JP5052776B2 - Stop storage start method and stop storage start program of fuel cell system - Google Patents

Stop storage start method and stop storage start program of fuel cell system Download PDF

Info

Publication number
JP5052776B2
JP5052776B2 JP2005303980A JP2005303980A JP5052776B2 JP 5052776 B2 JP5052776 B2 JP 5052776B2 JP 2005303980 A JP2005303980 A JP 2005303980A JP 2005303980 A JP2005303980 A JP 2005303980A JP 5052776 B2 JP5052776 B2 JP 5052776B2
Authority
JP
Japan
Prior art keywords
fuel
gas
fuel cell
electrode
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005303980A
Other languages
Japanese (ja)
Other versions
JP2006147550A (en
Inventor
昭雄 狩野
洋史 仲
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2005303980A priority Critical patent/JP5052776B2/en
Publication of JP2006147550A publication Critical patent/JP2006147550A/en
Application granted granted Critical
Publication of JP5052776B2 publication Critical patent/JP5052776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、酸化剤ガスと燃料ガスを導入して化学反応により発電を行う燃料電池システムとその停止、保管、起動を行うための技術に関するものである。   The present invention relates to a fuel cell system that introduces an oxidant gas and a fuel gas to generate power by a chemical reaction and a technique for stopping, storing, and starting the fuel cell system.

燃料電池は、水素等の燃料と空気等の酸化剤を燃料電池本体に供給して、電気化学的に反応させることにより、燃料の持つ化学エネルギーを電気エネルギーに直接変換して外部へ取り出す発電装置である。この燃料電池は、比較的小型であるにもかかわらず高効率で、環境性に優れていることから、工場や病院などの業務用、一般家庭用、自動車用など、幅広い用途への採用が期待されている。   A fuel cell supplies a fuel such as hydrogen and an oxidant such as air to the fuel cell body and causes it to react electrochemically, thereby converting the chemical energy of the fuel directly into electrical energy and taking it out. It is. This fuel cell is highly efficient and environmentally friendly despite its relatively small size, so it is expected to be used in a wide range of applications such as industrial use in factories and hospitals, general households, and automobiles. Has been.

このような燃料電池において、その電気化学反応に用いられる燃料ガスの供給方法としては、水素ボンベあるいは水素吸蔵合金などから水素ガスを供給する場合と、炭化水素系の原燃料を触媒反応によって改質したガスを供給する場合がある。また、酸化剤ガスの供給方法としては、酸素ボンベから酸素ガスを供給する場合と、空気をブロワあるいはコンプレッサなどの手段を用いて供給する場合がある。   In such a fuel cell, the fuel gas used for the electrochemical reaction can be supplied by supplying hydrogen gas from a hydrogen cylinder or a hydrogen storage alloy, or by reforming a hydrocarbon-based raw fuel by catalytic reaction. Gas may be supplied. As a method for supplying the oxidant gas, there are a case where oxygen gas is supplied from an oxygen cylinder and a case where air is supplied using means such as a blower or a compressor.

一方、燃料電池の運転が停止している時は、窒素などの不活性ガスを封入して保管している。しかし、このように不活性ガスを封入しても、外気である空気が燃料電池のガス流路に浸入し、ある程度の酸素が燃料極および酸化剤極の両極に含まれた状態になっている。例えば、特許文献1においては、このように酸素が燃料極と酸化剤極の両極に含まれた状態で燃料極に水素を含んだ燃料ガスを導入すると、部分電池による腐食反応が起き、電池電圧が低下するという課題が指摘されている。   On the other hand, when the operation of the fuel cell is stopped, an inert gas such as nitrogen is enclosed and stored. However, even when the inert gas is sealed in this way, the air as the outside air enters the gas flow path of the fuel cell, and a certain amount of oxygen is contained in both the fuel electrode and the oxidant electrode. . For example, in Patent Document 1, when a fuel gas containing hydrogen is introduced into the fuel electrode in a state where oxygen is contained in both the fuel electrode and the oxidant electrode in this way, a corrosion reaction due to the partial cell occurs, and the cell voltage Has been pointed out.

ここで、図11を参照して部分電池による腐食反応について説明する。この図11は、起動時における電池面内での電流の流れを示す図であり、21は燃料極、22は酸化剤極、23はこれら燃料極21および酸化剤極22間に存する電解質、24は燃料ガス流路、25は酸化剤ガス流路である。   Here, the corrosion reaction by the partial battery will be described with reference to FIG. FIG. 11 is a diagram showing the flow of current in the cell surface at the time of startup, in which 21 is a fuel electrode, 22 is an oxidant electrode, 23 is an electrolyte existing between the fuel electrode 21 and the oxidant electrode 22, and 24. Is a fuel gas flow path, and 25 is an oxidant gas flow path.

燃料極21と酸化剤極22の両極が酸素を含む雰囲気である状態において、水素を含んだ燃料ガスが燃料ガス流路24に導入されると、燃料入口付近は水素が存在するため水素電位(0V)であり、燃料出口付近は水素が到達しないため空気電位のままであり、燃料極21面内には、燃料出口から燃料入口に向かって電位勾配が生じる。   In a state where both the fuel electrode 21 and the oxidant electrode 22 are in an atmosphere containing oxygen, when a fuel gas containing hydrogen is introduced into the fuel gas passage 24, hydrogen exists in the vicinity of the fuel inlet, so that the hydrogen potential ( 0V), and the hydrogen potential does not reach the vicinity of the fuel outlet, so the air potential remains unchanged. In the surface of the fuel electrode 21, a potential gradient is generated from the fuel outlet toward the fuel inlet.

この電位勾配に従って電流が燃料極21面内に流れると、それを打ち消すように酸化剤極22面内には逆方向の電流が流れる。この場合、燃料入口部では、水素が次の(1)式のようにプロトンに分解されて、燃料極21から酸化剤極22への電流を担う。
2→2H++2e- …(1)
When current flows in the surface of the fuel electrode 21 according to this potential gradient, a current in the reverse direction flows in the surface of the oxidant electrode 22 so as to cancel it. In this case, at the fuel inlet, hydrogen is decomposed into protons as in the following formula (1), and carries a current from the fuel electrode 21 to the oxidant electrode 22.
H 2 → 2H + + 2e (1)

また、燃料出口部では、電流の担い手であるプロトンは、次の(2)式の反応に従って炭素から生成される。この反応により触媒の担持カーボンが消失し、電池性能を低下させる。
C+2H2O→CO2+4H++4e- …(2)
At the fuel outlet, protons, which are current carriers, are generated from carbon according to the reaction of the following equation (2). By this reaction, the carbon supported on the catalyst disappears, and the battery performance is lowered.
C + 2H 2 O → CO 2 + 4H + + 4e (2)

このため、一般的には、起動時にまず窒素などの不活性ガスを導入して両極の酸素を取り除く、所謂不活性ガスパージを行った後、起動を行っている。   For this reason, generally, at the time of start-up, first, an inert gas such as nitrogen is introduced to remove oxygen from both electrodes, so-called inert gas purge is performed, and then start-up is performed.

上述した燃料電池の起動方法においては、パージ用不活性ガスとして一般に窒素ガスをボンベから供給しているため、ボンベ交換の手間とランニングコストがかかるという課題があった。特に、一般家庭において使用する場合には、窒素ボンベの交換は避けたいという要求がある。また、自動車用においては、起動時にパージするために、起動時間が長くなるという課題もある。   In the above-described fuel cell starting method, nitrogen gas is generally supplied from the cylinder as an inert gas for purge, and thus there is a problem that it takes labor and cost for replacing the cylinder. In particular, when used in a general household, there is a demand to avoid replacing the nitrogen cylinder. Moreover, in the case of automobiles, there is a problem that the startup time becomes long because of purging at startup.

また、このような部分電池反応を抑制する手段として、前述したように窒素ガスなどで燃料極をパージすることによって燃料極の酸素を除去する方法があるが、たとえ窒素ガスでパージしたとしても、燃料極の触媒層に吸着した酸素を完全に除去することはできないため、部分電池反応が生じて燃料電池の性能が低下する問題がある。   Further, as a means for suppressing such partial cell reaction, there is a method of removing oxygen in the fuel electrode by purging the fuel electrode with nitrogen gas or the like as described above, but even if purged with nitrogen gas, Since oxygen adsorbed on the catalyst layer of the fuel electrode cannot be completely removed, there is a problem that the partial cell reaction occurs and the performance of the fuel cell is lowered.

従来、起動停止による電池の劣化を防止する方法としては、特許文献2〜4に示すような方法が提案されている。   Conventionally, methods as shown in Patent Documents 2 to 4 have been proposed as methods for preventing deterioration of a battery due to start and stop.

特許文献2においては、電池本体の燃料ガス流路または酸化剤ガス流路に水を封入した状態もしくは加湿された不活性ガスを封入した状態で運転を停止し、保管することを特徴とする固体高分子電解質燃料電池の停止保管方法が記載されている。   In Patent Document 2, the operation is stopped and stored in a state where water is sealed in a fuel gas channel or an oxidant gas channel of a battery body or a humidified inert gas is sealed. A method for stopping and storing a polymer electrolyte fuel cell is described.

特許文献3においては、燃料極に燃料を供給し酸化剤極に空気の供給を停止した状態で抵抗負荷により酸化剤極の酸素を消費した後に、酸化剤極を密閉し酸化剤極の電位を低く保持することで触媒層のカーボンの腐食や触媒の凝集を防止する方法が記載されている。   In Patent Document 3, after the fuel is supplied to the fuel electrode and the supply of air to the oxidant electrode is stopped, the oxygen of the oxidant electrode is consumed by the resistance load, and then the oxidant electrode is sealed and the potential of the oxidant electrode is set. A method for preventing carbon corrosion and catalyst aggregation in the catalyst layer by keeping it low is described.

