JP5051467B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP5051467B2
JP5051467B2 JP2008305038A JP2008305038A JP5051467B2 JP 5051467 B2 JP5051467 B2 JP 5051467B2 JP 2008305038 A JP2008305038 A JP 2008305038A JP 2008305038 A JP2008305038 A JP 2008305038A JP 5051467 B2 JP5051467 B2 JP 5051467B2
Authority
JP
Japan
Prior art keywords
alkali
organic solvent
light
emitting element
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008305038A
Other languages
Japanese (ja)
Other versions
JP2010129892A (en
Inventor
由佳里 鈴木
淳 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008305038A priority Critical patent/JP5051467B2/en
Publication of JP2010129892A publication Critical patent/JP2010129892A/en
Application granted granted Critical
Publication of JP5051467B2 publication Critical patent/JP5051467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device.

特開2001−57441号公報JP 2001-57441 A 特開2002−334816号公報JP 2002-334816 A WO2008/091010号公報WO2008 / 091010

(AlGa1−xIn1−yP混晶(ただし、0≦x≦1,0≦y≦1;以下、AlGaInP混晶、あるいは単にAlGaInPとも記載する)により発光層部が形成された発光素子は、薄いAlGaInP活性層を、それよりもバンドギャップの大きいn型AlGaInPクラッド層とp型AlGaInPクラッド層とによりサンドイッチ状に挟んだダブルへテロ構造を採用することにより、高輝度の素子を実現できる。 The light-emitting layer portion is formed of (Al x Ga 1-x ) y In 1-y P mixed crystal (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1; hereinafter also referred to as AlGaInP mixed crystal or simply AlGaInP). The light emitting device has a high brightness by adopting a double hetero structure in which a thin AlGaInP active layer is sandwiched between an n-type AlGaInP cladding layer and a p-type AlGaInP cladding layer having a larger band gap. An element can be realized.

AlGaInP発光素子の場合、発光層部の成長基板としてGaAs基板が使用されるが、GaAsはAlGaInP発光層部の発光波長域において光吸収が大きい。そこで、特許文献1及び特許文献2には、一旦GaAs基板を剥離し、透明導電性半導体基板であるGaP基板を新たに貼り合わせる方法が開示されている(以下、このような方法で製造される発光素子を、「直接接合型発光素子」と称する)。   In the case of an AlGaInP light emitting device, a GaAs substrate is used as a growth substrate for the light emitting layer portion. However, GaAs absorbs a large amount of light in the emission wavelength region of the AlGaInP light emitting layer portion. Therefore, Patent Document 1 and Patent Document 2 disclose a method in which a GaAs substrate is once peeled and a GaP substrate that is a transparent conductive semiconductor substrate is newly bonded (hereinafter, manufactured by such a method). The light-emitting element is referred to as a “direct junction light-emitting element”).

上記のような直接接合型発光素子においては、使用するGaP基板等の透明導電性半導体基板の表面に、一般には厚さ1.5〜2nm程度の自然酸化膜が形成されており、発光層部と透明導電性半導体基板との接合界面の電気抵抗(以下、界面抵抗という)を増大させる要因となっている。従って、該界面抵抗を低減することが直接接合型発光素子の製造上に係る重要課題の一つであり、例えば該界面抵抗を減ずる方法として、特許文献1及び2には、接合後に熱処理を行なう技術が開示されている。しかし、発光層部のドーピングプロファイルを維持する観点から、熱処理温度はそれほど高温化することができず、自然酸化膜に起因した界面抵抗を低減するには一定の限界がある。   In the direct junction type light emitting element as described above, a natural oxide film having a thickness of about 1.5 to 2 nm is generally formed on the surface of a transparent conductive semiconductor substrate such as a GaP substrate to be used. This is a factor that increases the electrical resistance (hereinafter referred to as interface resistance) at the bonding interface between the transparent conductive semiconductor substrate and the transparent conductive semiconductor substrate. Therefore, reducing the interfacial resistance is one of the important issues related to the production of the direct junction type light emitting device. For example, Patent Documents 1 and 2 describe a method of reducing the interfacial resistance by performing a heat treatment after joining. Technology is disclosed. However, from the viewpoint of maintaining the doping profile of the light emitting layer portion, the heat treatment temperature cannot be increased so much, and there is a certain limit in reducing the interface resistance caused by the natural oxide film.

また、接合前の透明導電性半導体基板の洗浄も界面抵抗低減の観点において重要である。特許文献2においては、洗浄後の透明導電性半導体基板をスピンドライヤにて回転乾燥する技術が開示されているが、透明導電性半導体基板が薄いか、あるいは反り等を生じている場合には、基板を回転乾燥する際に割れ等を生じやすい問題がある。   In addition, cleaning of the transparent conductive semiconductor substrate before bonding is also important from the viewpoint of reducing interface resistance. Patent Document 2 discloses a technique for rotating and drying a transparent conductive semiconductor substrate after cleaning with a spin dryer. However, when the transparent conductive semiconductor substrate is thin or warped, There is a problem that cracks and the like are likely to occur when the substrate is rotationally dried.

さらに、貼り合せにより得られる発光素子の直列抵抗が単に増加するだけでなく、通電継続に伴い直列抵抗が経時的に漸減しやすいなど、安定性に欠けることも判明した。直列抵抗が短時間で安定レベルにまで低減されない場合、発光素子を高速スイッチング(PWM制御等)により調光駆動する際には、そのスイッチング応答性に大きな影響が及ぶ問題がある。   Furthermore, it has been found that not only the series resistance of the light-emitting element obtained by bonding increases, but also the series resistance tends to gradually decrease with time as the energization continues, and lacks stability. When the series resistance is not reduced to a stable level in a short time, there is a problem that the switching response is greatly affected when the light emitting element is dimmed and driven by high-speed switching (PWM control or the like).

そこで、特許文献3には、直接接合型発光素子の貼り合せ界面に微量濃度のアルカリ金属原子を介在させることにより、発光層部と透明導電性半導体基板との界面抵抗を十分に低減し、また、スイッチング応答性を向上させた発光素子とその製造方法が開示されている。貼り合せ界面にアルカリ金属原子を介在させる具体的な方法として、自然酸化膜の除去された透明導電性半導体基板の貼り合せ面を、規定濃度のアルカリ成分を含有した有機溶媒に浸漬する方法が開示されている。   Therefore, Patent Document 3 sufficiently reduces the interface resistance between the light emitting layer portion and the transparent conductive semiconductor substrate by interposing a trace concentration of alkali metal atoms at the bonding interface of the direct junction type light emitting element. A light emitting device with improved switching response and a method for manufacturing the same are disclosed. As a specific method of interposing an alkali metal atom at the bonding interface, a method of immersing a bonding surface of a transparent conductive semiconductor substrate from which a natural oxide film has been removed in an organic solvent containing an alkali component of a specified concentration is disclosed. Has been.

具体的には、貼り合せ界面にアルカリ金属原子を上記濃度範囲にて介在させることにより、発光素子の界面抵抗の低減を図ることができる。また、上記のような貼り合せ型の発光素子は、発光駆動時の順方向電圧が、貼り合せ界面の寄生容量成分に由来すると考えられる比較的顕著な過渡特性を有する。具体的には、通電開始した直後の順方向電圧を初期値Vf0としたとき、該順方向電圧は通電継続により漸減し、ある安定値Vfに落ち着く。この初期値Vf0に対する上記安定値Vfまでの順方向電圧の減少代を安定化降下電圧ΔVfとしたとき(すなわち、ΔVf≡Vf0−Vf)、貼り合せ界面にアルカリ金属原子を上記濃度範囲にて介在させることにより、該安定化降下電圧ΔVfを大幅に低減することができる。安定化降下電圧ΔVfの小さい発光素子は、高速スイッチングにより調光駆動する用途等においても、そのスイッチング応答性を大幅に改善できる利点がある。また、通電開始後、素子両端の順方向電圧が短時間のうちに安定化するので、駆動電源電圧を一定にして発光駆動した場合、駆動デューティ比に応じた発光輝度特性の線形性及び安定性を高めることができる。   Specifically, the interfacial resistance of the light-emitting element can be reduced by interposing alkali metal atoms at the bonding interface in the above concentration range. In addition, the bonded light emitting element as described above has a relatively remarkable transient characteristic in which the forward voltage during light emission driving is considered to be derived from a parasitic capacitance component at the bonded interface. Specifically, when the forward voltage immediately after the start of energization is set to the initial value Vf0, the forward voltage gradually decreases as the energization continues and settles to a certain stable value Vf. When the reduction amount of the forward voltage up to the stable value Vf with respect to the initial value Vf0 is defined as a stabilized drop voltage ΔVf (that is, ΔVf≡Vf0−Vf), an alkali metal atom is interposed at the bonding interface in the concentration range. By doing so, the stabilized drop voltage ΔVf can be significantly reduced. A light-emitting element having a small stabilization drop voltage ΔVf has an advantage that the switching response can be greatly improved even in applications where dimming driving is performed by high-speed switching. In addition, since the forward voltage across the element stabilizes in a short time after the start of energization, the linearity and stability of the light emission luminance characteristics according to the drive duty ratio when the light source is driven with a constant drive power supply voltage. Can be increased.

しかしながら、特許文献3の発光素子においては、貼り合せ界面に添加するアルカリ金属濃度は、1×1014atoms/cm〜2×1015atoms/cm程度であり、二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)等により貼り合せ界面のアルカリ金属の濃度分析を行なうと、使用する有機溶媒のアルカリ金属濃度がほぼ一定であるにもかかわらず、製品によっては貼り合せ界面に添加されるアルカリ金属濃度が、平均レベルに対して一桁程度も低くなるものが存在することがわかった。その結果、量産時における発光素子の製品ロット内あるいはロット間で、貼り合せ界面へのアルカリ金属濃度のばらつきに対応して、安定化降下電圧ΔVfが極度に高くなるものが突発的に生じやすくなる。 However, in the light-emitting element of Patent Document 3, the concentration of alkali metal added to the bonding interface is about 1 × 10 14 atoms / cm 2 to 2 × 10 15 atoms / cm 2 , and secondary ion mass spectrometry ( When the alkali metal concentration analysis at the bonding interface is performed by Secondary Ion Mass Spectrometry (SIMS) etc., it is added to the bonding interface depending on the product even though the alkali metal concentration of the organic solvent used is almost constant. It was found that the alkali metal concentration is one order of magnitude lower than the average level. As a result, a sudden increase in the stabilization voltage drop ΔVf is likely to occur unexpectedly in response to variations in the alkali metal concentration at the bonding interface within the product lot or between lots of light emitting elements during mass production. .

