JP5034056B2 - UEP visualization method and apparatus - Google Patents

UEP visualization method and apparatus Download PDF

Info

Publication number
JP5034056B2
JP5034056B2 JP2010189541A JP2010189541A JP5034056B2 JP 5034056 B2 JP5034056 B2 JP 5034056B2 JP 2010189541 A JP2010189541 A JP 2010189541A JP 2010189541 A JP2010189541 A JP 2010189541A JP 5034056 B2 JP5034056 B2 JP 5034056B2
Authority
JP
Japan
Prior art keywords
uep
anode
indicator
cathode
ship model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010189541A
Other languages
Japanese (ja)
Other versions
JP2012046060A (en
Inventor
允 池尾
健太郎 草田
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2010189541A priority Critical patent/JP5034056B2/en
Publication of JP2012046060A publication Critical patent/JP2012046060A/en
Application granted granted Critical
Publication of JP5034056B2 publication Critical patent/JP5034056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、船舶模型から発生するUEP(Underwater Electric Potential)を可視化するUEP可視化方法及び装置に関する。   The present invention relates to a UEP visualization method and apparatus for visualizing UEP (Underwater Electric Potential) generated from a ship model.

電解溶液中にイオン化傾向の異なる2つの金属が存在すると、当該2つの金属間に電位差が生じ、水中電界が発生する。これを船舶について見ると、船体(例えば鋼)とプロペラ(例えば銅)とが海水中(すなわち電解溶液中)に存在するため、船体とプロペラとの間に電位差が生じ、水中電界が発生する。この電位差又は水中電界を一般にUEPという。   When two metals having different ionization tendencies exist in the electrolytic solution, a potential difference is generated between the two metals, and an underwater electric field is generated. If this is seen about a ship, since a hull (for example, steel) and a propeller (for example, copper) exist in seawater (that is, in an electrolytic solution), a potential difference is generated between the hull and the propeller, and an underwater electric field is generated. This potential difference or underwater electric field is generally referred to as UEP.

イオン化傾向の大きい船体の金属は陽イオンとなって海水中に溶け出すため、船体の金属は腐食する。この腐食を防止するための対策として、流電陽極方式又は外部電源方式といったカソード(陰極)防食が従来から知られている。流電陽極方式は、船体の金属(例えば鋼)よりも卑となる金属(イオン化傾向の大きな金属、例えば亜鉛)を犠牲陽極として船体に装着することにより、船体の腐食を防止する方式である。外部電源方式は、船底に取り付けた不溶性陽極(例えば白金陽極)から強制的に電流を流し、船体電位を一定に保つことにより、船体の腐食を防止する方式である。いずれの方式でも、海水中に腐食電流又は防食電流が流れ、UEPが発生する。   The metal in the hull, which has a high ionization tendency, becomes cations and dissolves in the seawater, so the metal in the hull corrodes. As a countermeasure for preventing this corrosion, a cathode (cathode) anticorrosion such as a galvanic anode method or an external power supply method has been conventionally known. The galvanic anode method is a method of preventing corrosion of the hull by mounting a metal (eg, metal having a high ionization tendency, such as zinc) that is lower than the metal (eg, steel) of the hull on the hull as a sacrificial anode. The external power supply system is a system that prevents corrosion of the hull by forcibly flowing a current from an insoluble anode (for example, a platinum anode) attached to the bottom of the ship and keeping the hull potential constant. In any method, a corrosion current or an anticorrosion current flows in seawater, and UEP is generated.

下記特許文献1は、UEPの低減を目的とし、「複数の犠牲陽極のうちの少なくとも1つの犠牲陽極に対して少なくとも1つの陰極を近接して配置してなる」UEPの低減法を提案している。   The following Patent Document 1 proposes a method for reducing UEP for the purpose of reducing UEP, which is “consisting of at least one cathode disposed close to at least one sacrificial anode among a plurality of sacrificial anodes”. Yes.