特許文献4においては、燃料極および酸化剤極の上流と下流に開閉手段を備えることにより、停止時に電池内部へのガスの混入を防止する方法が記載されている。
米国特許第6514635号公報 特許第3297125号 特開平6−333586号公報 特開2002−93448公報
Patent Document 4 describes a method for preventing gas from being mixed into the battery at the time of stoppage by providing opening / closing means upstream and downstream of the fuel electrode and the oxidant electrode.
US Pat. No. 6,514,635 Patent No. 3297125 JP-A-6-333586 JP 2002-93448 A

しかしながら、上述したような従来の燃料電池システムの停止保管起動方法には、次のような問題がある。   However, the conventional method for stopping and storing the fuel cell system as described above has the following problems.

特許文献2の停止保管方法は、固体高分子膜の乾燥防止を念頭に置いており、触媒層に吸着した酸素を除去することが不可能であり、その結果、部分電池反応を防止することができないため、電池性能が劣化してしまう問題がある。   The stopped storage method of Patent Document 2 is intended for prevention of drying of the solid polymer membrane, and it is impossible to remove oxygen adsorbed on the catalyst layer. As a result, the partial cell reaction can be prevented. Since this is not possible, there is a problem that the battery performance deteriorates.

特許文献3の停止方法は、燃料極のみを不活性ガスでパージするため、不活性ガスの消
費量を低減することはできるが、依然として不活性ガスは必要であり不活性ガスボンベ自体を省くことができない。
Since the stopping method of Patent Document 3 purges only the fuel electrode with an inert gas, the consumption of the inert gas can be reduced. However, the inert gas is still necessary and the inert gas cylinder itself can be omitted. Can not.

特許文献4の方法は、酸化剤極のパージを必要とすることから、外部電源やパージガス用配管が必要なため、コスト増の要因となり、またプラントの小型化も困難となる。   Since the method of Patent Document 4 requires purging of the oxidant electrode, an external power source and a purge gas pipe are required, which causes an increase in cost and makes it difficult to reduce the size of the plant.

本発明は、上述した従来技術の課題を解決するためになされたものであり、その目的は、不活性ガスパージや特別な装置の追加を行う必要なしに、燃料電池システムの停止・保管・起動に伴う燃料電池性能の低下を抑制可能な燃料電池システムとその停止保管起動方法、停止保管起動プログラムを提供することである。   The present invention has been made to solve the above-described problems of the prior art, and its purpose is to stop, store, and start a fuel cell system without the need for inert gas purging or addition of a special device. It is to provide a fuel cell system capable of suppressing the accompanying degradation of fuel cell performance, its stop storage start method, and stop storage start program.

本発明は、上記のような目的を達成するために、燃料電池システムの停止過程と起動過程における燃料ガスと酸化剤ガスの停止・供給操作と、燃料電池本体の上下流に設けた燃料ガス封入手段と酸化剤ガス封入手段の開閉操作の操作手順を限定することにより、燃料極に水素が局所的に欠乏し、かつ、酸化剤極に酸素が存在する状態を回避できるようにしたものである。   In order to achieve the above object, the present invention provides a fuel gas and oxidant gas stopping / supplying operation in the stopping process and starting process of the fuel cell system, and fuel gas sealing provided upstream and downstream of the fuel cell main body. By limiting the operation procedure of the opening and closing operation of the means and the oxidant gas sealing means, it is possible to avoid a state where hydrogen is locally depleted in the fuel electrode and oxygen is present in the oxidant electrode. .

本発明の停止保管起動方法は、燃料極、酸化剤極、燃料ガス流路、および酸化剤ガス流路を有する燃料電池本体と、この燃料電池本体に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体に酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池本体の燃料ガス系統の上下流を開閉して燃料ガスを燃料電池本体に封入する燃料ガス封入手段と、前記燃料電池本体の酸化剤ガス系統の上下流を開閉して酸化剤ガスを燃料電池本体に封入する酸化剤ガス封入手段を備えた燃料電池システムの停止、保管、起動を行う方法であって、次のような特徴を有するものである。   A stop storage activation method of the present invention includes a fuel cell main body having a fuel electrode, an oxidant electrode, a fuel gas flow channel, and an oxidant gas flow channel, and a fuel gas supply means for supplying fuel gas to the fuel cell main body, An oxidant gas supply means for supplying an oxidant gas to the fuel cell main body; a fuel gas sealing means for opening and closing the upstream and downstream sides of the fuel gas system of the fuel cell main body to enclose the fuel gas in the fuel cell main body; and the fuel A method for stopping, storing, and starting a fuel cell system including an oxidant gas sealing means for sealing an oxidant gas in a fuel cell body by opening and closing upstream and downstream of the oxidant gas system of the battery body. It has the following characteristics.

すなわち、停止過程において、前記燃料ガス供給手段と前記酸化剤ガス供給手段による燃料ガスと酸化剤ガスの供給を停止した状態で前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉じる。また、保管時において、前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉状態に保つ。そして、起動過程において、前記燃料ガス封入手段を開き、前記燃料ガス供給手段による前記燃料電池本体に対する燃料ガスの供給を開始した後に、前記酸化剤ガス封入手段を開き、前記酸化剤ガス供給手段による燃料電池本体に対する酸化剤ガスの供給を開始する。   That is, in the stopping process, the fuel gas sealing means and the oxidant gas sealing means are closed in a state where supply of the fuel gas and the oxidant gas by the fuel gas supply means and the oxidant gas supply means is stopped. Further, during storage, the fuel gas sealing means and the oxidant gas sealing means are kept closed. In the starting process, the fuel gas sealing means is opened, and after the fuel gas supply means starts supplying fuel gas to the fuel cell main body, the oxidant gas sealing means is opened and the oxidant gas supply means Supply of oxidant gas to the fuel cell body is started.

このような操作手順により、停止時においては、燃料ガスと酸化剤ガスの供給を停止した状態で燃料ガス封入手段と酸化剤ガス封入手段を閉じることにより、燃料極の水素と酸化剤極の酸素が高分子膜を介して移動して反応した後に、燃料極に水素を残存させることができる。また、保管時においては、燃料ガス封入手段と酸化剤ガス封入手段を閉状態に保つことにより、燃料極に水素を残存させた状態を保つことができる。そして、起動時においては、燃料ガス封入手段を開いて燃料ガスの供給を開始した後に、酸化剤ガス封入手段を開いて酸化剤ガスの供給を開始することにより、燃料極に水素が確実に存在する状態で酸化剤ガスの供給を開始することができる。   According to such an operation procedure, when the fuel gas and the oxidant gas are stopped, the fuel gas sealing means and the oxidant gas sealing means are closed while the supply of the fuel gas and the oxidant gas is stopped. After moving through the polymer membrane and reacting, hydrogen can remain in the fuel electrode. Further, at the time of storage, the state in which hydrogen remains in the fuel electrode can be maintained by keeping the fuel gas sealing means and the oxidant gas sealing means closed. At the time of start-up, after the fuel gas sealing means is opened and the supply of fuel gas is started, the oxidant gas sealing means is opened and the supply of the oxidant gas is started, so that hydrogen is surely present in the fuel electrode. In this state, the supply of the oxidant gas can be started.

したがって、停止・保管・起動のいずれの操作時においても、燃料極に水素が局所的に欠乏し、かつ、酸化剤極に酸素が存在するという不都合な状態を確実に回避することができる。   Therefore, it is possible to reliably avoid an inconvenient state in which hydrogen is locally depleted in the fuel electrode and oxygen is present in the oxidant electrode in any of the operations of stopping, storing, and starting.

以上のように、本発明によれば、燃料電池システムの停止過程と起動過程における燃料ガスと酸化剤ガスの停止・供給操作と、燃料電池本体の上下流に設けた燃料ガス封入手段と酸化剤ガス封入手段の開閉操作の操作手順を限定することにより、不活性ガスパージや特別な装置の追加を行う必要なしに、燃料電池システムの停止・保管・起動に伴う燃料電池性能の低下を抑制可能な燃料電池システムとその停止保管起動方法、停止保管起動プログラムを提供することができる。   As described above, according to the present invention, the stop and supply operation of the fuel gas and the oxidant gas in the stop process and the start process of the fuel cell system, the fuel gas sealing means provided on the upstream and downstream of the fuel cell body, and the oxidant By limiting the operation procedure for opening and closing the gas sealing means, it is possible to suppress the deterioration of the fuel cell performance due to the stop, storage and start-up of the fuel cell system without the need for inert gas purging or the addition of special equipment. A fuel cell system, its stop storage start method, and stop storage start program can be provided.

以下には、本発明を適用した実施形態について、図面を参照して具体的に説明する。   Embodiments to which the present invention is applied will be specifically described below with reference to the drawings.

[第1の実施形態]
[構成]
図1は、本発明を適用した第1の実施形態における燃料電池システムの構成を示すブロック図である。
[First Embodiment]
[Constitution]
FIG. 1 is a block diagram showing a configuration of a fuel cell system according to a first embodiment to which the present invention is applied.

この図1に示すように、第1の実施形態の燃料電池システムは、燃料電池本体1を備えており、燃料電池本体1は、燃料極2、酸化剤極3、電池冷却部4を備えている。燃料ガスは、燃料ガス供給手段5から燃料電池本体1の燃料極2へ供給され、酸化剤ガスは、酸化剤ガス供給手段6から燃料電池本体1の酸化剤極3へ供給され、冷却水は冷却水ポンプ7によって電池冷却部へ供給される。   As shown in FIG. 1, the fuel cell system of the first embodiment includes a fuel cell main body 1, and the fuel cell main body 1 includes a fuel electrode 2, an oxidant electrode 3, and a battery cooling unit 4. Yes. The fuel gas is supplied from the fuel gas supply means 5 to the fuel electrode 2 of the fuel cell main body 1, the oxidant gas is supplied from the oxidant gas supply means 6 to the oxidant electrode 3 of the fuel cell main body 1, and the cooling water is supplied. The cooling water pump 7 supplies the battery cooling unit.