なお、該界面添加濃度のばらつきを見越して、所望の濃度以上のアルカリ金属を貼り合せ界面に添加する対策として、有機溶媒中のアルカリ金属を一定レベル以上(例えば、水酸化カリウムないし水酸化ナトリウムを添加したイソプロピルアルコールを用いる場合、3×10−4mol/L程度まで)に高めることが有効ではあるが、界面に添加するアルカリ金属濃度が高濃度側に偏った場合に、発光層部側の基板と透明導電性半導体基板との接合不良を招きやすくなる問題がある。例えば、貼り合せの準備作業時において発光層部側の基板に透明導電性半導体基板を重ね合わせる際に、両者の貼り合せ側の基板表面が鏡面化していると、はじめは薄い空気層を介して基板が浮いた状態になっている。しかし、これに小さな衝撃が加わると、粗さの小さい高精度の面同士間に作用する吸引力(例えばファンデルワールス力や、吸着分子の水素結合的相互作用、あるいは表面分極によるクーロン力など、種々の要因が推測される)により、空気が抜けて基板同士が密着した領域が発生する。 In addition, in anticipation of variation in the interface addition concentration, as a countermeasure for adding an alkali metal at a desired concentration or higher to the bonding interface, the alkali metal in the organic solvent is at a certain level (for example, potassium hydroxide or sodium hydroxide is added). When using the added isopropyl alcohol, it is effective to increase it to about 3 × 10 −4 mol / L). However, when the concentration of the alkali metal added to the interface is biased toward the high concentration side, There is a problem in that a bonding failure between the substrate and the transparent conductive semiconductor substrate is likely to occur. For example, when the transparent conductive semiconductor substrate is overlaid on the substrate on the light emitting layer side during the preparatory work for bonding, if the substrate surface on the bonding side is mirrored, initially through a thin air layer The board is floating. However, when a small impact is applied to this, the attractive force acting between high-precision surfaces with small roughness (for example, van der Waals force, hydrogen bonding interaction of adsorbed molecules, or Coulomb force due to surface polarization, etc.) As a result of various factors), an area where the air escapes and the substrates are in close contact with each other occurs.

基板の鏡面間に作用する吸引力は、面間距離が小さくなると距離の累乗に反比例して急速に大きくなる傾向があるので、衝撃により一旦密着領域が生じると、該領域は周囲領域の空気を追い出しながら将棋倒し式に周囲に拡がる(これを、ボンドウェーブと称することがある)。該領域における基板間の密着力は、貼り合せ界面のアルカリ金属濃度が高くなるほど強まる傾向にあるので、アルカリ金属の界面添加濃度が面内に大きくばらついていると、基板間の密着力にも面内にムラが生じやすくなる。特に、強く密着した領域の周囲は基板同士が逆に浮きやすくなり、接合状態が悪化しやすくなる。その結果、熱処理後の貼り合せ界面の接合状態も不均一となり、結局、界面抵抗や順方向電圧あるいは安定化降下電圧のばらつきを解消することができなくなる。   Since the attractive force acting between the mirror surfaces of the substrate tends to increase rapidly in inverse proportion to the power of the distance as the distance between the surfaces decreases, once the contact area is generated by impact, the area absorbs the air in the surrounding area. While expelling, it spreads to the surroundings in a shogi-style manner (this is sometimes called a bond wave). Since the adhesion strength between the substrates in the region tends to increase as the alkali metal concentration at the bonding interface increases, if the alkali metal interface addition concentration varies greatly in the plane, the adhesion strength between the substrates also affects the adhesion strength. Unevenness tends to occur inside. In particular, the substrates tend to float in the vicinity of the strongly adhered region, and the bonding state is likely to deteriorate. As a result, the bonding state of the bonded interface after the heat treatment becomes non-uniform, and eventually, it becomes impossible to eliminate variations in the interface resistance, the forward voltage, or the stabilized drop voltage.

本発明の課題は、発光層部と透明導電性半導体基板との界面アルカリ金属濃度の均一化を図ることができ、ひいては貼り合せ界面の抵抗が十分低減され、かつスイッチング応答性も向上した発光素子を、より安定的かつ高歩留まりにて製造する方法を提供することにある。   An object of the present invention is to provide a light emitting device capable of achieving a uniform interface alkali metal concentration between the light emitting layer portion and the transparent conductive semiconductor substrate, and thus sufficiently reducing the resistance at the bonding interface and improving the switching response. Is to provide a more stable method with a high yield.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するべく、本発明の発光素子の製造方法は、発光層部を有したIII−V族化合物半導体よりなる主化合物半導体層の一方の主表面に、透明導電性半導体基板を直接貼り合わせた構造を有する発光素子の製造方法であって、
成長用基板の第一主表面上に主化合物半導体層をエピタキシャル成長する主化合物半導体層成長工程と、
主化合物半導体層から成長用基板を除去する工程と、
透明導電性半導体基板の主化合物半導体層への貼り合せ面に形成された自然酸化膜を除去する自然酸化膜除去工程と、
該自然酸化膜の除去された透明導電性半導体基板の貼り合せ面に、超音波を印加しつつアルカリ含有有機溶媒を接触させる有機溶媒接触工程と、
主化合物半導体層の貼り合せ面に、有機溶媒接触工程が終了した透明導電性半導体基板の貼り合わせ面を重ね合わせて貼り合せる貼り合せ工程と、を含むことを特徴とする。
In order to solve the above problems, a method for manufacturing a light-emitting device according to the present invention includes directly attaching a transparent conductive semiconductor substrate to one main surface of a main compound semiconductor layer made of a III-V group compound semiconductor having a light-emitting layer portion. A method of manufacturing a light emitting device having a combined structure,
A main compound semiconductor layer growth step of epitaxially growing the main compound semiconductor layer on the first main surface of the growth substrate;
Removing the growth substrate from the main compound semiconductor layer;
A natural oxide film removing step for removing the natural oxide film formed on the bonding surface of the transparent conductive semiconductor substrate to the main compound semiconductor layer;
An organic solvent contact step of contacting the alkali-containing organic solvent while applying ultrasonic waves to the bonding surface of the transparent conductive semiconductor substrate from which the natural oxide film has been removed;
A bonding step of superposing and bonding the bonding surface of the transparent conductive semiconductor substrate on which the organic solvent contact step has been completed to the bonding surface of the main compound semiconductor layer.

発光層部を含む主化合物半導体層に透明導電性半導体基板を貼り合せるに先立っては、透明導電性半導体基板の表面に形成された自然酸化膜を除去する必要がある(ここでいう「自然酸化膜の除去」とは、自然酸化膜の少なくとも一部が除去されて厚さが減じられていればよく、必ずしも完全に除去されることを意味しない)。しかし、自然酸化膜除去後の透明導電性半導体基板を大気中に放置すると、自然酸化膜は、そのままでは比較的短時間に再成長し、界面抵抗低減効果はすぐに損なわれてしまう。そこで、自然酸化膜を除去後の透明導電性半導体基板の表面に有機溶媒を接触させる有機溶媒接触工程を実施する。これにより、自然酸化膜の再成長が抑制され、界面抵抗及び安定化降下電圧ΔVfの低減に寄与する。そして、その有機溶媒をアルカリ含有有機溶媒としておくことで、アルカリ含有有機溶媒に由来したアルカリ金属成分が貼り合せ面上に残留し、界面抵抗及び安定化降下電圧ΔVfの低減効果が一層顕著となる。   Prior to bonding the transparent conductive semiconductor substrate to the main compound semiconductor layer including the light emitting layer portion, it is necessary to remove the natural oxide film formed on the surface of the transparent conductive semiconductor substrate (herein referred to as “natural oxidation”). “Removal of the film” means that at least part of the natural oxide film is removed to reduce the thickness, and does not necessarily mean that the film is completely removed). However, if the transparent conductive semiconductor substrate after removal of the natural oxide film is left in the atmosphere, the natural oxide film will re-grow in a relatively short time as it is, and the interface resistance reduction effect will be immediately lost. Therefore, an organic solvent contact step is performed in which an organic solvent is brought into contact with the surface of the transparent conductive semiconductor substrate after the natural oxide film is removed. Thereby, the regrowth of the natural oxide film is suppressed, which contributes to the reduction of the interface resistance and the stabilization voltage drop ΔVf. Then, by setting the organic solvent as an alkali-containing organic solvent, the alkali metal component derived from the alkali-containing organic solvent remains on the bonding surface, and the effect of reducing the interface resistance and the stabilization voltage drop ΔVf becomes more remarkable. .

そして、自然酸化膜を除去後の透明導電性半導体基板の表面にアルカリ含有有機溶媒を接触させる際に超音波を印加することで、透明導電性半導体基板の表面に残留するアルカリ金属成分の濃度分布を格段に均一化することができる。その結果、量産時における発光素子の製品ロット内あるいはロット間で、貼り合せ界面へのアルカリ金属濃度のばらつきに対応して、安定化降下電圧ΔVfが極度に低くなるものが突発的に生じたりする不具合を大幅に低減できる。また、アルカリ含有有機溶媒中のアルカリ含有濃度をそれほど高めずとも、界面抵抗ないし安定化降下電圧ΔVfの低減に必要なアルカリ濃度を均一に確保できる。その結果、主化合物半導体層と透明導電性半導体基板とを貼り合せのために重ね合わせた状態において、前述のボンドウェーブが、アルカリ濃度が極度に高くなった領域を基点としてわずかな衝撃で発生してしまう不具合も効果的に防止することができる。   The concentration distribution of the alkali metal component remaining on the surface of the transparent conductive semiconductor substrate by applying ultrasonic waves when the alkali-containing organic solvent is brought into contact with the surface of the transparent conductive semiconductor substrate after removing the natural oxide film Can be made more uniform. As a result, there is a sudden occurrence of an extremely low stabilization drop voltage ΔVf corresponding to variations in the alkali metal concentration at the bonding interface within a lot or between lots of light emitting elements during mass production. Defects can be greatly reduced. In addition, even if the alkali-containing concentration in the alkali-containing organic solvent is not increased so much, the alkali concentration necessary for reducing the interface resistance or the stabilized drop voltage ΔVf can be ensured uniformly. As a result, in the state where the main compound semiconductor layer and the transparent conductive semiconductor substrate are overlapped for bonding, the above-mentioned bond wave is generated with a slight impact starting from the region where the alkali concentration is extremely high. It is possible to effectively prevent problems that occur.