特開2007−76495号公報JP 2007-76495 A

船舶から発生するUEPを低減するにあたっては、船舶付近にUEPがどのように発生しているかを把握することが重要である。しかし、目に見えないUEPを把握するのは困難である。UEPセンサによる計測は、局所的なUEPを知るには適するが、船舶付近のUEPを全体的に把握するには不向きである。そこで、本発明者は、船舶模型を用いて、その付近のUEPを全体的に把握することを目指して研究を重ねた。   In reducing UEP generated from a ship, it is important to grasp how UEP is generated near the ship. However, it is difficult to grasp the invisible UEP. The measurement by the UEP sensor is suitable for knowing the local UEP, but is not suitable for grasping the UEP near the ship as a whole. Therefore, the present inventor conducted research for the purpose of grasping the UEP in the vicinity thereof using a ship model.

本発明はこうした背景の下でなされたものであり、その目的は、船舶模型から発生するUEPを可視化することができるUEP可視化方法及び装置を提供することにある。   The present invention has been made under such a background, and an object thereof is to provide a UEP visualization method and apparatus capable of visualizing UEP generated from a ship model.

本発明の第1の態様は、UEP可視化方法である。この方法は、pH指示薬を含む液体に船舶模型を浮かべる又は潜らせることで、前記船舶模型周辺のUEPを可視化することを特徴としている。   The first aspect of the present invention is a UEP visualization method. This method is characterized in that the UEP around the ship model is visualized by floating or submerging the ship model in a liquid containing a pH indicator.

第1の態様の方法において、前記pH指示薬がBTB液であるとよい。   In the method of the first aspect, the pH indicator may be a BTB solution.

本発明の第2の態様は、UEP可視化装置である。この装置は、
pH指示薬を含む液体に浮かべた又は潜らせた船舶模型及びその周辺の画像を撮影するカメラと、
前記カメラの撮影画像における前記pH指示薬を含む液体の色の変化から、前記船舶模型周辺のUEPを推定計算するデータ処理部と、
前記データ処理部での推定計算結果を基に前記船舶模型周辺のUEPを表示する表示部とを備える。
The second aspect of the present invention is a UEP visualization device. This device
a camera that captures an image of a ship model and its surroundings floated or submerged in a liquid containing a pH indicator;
A data processing unit that estimates and calculates UEP around the ship model from a change in color of the liquid containing the pH indicator in the captured image of the camera;
A display unit that displays UEP around the ship model based on the estimation calculation result in the data processing unit.

第2の態様の装置において、前記pH指示薬がBTB液であるとよい。   In the apparatus according to the second aspect, the pH indicator may be a BTB solution.

なお、以上の構成要素の任意の組合せ、本発明の表現をシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, or a conversion of the expression of the present invention between systems or the like is also effective as an aspect of the present invention.

本発明によれば、pH指示薬を含む液体に船舶模型を浮かべる又は潜らせるという新たな技術的思想により、船舶模型から発生するUEPを可視化することが可能となる。   According to the present invention, it is possible to visualize UEP generated from a ship model by a new technical idea of floating or hiding a ship model in a liquid containing a pH indicator.

本発明の実施形態に係るUEP可視化方法の模式的説明図。The typical explanatory view of the UEP visualization method concerning the embodiment of the present invention. 本発明の実施形態に係るUEP可視化装置の構成例を示す模式図。The schematic diagram which shows the structural example of the UEP visualization apparatus which concerns on embodiment of this invention. BTB液の色とpHとの関係を示す説明図。Explanatory drawing which shows the relationship between the color of BTB liquid, and pH.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

まず、本実施の形態の前提となる関係式について説明する。下記式1は、中性溶液に存在するイオンを示す。下記式2は、アノード(陽極)21の金属の一例である亜鉛が溶けだす反応を示す。下記式3は、アノード(陽極)21付近での反応を示す。下記式4は、カソード(陰極)22の反応を示す。
(中性溶液) H2O → H++OH- …式1
(アノード) Zn → Zn2++2e- …式2
(アノード付近) Zn2++2OH- → Zn(OH)2 …式3
(カソード) (1/2)O2+H2O+2e- → 2OH- …式4
First, a relational expression that is a premise of the present embodiment will be described. Formula 1 below shows the ions present in the neutral solution. Formula 2 below shows a reaction in which zinc, which is an example of the metal of the anode (anode) 21, starts to dissolve. Equation 3 below shows the reaction near the anode (anode) 21. Equation 4 below shows the reaction of the cathode (cathode) 22.
(Neutral solution) H 2 O → H + + OH Formula 1
(Anode) Zn → Zn 2+ + 2e Formula 2
(Near the anode) Zn 2+ + 2OH → Zn (OH) 2 Formula 3
(Cathode) (1/2) O 2 + H 2 O + 2e → 2OH Formula 4