本発明に従い、燃料ガス供給手段5と燃料極2の間に燃料ガス上流封入手段8が、また、燃料極2の下流に燃料ガス下流封入手段9が、それぞれ設置されている。これらの燃料ガス上流封入手段8と燃料ガス下流封入手段9は、燃料電池本体1の燃料ガス系統の上下流を開閉して燃料ガスを燃料電池本体1に封入する。   According to the present invention, the fuel gas upstream sealing means 8 is installed between the fuel gas supply means 5 and the fuel electrode 2, and the fuel gas downstream sealing means 9 is installed downstream of the fuel electrode 2. These fuel gas upstream sealing means 8 and fuel gas downstream sealing means 9 open and close the upstream and downstream sides of the fuel gas system of the fuel cell body 1 to seal the fuel gas in the fuel cell body 1.

同様に、酸化剤ガス供給手段6と酸化剤極3の間に酸化剤ガス上流封入手段10が、また、酸化剤極3の下流に酸化剤ガス下流封入手段11が、それぞれ設置されている。これらの酸化剤ガス上流封入手段10と酸化剤ガス下流封入手段11は、燃料電池本体1の酸化剤ガス系統の上下流を開閉して酸化剤ガスを燃料電池本体1に封入する。   Similarly, an oxidizing gas upstream sealing means 10 is installed between the oxidizing gas supply means 6 and the oxidizing agent electrode 3, and an oxidizing gas downstream sealing means 11 is installed downstream of the oxidizing agent electrode 3. These oxidant gas upstream sealing means 10 and oxidant gas downstream sealing means 11 open and close the upstream and downstream of the oxidant gas system of the fuel cell body 1 to seal the oxidant gas in the fuel cell body 1.

なお、燃料ガス上流封入手段8、燃料ガス下流封入手段9、酸化剤ガス上流封入手段10、および酸化剤ガス下流封入手段11は、プラント制御部12によって制御される。   In addition, the fuel gas upstream sealing means 8, the fuel gas downstream sealing means 9, the oxidant gas upstream sealing means 10, and the oxidant gas downstream sealing means 11 are controlled by the plant control unit 12.

[作用]
図2は、本実施形態の燃料電池システムによる停止保管起動手順を示すフローチャートである。
[Action]
FIG. 2 is a flowchart showing a stop storage start procedure by the fuel cell system of the present embodiment.

この図2に示すように、発電状態から発電停止指令が発せられると(S110のYES)、プラント制御部12は、停止手順として、燃料ガス供給手段5と酸化剤ガス供給手段6による燃料ガスと酸化剤ガスの供給を停止し(S111)、燃料ガス上流封入手段8、燃料ガス下流封入手段9、酸化剤ガス上流封入手段10、および酸化剤ガス下流封入手段11を閉じる(S112)。これにより、燃料ガスと酸化剤ガスが燃料電池本体1に封入される。停止から起動までの保管中は、4つの封入手段8〜11は閉状態のままである。   As shown in FIG. 2, when a power generation stop command is issued from the power generation state (YES in S110), the plant control unit 12 uses the fuel gas supplied by the fuel gas supply means 5 and the oxidant gas supply means 6 as the stop procedure. The supply of the oxidant gas is stopped (S111), and the fuel gas upstream sealing means 8, the fuel gas downstream sealing means 9, the oxidant gas upstream sealing means 10, and the oxidant gas downstream sealing means 11 are closed (S112). As a result, the fuel gas and the oxidant gas are sealed in the fuel cell main body 1. During the storage from the stop to the start, the four enclosing means 8 to 11 remain closed.

このような停止時から保管時における燃料ガスと酸化剤ガスの封入状態において、燃料極2中の一部の水素は、電解質を介して酸化剤極3へ透過し、逆に、酸化剤極3中の一部の酸素は、電解質を介して燃料極2に透過し、水素と酸素が触媒上で水を生成する反応が起きる。原燃料から水素を取り出す改質器を備えたプラントにおいて、水蒸気改質方式の場合、燃料ガス中の水素濃度は約80%となる。一方、酸化剤ガスとしては一般的に空気を使用するので、酸化剤ガス中の酸素濃度は約21%である。   In such an encapsulated state of the fuel gas and the oxidant gas from the stop time to the storage time, a part of hydrogen in the fuel electrode 2 permeates to the oxidant electrode 3 through the electrolyte, and conversely, the oxidant electrode 3 Part of the oxygen passes through the electrolyte to the fuel electrode 2 and a reaction occurs in which hydrogen and oxygen generate water on the catalyst. In a plant equipped with a reformer that extracts hydrogen from raw fuel, the hydrogen concentration in the fuel gas is about 80% in the case of the steam reforming method. On the other hand, since air is generally used as the oxidant gas, the oxygen concentration in the oxidant gas is about 21%.

燃料ガス上流封入手段8と燃料ガス下流封入手段9の間の空隙容積は、燃料極ガス流路、燃料極マニホールド、燃料極配管の容積の和で表されるが、ここでは、V-fuelと定義する。同様に酸化剤ガス上流封入手段8と酸化剤ガス下流封入手段9の間の空隙容積は酸化剤極ガス流路、酸化剤極マニホールド、酸化剤極配管の容積の和で表されるが、ここでは、V-airと定義する。 Void volume between the fuel gas upstream sealed unit 8 and the fuel gas downstream enclosing means 9, the fuel electrode gas channel, the fuel electrode manifold, is represented by the sum of the volume of the fuel electrode pipe, where a V -Fuel Define. Similarly, the gap volume between the oxidant gas upstream sealing means 8 and the oxidant gas downstream sealing means 9 is represented by the sum of the volumes of the oxidant electrode gas flow path, the oxidant electrode manifold, and the oxidant electrode pipe. Then, it defines as V- air .

この場合に、発電停止直後の燃料極空隙容積中の水素量はV-fuel×0.8(=水素濃度)、酸化剤極空隙容積中の酸素量はV-air×0.21(=酸素濃度)となる。水素2モルに対し酸素1モルが反応するため、理論的には下式(3)の条件で燃料極の水素と酸化剤極の酸素が高分子膜を介して移動して反応した後、燃料極に水素が残存することになる。
-fuel×0.8>2×V-air×0.21 …(3)
(→V-fuel>2×V-air×0.21/0.8)
In this case, the amount of hydrogen in the fuel electrode gap volume immediately after the stop of power generation is V −fuel × 0.8 (= hydrogen concentration), and the amount of oxygen in the oxidizer electrode gap volume is V −air × 0.21 (= oxygen). Density). Since 1 mol of oxygen reacts with 2 mol of hydrogen, theoretically, after the hydrogen of the fuel electrode and oxygen of the oxidant electrode move and react through the polymer film under the condition of the following formula (3), the fuel Hydrogen will remain at the pole.
V- fuel × 0.8> 2 × V- air × 0.21 (3)
(→ V- fuel > 2 × V- air × 0.21 / 0.8)

実際には、大気中からのバルブや配管の微小リークインやセル積層シールからのリークインがあるため、水素を燃料極に十分かつ長期間残存させるという観点からは、燃料極空隙容積V-fuelは、酸化剤極空隙容積に対して極力大きくすることが望ましい。またこの場合、燃料極への酸素リークインを抑制するだけでなく、酸化剤極への酸素リークインも同時に抑制することにより、燃料極における水素残存効果を持続させることができる。 In practice, because of the leak from the very small leak and the cell stack seals the valve and piping from the atmosphere, from the standpoint of sufficient and long-term residual hydrogen to the fuel electrode, the fuel electrode void volume V -Fuel is It is desirable to make it as large as possible with respect to the oxidant electrode void volume. Further, in this case, not only the oxygen leak-in to the fuel electrode but also the oxygen leak-in to the oxidant electrode can be suppressed at the same time, so that the hydrogen remaining effect at the fuel electrode can be maintained.

次いで、起動手順について説明する。保管状態から起動指令が発せられると(S120のYES)、プラント制御部12は、起動手順としてまず、燃料ガス上流封入手段8と燃料ガス下流封入手段9を開き、燃料ガス供給手段5による燃料ガスの供給を開始する(S121)。その後、酸化剤ガス上流封入手段10と酸化剤ガス下流封入手段11を開き、酸化剤ガス供給手段6による酸化剤ガスの供給を開始することにより(S122)、燃料電池本体1は、発電開始状態となる(S123)。なお、電池冷却水については、起動指令から発電開始の任意の間に供給を開始すればよい。   Next, the startup procedure will be described. When a startup command is issued from the storage state (YES in S120), the plant control unit 12 first opens the fuel gas upstream sealing means 8 and the fuel gas downstream sealing means 9 as a startup procedure, and the fuel gas supplied by the fuel gas supply means 5 Is started (S121). Thereafter, the oxidant gas upstream sealing means 10 and the oxidant gas downstream sealing means 11 are opened, and supply of the oxidant gas by the oxidant gas supply means 6 is started (S122), whereby the fuel cell main body 1 is in a power generation start state. (S123). In addition, about battery cooling water, what is necessary is just to start supply in the arbitrary times of an electric power generation start from a starting instruction | command.