貼り合せ界面のアルカリ金属原子濃度は、1×1014atoms/cm以上2×1015atoms/cm以下に調整することが望ましい。主化合物半導体層と透明導電性半導体基板との貼り合せ界面のアルカリ金属原子濃度が1×1014atoms/cm未満であると、発光素子の界面抵抗の低減効果及び安定化降下電圧ΔVfの低減効果が顕著でなくなり、バッチ間、ウェーハ面内のばらつきも大きくなって収率の低下を招く。また、貼り合せ界面のアルカリ金属原子濃度を3×1015atoms/cmを超えた値にするには、アルカリ含有有機溶媒中のアルカリ含有濃度を極度に高める必要があり、超音波を印加しても、貼り合せ界面に高濃度にアルカリが残留した領域が生じやすくなって、前述のボンドウェーブ発生により収率の低下を招く。貼り合せ界面のアルカリ金属原子濃度は、より望ましくは3×1014atoms/cm以上1.5×1015atoms/cm以下(前述のボンドウェーブ等による接合不良抑制の観点においては、さらに望ましくは1.0atoms/cm以下)とするのがよい。 The alkali metal atom concentration at the bonding interface is preferably adjusted to 1 × 10 14 atoms / cm 2 or more and 2 × 10 15 atoms / cm 2 or less. When the alkali metal atom concentration at the bonding interface between the main compound semiconductor layer and the transparent conductive semiconductor substrate is less than 1 × 10 14 atoms / cm 2 , the effect of reducing the interfacial resistance of the light emitting element and the reduction of the stabilized drop voltage ΔVf are achieved. The effect becomes inconspicuous, and the variation between batches and in the wafer surface increases, leading to a decrease in yield. Moreover, in order to make the alkali metal atom concentration at the bonding interface exceed 3 × 10 15 atoms / cm 2 , it is necessary to extremely increase the alkali-containing concentration in the alkali-containing organic solvent. However, a region where alkali remains at a high concentration is likely to occur at the bonding interface, and the yield is reduced due to the generation of the bond wave. The alkali metal atom concentration at the bonding interface is more desirably 3 × 10 14 atoms / cm 2 or more and 1.5 × 10 15 atoms / cm 2 or less (more desirable from the viewpoint of suppressing bonding failure due to the above-described bond wave or the like). Is preferably 1.0 atoms / cm 2 or less.

上記本発明の発光素子の製造方法においては、自然酸化膜除去工程をアルカリ洗浄工程とすることができ、該アルカリ洗浄工程の後、透明導電性半導体基板の水洗工程を行ない、有機溶媒接触工程を、該水洗工程の終了後に透明導電性半導体基板の貼り合わせ面をアルカリ含有有機溶媒に浸漬するか、又は該貼り合わせ面にアルカリ含有有機溶媒の蒸気を接触させ、その後、乾燥を行なう形で実施することができる。   In the method for manufacturing a light emitting device of the present invention, the natural oxide film removing step can be an alkali cleaning step, and after the alkali cleaning step, the transparent conductive semiconductor substrate is washed with water, and the organic solvent contact step is performed. Then, after completion of the water washing step, the bonded surface of the transparent conductive semiconductor substrate is immersed in an alkali-containing organic solvent, or vapor of the alkali-containing organic solvent is brought into contact with the bonded surface, and then dried. can do.

すなわち、自然酸化膜除去工程は、例えば水酸化カリウム水溶液あるいは水酸化ナトリウム水溶液などのアルカリエッチング液を用いたアルカリ洗浄工程とすることで、自然酸化膜を速やかに除去することができる。この場合、貼り合せ界面に付与されるアルカリ金属原子は、前者の場合はカリウム原子、後者の場合はナトリウム原子となる。なお、自然酸化膜除去工程の実施後により、貼り合せ界面において、主化合物半導体層側と前記透明導電性半導体基板側とに形成された酸化膜の合計厚さは1.3nm以下、より望ましくは0.8nm以下なっているのがよい。   That is, the natural oxide film removal step can be quickly removed by performing an alkali cleaning step using an alkaline etching solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution. In this case, the alkali metal atom imparted to the bonding interface is a potassium atom in the former case and a sodium atom in the latter case. The total thickness of the oxide films formed on the main compound semiconductor layer side and the transparent conductive semiconductor substrate side at the bonding interface after the natural oxide film removing step is 1.3 nm or less, more preferably It should be 0.8 nm or less.

自然酸化膜除去を、上記のような湿式エッチングにて行なえば、当然、エッチング後の水洗工程乾燥工程が必要である。この場合、その水洗後、直ちに上記有機溶媒接触工程を行なって水分を有機溶媒と置換し、乾燥を行なうと、乾燥後の自然酸化膜の成長速度が大幅に減少し、界面抵抗低減に寄与する。また、自然酸化膜除去後、透明導電性半導体基板を主化合物半導体層に貼り合せるまでの保管インターバルも比較的長く確保することができ、直接接合型発光素子の製造能率向上にも寄与する。   If the natural oxide film is removed by wet etching as described above, a water washing step and a drying step after etching are naturally necessary. In this case, immediately after washing with water, the organic solvent contact step is performed to replace the water with the organic solvent, and drying is performed. As a result, the growth rate of the natural oxide film after drying is greatly reduced, which contributes to reduction in interface resistance. . In addition, after the natural oxide film is removed, the storage interval until the transparent conductive semiconductor substrate is bonded to the main compound semiconductor layer can be secured for a relatively long time, which contributes to an improvement in manufacturing efficiency of the direct junction type light emitting device.

この場合、アルカリ含有有機溶媒は、洗浄工程1回当たりに水洗工程を経て洗浄液から持ち込まれる濃度よりも高濃度のアルカリ成分を含有したものを使用すること(つまり、洗浄工程から持ち込まれる量以上に積極的にアルカリ成分を添加したアルカリ含有有機溶媒を用いること)が、貼り合せ界面のアルカリ金属原子濃度を前述の範囲まで高める上で、より望ましいといえる。   In this case, use an alkali-containing organic solvent containing an alkali component having a higher concentration than the concentration brought in from the washing liquid through the water washing step per washing step (that is, more than the amount brought in from the washing step). It is more desirable to use an alkali-containing organic solvent to which an alkali component is positively added in order to increase the alkali metal atom concentration at the bonding interface to the above range.

有機溶媒接触工程に使用する有機溶媒は、水洗後に貼り合せ面に残留した水滴の置換が進みやすいよう、水と自由に混合するものを使用することが望ましい(例えば、アルコールやケトン類など)。また、共沸により水分を有機溶媒とともに効率的に蒸発させるには、水と自由に混合する有機溶媒であって、20℃での水との蒸気圧差が100hPa以下のものを使用することがより望ましい。このような有機溶媒として、具体的にはイソプロパノール(沸点:82.4℃、20℃での水との蒸気圧差:20hPa)、あるいはエタノール(沸点:78.3℃、20℃での水との蒸気圧差:36hPa)などのアルコールを好適に使用できる。また、アルコールは、アルカリ金属水酸化物を溶解しやすく、アルカリ含有有機溶媒を調製しやすい観点においても有用である(つまり、アルカリ含有有機溶媒はアルカリ金属水酸化物を溶解したアルコールとすることができる)。   As the organic solvent used in the organic solvent contact step, it is desirable to use an organic solvent that is freely mixed with water so that replacement of water droplets remaining on the bonding surface after washing with water can easily proceed (for example, alcohol and ketones). In order to efficiently evaporate water together with the organic solvent by azeotropy, it is more preferable to use an organic solvent that is freely mixed with water and has a vapor pressure difference with water at 20 ° C. of 100 hPa or less. desirable. As such an organic solvent, specifically, isopropanol (boiling point: 82.4 ° C., vapor pressure difference with water at 20 ° C .: 20 hPa), or ethanol (boiling point: 78.3 ° C., with water at 20 ° C.) Alcohols such as vapor pressure difference: 36 hPa) can be preferably used. The alcohol is also useful from the viewpoint of easily dissolving the alkali metal hydroxide and easily preparing the alkali-containing organic solvent (that is, the alkali-containing organic solvent may be an alcohol in which the alkali metal hydroxide is dissolved). it can).

この場合、アルカリ含有有機溶媒はアルカリ金属水酸化物とともに水を含有していることが、貼り合せ界面のアルカリ金属原子濃度を前述の範囲まで高める上でより望ましい。   In this case, it is more desirable that the alkali-containing organic solvent contains water together with the alkali metal hydroxide in order to increase the alkali metal atom concentration at the bonding interface to the above range.

使用するアルコールとしては、特にイソプロパノールが、乾燥後の自然酸化膜再成長の抑制効果が大きいので、本発明に効果的である。また、アルカリ含有有機溶媒に添加するアルカリ金属水酸化物としては水酸化カリウム又は水酸化ナトリウムを使用することが望ましい。   As the alcohol to be used, isopropanol is particularly effective in the present invention because it has a great effect of suppressing regrowth of natural oxide film after drying. Moreover, it is desirable to use potassium hydroxide or sodium hydroxide as the alkali metal hydroxide added to the alkali-containing organic solvent.

この場合、アルカリ含有有機溶媒は、水酸化カリウム又は水酸化ナトリウム(両者の複合添加であってもよく、その場合は合計)を5×10−6mol/L以上3×10−4mol/L以下の範囲で含有したものを使用することが望ましい。該アルカリ含有量が5×10−6mol/L未満になると界面抵抗低減効果が不十分となり、3×10−4mol/Lを超えると、超音波を印加しても、貼り合せ界面に高濃度にアルカリが残留した領域が生じやすくなり、前述のボンドウェーブが生じやすくなる。該アルカリ含有量は、より望ましくは1×10−5mol/L以上3×10−4mol/L以下であるのがよい(接合不良抑制の観点においては、さらに望ましくは1×10−4mol/L以下)。また、アルカリ含有有機溶媒は水分を1×10−4mol/L以上5mol/L以下の範囲で含有していることが望ましい。水分含有量が1×10−4mol/L未満では貼り合せ界面のアルカリ金属原子濃度を前述の範囲まで高めることが困難となる。また、5mol/Lを超えると貼り合せ面に水分が残留しやすくなり、自然酸化膜が再成長して界面抵抗低減効果ないし安定化降下電圧ΔVfの低減効果が却って低下することにつながる。上記水分含有範囲は、より望ましくは0.05mol/L以上5mol/L以下とするのがよい。 In this case, the alkali-containing organic solvent is potassium hydroxide or sodium hydroxide (a combination of both may be added, in which case the total) is 5 × 10 −6 mol / L or more and 3 × 10 −4 mol / L. It is desirable to use those contained in the following ranges. When the alkali content is less than 5 × 10 −6 mol / L, the effect of reducing the interface resistance is insufficient, and when it exceeds 3 × 10 −4 mol / L, even if an ultrasonic wave is applied, the interface is highly bonded. A region where alkali remains in the concentration is likely to occur, and the above-described bond wave is likely to occur. The alkali content is more preferably 1 × 10 −5 mol / L or more and 3 × 10 −4 mol / L or less (more preferably 1 × 10 −4 mol from the viewpoint of suppressing poor bonding). / L or less). The alkali-containing organic solvent preferably contains moisture in the range of 1 × 10 −4 mol / L to 5 mol / L. When the water content is less than 1 × 10 −4 mol / L, it is difficult to increase the alkali metal atom concentration at the bonding interface to the above range. On the other hand, if it exceeds 5 mol / L, moisture tends to remain on the bonding surface, and the natural oxide film re-grows, leading to a decrease in the interface resistance reduction effect or the stabilization drop voltage ΔVf. The water content range is more preferably 0.05 mol / L or more and 5 mol / L or less.

