magnetism monitor 9 ... Metal parts, such as a sacrificial anode, etc. 10 ... Parts to be protected, such as a screw

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺西 陽子 東京都世田谷区用賀2−9−3−2E (72)発明者 上杉 昌之 神奈川県横浜市神奈川区本町13番 (56)参考文献 実開 昭58−184564(JP,U) 実開 昭58−184563(JP,U) (58)調査した分野(Int.Cl.6,DB名) C23F 13/00,13/20 B63B 59/00 G01N 27/72,27/74 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Yoko Teranishi 2-9-3-2E Yoga, Setagaya-ku, Tokyo (72) Inventor Masayuki Uesugi 13th, Honcho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture (56) References Akira Mikai 58-184564 (JP, U) Actually open 58-184563 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) C23F 13/00, 13/20 B63B 59/00 G01N 27 / 72,27 / 74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 船舶(1)の水中部分に取り付けた複数
の電極(2)、(3)と、 水面と離間して前記船舶(1)に固定設置され、前記複
数の電極間を水中に流す電流による磁場を測定するため
の複数の磁気センサ(4)、(5)と、 前記複数の磁気センサの出力によって前記複数の電極間
を水中に流す電流を制御する制御部(6)とを備えたこ
とを特徴とする船舶水中電流制御方式。
1. A plurality of electrodes (2) and (3) attached to an underwater portion of a marine vessel (1), fixedly installed on the marine vessel (1) apart from a water surface, and the plurality of electrodes are immersed in water. A plurality of magnetic sensors (4) and (5) for measuring a magnetic field based on a flowing current; and a control unit (6) for controlling a current flowing between the plurality of electrodes in water based on outputs of the plurality of magnetic sensors. An underwater current control system for ships.
【請求項2】 前記船舶(1)の地球磁場に対する船首
方位及び地球磁場強度を検出する地磁気モニター用磁気
センサ(8)を備えており、 前記制御部(6)は、前記地磁気モニター用磁気センサ
の検出出力に基いて前記船舶を構成する磁性材料による
磁場を算出し、この磁場による算出値を差し引いた前記
磁気センサ(4)、(5)の出力によって前記複数の電
極(2)、(3)間を水中に流す電流を制御する請求項
1の記載の船舶水中電流制御方式。
2. A geomagnetic monitor magnetic sensor (8) for detecting a heading direction and an earth magnetic field strength of the ship (1) with respect to the earth magnetic field, wherein the control unit (6) is provided with the geomagnetic monitor magnetic sensor. The magnetic field of the magnetic material constituting the ship is calculated based on the detection output of the plurality of electrodes, and the plurality of electrodes (2), (3) are calculated by the outputs of the magnetic sensors (4) and (5) obtained by subtracting the calculated value of the magnetic field. 2. The underwater current control system according to claim 1, wherein the current flowing in the water is controlled.
JP9041004A 1997-02-25 1997-02-25 Underwater current control system for ships Expired - Lifetime JP2916617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9041004A JP2916617B2 (en) 1997-02-25 1997-02-25 Underwater current control system for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9041004A JP2916617B2 (en) 1997-02-25 1997-02-25 Underwater current control system for ships

Publications (2)

Publication Number Publication Date
JPH10237682A JPH10237682A (en) 1998-09-08
JP2916617B2 true JP2916617B2 (en) 1999-07-05

Family

ID=12596265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9041004A Expired - Lifetime JP2916617B2 (en) 1997-02-25 1997-02-25 Underwater current control system for ships

Country Status (1)

Country Link
JP (1) JP2916617B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626458B2 (en) * 2005-09-14 2011-02-09 株式会社島津製作所 Reduction method of underwater electric field in ship protection.
JP5162759B2 (en) * 2009-10-22 2013-03-13 防衛省技術研究本部長 Ship UEP reduction method and apparatus
JP5002823B2 (en) * 2010-07-07 2012-08-15 防衛省技術研究本部長 Hull Surrounding UEP Calculation Method
JP5217001B2 (en) * 2010-08-26 2013-06-19 防衛省技術研究本部長 Hull UEP reduction method and apparatus
JP5802988B2 (en) * 2013-11-22 2015-11-04 防衛省技術研究本部長 Hull magnetism estimation apparatus and method
CN107197584A (en) * 2017-06-15 2017-09-22 铎洋游艇(珠海)有限公司 A kind of yacht electrostatic and the integrated protection system of electric leakage
CN114875413B (en) * 2022-05-18 2024-01-09 唐彪 Hull impressed current cathodic protection device and method capable of adjusting protection potential

Also Published As

Publication number Publication date
JPH10237682A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US2863819A (en) Insoluble trailing anode for cathodic protection of ships
US4078510A (en) Relating to the cathodic protection of structures
JP2916617B2 (en) Underwater current control system for ships
US4644285A (en) Method and apparatus for direct measurement of current density
WO2008110625A1 (en) Apparatus for measuring sacrificial anode wear
US4755267A (en) Methods and apparatus for protecting metal structures
US20220128454A1 (en) Potential measuring device and method
US4489277A (en) Cathodic protection monitoring system
JP3139938B2 (en) Cathodic protection current monitor and monitoring system using the same
US5052962A (en) Naval electrochemical corrosion reducer
EP0593168B1 (en) Method and apparatus for measuring underdeposit localized corrosion rate or metal corrosion rate under tubercles in cooling water systems
GB2132226A (en) Cathodic protection of aluminium articles
US4639677A (en) Cathodic protection monitoring system
KR20170116771A (en) Monitoring device and method for marine organisms and the ship or offshore structure having the same
KR20200137822A (en) Corrosion protection device for ships
JP5162759B2 (en) Ship UEP reduction method and apparatus
JP2729292B2 (en) Measurement method of underwater potential difference distribution in submerged sea surface of ship
JP3821004B2 (en) Sacrificial anode inspection method and inspection apparatus
JPH1161460A (en) Electric corrosion protection of titanium-coated maritime structure
JPH0524049Y2 (en)
GB2286196A (en) Protecting vessels from corrosion using sacrificial anodes to carry impressed current
RU208301U1 (en) Current meter for protective protection of offshore structures
JPH0250997B2 (en)
JP5240910B2 (en) Surface current measuring device and surface current measuring method
JP3207665B2 (en) Hull anticorrosion and antifouling equipment for ship speed

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term