このような一連の停止保管起動手順を実施することにより、停止・保管・起動のいずれの操作においても、「燃料極に水素が局所的に欠乏し、かつ酸化剤極に酸素が存在する」不都合な状態を確実に回避することが可能となる。   By carrying out such a series of stop storage start procedures, in any operation of stop, storage and start, there is a problem that “hydrogen is locally depleted in the fuel electrode and oxygen is present in the oxidizer electrode”. It is possible to avoid such a state reliably.

[効果]
以上のように、本実施形態によれば、燃料電池システムの停止過程と起動過程における燃料ガスと酸化剤ガスの停止・供給操作と、燃料電池本体の上下流に設けた燃料ガス封入手段と酸化剤ガス封入手段の開閉操作の操作手順を限定することにより、不活性ガスパージや特別な装置の追加を行う必要なしに、燃料電池システムの停止・保管・起動に伴う燃料電池性能の低下を抑制することができる。
[effect]
As described above, according to the present embodiment, the stop and supply operation of the fuel gas and the oxidant gas in the stop process and start-up process of the fuel cell system, the fuel gas sealing means provided in the upstream and downstream of the fuel cell body, and the oxidation By limiting the operation procedure of the opening and closing operation of the agent gas sealing means, it is possible to suppress the deterioration of the fuel cell performance due to the stop, storage and start-up of the fuel cell system without the need for inert gas purge or the addition of special equipment be able to.

図3は、以上のような本発明の方法による停止保管起動手順と比較例の方法による停止保管起動手順における起動停止回数と電圧の関係を示すグラフである。この図3に示すように、通常のN2パージなしの停止保管起動手順の場合、約20回の起動停止で運転に必要な最低電圧を下回る。また、N2パージがあっても約500回の起動停止によって運転に必要な最低電圧を下回る。したがって、週に1回程度以上の間隔で起動停止を行う場合は、N2パージを実施すれば、運転に必要な最低電圧を10年程度は維持できるため、約500回の起動停止起動停止による電圧低下量は問題になるレベルではない。 FIG. 3 is a graph showing the relationship between the number of start / stop operations and the voltage in the stop storage start procedure according to the method of the present invention and the stop storage start procedure according to the method of the comparative example. As shown in FIG. 3, in the case of the stop storage start procedure without a normal N 2 purge, the voltage is lower than the minimum voltage required for operation after about 20 start / stop operations. Further, even if there is N 2 purge, the voltage is lower than the minimum voltage required for operation by starting and stopping about 500 times. Therefore, when starting and stopping at intervals of about once a week or more, if the N 2 purge is performed, the minimum voltage required for operation can be maintained for about 10 years. The amount of voltage drop is not a problem level.

しかし、家庭向けの燃料電池プラントで通常想定される使い方としては、夜間や外出時に発電を停止するのが普通であるため、1日に1回ないしは2回の起動停止を実施するとになる。この場合、たとえ、N2パージを使用した停止保管起動手順を採用しても、1年ないしは2年で電池の電圧が低下し、運転ができなくなる。これに対して、本発明による停止保管起動手順法を実施した場合、起動停止回数500回でもほとんど電圧低下がなく、起動停止による電池電圧低下を抑制する効果は大きい。 However, as a usage that is normally assumed in a household fuel cell plant, it is usual to stop power generation at night or when going out, so that it is necessary to start or stop once or twice a day. In this case, even if a suspended storage activation procedure using N 2 purge is adopted, the battery voltage drops in one or two years, and operation becomes impossible. On the other hand, when the suspended storage activation procedure method according to the present invention is implemented, there is almost no voltage decrease even when the number of activation / deactivation is 500 times, and the effect of suppressing the battery voltage decrease due to activation / deactivation is great.

[多孔質材セパレータを使用した場合の効果]
また、図12は燃料電池セパレータに多孔質材料を使用した場合の燃料電池の構成例を示している。この図12においては、電極31の両側に燃料ガス流路と酸化剤流路をそれぞれ構成するセパレータおよび冷却剤流路を構成するセパレータとして、いずれも、多孔質材料からなる多孔質材セパレータ、すなわち、燃料ガス流路多孔質材セパレータ32、酸化剤ガス流路多孔質材セパレータ33、および冷却剤流路多孔質材セパレータ34が用いられている。なお、電極31は、燃料極と酸化剤極を組み込んだ電極複合体である。
[Effect of using porous material separator]
FIG. 12 shows a configuration example of the fuel cell when a porous material is used for the fuel cell separator. In FIG. 12, as separators constituting the fuel gas flow path and the oxidant flow path on both sides of the electrode 31 and the separator constituting the coolant flow path, both are porous material separators made of a porous material, that is, A fuel gas channel porous material separator 32, an oxidant gas channel porous material separator 33, and a coolant channel porous material separator 34 are used. The electrode 31 is an electrode complex in which a fuel electrode and an oxidant electrode are incorporated.

固体高分子型燃料電池の場合、多孔質材セパレータは通常の発電時に導入したガスを加湿する機能と、電池反応で生成した余剰水を電極より除去する機能という2つの機能を有している。これらの機能により、多孔質材セパレータ32〜34を用いた燃料電池においては、高分子膜への加湿が不要となり、かつ反応生成水によるフラッディングを防止することが可能となる。また、多孔質材セパレータを適用したダイレクトメタノール型燃料電池においては、多孔質材セパレータを介してメタノールを電極へ供給することができる。   In the case of a polymer electrolyte fuel cell, the porous material separator has two functions: a function of humidifying a gas introduced during normal power generation and a function of removing excess water generated by the cell reaction from the electrode. With these functions, in the fuel cell using the porous material separators 32 to 34, it is not necessary to humidify the polymer membrane, and flooding due to reaction product water can be prevented. Moreover, in the direct methanol fuel cell to which the porous material separator is applied, methanol can be supplied to the electrode through the porous material separator.

このような多孔質材セパレータ32〜34を組み込んだ燃料電池において、第1の実施形態の停止保管起動手順を適用した場合の効果を説明する。まず、多孔質材セパレータ32〜34を使用しない場合は、停止保管時に燃料極と酸化剤極のガスが消費され、温度も低下するため、燃料極と酸化剤極ともに圧力が低下し、負圧になり、外部から微量の空気がリークインしてくるため、燃料電池内の水素が消費され、本発明の目的である燃料極の水素残存効果がわずかではあるが小さくなる。   In the fuel cell in which such porous material separators 32 to 34 are incorporated, an effect in the case where the stop storage start procedure of the first embodiment is applied will be described. First, when the porous material separators 32 to 34 are not used, the gas of the fuel electrode and the oxidant electrode is consumed at the time of stop storage, and the temperature also decreases. Thus, since a very small amount of air leaks in from the outside, hydrogen in the fuel cell is consumed, and the effect of remaining hydrogen on the fuel electrode, which is the object of the present invention, is slightly reduced.

これに対して、図12に示したような多孔質材セパレータ32〜34を使用した場合は、停止保管時に燃料極と酸化剤極の圧力が低下しても、冷却剤と燃料極および冷却剤と酸化剤極との圧力差により冷却剤が燃料ガス流路と酸化剤ガス流路に移動するため、燃料極と酸化剤極の圧力低下が緩和される。このため、外部からの空気のリークインを抑制し、燃料極の水素残存効果を持続させることができる。また、圧力の低下が抑制できるため、電池材料の機械的な損傷を緩和する効果もある。   On the other hand, when the porous material separators 32 to 34 as shown in FIG. 12 are used, even if the pressure of the fuel electrode and the oxidant electrode is reduced during the stop storage, the coolant, the fuel electrode, and the coolant. Since the coolant moves to the fuel gas channel and the oxidant gas channel due to the pressure difference between the oxidant electrode and the oxidant electrode, the pressure drop between the fuel electrode and the oxidant electrode is alleviated. For this reason, the leak-in of air from the outside can be suppressed, and the hydrogen remaining effect of the fuel electrode can be maintained. Moreover, since the fall of a pressure can be suppressed, it also has the effect of relieving the mechanical damage of battery material.

[第1の実施形態の変形例]
図4〜図6は、第1の実施形態における停止保管起動手順のうち、停止手順において、抵抗負荷を接続して酸化剤極の酸素を消費する操作(S113)を含む複数の変形例を示すフローチャートである。以下には、各手順について順次説明する。
[Modification of First Embodiment]
4 to 6 show a plurality of modified examples including an operation (S113) of connecting a resistance load and consuming oxygen of the oxidant electrode in the stop procedure in the stop storage start procedure in the first embodiment. It is a flowchart. Below, each procedure is demonstrated one by one.

図4に示す停止保管起動手順は、停止手順において、燃料ガス供給手段5と酸化剤ガス供給手段6による燃料ガスと酸化剤ガスの供給を停止し(S111)、燃料ガス上流封入手段8、燃料ガス下流封入手段9、酸化剤ガス上流封入手段10、および酸化剤ガス下流封入手段11を閉じた(S112)後、抵抗負荷を接続して酸化剤極の酸素を消費する(S113)。なお、保管状態および起動手順は、図2の停止保管起動手順と同様である。   In the stop storage start procedure shown in FIG. 4, in the stop procedure, the supply of the fuel gas and the oxidant gas by the fuel gas supply means 5 and the oxidant gas supply means 6 is stopped (S111), the fuel gas upstream sealing means 8, the fuel After the gas downstream sealing means 9, the oxidant gas upstream sealing means 10, and the oxidant gas downstream sealing means 11 are closed (S112), a resistance load is connected and oxygen in the oxidant electrode is consumed (S113). The storage state and the startup procedure are the same as the stopped storage startup procedure of FIG.