なお、上記有機溶媒接触工程(あるいは、アルカリ洗浄による自然酸化膜除去工程及び水洗工程と、それに引き続く有機溶媒接触工程)は、主化合物半導体層の貼り合せ面に対しても同様に実施でき、界面抵抗ないし安定化降下電圧ΔVfの低減にさらに寄与する。   The organic solvent contact step (or the natural oxide film removal step and the water washing step by alkali cleaning, and the subsequent organic solvent contact step) can be similarly performed on the bonding surface of the main compound semiconductor layer. This further contributes to the reduction of the resistance or the stabilized drop voltage ΔVf.

以下、本発明に係る発光素子の製造方法の実施形態を、図面を参照して説明する。図1は、本発明の適用対象となる発光素子の概念図である。該発光素子100は、透明導電性半導体基板としてのGaP基板70(本実施形態ではn型であるが、主化合物半導体層50の各層の積層順序が上記とp/n反転する場合はp型とする:また、GaAsP、AlGaAsなどの他の透明導電性半導体基板を使用することもできる)の第一主表面上に、発光層部24が直接貼り合わされた構造を有してなる。本実施形態において各層及び基板の主表面は、図1のごとく、発光素子100の光取出面PFを上側にした状態を正置状態として、該正置状態における図面上側に表れる面を第一主表面、下側に表れる面を第二主表面として統一的に記載する。従って、工程説明の都合上、上記正置状態に対し上下を反転した転置状態にて図示を行なう場合は、該図示における第一主表面と第二主表面の上下関係も反転する。   Hereinafter, an embodiment of a method for manufacturing a light emitting device according to the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of a light emitting element to which the present invention is applied. The light-emitting element 100 includes a GaP substrate 70 as a transparent conductive semiconductor substrate (in this embodiment, n-type, but p-type when the stacking order of each layer of the main compound semiconductor layer 50 is reversed p / n above. Yes: Other transparent conductive semiconductor substrates such as GaAsP and AlGaAs can also be used), and the light emitting layer portion 24 is directly bonded to the first main surface. In the present embodiment, the main surfaces of the layers and the substrate, as shown in FIG. 1, are defined as a state where the light extraction surface PF of the light emitting element 100 is on the upper side, and a surface appearing on the upper side of the drawing in the normal state is a first main surface. The surface, the surface appearing on the lower side, is uniformly described as the second main surface. Therefore, for convenience of description of the process, when the drawing is performed in a transposed state that is upside down with respect to the normal state, the vertical relationship between the first main surface and the second main surface in the drawing is also reversed.

発光層部24は、ノンドープの(AlGa1−xIn1−yP(ただし、0≦x≦0.55、0.45≦y≦0.55)混晶からなる活性層5を、p型(AlGa1−zIn1−yP(ただしx<z≦1)からなるp型クラッド層6と、n型(AlGa1−zIn1−yP(ただしx<z≦1)からなるn型クラッド層4とにより挟んだ構造を有し、活性層5の組成に応じて、発光波長を、緑色から赤色領域(発光波長(ピーク発光波長)が550nm以上670nm以下)にて調整できる。なお、発光層部24は、InGaAl1−x−yN(0≦x≦1,0≦y≦1,x+y≦1)にて構成されていてもよい。 The light emitting layer portion 24 is an active layer 5 made of a non-doped (Al x Ga 1-x ) y In 1-y P (where 0 ≦ x ≦ 0.55, 0.45 ≦ y ≦ 0.55) mixed crystal. the, the p-type (Al z Ga 1-z) and p-type cladding layer 6 made of y In 1-y P (except x <z ≦ 1), n-type (Al z Ga 1-z) y In 1-y Depending on the composition of the active layer 5, the emission wavelength is changed from green to red region (emission wavelength (peak emission wavelength)). 550 nm to 670 nm). The light emitting layer section 24 may be configured by In x Ga y Al 1-x -y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1, x + y ≦ 1).

発光層部24の第一主表面上にはGaP電流拡散層20が形成され、発光層部24とともに主化合物半導体層50を構成している。電流拡散層20の第一主表面の略中央には、発光層部24に発光駆動電圧を印加するための光取出面側電極9(例えばAu電極)が形成されている。該光取出面側電極9とGaP電流拡散層20との間には、光取出側接合合金化層としてのAuBe接合合金化層9a(例えばBe:2質量%)が配置されている。そして、電流拡散層20の第一主表面における光取出面側電極9の周囲の領域が、発光層部24からの光取出領域PFを形成している。また、本実施形態では、p型クラッド層6が光取出面側に位置する積層形態としているが、n型クラッド層4が光取出面側に位置する積層形態としてもよい(この場合、電流拡散層20はn型にする必要があり、また、接合合金化層9aはAuGeNi等で構成する)。   A GaP current diffusion layer 20 is formed on the first main surface of the light emitting layer portion 24, and constitutes the main compound semiconductor layer 50 together with the light emitting layer portion 24. A light extraction surface side electrode 9 (for example, an Au electrode) for applying a light emission driving voltage to the light emitting layer portion 24 is formed substantially at the center of the first main surface of the current diffusion layer 20. Between the light extraction surface side electrode 9 and the GaP current diffusion layer 20, an AuBe bonding alloyed layer 9a (for example, Be: 2% by mass) as a light extraction side bonding alloyed layer is disposed. A region around the light extraction surface side electrode 9 on the first main surface of the current diffusion layer 20 forms a light extraction region PF from the light emitting layer portion 24. Further, in the present embodiment, the p-type cladding layer 6 is a laminated form in which it is located on the light extraction surface side, but it may be a laminated form in which the n-type cladding layer 4 is located on the light extraction surface side (in this case, current diffusion) The layer 20 must be n-type, and the bonded alloying layer 9a is made of AuGeNi or the like).

n型クラッド層4及びpクラッド層6の厚さは、例えばそれぞれ0.8μm以上4μm
以下(望ましくは0.8μm以上2μm以下)であり、活性層5の厚さは例えば0.4μm以上2μm以下(望ましくは0.4μm以上1μm以下)である。発光層部24全体の厚さは、例えば2μm以上10μm以下(望ましくは2μm以上5μm以下)である。さらに、GaP電流拡散層20の厚さは、例えば5μm以上28μm以下(望ましくは8μm以上15μm以下)である。従って、主化合物半導体層50の厚さは、例えば7μm以上38μm以下(望ましくは10μm以上20μm以下)である。
The thicknesses of the n-type cladding layer 4 and the p-cladding layer 6 are, for example, 0.8 μm or more and 4 μm, respectively.
The thickness of the active layer 5 is, for example, not less than 0.4 μm and not more than 2 μm (desirably not less than 0.4 μm and not more than 1 μm). The total thickness of the light emitting layer portion 24 is, for example, 2 μm to 10 μm (desirably 2 μm to 5 μm). Furthermore, the thickness of the GaP current diffusion layer 20 is, for example, 5 μm to 28 μm (desirably 8 μm to 15 μm). Therefore, the thickness of the main compound semiconductor layer 50 is, for example, 7 μm or more and 38 μm or less (desirably 10 μm or more and 20 μm or less).

GaP基板70は、GaP単結晶インゴットをスライス・研磨して製造されたものであり、その厚みは例えば50μm以上500μm以下である。なお、GaP基板として、GaP単結晶インゴットをスライス・研磨して製造された単結晶基板の、主化合物半導体層50との貼り合せ面側の主表面にGaPあるいはInGaPの単結晶層をエピタキシャル成長した、GaPエピタキシャルウェーハを使用してもよい(この場合、InGaP層をエピタキシャル成長した基板を使用する場合は、GaP単結晶基板の厚みよりもInGaP層が薄ければ、当該エピタキシャルウェーハは、広義にGaP基板の概念に属するものとみなす)。GaP基板70の裏面には、基板側接合合金化層として、AuGeNi接合合金化層16(例えばGe:15質量%、Ni:10質量%)が分散形成されている。接合合金化層16は例えばAgペースト層などにより図示しない金属ステージに接着される。   The GaP substrate 70 is manufactured by slicing and polishing a GaP single crystal ingot, and has a thickness of, for example, 50 μm or more and 500 μm or less. As a GaP substrate, a GaP or InGaP single crystal layer was epitaxially grown on the main surface of the single crystal substrate manufactured by slicing and polishing a GaP single crystal ingot on the bonding surface side with the main compound semiconductor layer 50. A GaP epitaxial wafer may be used (in this case, when using a substrate on which an InGaP layer is epitaxially grown, if the InGaP layer is thinner than the thickness of the GaP single crystal substrate, the epitaxial wafer is broadly defined as a GaP substrate). Considered to belong to the concept). An AuGeNi bonding alloyed layer 16 (for example, Ge: 15% by mass, Ni: 10% by mass) is dispersedly formed on the back surface of the GaP substrate 70 as a substrate side bonding alloyed layer. The bonding alloying layer 16 is bonded to a metal stage (not shown) by, for example, an Ag paste layer.

GaP基板70と主化合物半導体層50との界面は貼り合せ界面となっており、その貼り合せ界面のアルカリ金属原子濃度が1×1014atoms/cm以上2×1015atoms/cm以下(望ましくは、3×1014atoms/cm以上1.5×1015atoms/cm以下(さらに望ましくは1.0×1015atoms/cm以下))に調整されている。アルカリ金属原子は、本実施形態ではカリウム原子であるが、ナトリウム原子でもよく、またカリウム原子とナトリウム原子が混在していてもよい。 The interface between the GaP substrate 70 and the main compound semiconductor layer 50 is a bonded interface, and the alkali metal atom concentration at the bonded interface is 1 × 10 14 atoms / cm 2 or more and 2 × 10 15 atoms / cm 2 or less ( Desirably, it is adjusted to 3 × 10 14 atoms / cm 2 or more and 1.5 × 10 15 atoms / cm 2 or less (more desirably 1.0 × 10 15 atoms / cm 2 or less). The alkali metal atom is a potassium atom in the present embodiment, but may be a sodium atom or a mixture of potassium and sodium atoms.