溶液に含まれる水は、式1のように電離していることが知られている。溶液中に金属が存在すると式2のような化学反応が起きるため、アノード(陽極)21が溶けだし金属イオンとなる。そして、その金属イオンが中性溶液中の水酸化物イオンと結びつき、アノード(陽極)21付近では、式3のような化学反応が起きる。その結果、アノード(陽極)21付近での水酸化イオンが減少し、水素イオン濃度が高くなるために、アノード(陽極)21付近の溶液は酸性となる。   It is known that water contained in the solution is ionized as shown in Equation 1. When a metal is present in the solution, a chemical reaction as shown in Formula 2 occurs, so that the anode (anode) 21 is melted and becomes a metal ion. Then, the metal ions are combined with the hydroxide ions in the neutral solution, and a chemical reaction as shown in Formula 3 occurs near the anode (anode) 21. As a result, the hydroxide ions in the vicinity of the anode (anode) 21 decrease and the hydrogen ion concentration increases, so that the solution in the vicinity of the anode (anode) 21 becomes acidic.

一方、カソード(陰極)22は、金属内で電子を受け取り、式4のような化学反応が起きる。その結果、水酸化物イオンが発生し、付近の溶液の水酸化物イオン濃度が高くなるために、カソード(陰極)22付近の溶液はアルカリ性となる。すなわち、水素イオン濃度が高いと酸性溶液となり、水酸化物イオン濃度が高いとアルカリ性溶液となる。pH指示薬は溶液中のpHにより色が変化するものであり、一例としてBTB液を挙げると、図3に示すように、中性で緑5、酸性で黄6、アルカリ性で青7と色が変化する。なお、pH指示薬としては、BTB液のような、酸性及びアルカリ性の双方(pH7の前後)を変色域に含むものが好ましい。   On the other hand, the cathode (cathode) 22 receives electrons in the metal, and a chemical reaction as shown in Formula 4 occurs. As a result, hydroxide ions are generated, and the concentration of hydroxide ions in the solution in the vicinity increases, so that the solution in the vicinity of the cathode (cathode) 22 becomes alkaline. That is, when the hydrogen ion concentration is high, an acidic solution is obtained, and when the hydroxide ion concentration is high, an alkaline solution is obtained. The pH indicator changes its color depending on the pH in the solution. As an example, the BTB liquid changes as shown in FIG. 3 with neutral green 5, acidic yellow 6 and alkaline blue 7. To do. In addition, as a pH indicator, what contains both acidic and alkaline (around pH7) in a color-change area | region like BTB liquid is preferable.

図1は、本発明の実施形態に係るUEP可視化方法の模式的説明図である。本実施形態では、透明な水槽13にBTB液等のpH指示薬12が満たされていて、船舶模型11をpH指示薬12に浮かべてある。なお、船舶模型11は、実物の船舶と同材質で作られている。また、船舶模型11は、pH指示薬12に潜らせてあってもよい(潜水艦の場合)。また、図中に示すアノード(陽極)21及びカソード(陰極)22は、複数点在するうちの一つであり、実際には船舶模型11のいろいろな位置にアノード(陽極)及びカソード(陰極)が存在する。図1に水中電界(UEP)の流れ20で示すように、船舶模型11のアノード(陽極)21からカソード(陰極)22に向かって水中電界が流れている。   FIG. 1 is a schematic explanatory diagram of a UEP visualization method according to an embodiment of the present invention. In the present embodiment, a transparent water tank 13 is filled with a pH indicator 12 such as a BTB solution, and the ship model 11 is floated on the pH indicator 12. The ship model 11 is made of the same material as the actual ship. Further, the ship model 11 may be submerged in the pH indicator 12 (in the case of a submarine). Also, the anode (anode) 21 and the cathode (cathode) 22 shown in the figure are one of a plurality of points. Actually, the anode (anode) and the cathode (cathode) are located at various positions on the ship model 11. Exists. As shown by the underwater electric field (UEP) flow 20 in FIG. 1, an underwater electric field flows from the anode (anode) 21 of the ship model 11 toward the cathode (cathode) 22.