この図4に示す停止保管起動手順は、主に系統電源異常等により外部電源が消失した場合に有用な手順であり、保管時も抵抗負荷を接続することにより、外部から電池内へ空気が混入した場合でも酸化剤極の電位の上昇を抑制し、部分電池反応による腐食が生じる状態を回避することが可能となる。   This stop storage start procedure shown in FIG. 4 is a procedure useful mainly when the external power supply is lost due to an abnormality in the system power supply, etc., and air is mixed into the battery from the outside by connecting a resistive load during storage. Even in this case, it is possible to suppress an increase in the potential of the oxidizer electrode and to avoid a state in which corrosion due to the partial cell reaction occurs.

また、保管期間が長い場合や電池のシール性が悪い場合は、酸化剤極に空気が混入した状態となることがある。この場合は、酸化剤極に空気を供給する前にもかかわらず燃料極に燃料を導入する時に電池の電圧が上昇し、図11に示すような部分電池反応が起きる。そこで単セルの場合は燃料導入時に抵抗を接続しておくことで電圧の上昇を抑え、電池の劣化を抑制できる。   In addition, when the storage period is long or when the sealing performance of the battery is poor, air may be mixed in the oxidizer electrode. In this case, the voltage of the cell rises when fuel is introduced into the fuel electrode even before air is supplied to the oxidant electrode, and a partial cell reaction as shown in FIG. 11 occurs. Therefore, in the case of a single cell, by connecting a resistor at the time of fuel introduction, an increase in voltage can be suppressed and deterioration of the battery can be suppressed.

ただし、複数の単電池が積層されている場合は、酸化剤極のガス溝内に空気が多く存在している状態で燃料導入時に抵抗を接続していると、複数の単電池間で燃料の導入に時間差がある。そのため、燃料が導入されたセルについては、電圧の上昇が抑えられて部分電池による電池の劣化を抑えることができるものの、燃料の導入が遅れるセルについては、燃料がない状態で電極に電流が強制的に流れるため、燃料欠乏となり、燃料極の腐食を招くことになる。   However, when multiple cells are stacked, if a resistor is connected at the time of fuel introduction with a large amount of air in the gas groove of the oxidizer electrode, the fuel will flow between the multiple cells. There is a time difference in introduction. As a result, for cells that have been introduced with fuel, the increase in voltage can be suppressed and deterioration of the battery due to partial cells can be suppressed. However, for cells that are delayed in introduction of fuel, current is forced to the electrode without fuel. Therefore, the fuel is deficient and the fuel electrode is corroded.

しかし、本発明のように燃料極2と酸化剤極3をガス封入手段8〜11により外部空間から遮断している場合は、酸化剤極への空気混入量は限定的なものであり、積層セル間で燃料導入の時間差があってもセル毎の電圧上昇は抑制され、かつ、セル間の電圧分布は非常に小さくなるため、燃料導入時に抵抗を接続しない場合に比較して電池の劣化を抑えることが可能となる。さらに、微量の空気が酸化剤極に混入した状態で燃料導入時に抵抗を接続しない場合は、燃料導入時の電圧上昇により電池が劣化する懸念がある。   However, when the fuel electrode 2 and the oxidant electrode 3 are blocked from the external space by the gas sealing means 8 to 11 as in the present invention, the amount of air mixed into the oxidant electrode is limited, and Even if there is a difference in fuel introduction time between cells, the voltage rise between cells is suppressed, and the voltage distribution between cells becomes very small. It becomes possible to suppress. Furthermore, when a resistor is not connected at the time of fuel introduction in a state where a small amount of air is mixed in the oxidizer electrode, there is a concern that the battery deteriorates due to a voltage increase at the time of fuel introduction.

また、図5に示す停止保管起動手順は、停止手順において、燃料ガス供給手段5と酸化剤ガス供給手段6による燃料ガスと酸化剤ガスの供給を停止し(S111)、酸化剤ガス上流封入手段10と酸化剤ガス下流封入手段11を閉じた(S1121)後、抵抗負荷を接続して酸化剤極の酸素を消費し(S113)、その後に、燃料ガス上流封入手段8と燃料ガス下流封入手段9を閉じる(S1122)。なお、保管状態および起動手順は、図2の停止保管起動手順と同様である。   Further, in the stop storage start procedure shown in FIG. 5, in the stop procedure, the supply of the fuel gas and the oxidant gas by the fuel gas supply means 5 and the oxidant gas supply means 6 is stopped (S111), and the oxidant gas upstream sealing means. 10 and the oxidant gas downstream sealing means 11 are closed (S1121), then a resistance load is connected to consume oxygen in the oxidant electrode (S113), and then the fuel gas upstream sealing means 8 and the fuel gas downstream sealing means 9 is closed (S1122). The storage state and the startup procedure are the same as the stopped storage startup procedure of FIG.

電池の劣化を防止するためには、燃料極を水素電位に維持することが重要であるが、この図5に示す停止保管起動手順では、抵抗負荷で酸化剤極の酸素を消費している時は、既に酸化剤ガス封入手段10,11が閉じられているので、外部から酸化剤極への空気流入を防ぐことができ、停止操作時の燃料極の水素消費量を低減できるため、保管時の水素残存時間を延ばすことが可能となる。   In order to prevent the deterioration of the battery, it is important to maintain the fuel electrode at the hydrogen potential. However, in the stopped storage start procedure shown in FIG. 5, when the oxygen in the oxidizer electrode is consumed by the resistance load, Since the oxidant gas sealing means 10 and 11 are already closed, it is possible to prevent the inflow of air from the outside to the oxidant electrode, and the hydrogen consumption of the fuel electrode during the stop operation can be reduced. It is possible to extend the remaining time of hydrogen.

また、図6に示す停止保管起動手順は、停止手順において、燃料ガス供給手段5と酸化剤ガス供給手段6による燃料ガスと酸化剤ガスの供給を停止し(S111)、抵抗負荷を接続して酸化剤極の酸素を消費した(S113)後に、燃料ガス上流封入手段8、燃料ガス下流封入手段9、酸化剤ガス上流封入手段10、および酸化剤ガス下流封入手段11を閉じる(S112)。なお、保管状態および起動手順は、図2の停止保管起動手順と同様である。   Further, in the stop storage start procedure shown in FIG. 6, in the stop procedure, the supply of the fuel gas and the oxidant gas by the fuel gas supply means 5 and the oxidant gas supply means 6 is stopped (S111), and the resistance load is connected. After the oxygen in the oxidant electrode is consumed (S113), the fuel gas upstream sealing means 8, the fuel gas downstream sealing means 9, the oxidant gas upstream sealing means 10, and the oxidant gas downstream sealing means 11 are closed (S112). The storage state and the startup procedure are the same as the stopped storage startup procedure of FIG.

図6に示す停止保管起動手順と異なり、ガス封入手段を閉じた状態で抵抗負荷により燃料極の水素および酸化剤極の酸素を消費すると負圧になり、そのまま保管状態に移行すると負圧に維持されるので、外部から燃料極および酸化剤極へ空気が流入し、燃料極の水素が消費されてしまう懸念がある。これに対して、図6に示す停止保管起動手順では、保管時の圧力低下が低減され、外部からの空気流入を抑制することが可能となる。   Unlike the stop storage start procedure shown in FIG. 6, when the gas filling means is closed, the negative pressure is consumed when the fuel electrode hydrogen and the oxidant electrode oxygen are consumed by the resistance load, and the negative pressure is maintained when the storage state is shifted to the storage state. Therefore, there is a concern that air flows from the outside into the fuel electrode and the oxidant electrode, and hydrogen in the fuel electrode is consumed. On the other hand, in the stop storage start procedure shown in FIG. 6, the pressure drop at the time of storage is reduced, and it becomes possible to suppress the inflow of air from the outside.

[第2の実施形態]
図7は、本発明を適用した第2の実施形態における燃料電池システムの構成を示すブロック図である。本実施形態の燃料電池システムは、第1の実施形態の構成に、燃料リサイクルブロア13を追加して、燃料極2の出口から排出されるガスを燃料極2の入口側に供給する燃料ガスのリサイクルラインを形成したものである。
[Second Embodiment]
FIG. 7 is a block diagram showing a configuration of a fuel cell system according to the second embodiment to which the present invention is applied. The fuel cell system of the present embodiment includes a fuel recycle blower 13 added to the configuration of the first embodiment, and the fuel gas supplied from the outlet of the fuel electrode 2 to the inlet side of the fuel electrode 2 is added. A recycling line is formed.

このような構成を有する本実施形態の作用は次の通りである。すなわち、抵抗負荷で酸化剤極の酸素を燃料極の水素で消費しているときに、燃料極に十分な水素が存在しない場合は、燃料極の水素欠乏により燃料極または酸化剤極のカーボンが腐食する問題があるので、発電停止後から燃料極のガス封入手段が閉じられるまでの任意の期間に水素を含んだガスを流すことが、劣化防止や保管時の水素残存時間を延ばすことに有効である。   The operation of the present embodiment having such a configuration is as follows. That is, when oxygen at the oxidizer electrode is consumed by hydrogen at the fuel electrode under a resistive load, if there is not enough hydrogen at the fuel electrode, carbon in the fuel electrode or oxidizer electrode is depleted due to hydrogen deficiency in the fuel electrode. Since there is a problem of corrosion, flowing hydrogen-containing gas for an arbitrary period after power generation is stopped until the gas sealing means of the fuel electrode is closed is effective for preventing deterioration and extending the remaining time of hydrogen during storage. It is.

そのため、発電停止時に水素を含んだガスを燃料極に流すことが不可能または困難な場合は、図7に示すように燃料極から排出されるガスを燃料極のガスを燃料リサイクルブロア13等で循環させておくことによって、配管やマニホールドに残存している水素を燃料極に供給することが可能となる。   Therefore, when it is impossible or difficult to flow a gas containing hydrogen to the fuel electrode when power generation is stopped, the gas discharged from the fuel electrode is replaced with the gas at the fuel electrode by the fuel recycle blower 13 as shown in FIG. By circulating the hydrogen, it is possible to supply the hydrogen remaining in the pipe and the manifold to the fuel electrode.