この「界面のアルカリ金属原子濃度」は、次のようにして測定が可能である。すなわち、GaP基板70を第一主表面側あるいは第二主表面側から深さ方向(x)にSIMS分析して、図4に示すように、各深さ位置での単位体積当たりのアルカリ金属原子濃度を示す深さ方向濃度プロファイルC(x)を測定する。なお、深さ方向のSIMS分析は、照射する一次イオンビームを試料表面の深さ方向エッチングビームに兼用しながら二次イオン質量分析を行なうD−SIMS(Dynamic SIMS)により行なうことができる。この深さ方向濃度プロファイルC(x)を、上記界面に対応するアルカリ金属原子濃度ピーク位置を含む区間にて深さ方向距離xにより積分した値を界面アルカリ金属原子濃度として採用する。深さ方向濃度プロファイルC(x)は、界面位置(濃度ピーク位置)から離間するに従い急速に減少し、バックグラウンドアルカリ金属原子濃度を示すベースラインを形成する。このベースラインからのピークの立ち上がり位置を積分区間の境界として定めればよいが、ベースラインでのアルカリ金属原子濃度はピーク位置でのアルカリ金属原子濃度よりも数桁低いのが通常であるため、積分区間は上記立ち上がり位置よりもピーク外側にはみ出す形で広く設定しても差し支えなく、それによる界面アルカリ金属原子濃度の計算値への影響はほとんどない。   The “concentration of alkali metal atom at the interface” can be measured as follows. That is, the GaP substrate 70 is subjected to SIMS analysis in the depth direction (x) from the first main surface side or the second main surface side, and as shown in FIG. 4, alkali metal atoms per unit volume at each depth position. A depth direction density profile C (x) indicating the density is measured. The SIMS analysis in the depth direction can be performed by D-SIMS (Dynamic SIMS) in which secondary ion mass spectrometry is performed while using the irradiated primary ion beam as a depth direction etching beam on the sample surface. A value obtained by integrating the depth direction concentration profile C (x) by the depth direction distance x in a section including the alkali metal atom concentration peak position corresponding to the interface is adopted as the interface alkali metal atom concentration. The depth direction concentration profile C (x) rapidly decreases as the distance from the interface position (concentration peak position) increases, and forms a baseline indicating the background alkali metal atom concentration. The rise position of the peak from this baseline may be determined as the boundary of the integration interval, but the alkali metal atom concentration at the baseline is usually several orders of magnitude lower than the alkali metal atom concentration at the peak position. The integration interval may be set broadly so that it protrudes outside the peak from the rising position, and this has little influence on the calculated value of the interfacial alkali metal atom concentration.

図1に戻り、GaP基板70と主化合物半導体層50との界面は貼り合せ界面には、酸化膜70jが形成されている。この酸化膜70jは、貼り合せの段階でGaP基板70と主化合物半導体層50との各貼り合せ面に各々形成されていた自然酸化膜に由来するものであり、その厚みは1.3nm以下(望ましくは、0.8nm以下)である。酸化膜70jの厚みは、例えば分光エリプソメトリを用いて測定が可能である。   Returning to FIG. 1, an oxide film 70 j is formed at the bonding interface between the GaP substrate 70 and the main compound semiconductor layer 50. The oxide film 70j is derived from a natural oxide film formed on each bonding surface of the GaP substrate 70 and the main compound semiconductor layer 50 at the bonding stage, and has a thickness of 1.3 nm or less ( Desirably, it is 0.8 nm or less. The thickness of the oxide film 70j can be measured using, for example, spectroscopic ellipsometry.

以下、上記発光素子100の製造方法の具体例について説明する。
まず、図2の工程1に示すように、GaAs基板をなすGaAs単結晶基板1の主表面に、n型GaAsバッファ層2を例えば0.5μm、AlAsからなる剥離層3を例えば0.5μm、この順序にてエピタキシャル成長させる。その後、発光層部24として、n型クラッド層4(厚さ:例えば1μm)、AlGaInP活性層(ノンドープ)5(厚さ:例えば0.6μm)、及びp型クラッド層6(厚さ:例えば1μm)を、この順序にエピタキシャル成長させる。発光層部24の全厚は2.6μmである。また、さらにp型GaPよりなる電流拡散層20を例えば17μmエピタキシャル成長させる。上記各層のエピタキシャル成長は、公知のMOVPE法により行なうことができる。これによって、GaAs単結晶基板1上に発光層部24及びGaP電流拡散層20からなる主化合物半導体層50が形成される。
Hereinafter, a specific example of the method for manufacturing the light emitting device 100 will be described.
First, as shown in Step 1 of FIG. 2, an n-type GaAs buffer layer 2 is 0.5 μm, for example, and a release layer 3 made of AlAs is 0.5 μm, for example, on the main surface of a GaAs single crystal substrate 1 constituting a GaAs substrate. Epitaxial growth is performed in this order. Thereafter, as the light emitting layer portion 24, an n-type cladding layer 4 (thickness: for example 1 μm), an AlGaInP active layer (non-doped) 5 (thickness: for example 0.6 μm), and a p-type cladding layer 6 (thickness: for example 1 μm). ) In this order. The total thickness of the light emitting layer portion 24 is 2.6 μm. Further, a current diffusion layer 20 made of p-type GaP is epitaxially grown by 17 μm, for example. The epitaxial growth of each of the above layers can be performed by a known MOVPE method. Thus, the main compound semiconductor layer 50 including the light emitting layer portion 24 and the GaP current diffusion layer 20 is formed on the GaAs single crystal substrate 1.

次に、工程2に示すように、主化合物半導体層50の第一主表面にワックス等からなる接着剤層23を形成し、工程3に示すように、Si基板等からなる仮支持基板110を接着して仮支持貼り合わせ体120を作る。そして、図3の工程4に示すように、仮支持貼り合わせ体120に付随しているGaAs基板としてのGaAs単結晶基板1を除去する。該除去は、例えば仮支持貼り合わせ体120(工程3参照)をGaAs単結晶基板1とともにエッチング液(例えば10%フッ酸水溶液)に浸漬し、バッファ層2と発光層部24との間に形成したAlAs剥離層3を選択エッチングすることにより、該GaAs単結晶基板1を仮支持貼り合わせ体120から剥離する形で実施することができる。なお、AlAs剥離層3に代えてAlInPよりなるエッチストップ層を形成しておき、GaAsに対して選択エッチング性を有する第一エッチング液(例えばアンモニア/過酸化水素混合液)を用いてGaAs単結晶基板1をGaAsバッファ層2とともにエッチング除去し、次いでAlInPに対して選択エッチング性を有する第二エッチング液(例えば塩酸:Al酸化層除去用にフッ酸を添加してもよい)を用いてエッチストップ層をエッチング除去する工程を採用することもできる。   Next, as shown in Step 2, an adhesive layer 23 made of wax or the like is formed on the first main surface of the main compound semiconductor layer 50, and as shown in Step 3, a temporary support substrate 110 made of Si substrate or the like is formed. The temporary support bonded body 120 is made by bonding. Then, as shown in Step 4 of FIG. 3, the GaAs single crystal substrate 1 as the GaAs substrate attached to the temporary support bonded body 120 is removed. For this removal, for example, the temporary support bonded body 120 (see step 3) is immersed in an etching solution (for example, a 10% aqueous hydrofluoric acid solution) together with the GaAs single crystal substrate 1 and formed between the buffer layer 2 and the light emitting layer portion 24. The GaAs single crystal substrate 1 can be peeled from the temporary support bonded body 120 by selectively etching the AlAs release layer 3 thus formed. It should be noted that an etch stop layer made of AlInP is formed in place of the AlAs release layer 3, and a GaAs single crystal is used by using a first etching solution (for example, ammonia / hydrogen peroxide mixed solution) having selective etching properties with respect to GaAs. Etch and remove the substrate 1 together with the GaAs buffer layer 2 and then etch stop using a second etchant that has selective etching properties with respect to AlInP (for example, hydrochloric acid: hydrofluoric acid may be added to remove the Al oxide layer) A step of etching away the layer can also be employed.

次に、工程5に示すように、別途用意したn型GaP基板70の第一主表面(貼り合せ面)を、水酸化ナトリウム水溶液又は水酸化カリウム水溶液からなるアルカリエッチング液により洗浄し、n型GaP基板70の第一主表面に形成されている自然酸化膜70iを除去する。具体的には、1.5〜2nm程度形成されていた自然酸化膜は、この洗浄により、大幅に(例えば1nm未満に)厚みが減じられる。そして、洗浄後、さらにn型GaP基板70の第一主表面を水洗する。   Next, as shown in Step 5, the first main surface (bonding surface) of the n-type GaP substrate 70 prepared separately is washed with an alkali etching solution made of an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide, and n-type. The natural oxide film 70 i formed on the first main surface of the GaP substrate 70 is removed. Specifically, the thickness of the natural oxide film formed to about 1.5 to 2 nm is greatly reduced (for example, less than 1 nm) by this cleaning. Then, after cleaning, the first main surface of n-type GaP substrate 70 is further washed with water.

次いで工程6に示すように、アルカリ含有有機溶媒82に該第一主表面を浸漬して水滴を置換し(有機溶媒接触処理)、その後、乾燥を行なう。具体的には、使用する、アルカリ含有有機溶媒は、具体的には有機溶媒としてイソプロパノールを使用するものであり、水酸化カリウム又は水酸化ナトリウム(両者の複合添加であってもよく、その場合は合計)を5×10−6mol/L以上3×10−4mol/L以下(望ましくは、1×10−5mol/L以上3×10−4mol/L以下(さらに望ましくは1×10−4mol/L以下))、水分を1×10−4mol/L以上5mol/L以下(望ましくは、0.05mol/L以上5mol/L以下)の範囲で含有したものを使用する。上記のアルカリ含有有機溶媒は、水に水酸化カリウム又は水酸化ナトリウムを1質量%以上30質量%以下の範囲で溶解した水溶液を、イソプロパノールに対し、0.01体積%以上0.8体積%以下の範囲で添加して調製することができる。 Next, as shown in Step 6, the first main surface is immersed in the alkali-containing organic solvent 82 to replace water droplets (organic solvent contact treatment), and then dried. Specifically, the alkali-containing organic solvent to be used is one that specifically uses isopropanol as the organic solvent, and may be potassium hydroxide or sodium hydroxide (a combination of both may be added. 5 × 10 −6 mol / L to 3 × 10 −4 mol / L (desirably 1 × 10 −5 mol / L to 3 × 10 −4 mol / L (more desirably 1 × 10 -4 mol / L or less)), and containing water in the range of 1 × 10 -4 mol / L to 5 mol / L (desirably 0.05 mol / L to 5 mol / L). The alkali-containing organic solvent is an aqueous solution prepared by dissolving potassium hydroxide or sodium hydroxide in water in the range of 1% by mass to 30% by mass with respect to isopropanol, 0.01% by volume to 0.8% by volume. It can be prepared by adding in the range.