その結果、アノード(陽極)21付近では、反応が進んだ指示薬(酸性)30が検出され、カソード(陰極)22付近では、反応が進んだ指示薬(アルカリ性)31が検出される。以上の結果より、水中電界(UEP)が可視化される。pHが7(中性)から離れる方向の変化が速いほど、その位置のUEPは大きいといえる。また、pHの極大点又は極小点は、アノード(陽極)又はカソード(陰極)の位置と推定することができる。   As a result, an indicator (acidic) 30 having progressed reaction is detected in the vicinity of the anode (anode) 21, and an indicator (alkaline) 31 having progressed reaction is detected in the vicinity of the cathode (cathode) 22. From the above results, the underwater electric field (UEP) is visualized. The faster the change in the direction away from pH 7 (neutral), the greater the UEP at that position. Further, the maximum or minimum point of pH can be estimated as the position of the anode (anode) or the cathode (cathode).

図2は、本発明の実施形態に係るUEP可視化装置の構成例を示す模式図である。船舶模型11から水中電界が水中電界の流れ20のように発生しているものとする。結果、水中電界の発生要因であるアノード(陽極)21及びカソード(陰極)22付近で、pH指示薬12の色が変化し始める。そして、水槽内に設置されたカメラ41(動画撮影が可能なカメラで、例えば高速度カメラ)によりリアルタイムで得られた色彩データが信号線42を介してデータ処理部40に転送される。データ処理部40では、アノード(陽極)21及びカソード(陰極)22付近のUEPが撮影画像におけるpH指示薬の経時的な色の変化から数値化される(推定計算される)。そしてUEPは表示画面43のように表示される。その結果、UEPが3次元的に可視化可能になり船舶模型11の異種金属により点在するアノード(陽極)21及びカソード(陰極)22を検出することが出来る。   FIG. 2 is a schematic diagram illustrating a configuration example of the UEP visualization apparatus according to the embodiment of the present invention. It is assumed that an underwater electric field is generated from the ship model 11 as a flow 20 of the underwater electric field. As a result, the color of the pH indicator 12 starts to change in the vicinity of the anode (anode) 21 and the cathode (cathode) 22 that are the factors that generate the underwater electric field. Then, color data obtained in real time by a camera 41 (a camera capable of moving image shooting, for example, a high-speed camera) installed in the water tank is transferred to the data processing unit 40 via the signal line 42. In the data processing unit 40, the UEP near the anode (anode) 21 and the cathode (cathode) 22 is digitized (estimated and calculated) from the color change of the pH indicator over time in the photographed image. The UEP is displayed as a display screen 43. As a result, the UEP can be visualized three-dimensionally, and the anode (anode) 21 and the cathode (cathode) 22 scattered by the dissimilar metals of the ship model 11 can be detected.

さらに、その色彩データにより得られた水中電界(UEP)データから電流源を検出(推定計算)し、アノード(陽極)21及びカソード(陰極)22から発生している電流値を求め、電気映像法等の手法を用いて水中電界を外挿し、水中電界分布を表示する。   Further, a current source is detected (estimated calculation) from the underwater electric field (UEP) data obtained from the color data, and current values generated from the anode (anode) 21 and the cathode (cathode) 22 are obtained. The underwater electric field is extrapolated using a method such as the above to display the underwater electric field distribution.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way.

11 船舶模型
12 pH指示薬
13 水槽
20 水中電界(UEP)の流れ
21 アノード(陽極)
22 カソード(陰極)
30 反応が進んだ指示薬(酸性)
31 反応が進んだ指示薬(アルカリ性)
40 データ処理部
42 信号線
43 表示画面
11 Ship Model 12 pH Indicator 13 Water Tank 20 Flow of Underwater Electric Field (UEP) 21 Anode (Anode)
22 Cathode
30 Indicator with advanced reaction (acidic)
31 Indicator with advanced reaction (alkaline)
40 Data processing unit 42 Signal line 43 Display screen