したがって、本実施形態によれば、第1の実施形態と同様の効果が得られることに加えて、さらに、発電停止時に配管やマニホールドに残存している水素を燃料極に供給することにより、燃料極と酸化剤極の劣化を防止でき、保管時の水素残存時間を延ばすことができるという効果が得られる。   Therefore, according to the present embodiment, in addition to obtaining the same effect as that of the first embodiment, the fuel remaining in the piping and the manifold when power generation is stopped is supplied to the fuel electrode. It is possible to prevent deterioration of the electrode and the oxidant electrode, and to extend the remaining time of hydrogen during storage.

[第3の実施形態]
図8は、本発明を適用した第3の実施形態における燃料電池システムの構成を示すブロック図である。本実施形態の燃料電池システムは、第1の実施形態の構成に、電池電圧監視手段14を追加して、起動過程において燃料極へ燃料ガスが導入された場合の電圧を監視するようにしたものである。
[Third Embodiment]
FIG. 8 is a block diagram showing a configuration of a fuel cell system according to a third embodiment to which the present invention is applied. The fuel cell system according to the present embodiment is configured such that the battery voltage monitoring means 14 is added to the configuration of the first embodiment to monitor the voltage when the fuel gas is introduced into the fuel electrode during the startup process. It is.

図9は、本実施形態の燃料電池システムによる停止保管起動手順を示すフローチャートである。この図9に示す停止保管起動手順は、起動手順において、燃料ガス上流封入手段8と燃料ガス下流封入手段9を開き、燃料ガス供給手段5による燃料ガスの供給を開始した(S121)後、電池電圧監視手段14により燃料電池本体1の電圧を監視して、予め設定された設定電圧を超えているか否かを検出する(S124)。   FIG. 9 is a flowchart showing a stop storage start procedure by the fuel cell system of the present embodiment. The stop storage start procedure shown in FIG. 9 is the start procedure in which the fuel gas upstream enclosing means 8 and the fuel gas downstream enclosing means 9 are opened and the supply of fuel gas by the fuel gas supply means 5 is started (S121). The voltage monitoring means 14 monitors the voltage of the fuel cell main body 1 to detect whether or not a preset voltage is exceeded (S124).

そして、電池電圧が設定電圧を超えていない場合(S124のNO)には、次に、酸化剤ガス上流封入手段10と酸化剤ガス下流封入手段11を開き、酸化剤ガス供給手段6による酸化剤ガスの供給を開始することにより(S122)、燃料電池本体1を発電開始状態とする(S123)。これに対して、電池電圧が設定電圧を超えた場合(S124のYES)には、発電停止指令が発せられた場合(S110のYES)と同様に、停止手順を行うかあるいは警報を発生する。なお、停止手順および保管状態は、図2の停止保管起動手順と同様である。   If the battery voltage does not exceed the set voltage (NO in S124), the oxidant gas upstream enclosing unit 10 and the oxidant gas downstream enclosing unit 11 are then opened, and the oxidant by the oxidant gas supply unit 6 is opened. By starting the supply of gas (S122), the fuel cell main body 1 is set in a power generation start state (S123). On the other hand, when the battery voltage exceeds the set voltage (YES in S124), the stop procedure is performed or an alarm is generated in the same manner as when the power generation stop command is issued (YES in S110). The stop procedure and storage state are the same as the stop storage start procedure of FIG.

すなわち、燃料導入時に燃料極に水素が存在しない場合、部分電池反応による腐食が生じ電池が劣化する。燃料極に水素が存在しない原因としては電池本体のシール性が低下し外部から空気が酸化剤極もしくは燃料極に流入し燃料極の水素が消費されることが考えられる。   That is, when hydrogen is not present in the fuel electrode when the fuel is introduced, corrosion due to partial cell reaction occurs and the battery deteriorates. It is conceivable that the hydrogen does not exist in the fuel electrode because the sealing performance of the battery body is deteriorated, and air flows into the oxidant electrode or the fuel electrode from the outside and the hydrogen in the fuel electrode is consumed.

したがって、本実施形態によれば、第1の実施形態と同様の効果が得られることに加えて、さらに、起動時に電圧を監視することにより、このような電池内部へのガスリークを検出することが可能となり、この場合に、プラントを停止するかもしくは警報を発生することにより、何らかの対策を実施することができるため、さらなる電池の性能劣化を未然に防ぐことができるという効果が得られる。   Therefore, according to the present embodiment, in addition to obtaining the same effect as the first embodiment, it is possible to detect such a gas leak into the battery by monitoring the voltage at the start-up. In this case, since some measures can be implemented by stopping the plant or generating an alarm, it is possible to prevent further deterioration in battery performance.

[第4の実施形態]
図10は、本発明を適用した第4の実施形態における燃料電池システムの構成を示すブロック図である。本実施形態の燃料電池システムは、第1の実施形態の構成において、燃料ガス下流封入手段9と酸化剤ガス下流封入手段11を、逆流を防止する燃料ガス下流封入逆止弁15と酸化剤ガス下流封入逆止弁16としたものである。
[Fourth Embodiment]
FIG. 10 is a block diagram showing a configuration of a fuel cell system according to a fourth embodiment to which the present invention is applied. The fuel cell system of this embodiment is the same as that of the first embodiment except that the fuel gas downstream sealing means 9 and the oxidant gas downstream sealing means 11 are connected to the fuel gas downstream sealing check valve 15 and the oxidant gas that prevent backflow. This is a downstream sealed check valve 16.

このような構成を有する本実施形態の作用は次の通りである。すなわち、ガス封入手段を電磁弁とした場合は停止時に閉じておく必要があるため、停止時に電力を必要としないノーマルクローズを選択することになるが、発電中に何らかの異常で電磁弁駆動用電源が喪失した場合、電磁弁が閉じられ、燃料電池に供給ガスの圧力がかかり、電池を損傷する懸念がある。これに対して、本実施形態においては、燃料ガス下流封入手段と酸化剤ガス下流封入手段を逆止弁15,16とすることで、電池に過剰な圧力がかかることを防止することが可能となり、かつ停止・保管時に外部からの空気の流入を防ぐことができる。   The operation of the present embodiment having such a configuration is as follows. In other words, if the gas sealing means is a solenoid valve, it must be closed when stopped, so normally closed that does not require power when stopping is selected. If the gas is lost, there is a concern that the solenoid valve is closed, the pressure of the supply gas is applied to the fuel cell, and the cell is damaged. On the other hand, in the present embodiment, the fuel gas downstream sealing means and the oxidant gas downstream sealing means are the check valves 15 and 16, thereby preventing excessive pressure from being applied to the battery. In addition, it is possible to prevent the inflow of air from the outside during stopping and storage.

したがって、本実施形態によれば、第1の実施形態と同様の効果が得られることに加えて、さらに、燃料電池性能の低下をより確実に抑制することができるという効果が得られる。   Therefore, according to the present embodiment, in addition to obtaining the same effect as that of the first embodiment, it is possible to obtain an effect of further reliably suppressing a decrease in fuel cell performance.

[他の実施形態]
なお、本発明は、前述した実施形態に限定されるものではなく、本発明の範囲内で他にも多種多様な変形例が実施可能である。例えば、前記第1の実施形態の変形例および第2〜第4の実施形態を選択的に適宜組み合わせることも可能であり、その場合には、前述した各効果を組み合わせた相乗的な効果が得られる。
[Other Embodiments]
It should be noted that the present invention is not limited to the above-described embodiments, and various other variations can be implemented within the scope of the present invention. For example, the modified example of the first embodiment and the second to fourth embodiments can be selectively combined as appropriate, and in this case, a synergistic effect obtained by combining the effects described above can be obtained. It is done.

また、保管時において、燃料極と酸化剤極を電気的に短絡させてもよいし、あるいは、起動過程において、燃料ガス封入手段を開き、燃料ガス供給手段による燃料電池本体に対する燃料ガスの供給を開始した時点で燃料極と酸化剤極を電気的に短絡させてもよい。さらには、これらの操作を両方行ってもよい。いずれの場合でも、燃料極と酸化剤極を電気的に短絡させることにより、仮に停止・保管時に外部から空気が流入した場合でも、電圧上昇を生じることはなく、電位勾配に起因する電池性能の低下を防止できる。   Further, during storage, the fuel electrode and the oxidant electrode may be electrically short-circuited, or in the starting process, the fuel gas sealing means is opened and the fuel gas supply means supplies fuel gas to the fuel cell body. The fuel electrode and the oxidant electrode may be electrically short-circuited at the start. Further, both of these operations may be performed. In any case, by electrically short-circuiting the fuel electrode and the oxidizer electrode, even if air flows in from the outside at the time of stopping / storage, the voltage does not increase, and the battery performance caused by the potential gradient does not occur. Decline can be prevented.