上記のアルカリ含有有機溶媒82への浸漬中に、n型GaP基板70の第一主表面に超音波を印加する。具体的には、アルカリ含有有機溶媒82を収容する槽中に設けられた超音波発生装置81から超音波を、周波数10kHz以上500Hz以下となるように出力する。超音波の強度は、例えば超音波発生に伴なう発泡(キャビテーション)は認められ、かつ基板表面への機械的な生じない程度に調整する。また、超音波印加時間は例えば1〜5分程度である。   During immersion in the alkali-containing organic solvent 82, ultrasonic waves are applied to the first main surface of the n-type GaP substrate 70. Specifically, an ultrasonic wave is output from an ultrasonic wave generator 81 provided in a tank containing the alkali-containing organic solvent 82 so as to have a frequency of 10 kHz to 500 Hz. The intensity of the ultrasonic wave is adjusted to such an extent that foaming (cavitation) accompanying the generation of ultrasonic waves is recognized and mechanical generation on the substrate surface does not occur. The ultrasonic wave application time is, for example, about 1 to 5 minutes.

なお、上記の自然酸化膜除去、水洗、有機溶媒接触処理(ならびに超音波の印加)及び乾燥は、工程4の実施により露出した主化合物半導体層50の第二主表面(貼り合せ面)についても、全く同様に行なうことが望ましい。   In addition, said natural oxide film removal, water washing, an organic solvent contact process (and application of an ultrasonic wave), and drying also apply to the second main surface (bonding surface) of the main compound semiconductor layer 50 exposed by the implementation of step 4. It is desirable to do exactly the same.

そして、工程7に示すごとく、上記仮支持貼り合わせ体120の状態で、GaAs単結晶基板1の除去により露出した主化合物半導体層50の第二主表面に別途用意したn型GaP基板70の第一主表面を重ね合わせて圧迫し、さらに400℃以上700℃以下に昇温して貼り合わせ熱処理を行なう。   Then, as shown in Step 7, in the state of the temporary support bonded body 120, the n-type GaP substrate 70 prepared separately on the second main surface of the main compound semiconductor layer 50 exposed by removing the GaAs single crystal substrate 1 is used. One main surface is overlapped and pressed, and further heated to 400 ° C. or higher and 700 ° C. or lower to perform a bonding heat treatment.

上記のごとく、アルカリ洗浄により自然酸化膜が除去されたn型GaP基板70の第一主表面(あるいは、主化合物半導体層50の第二主表面)は、水洗後、アルカリ含有有機溶媒接触処理を行なって乾燥することで、一旦除去された自然酸化膜70iが再成長し難くなり、貼り合せ後の界面の酸化膜70jの厚さを前述の範囲にとどめることができる。さらに、アルカリ含有有機溶媒に由来したアルカリ金属成分が貼り合せ面上に上記濃度範囲にて微量残留する。また、自然酸化膜除去後の保管時間が長くなっても自然酸化膜の厚さを小さく留めることができるので、工程スケジュールの柔軟性が増し、生産性の向上にも寄与する。そして、貼り合せにより得られる発光素子の貼り合せ界面抵抗を低くとどめることができるので、順方向電圧Vfを小さくすることができる。また、通電開始後における直列抵抗の変化代、すなわち安定化降下電圧ΔVfも小さく安定であり、例えば、発光素子を高速スイッチングにより調光駆動する用途等においても、そのスイッチング応答性を大幅に改善することができる。   As described above, the first main surface of the n-type GaP substrate 70 (or the second main surface of the main compound semiconductor layer 50) from which the natural oxide film has been removed by alkali cleaning is washed with water and then subjected to alkali-containing organic solvent contact treatment. By performing the drying, the natural oxide film 70i once removed becomes difficult to re-grow, and the thickness of the oxide film 70j at the interface after bonding can be kept within the above-mentioned range. Furthermore, a trace amount of the alkali metal component derived from the alkali-containing organic solvent remains in the concentration range on the bonded surface. Moreover, since the thickness of the natural oxide film can be kept small even if the storage time after removal of the natural oxide film becomes long, the flexibility of the process schedule is increased, which contributes to the improvement of productivity. Since the bonding interface resistance of the light emitting element obtained by bonding can be kept low, the forward voltage Vf can be reduced. In addition, the series resistance change margin after the start of energization, that is, the stabilized drop voltage ΔVf is small and stable. For example, the switching responsiveness is greatly improved even in applications where the light emitting element is dimming driven by high-speed switching. be able to.

また、自然酸化膜を除去後の透明導電性半導体基板の表面にアルカリ含有有機溶媒を接触させる際に超音波を印加することで、透明導電性半導体基板の表面に残留するアルカリ金属成分の濃度分布を格段に均一化することができる。その結果、量産時における発光素子の製品ロット内あるいはロット間で、貼り合せ界面へのアルカリ金属濃度のばらつきに対応して、安定化降下電圧ΔVfが極度に高くなるものが突発的に生じたりする不具合を大幅に低減できる。すなわち、超音波を印加しない場合に比べ、ΔVfが異常値となる発光素子の統計的な発生割合を大きく低下させることができた。また、アルカリ含有有機溶媒中のアルカリ含有濃度をそれほど高めずとも、界面抵抗ないし安定化降下電圧ΔVfの低減に必要なアルカリ濃度を均一に確保できる。その結果、接合状態の悪化や不均一化を防止することができる。   In addition, the concentration distribution of the alkali metal component remaining on the surface of the transparent conductive semiconductor substrate by applying ultrasonic waves when the alkali-containing organic solvent is brought into contact with the surface of the transparent conductive semiconductor substrate after removing the natural oxide film Can be made more uniform. As a result, there is a sudden occurrence of an extremely high stabilization voltage drop ΔVf corresponding to variations in the alkali metal concentration at the bonding interface within the product lot or between lots of light emitting elements during mass production. Defects can be greatly reduced. That is, compared with the case where no ultrasonic wave is applied, the statistical generation ratio of the light emitting elements in which ΔVf becomes an abnormal value can be greatly reduced. In addition, even if the alkali-containing concentration in the alkali-containing organic solvent is not increased so much, the alkali concentration necessary for reducing the interface resistance or the stabilized drop voltage ΔVf can be ensured uniformly. As a result, it is possible to prevent deterioration and non-uniformity of the bonded state.

上記貼り合わせ熱処理が完了したら、工程8に示すように、有機溶剤等で接着剤層23を溶解し、仮支持基板110を分離する。次いで、工程9に示すように、仮支持基板110の分離・除去により露出した主化合物半導体層50の第一主表面、すなわち、GaP電流拡散層20の第一主表面には、その一部を覆う形でAuBe光取出側接合金属層を形成し、さらに、300℃以上500℃以下の温度で合金化熱処理を行なうことにより、AuBe接合合金化層(光取出側接合合金化層)9aとする。そして、そのAuBe接合合金化層9aを覆うようにAu等からなる光取出側電極9を形成する。また、GaP基板70の第二主表面にはAuGeNi接合金属層を蒸着により分散形成し、さらに、300℃以上500℃以下の温度で合金化熱処理を行なうことにより、AuGeNi接合合金化層(基板側接合合金化層)16とする。   When the bonding heat treatment is completed, as shown in Step 8, the adhesive layer 23 is dissolved with an organic solvent or the like, and the temporary support substrate 110 is separated. Next, as shown in Step 9, a part of the first main surface of the main compound semiconductor layer 50 exposed by the separation / removal of the temporary support substrate 110, that is, the first main surface of the GaP current diffusion layer 20 is partially applied. An AuBe light extraction side bonding metal layer is formed so as to be covered, and further subjected to alloying heat treatment at a temperature of 300 ° C. or higher and 500 ° C. or lower to form an AuBe bonding alloyed layer (light extraction side bonding alloyed layer) 9a. . And the light extraction side electrode 9 which consists of Au etc. is formed so that the AuBe joining alloying layer 9a may be covered. Further, an AuGeNi bonded metal layer is dispersedly formed on the second main surface of the GaP substrate 70 by vapor deposition, and further subjected to an alloying heat treatment at a temperature of 300 ° C. or higher and 500 ° C. or lower, whereby an AuGeNi bonded alloyed layer (substrate side) is formed. Bonding alloyed layer) 16.

以上においては、理解を容易にする便宜上、工程を素子単体の積層形態にて図示しつつ説明していたが、実際は、複数の素子チップがマトリックス状に配列した形で一括形成された貼り合わせウェーハが作製される。そして、この貼り合わせウェーハを通常の方法によりダイシングして素子チップとし、これを支持体に固着してリード線のワイヤボンディング等を行った後、樹脂封止をすることにより最終的な発光素子が得られる。   In the above, for the purpose of facilitating understanding, the process has been described in the form of a single element stack, but in practice, a bonded wafer in which a plurality of element chips are collectively formed in a matrix form. Is produced. Then, the bonded wafer is diced by an ordinary method to form an element chip, which is fixed to a support and subjected to wire bonding of a lead wire, etc., and then sealed with a resin to obtain a final light emitting element. can get.

なお、GaP電流拡散層20と発光層部24との界面を、上記説明した条件を充足する貼り合せ界面として形成することも可能である。   The interface between the GaP current diffusion layer 20 and the light emitting layer portion 24 can be formed as a bonded interface that satisfies the above-described conditions.

本発明の効果を確認するために、以下のような実験を行なった。すなわち、水に水酸化カリウムを22質量%溶解した水溶液を準備し、これをイソプロパノールに対し、水酸化カリウム濃度が図5の種々の濃度となるように添加してアルカリ含有有機溶媒を調整した。次に、図3に示すごとく、n型GaP基板70を、自然酸化膜除去及び水洗後に、上記のアルカリ含有有機溶媒に浸漬して引き上げた後、自然乾燥した。そして、その乾燥後に主化合物半導体層50との貼り合せ工程を行なって得られた発光素子サンプルの貼り合せ界面のK濃度を、SIMSを用いた前述の方法に各々測定した。アルカリ含有有機溶媒に浸漬中の超音波の印加条件は、周波数を46kHz、印加時間を2分とした。結果を図5に示す。   In order to confirm the effect of the present invention, the following experiment was conducted. That is, an aqueous solution in which 22% by mass of potassium hydroxide was dissolved in water was prepared, and this was added to isopropanol so that the potassium hydroxide concentration became various concentrations shown in FIG. Next, as shown in FIG. 3, after removing the natural oxide film and washing with water, the n-type GaP substrate 70 was dipped in the alkali-containing organic solvent and pulled up, and then naturally dried. And the K density | concentration of the bonding interface of the light emitting element sample obtained by performing the bonding process with the main compound semiconductor layer 50 after the drying was measured by the above-mentioned method using SIMS, respectively. The application conditions of ultrasonic waves during immersion in the alkali-containing organic solvent were a frequency of 46 kHz and an application time of 2 minutes. The results are shown in FIG.