Claims (4)

pH指示薬を含む液体に船舶模型を浮かべる又は潜らせることで、前記船舶模型周辺のUEPを可視化することを特徴とする、UEP可視化方法。   A UEP visualization method characterized by visualizing UEP around the ship model by floating or submerging the ship model in a liquid containing a pH indicator. 前記pH指示薬がBTB液である請求項1記載のUEP可視化方法。   The UEP visualization method according to claim 1, wherein the pH indicator is a BTB solution. pH指示薬を含む液体に浮かべた又は潜らせた船舶模型及びその周辺の画像を撮影するカメラと、
前記カメラの撮影画像における前記pH指示薬を含む液体の色の変化から、前記船舶模型周辺のUEPを推定計算するデータ処理部と、
前記データ処理部での推定計算結果を基に前記船舶模型周辺のUEPを表示する表示部とを備える、UEP可視化装置。
a camera that captures an image of a ship model and its surroundings floated or submerged in a liquid containing a pH indicator;
A data processing unit that estimates and calculates UEP around the ship model from a change in color of the liquid containing the pH indicator in the captured image of the camera;
A UEP visualization apparatus comprising: a display unit that displays UEP around the ship model based on an estimation calculation result in the data processing unit.
前記pH指示薬がBTB液である請求項3記載のUEP可視化装置。   The UEP visualization device according to claim 3, wherein the pH indicator is a BTB solution.
JP2010189541A 2010-08-26 2010-08-26 UEP visualization method and apparatus Active JP5034056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010189541A JP5034056B2 (en) 2010-08-26 2010-08-26 UEP visualization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010189541A JP5034056B2 (en) 2010-08-26 2010-08-26 UEP visualization method and apparatus

Publications (2)

Publication Number Publication Date
JP2012046060A JP2012046060A (en) 2012-03-08
JP5034056B2 true JP5034056B2 (en) 2012-09-26

Family

ID=45901451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010189541A Active JP5034056B2 (en) 2010-08-26 2010-08-26 UEP visualization method and apparatus

Country Status (1)

Country Link
JP (1) JP5034056B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123101A (en) * 2003-10-20 2005-05-12 Toyota Motor Corp Gas flow measurement method and device in fuel cell
JP4626458B2 (en) * 2005-09-14 2011-02-09 株式会社島津製作所 Reduction method of underwater electric field in ship protection.

Also Published As

Publication number Publication date
JP2012046060A (en) 2012-03-08

Similar Documents

Publication Publication Date Title
TWI778111B (en) Supporting system for offshore wind turbine and protectin method thereof and catholic protection system and use thereof for protecting the supporting system
Shi et al. Simulating corrosion of Al2CuMg phase by measuring ionic currents, chloride concentration and pH
Syrek-Gerstenkorn et al. Sacrificial thermally sprayed aluminium coatings for marine environments: A review
Hartt 2012 Frank Newman Speller Award: Cathodic Protection of Offshore Structures—History and Current Status
US20150198518A1 (en) Cathodic protection reference cell article and method
Hasan Galvanic corrosion of carbon steel–brass couple in chloride containing water and the effect of different parameters
Coelho et al. The corrosion inhibition mechanisms of Ce (III) ions and triethanolamine on graphite—AA2024-T3 galvanic couples revealed by localised electrochemical techniques
JP2016099280A (en) Abnormality detection method for water bottom cable, water bottom cable and abnormality detection device for water bottom cable
US9790601B2 (en) Marine cathodic protection system
JP2007132010A (en) Corrosion detection method of inside of coating corrosion-protective body
US20160326657A1 (en) Corrosion protection system and pump device with the same
Hong et al. Optimization of the cathodic protection design in consideration of the temperature variation for offshore structures
JP5034056B2 (en) UEP visualization method and apparatus
JP5162759B2 (en) Ship UEP reduction method and apparatus
Knudsen et al. Corrosion of Cathodically Polarized Thermally Sprayed Aluminum in Subsea Mud at High Temperature
JP5217001B2 (en) Hull UEP reduction method and apparatus
JP7299467B2 (en) hydrogen generator
JPH10237682A (en) System for controlling underwater current of ship
JP2006029065A (en) Oceanic steel structure
Rhee et al. Electrochemical evaluation of corrosion properties of aluminum alloy as a sacrificial anode for offshore structure protection
JP5802988B2 (en) Hull magnetism estimation apparatus and method
WO2015108525A1 (en) Cathodic protection reference cell article and method
Mrdović et al. Applications Impressed Current Cathodic Protection of the Ship Hull
Hack Designing cathodic protection systems for marine structures and vehicles
CN104532259A (en) Compound electrochemical device for condenser cathode protection

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350