本発明を適用した第1の実施形態における燃料電池システムの構成を示すブロック図。The block diagram which shows the structure of the fuel cell system in 1st Embodiment to which this invention is applied. 図1の燃料電池システムによる停止保管起動手順を示すフローチャート。The flowchart which shows the stop storage starting procedure by the fuel cell system of FIG. 本発明の方法による停止保管起動手順と比較例の方法による停止保管起動手順における起動停止回数と電圧の関係を示すグラフ。The graph which shows the relationship between the number of start / stops in the stop storage start procedure by the method of this invention, and the stop storage start procedure by the method of a comparative example, and a voltage. 図1の燃料電池システムによる停止保管起動手順の変形例を示すフローチャート。The flowchart which shows the modification of the stop storage starting procedure by the fuel cell system of FIG. 図1の燃料電池システムによる停止保管起動手順の他の変形例を示すフローチャート。The flowchart which shows the other modification of the stop storage starting procedure by the fuel cell system of FIG. 図1の燃料電池システムによる停止保管起動手順の他の変形例を示すフローチャート。The flowchart which shows the other modification of the stop storage starting procedure by the fuel cell system of FIG. 本発明を適用した第2の実施形態における燃料電池システムの構成を示すブロック図。The block diagram which shows the structure of the fuel cell system in 2nd Embodiment to which this invention is applied. 本発明を適用した第3の実施形態における燃料電池システムの構成を示すブロック図。The block diagram which shows the structure of the fuel cell system in 3rd Embodiment to which this invention is applied. 図8の燃料電池システムによる停止保管起動手順を示すフローチャート。The flowchart which shows the stop storage starting procedure by the fuel cell system of FIG. 本発明を適用した第4の実施形態における燃料電池システムの構成を示すブロック図。The block diagram which shows the structure of the fuel cell system in 4th Embodiment to which this invention is applied. 起動時における電池面内での電流の流れを示す図。The figure which shows the flow of the electric current in the battery surface at the time of starting. 多孔質材セパレータを適用した燃料電池の構成を示す図。The figure which shows the structure of the fuel cell to which the porous material separator is applied.

符号の説明Explanation of symbols

1…燃料電池本体
2…燃料極
3…酸化剤極
4…電池冷却部
5…燃料ガス供給手段
6…酸化剤ガス供給手段
7…冷却水ポンプ
8…燃料ガス上流封入手段
9…燃料ガス下流封入手段
10…酸化剤ガス上流封入手段
11…酸化剤ガス下流封入手段
12…プラント制御部
13…燃料リサイクルブロア
14…電池電圧監視手段
15…燃料ガス下流封入逆止弁
16…酸化剤ガス下流封入逆止弁
31…電極
32…燃料ガス流路多孔質材セパレータ
33…酸化剤ガス流路多孔質材セパレータ
34…冷却剤流路多孔質材セパレータ
DESCRIPTION OF SYMBOLS 1 ... Fuel cell main body 2 ... Fuel electrode 3 ... Oxidant electrode 4 ... Battery cooling part 5 ... Fuel gas supply means 6 ... Oxidant gas supply means 7 ... Coolant water pump 8 ... Fuel gas upstream enclosure means 9 ... Fuel gas downstream enclosure Means 10 ... Oxidant gas upstream sealing means 11 ... Oxidant gas downstream sealing means 12 ... Plant control unit 13 ... Fuel recycling blower 14 ... Battery voltage monitoring means 15 ... Fuel gas downstream sealing check valve 16 ... Oxidant gas downstream sealing reverse Stop valve 31 ... Electrode 32 ... Fuel gas channel porous material separator 33 ... Oxidant gas channel porous material separator 34 ... Coolant channel porous material separator

Claims (10)

燃料極、酸化剤極、燃料ガス流路、酸化剤ガス流路、および冷却剤流路を有する燃料電池本体と、この燃料電池本体に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体に酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池本体の燃料ガス系統の上下流を開閉して燃料ガスを燃料電池本体に封入する燃料ガス封入手段と、前記燃料電池本体の酸化剤ガス系統の上下流を開閉して酸化剤ガスを燃料電池本体に封入する酸化剤ガス封入手段を備えた燃料電池システムの停止、保管、起動を行う方法であって、
前記燃料ガス流路、前記酸化剤ガス流路、および前記冷却剤流路を構成するセパレータとして、多孔質材料からなるセパレータを用いて、
停止過程において、前記燃料ガス供給手段と前記酸化剤ガス供給手段による燃料ガスと酸化剤ガスの供給を停止した状態で前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉じて、前記燃料極に前記燃料ガスを残存させ、
保管時において、前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉状態に保って、前記燃料極に前記燃料ガスを残存させた状態を保ち、
起動過程において、前記燃料ガス封入手段を開き、前記燃料ガス供給手段による前記燃料電池本体に対する燃料ガスの供給を開始した後に、前記酸化剤ガス封入手段を開き、前記酸化剤ガス供給手段による燃料電池本体に対する酸化剤ガスの供給を開始し、前記燃料極に前記燃料ガスが存在する状態で前記酸化剤ガスの供給を開始する
ことを特徴とする燃料電池システムの停止保管起動方法。
A fuel cell body having a fuel electrode, an oxidant electrode, a fuel gas channel, an oxidant gas channel, and a coolant channel, fuel gas supply means for supplying fuel gas to the fuel cell body, and the fuel cell body An oxidant gas supply means for supplying an oxidant gas to the fuel cell, a fuel gas sealing means for sealing the fuel gas in the fuel cell body by opening and closing the upstream and downstream sides of the fuel gas system of the fuel cell body, and an oxidation of the fuel cell body A method for stopping, storing, and starting a fuel cell system including an oxidant gas sealing means for sealing an oxidant gas in a fuel cell main body by opening and closing upstream and downstream of the agent gas system,
As a separator constituting the fuel gas channel, the oxidant gas channel, and the coolant channel, using a separator made of a porous material,
In the stopping process, the fuel gas sealing means and the oxidant gas sealing means are closed in a state where supply of the fuel gas and the oxidant gas by the fuel gas supply means and the oxidant gas supply means is stopped, and the fuel electrode is closed. Leaving the fuel gas,
During storage, the fuel gas sealing means and the oxidant gas sealing means are kept closed, and the fuel gas remains in the fuel electrode,
In the start-up process, after the fuel gas sealing means is opened and the supply of fuel gas to the fuel cell body by the fuel gas supply means is started, the oxidant gas sealing means is opened and the fuel cell by the oxidant gas supply means A stop storage start method for a fuel cell system, wherein supply of an oxidant gas to a main body is started, and supply of the oxidant gas is started in a state where the fuel gas is present in the fuel electrode.
停止過程において、前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉じた状態で、前記酸化剤極に存在する酸素を前記燃料極に存在する水素で消費させる
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
In stopping the process, in a state of closing the oxidant gas filled unit and the fuel gas filled unit, the oxygen present in the oxidant electrode to claim 1, characterized in that consumed in the hydrogen present in the fuel electrode The stop storage start method of the described fuel cell system.
停止過程において、前記酸化剤ガス封入手段のみを閉じ、前記燃料ガス封入手段を開いた状態で、前記酸化剤極に存在する酸素を前記燃料極に存在する水素で消費させた後に、燃料ガス封入手段を閉じる
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
In the stopping process, after closing only the oxidant gas sealing means and opening the fuel gas sealing means, oxygen present in the oxidant electrode is consumed by hydrogen present in the fuel electrode, and then fuel gas sealing is performed. The method of stopping and starting the fuel cell system according to claim 1, wherein the means is closed.
停止過程において、前記燃料ガス封入手段と前記酸化剤ガス封入手段を開いた状態で、前記酸化剤極に存在する酸素を前記燃料極に存在する水素で消費させた後に、燃料ガス封入手段と酸化剤ガス封入手段を閉じる
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
In the stopping process, after the fuel gas sealing means and the oxidant gas sealing means are opened, oxygen present in the oxidizer electrode is consumed by hydrogen present in the fuel electrode, and then the fuel gas sealing means and the oxidizer are oxidized. The method for stopping and starting the fuel cell system according to claim 1, wherein the agent gas sealing means is closed.
前記酸化剤極に存在する酸素を前記燃料極に存在する水素で消費させるために抵抗負荷を接続する
ことを特徴とする請求項乃至請求項4のいずれか1項に記載の燃料電池システムの停止保管起動方法。
The fuel cell system according to any one of claims 2 to 4, characterized in that connecting a resistive load of oxygen present in the oxidant electrode in order to consume hydrogen present in the fuel electrode Stop storage start method.
停止過程において、前記燃料ガス封入手段を閉じる前の、前記酸化剤極に存在する酸素を前記燃料極に存在する水素で消費させている間における任意の期間に水素を含んだガスを前記燃料極に供給する
ことを特徴とする請求項または請求項に記載の燃料電池システムの停止保管起動方法。
In the stopping process, before the fuel gas sealing means is closed, the oxygen-containing gas is removed from the fuel electrode during an arbitrary period during which oxygen present in the oxidizer electrode is consumed by hydrogen present in the fuel electrode. The stop storage activation method for a fuel cell system according to claim 3 or 4 , wherein the fuel cell system is stored and activated.
起動過程において、前記燃料ガス供給手段による前記燃料電池本体に対する燃料ガスの供給を開始した時点で、燃料電池本体の電圧を監視して、予め設定された設定電圧を超えたか否かを検出し、設定電圧を超えた場合には、燃料電池本体を停止させるかまたは警報を発生する
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
In the starting process, when the supply of fuel gas to the fuel cell main body by the fuel gas supply means is started, the voltage of the fuel cell main body is monitored to detect whether or not a preset voltage is exceeded, 2. The fuel cell system stop storage start method according to claim 1, wherein when the set voltage is exceeded, the fuel cell main body is stopped or an alarm is generated.
保管時において、前記燃料極と前記酸化剤極を電気的に短絡させる
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
During storage, stopped storage method of starting a fuel cell system according to claim 1, characterized in that for electrically short-circuiting the said fuel electrode the oxidant electrode.
起動過程において、前記燃料ガス封入手段を開き、前記燃料ガス供給手段による前記燃料電池本体に対する燃料ガスの供給を開始した時点で前記燃料極と前記酸化剤極を電気的に短絡させる
ことを特徴とする請求項1に記載の燃料電池システムの停止保管起動方法。
In the start-up process, the fuel gas sealing means is opened, and the fuel electrode and the oxidant electrode are electrically short-circuited when the fuel gas supply means starts supplying fuel gas to the fuel cell main body. The stop storage start method of the fuel cell system according to claim 1 .
燃料極、酸化剤極、燃料ガス流路、酸化剤ガス流路、および冷却材流路を有する燃料電池本体と、この燃料電池本体に燃料ガスを供給する燃料ガス供給手段と、前記燃料電池本体に酸化剤ガスを供給する酸化剤ガス供給手段と、前記燃料電池本体の燃料ガス系統の上下流を開閉して燃料ガスを燃料電池本体に封入する燃料ガス封入手段と、前記燃料電池本体の酸化剤ガス系統の上下流を開閉して酸化剤ガスを燃料電池本体に封入する酸化剤ガス封入手段を備えた燃料電池システムの停止、保管、起動を行うためのプログラムであって、
前記燃料電池本体が、前記燃料ガス流路、前記酸化剤ガス流路、および前記冷却剤流路を構成するセパレータとして、多孔質材料からなるセパレータを用いた場合に、
停止過程において、前記燃料ガス供給手段と前記酸化剤ガス供給手段による燃料ガスと酸化剤ガスの供給を停止した状態で前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉じて、前記燃料極に前記燃料ガスを残存させる機能と、
保管時において、前記燃料ガス封入手段と前記酸化剤ガス封入手段を閉状態に保って、前記燃料極に前記燃料ガスを残存させた状態を保つ機能と、
起動過程において、前記燃料ガス封入手段を開き、前記燃料ガス供給手段による前記燃料電池本体に対する燃料ガスの供給を開始した後に、前記酸化剤ガス封入手段を開き、前記酸化剤ガス供給手段による燃料電池本体に対する酸化剤ガスの供給を開始し、前記燃料極に前記燃料ガスが存在する状態で前記酸化剤ガスの供給を開始する機能
をコンピュータに実現させることを特徴とする燃料電池システムの停止保管起動プログラム。
A fuel cell body having a fuel electrode, an oxidant electrode, a fuel gas channel, an oxidant gas channel, and a coolant channel, fuel gas supply means for supplying fuel gas to the fuel cell body, and the fuel cell body An oxidant gas supply means for supplying an oxidant gas to the fuel cell, a fuel gas sealing means for sealing the fuel gas in the fuel cell body by opening and closing the upstream and downstream sides of the fuel gas system of the fuel cell body, and an oxidation of the fuel cell body A program for stopping, storing, and starting a fuel cell system having an oxidant gas sealing means for sealing an oxidant gas in a fuel cell body by opening and closing upstream and downstream of the oxidant gas system,
When the fuel cell main body uses a separator made of a porous material as a separator constituting the fuel gas flow path, the oxidant gas flow path, and the coolant flow path,
In the stopping process, the fuel gas sealing means and the oxidant gas sealing means are closed in a state where supply of the fuel gas and the oxidant gas by the fuel gas supply means and the oxidant gas supply means is stopped, and the fuel electrode is closed. A function of remaining the fuel gas;
A function of keeping the fuel gas enclosing means and the oxidant gas enclosing means in a closed state during storage and keeping the fuel gas remaining in the fuel electrode;
In the start-up process, after the fuel gas sealing means is opened and the supply of fuel gas to the fuel cell body by the fuel gas supply means is started, the oxidant gas sealing means is opened and the fuel cell by the oxidant gas supply means Stopping storage activation of a fuel cell system, wherein the computer realizes a function of starting supply of oxidant gas to the main body and starting supply of the oxidant gas in a state where the fuel gas is present in the fuel electrode program.
JP2005303980A 2004-10-19 2005-10-19 Stop storage start method and stop storage start program of fuel cell system Active JP5052776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303980A JP5052776B2 (en) 2004-10-19 2005-10-19 Stop storage start method and stop storage start program of fuel cell system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004303782 2004-10-19
JP2004303782 2004-10-19
JP2005303980A JP5052776B2 (en) 2004-10-19 2005-10-19 Stop storage start method and stop storage start program of fuel cell system