図5の結果を参照して、貼り合せ界面のK濃度を種々に調整した発光素子サンプルを作成し、20mA通電により通電開始した直後の順方向電圧Vfと、これを初期値として、その後通電継続した際に漸減するVfの安定値までの順方向電圧Vfの減少代、すなわち安定化電圧降下ΔVfをそれぞれ測定した(各々サンプル数は5)。以上の結果を、貼り合せ界面のK濃度に対してプロットしたグラフの形で図6(ΔVf)及び図7(Vf)に示す。   Referring to the results shown in FIG. 5, samples of light-emitting elements with various adjustments of the K concentration at the bonding interface were prepared. The forward voltage Vf immediately after the start of energization by 20 mA energization and the initial value as the initial value were then continued. Then, a reduction margin of the forward voltage Vf until the stable value of Vf gradually decreasing, that is, a stabilization voltage drop ΔVf was measured (each sample number was 5). The above results are shown in FIG. 6 (ΔVf) and FIG. 7 (Vf) in the form of a graph plotted against the K concentration at the bonding interface.

該結果によると、貼り合せ界面のK濃度が1×1014atoms/cm以上(特に、3×1014atoms/cm以上)のとき、Vf及びΔVfの値が顕著に小さくなっており、良好な結果が得られていることがわかる。他方、貼り合せ界面のK濃度が1×1014atoms/cm未満では、Vf及びΔVfはいずれも急激に増大し、ばらつきも大きくなっていることがわかる。 According to the result, when the K concentration at the bonding interface is 1 × 10 14 atoms / cm 2 or more (particularly, 3 × 10 14 atoms / cm 2 or more), the values of Vf and ΔVf are remarkably small. It can be seen that good results are obtained. On the other hand, it can be seen that when the K concentration at the bonding interface is less than 1 × 10 14 atoms / cm 2 , both Vf and ΔVf rapidly increase and the variation becomes large.

例えば、水に水酸化カリウムを22質量%溶解した水溶液を準備し、これをさらに水で750倍に希釈した後、イソプロパノールに対して水酸化カリウム濃度が1.486×10−4mol/Lの濃度となるように添加して調整したアルカリ含有有機溶媒を用いた場合、貼り合せ界面のK濃度は、6.24×1014/cmとなった。そして、Vf及びΔVfを測定したところ、それぞれ、1.98〜1.99V及び20〜50mVと、極めて良好なVf/ΔVf特性が得られた。また、イソプロパノールに対して水酸化カリウム濃度が2.983×10−4mol/Lの濃度となるように調整したアルカリ含有有機溶媒を用いた場合、貼り合せ界面のK濃度は、9.90×1014/cmとなった。そして、Vf及びΔVfを測定したところ、それぞれ、1.92〜1.93V及び0(測定下限)〜10mVとなり、極めて良好なVf/ΔVf特性が得られた。 For example, an aqueous solution in which 22% by mass of potassium hydroxide is dissolved in water is prepared, and this is further diluted 750 times with water, and then the potassium hydroxide concentration is 1.486 × 10 −4 mol / L with respect to isopropanol. When an alkali-containing organic solvent that was added and adjusted to have a concentration was used, the K concentration at the bonding interface was 6.24 × 10 14 / cm 2 . And when Vf and (DELTA) Vf were measured, the very favorable Vf / (DELTA) Vf characteristic with 1.98-1.99V and 20-50mV, respectively was obtained. Further, when an alkali-containing organic solvent adjusted so that the potassium hydroxide concentration is 2.983 × 10 −4 mol / L with respect to isopropanol is used, the K concentration at the bonding interface is 9.90 ×. It was 10 14 / cm 2 . When Vf and ΔVf were measured, they were 1.92 to 1.93 V and 0 (measurement lower limit) to 10 mV, respectively, and very good Vf / ΔVf characteristics were obtained.

他方、比較例として、イソプロパノールに対して水酸化カリウム濃度が3×10−6mol/Lの濃度となるように調整したアルカリ含有有機溶媒を用いた場合、貼り合せ界面のK濃度は、7.16×1013/cmとなった。そして、Vf及びΔVfを測定したところ、それぞれ2.05V及び180〜220mVと不十分な値しか得られなかった。また高温長時間熱処理を行なってもK等の界面金属が移動しないことをSIMS測定により確認しており、さらに長時間通電後でもVf及びΔVf以外の特性に対する添加の影響がないことも確認できた。 On the other hand, when an alkali-containing organic solvent adjusted to have a potassium hydroxide concentration of 3 × 10 −6 mol / L with respect to isopropanol is used as a comparative example, the K concentration at the bonding interface is 7. It was 16 × 10 13 / cm 2 . And when Vf and (DELTA) Vf were measured, only 2.05V and 180-220mV and the inadequate value were obtained, respectively. In addition, it was confirmed by SIMS measurement that interfacial metals such as K do not move even when high-temperature and long-time heat treatment was performed, and it was also confirmed that there was no effect of addition on properties other than Vf and ΔVf even after prolonged energization. .

次に、図3の工程6における超音波印加の効果を確認するために、以下の実験を行なった。すなわち、水に水酸化カリウムを22質量%溶解した水溶液を準備し、これをさらに水で750倍に希釈した後、イソプロパノールに対して水酸化カリウム濃度が4×10−5mol/Lの濃度となるように添加してアルカリ含有有機溶媒を調製した。次に、n型GaP基板70を、自然酸化膜除去及び水洗後に、上記のアルカリ含有有機溶媒に前述したのと同一の条件で超音波を印加しつつ浸漬して引き上げた後、自然乾燥した。そして、その乾燥後に主化合物半導体層50との貼り合せ工程を行なってウェーハを作製した(作製枚数:470枚)。そして、各ウェーハから面内の複数箇所(最大数で9)からチップを切り出して発光素子サンプルを作成した(実施例)。また、アルカリ含有有機溶媒へのn型GaP基板70の浸漬中に超音波を印加せず、槽中でn型GaP基板70に揺動操作を20回加え、それ以外は同じ工程にて作製した発光素子サンプルも同数用意した(比較例)。 Next, in order to confirm the effect of applying ultrasonic waves in step 6 of FIG. 3, the following experiment was performed. That is, an aqueous solution in which 22% by mass of potassium hydroxide was dissolved in water was prepared, and this was further diluted 750 times with water, and then the concentration of potassium hydroxide was 4 × 10 −5 mol / L with respect to isopropanol. This was added to prepare an alkali-containing organic solvent. Next, after removing the natural oxide film and rinsing with water, the n-type GaP substrate 70 was immersed in the alkali-containing organic solvent under the same conditions as described above, pulled up, and then naturally dried. Then, after the drying, a bonding process with the main compound semiconductor layer 50 was performed to produce a wafer (production number: 470). Then, chips were cut out from a plurality of in-plane locations (maximum of 9) from each wafer to prepare light emitting element samples (Examples). In addition, the ultrasonic wave was not applied during the immersion of the n-type GaP substrate 70 in the alkali-containing organic solvent, and the rocking operation was applied 20 times to the n-type GaP substrate 70 in the bath. The same number of light emitting device samples were prepared (comparative example).

これら、発光素子サンプルについて20mA通電により通電開始した場合の安定化電圧降下ΔVfをそれぞれ測定した。超音波印加したものについては、ΔVfの平均値は43.24mV、標準偏差は28.97mVであり、該ΔVfが基準値(160mV)を超える発光素子サンプルの発生割合は0.72%であった。一方、超音波印加しなかったものについては、ΔVfの平均値は50.07mV、標準偏差は37.63であり、該ΔVfが上記基準値を超える発光素子サンプルの発生割合は2.87%であった。   With respect to these light emitting element samples, the stabilization voltage drop ΔVf was measured when energization was started by energization with 20 mA. For the sample to which ultrasonic waves were applied, the average value of ΔVf was 43.24 mV, the standard deviation was 28.97 mV, and the generation ratio of light-emitting element samples in which ΔVf exceeded the reference value (160 mV) was 0.72%. . On the other hand, in the case where no ultrasonic wave was applied, the average value of ΔVf was 50.07 mV, the standard deviation was 37.63, and the generation ratio of light emitting element samples in which ΔVf exceeded the reference value was 2.87%. there were.

また、図8に、実施例と比較例のそれぞれについて、ウェーハ内のΔVfの最大値、最小値及び平均値の分布状況の実測結果を、グラフにより対比して示す(横軸の番号は個々のウェーハを特定するためのものである)。実施例では、半数以上のウェーハについてΔVfの値が非常に小さく、かつ値も揃っていることが明らかである。   In addition, FIG. 8 shows the actual measurement results of the distribution state of the maximum value, the minimum value, and the average value of ΔVf in the wafer for each of the example and the comparative example in a graph (numbers on the horizontal axis are individual numbers). To identify the wafer). In the example, it is clear that the value of ΔVf is very small and the values are equal for more than half of the wafers.

次に、水に水酸化カリウムを22質量%溶解した水溶液を準備し、これをさらに水で750倍に希釈した後、イソプロパノールに対して水酸化カリウム濃度が4.7×10−5mol/L〜1.6×10−4mol/Lの種々の濃度となるように添加してアルカリ含有有機溶媒を調製した。次に、n型GaP基板70を、自然酸化膜除去及び水洗後に、上記のアルカリ含有有機溶媒に前述したのと同一の条件で超音波を印加しつつ浸漬して引き上げた後、自然乾燥した。そして、その乾燥後に主化合物半導体層50との貼り合せ工程を行なってウェーハを作製した(作製枚数:各100枚)。そして、ウェーハの接合不良の有無を目視により確認し、不良発生率が0.5%未満のものを優(◎)、0.5%以上1%未満のものを良(○)、1%以上3%未満のものを可(△)、3%以上のものを不可(×)として評価した。結果を表1に示す。 Next, an aqueous solution in which 22% by mass of potassium hydroxide was dissolved in water was prepared, and this was further diluted 750 times with water, and then the potassium hydroxide concentration was 4.7 × 10 −5 mol / L with respect to isopropanol. The alkali-containing organic solvent was prepared by adding various concentrations of ˜1.6 × 10 −4 mol / L. Next, after removing the natural oxide film and rinsing with water, the n-type GaP substrate 70 was immersed in the alkali-containing organic solvent under the same conditions as described above, pulled up, and then naturally dried. Then, after the drying, a bonding process with the main compound semiconductor layer 50 was performed to produce wafers (production number: 100 each). Then, the presence or absence of defective bonding of the wafer is confirmed by visual inspection, and the defect occurrence rate is less than 0.5% excellent (◎), 0.5% to less than 1% is good (○), 1% or more Those with less than 3% were evaluated as acceptable (Δ), and those with 3% or more were evaluated as impossible (x). The results are shown in Table 1.

Figure 0005051467
Figure 0005051467

アルカリ含有有機溶媒中の水酸化カリウム濃度を1×10−4mol/L以下に調製することで接合不良を顕著に低減できていることがわかる。 It can be seen that poor bonding can be remarkably reduced by adjusting the potassium hydroxide concentration in the alkali-containing organic solvent to 1 × 10 −4 mol / L or less.

本発明の適用対象となる発光素子の一例を示す模式図。The schematic diagram which shows an example of the light emitting element used as the application object of this invention. 本発明に係る発光素子の製造方法の一例を示す工程説明図。Process explanatory drawing which shows an example of the manufacturing method of the light emitting element which concerns on this invention. 図2に続く工程説明図。Process explanatory drawing following FIG. 界面アルカリ原子濃度の算出方法に係る説明図。Explanatory drawing which concerns on the calculation method of interface alkali atom concentration. アルカリ含有有機溶媒中のK濃度と、貼り合せ界面のK濃度との関係を示すグラフ。The graph which shows the relationship between K density | concentration in an alkali containing organic solvent, and K density | concentration of a bonding interface. 貼り合せ界面のK濃度とΔVfとの関係を示すグラフ。The graph which shows the relationship between K density | concentration of a bonding interface, and (DELTA) Vf. 貼り合せ界面のK濃度とVfとの関係を示すグラフ。The graph which shows the relationship between K density | concentration of a bonding interface, and Vf. 実施例と比較例のそれぞれについて、ウェーハ内のΔVfの最大値、最小値及び平均値の分布状況の実測結果を対比して示すグラフ。The graph which compares and shows the measurement result of the distribution condition of the maximum value of the (DELTA) Vf in a wafer, the minimum value, and an average value about each of an Example and a comparative example.

符号の説明Explanation of symbols

24 発光層部
50 主化合物半導体層
70 GaP基板(透明導電性半導体基板)
100 発光素子
24 Light emitting layer part 50 Main compound semiconductor layer 70 GaP substrate (transparent conductive semiconductor substrate)
100 light emitting device

Claims (12)

発光層部を有したIII−V族化合物半導体よりなる主化合物半導体層の一方の主表面に、透明導電性半導体基板を直接貼り合わせた構造を有する発光素子の製造方法であって、
成長用基板の第一主表面上に前記主化合物半導体層をエピタキシャル成長する主化合物半導体層成長工程と、
前記主化合物半導体層から前記成長用基板を除去する工程と、
前記透明導電性半導体基板の前記主化合物半導体層への貼り合せ面に形成された自然酸化膜を除去する自然酸化膜除去工程と、
該自然酸化膜の除去された前記透明導電性半導体基板の前記貼り合せ面に、超音波を印加しつつアルカリ含有有機溶媒を接触させる有機溶媒接触工程と、
前記主化合物半導体層の貼り合せ面に、前記有機溶媒接触工程が終了した前記透明導電性半導体基板の前記貼り合わせ面を重ね合わせて貼り合せる貼り合せ工程と、
を含むことを特徴とする発光素子の製造方法。
A method of manufacturing a light emitting device having a structure in which a transparent conductive semiconductor substrate is directly bonded to one main surface of a main compound semiconductor layer made of a III-V group compound semiconductor having a light emitting layer portion,
A main compound semiconductor layer growth step of epitaxially growing the main compound semiconductor layer on the first main surface of the growth substrate;
Removing the growth substrate from the main compound semiconductor layer;
A natural oxide film removing step of removing a natural oxide film formed on the bonding surface of the transparent conductive semiconductor substrate to the main compound semiconductor layer;
An organic solvent contact step in which an alkali-containing organic solvent is contacted while applying an ultrasonic wave to the bonding surface of the transparent conductive semiconductor substrate from which the natural oxide film has been removed;
A bonding step of laminating and bonding the bonding surface of the transparent conductive semiconductor substrate on which the organic solvent contact step has been completed to the bonding surface of the main compound semiconductor layer;
A method for manufacturing a light emitting element comprising:
前記貼り合せ界面のアルカリ金属原子濃度を1×1014atoms/cm以上2×1015atoms/cm以下に調整する請求項1記載の発光素子の製造方法。 The method for manufacturing a light-emitting element according to claim 1, wherein the alkali metal atom concentration at the bonding interface is adjusted to 1 × 10 14 atoms / cm 2 or more and 2 × 10 15 atoms / cm 2 or less. 前記貼り合せ界面に形成された酸化膜の厚さを1.3nm以下とする請求項2記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 2, wherein a thickness of the oxide film formed at the bonding interface is 1.3 nm or less. 前記自然酸化膜除去工程がアルカリ洗浄工程であり、該アルカリ洗浄工程の後、前記透明導電性半導体基板の水洗工程を行ない、前記有機溶媒接触工程を、該水洗工程の終了後に前記透明導電性半導体基板の前記貼り合わせ面を前記アルカリ含有有機溶媒に超音波を印加しつつ浸漬し、その後乾燥を行なう形で実施する請求項1ないし請求項3のいずれか1項に記載の発光素子の製造方法。   The natural oxide film removing step is an alkali cleaning step, and after the alkali cleaning step, the transparent conductive semiconductor substrate is washed with water, and the organic solvent contact step is performed after the water washing step. The method for manufacturing a light-emitting element according to any one of claims 1 to 3, wherein the bonded surface of the substrate is immersed in the alkali-containing organic solvent while applying ultrasonic waves, and then dried. . 前記アルカリ含有有機溶媒は、前記洗浄工程1回当たりに前記水洗工程を経て洗浄液から持ち込まれる濃度よりも高濃度のアルカリ成分を含有したものが使用される請求項4記載の発光素子の製造方法。   The method for producing a light-emitting element according to claim 4, wherein the alkali-containing organic solvent contains an alkali component having a higher concentration than the concentration brought from the cleaning liquid through the water washing step per cleaning step. 前記アルカリ含有有機溶媒はアルカリ金属水酸化物を溶解したアルコールである請求項3ないし請求項5のいずれか1項に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 3, wherein the alkali-containing organic solvent is an alcohol in which an alkali metal hydroxide is dissolved. 前記アルカリ含有有機溶媒は前記アルカリ金属水酸化物とともに水を含有するものである請求項6記載の発光素子の製造方法。   The method for producing a light-emitting element according to claim 6, wherein the alkali-containing organic solvent contains water together with the alkali metal hydroxide. 前記アルコールとしてイソプロパノールを使用する請求項6又は請求項7に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 6, wherein isopropanol is used as the alcohol. 前記アルカリ金属水酸化物として水酸化カリウム又は水酸化ナトリウムを使用する請求項6ないし請求項8のいずれか1項に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to any one of claims 6 to 8, wherein potassium hydroxide or sodium hydroxide is used as the alkali metal hydroxide. 前記アルカリ含有有機溶媒は水酸化カリウム又は水酸化ナトリウムを5×10−6mol/L以上3×10−4mol/L以下の範囲で含有する請求項9記載の発光素子の製造方法。 The method for producing a light-emitting element according to claim 9, wherein the alkali-containing organic solvent contains potassium hydroxide or sodium hydroxide in a range of 5 × 10 −6 mol / L to 3 × 10 −4 mol / L. 前記アルカリ含有有機溶媒は水分を1×10−4mol/L以上5mol/L以下の範囲で含有する請求項9又は請求項10に記載の発光素子の製造方法。 The said alkali containing organic solvent is a manufacturing method of the light emitting element of Claim 9 or Claim 10 which contains a water | moisture content in the range of 1 * 10 < -4 > mol / L or more and 5 mol / L or less. 前記有機溶媒接触工程を、前記主化合物半導体層の貼り合せ面に対しても実施する請求項3ないし請求項11のいずれか1項に記載の発光素子の製造方法。   The method for manufacturing a light-emitting element according to claim 3, wherein the organic solvent contact step is also performed on a bonding surface of the main compound semiconductor layer.
JP2008305038A 2008-11-28 2008-11-28 Method for manufacturing light emitting device Active JP5051467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008305038A JP5051467B2 (en) 2008-11-28 2008-11-28 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008305038A JP5051467B2 (en) 2008-11-28 2008-11-28 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2010129892A JP2010129892A (en) 2010-06-10
JP5051467B2 true JP5051467B2 (en) 2012-10-17

Family

ID=42330066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008305038A Active JP5051467B2 (en) 2008-11-28 2008-11-28 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP5051467B2 (en)

Also Published As

Publication number Publication date
JP2010129892A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4771510B2 (en) Semiconductor layer manufacturing method and substrate manufacturing method
TWI405350B (en) Light emitting element and manufacturing method thereof
KR101616150B1 (en) Semiconductor light emitting diode and method of producing same
US7622363B2 (en) Semiconductor substrate, semiconductor device, light emitting diode and producing method therefor
JP3977572B2 (en) Adhesive semiconductor substrate, semiconductor light-emitting device, and method for manufacturing the same
US10014216B2 (en) Method for manufacturing semiconductor device using high speed epitaxial lift-off and template for III-V direct growth and semiconductor device manufactured using the same
JP4973888B2 (en) Light emitting device and manufacturing method thereof
JP2012028547A (en) Semiconductor element and manufacturing method of the same
US10892382B2 (en) Semiconductor light-emitting element
KR101605223B1 (en) Semiconductor light emitting diode and method of producing same
JP5051467B2 (en) Method for manufacturing light emitting device
JP4062111B2 (en) Method for manufacturing light emitting device
JP2003224116A (en) Etching liquid, etching method and method for manufacturing semiconductor device
TWI438924B (en) Method for manufacturing light emitting chip
JP2010161160A (en) Semiconductor light-emitting element
JP5019160B2 (en) Method for manufacturing light emitting device
JP2010199344A (en) Method for manufacturing light emitting element
JP2007189060A (en) Semiconductor light-emitting element, junction substrate therefor, and manufacturing method thereof
JP2002353570A (en) Iii nitride-based compound semiconductor device and manufacturing method therefor
JP2007214598A (en) Bonded semiconductor substrate and semiconductor light emitting element
JP2005197286A (en) Handling method of semiconductor thin film and manufacturing method of light-emitting element
JP5598318B2 (en) Method for manufacturing light emitting device
JPH06350136A (en) Manufacture of chip for algainp luminous element
JP2011091442A (en) Semiconductor light emitting diode of gallium nitride compound
JP2009088160A (en) Light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5051467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250