Publications (2)

Publication Number Publication Date
JP2006147550A JP2006147550A (en) 2006-06-08
JP5052776B2 true JP5052776B2 (en) 2012-10-17

Family

ID=36626956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303980A Active JP5052776B2 (en) 2004-10-19 2005-10-19 Stop storage start method and stop storage start program of fuel cell system

Country Status (1)

Country Link
JP (1) JP5052776B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221836A (en) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd Fuel cell system
JP2007149574A (en) * 2005-11-30 2007-06-14 Toyota Motor Corp Fuel cell system
JP5418800B2 (en) * 2006-03-20 2014-02-19 東芝燃料電池システム株式会社 Method and program for starting fuel cell system
JP2008010188A (en) * 2006-06-27 2008-01-17 Nissan Motor Co Ltd Fuel cell system
JP5515193B2 (en) * 2006-06-27 2014-06-11 日産自動車株式会社 Fuel cell system
JP5110347B2 (en) * 2006-07-26 2012-12-26 トヨタ自動車株式会社 Fuel cell system and its stop processing method
JP5074724B2 (en) * 2006-08-31 2012-11-14 株式会社日本自動車部品総合研究所 Fuel cell
JP5286771B2 (en) * 2007-01-26 2013-09-11 トヨタ自動車株式会社 Fuel cell system
JP5125135B2 (en) * 2007-02-09 2013-01-23 トヨタ自動車株式会社 Fuel cell system
JP5382408B2 (en) * 2008-07-22 2014-01-08 アイシン精機株式会社 Fuel cell system
JP5822727B2 (en) * 2008-09-17 2015-11-24 ベレノス・クリーン・パワー・ホールディング・アーゲー Operation method of fuel cell system
JP2010086853A (en) * 2008-10-01 2010-04-15 Honda Motor Co Ltd Fuel cell system and its operation stop method
JP5384154B2 (en) * 2009-03-17 2014-01-08 本田技研工業株式会社 Fuel cell system
JP5746062B2 (en) * 2012-01-06 2015-07-08 トヨタ自動車株式会社 Fuel cell system
JP5502955B2 (en) * 2012-09-03 2014-05-28 東芝燃料電池システム株式会社 Fuel cell system and control method thereof
FI125775B (en) 2014-06-30 2016-02-15 Teknologian Tutkimuskeskus Vtt Oy Procedures and systems for eliminating decay by back current in fuel cells
JP2016018753A (en) * 2014-07-11 2016-02-01 株式会社フジクラ Fuel cell system and method of stopping the same
KR102516659B1 (en) * 2021-01-08 2023-04-03 주식회사 디알엠카탈리스트 Fuel cell system connected to dry reforming reactor containing perovskite-based catalyst and method for the production of electricity using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832903B2 (en) * 1978-07-28 1983-07-15 富士電機株式会社 How to stop a fuel cell
JPS59111272A (en) * 1982-12-15 1984-06-27 Toshiba Corp Fuel-cell control device
JPH073791B2 (en) * 1987-01-23 1995-01-18 三菱電機株式会社 Fuel cell power generation system
JPH0233863A (en) * 1988-07-25 1990-02-05 Fuji Electric Corp Res & Dev Ltd Regenerative protector of cell
JPH06338332A (en) * 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd Gas separator for solid high molecular electrolytic fuel cell
JPH09120830A (en) * 1995-10-25 1997-05-06 Fuji Electric Co Ltd Starting method for fuel cell power-generating device
JPH09139221A (en) * 1995-11-14 1997-05-27 Toshiba Corp Fuel cell generating device
JP4632501B2 (en) * 2000-09-11 2011-02-16 大阪瓦斯株式会社 How to stop and store fuel cells
JP2002208429A (en) * 2001-01-09 2002-07-26 Denso Corp Fuel cell system
JP3840956B2 (en) * 2001-11-08 2006-11-01 日産自動車株式会社 Fuel cell system
JP2004006166A (en) * 2002-06-03 2004-01-08 Fuji Electric Holdings Co Ltd Solid polyelectrolyte type fuel cell and its operation method
JP2005259664A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Operation method of fuel cell stack and fuel cell system

Also Published As

Publication number Publication date
JP2006147550A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JP5052776B2 (en) Stop storage start method and stop storage start program of fuel cell system
US8071243B2 (en) Fuel cell system
JP4938636B2 (en) Method for mitigating fuel cell degradation due to start and stop by storing hydrogen / nitrogen
JP2011508947A (en) Combustion of hydrogen at the cathode of a fuel cell at start-up
JP2007505443A (en) Passive blanketing of electrodes in fuel cells.
JP5425358B2 (en) Method of stopping polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
US20120088168A1 (en) Systems and methods for maintaining hydrogen-selective membranes during periods of inactivity
JP2007273276A (en) Fuel cell power generation system and its operation method
JP5109259B2 (en) Fuel cell system
JP4772470B2 (en) Fuel cell system
JP4661055B2 (en) Fuel cell system and operation method
JP4687039B2 (en) Polymer electrolyte fuel cell system
JP4872181B2 (en) Fuel cell system and operation method thereof
JP2005093115A (en) Fuel cell power generating device and its operating method
JP4617647B2 (en) Fuel cell system and operation method thereof
JP2007323863A (en) Fuel cell system and shutdown method of fuel cell
JP2014007169A (en) Shutdown and storing method of fuel cell system
JP6445096B2 (en) Fuel cell system and operation method thereof
JP4772293B2 (en) Fuel cell system
JP2005071949A (en) Fuel battery electric power generator and its operation method
JP2007265910A (en) Fuel cell system and its operation method
JP5265032B2 (en) Fuel cell system and power generation stopping method thereof
JP2009043431A (en) Shutdown method of fuel cell system, and fuel cell system
JP5370342B2 (en) Fuel cell system and operation method
JP5678278B2 (en) Fuel cell system and operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5052776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250