JP2011091442A - Semiconductor light emitting diode of gallium nitride compound - Google Patents

Semiconductor light emitting diode of gallium nitride compound Download PDF

Info

Publication number
JP2011091442A
JP2011091442A JP2011021321A JP2011021321A JP2011091442A JP 2011091442 A JP2011091442 A JP 2011091442A JP 2011021321 A JP2011021321 A JP 2011021321A JP 2011021321 A JP2011021321 A JP 2011021321A JP 2011091442 A JP2011091442 A JP 2011091442A
Authority
JP
Japan
Prior art keywords
layer
type layer
substrate
light emitting
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011021321A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kinoshita
嘉将 木下
Hidenori Kamei
英徳 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011021321A priority Critical patent/JP2011091442A/en
Publication of JP2011091442A publication Critical patent/JP2011091442A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve the uniformity of radiation light by overcoming the problem, wherein a surface of a semiconductor substrate of a gallium nitride compound is physically damaged and the light radiated from the light emitting layer formed on it is made not uniform since the surface of the semiconductor substrate of the gallium nitride compound is polished flatly when using the gallium nitride compound semiconductor on the substrate. <P>SOLUTION: A first n-type layer 13 including at least In and light emitting 15 are located on the substrate 11 composed of the semiconductor of gallium nitride compound, and the uniformity of the radiation light can be improved by forming the first n-type layer 13 between the substrate 11 and light emitting layer 15. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は発光ダイオード、レーザダイオード等の光デバイスに利用される窒化ガリウム系化合物半導体発光素子に関する。   The present invention relates to a gallium nitride-based compound semiconductor light-emitting element used for an optical device such as a light-emitting diode or a laser diode.

近年、窒化ガリウム系化合物半導体は、可視から紫外に亘る波長帯で動作する発光デバイスや高出力及び高温で動作する電子デバイス用の半導体材料として多用されている(例えば、特許文献1)。窒化物半導体発光素子に用いられる基板として、サファイア基板のような絶縁性の基板に代わってGaN基板のような導電性の基板が用いられるようになってきている。導電性の基板を用いた場合、基板に電流を流すことができるので電流通路の抵抗値を下げて消費電力や動作電圧を低減させることができるためと、静電耐圧を高めることができるためである。   In recent years, gallium nitride-based compound semiconductors are widely used as semiconductor materials for light-emitting devices that operate in the wavelength band from visible to ultraviolet and electronic devices that operate at high power and high temperature (for example, Patent Document 1). As a substrate used for a nitride semiconductor light emitting device, a conductive substrate such as a GaN substrate has been used instead of an insulating substrate such as a sapphire substrate. When a conductive substrate is used, current can flow through the substrate, so that the resistance value of the current path can be lowered to reduce power consumption and operating voltage, and the electrostatic withstand voltage can be increased. is there.

図1に従来の窒化ガリウム系化合物半導体を示す。図1において、n型のGaNからなる基板1の上に、GaNからなるn型層2と、InGaNからなる発光層5と、AlGaNからなるp型層6、が順次積層されている。p型層6の表面上にはp側電極7が形成されており、p型層6の表面側から、p型層6と発光層5とn型層2の一部をエッチングにより除去して露出されたn型層2の表面上に、n側電極8が形成されている(例えば、特許文献2)。   FIG. 1 shows a conventional gallium nitride compound semiconductor. In FIG. 1, an n-type layer 2 made of GaN, a light emitting layer 5 made of InGaN, and a p-type layer 6 made of AlGaN are sequentially stacked on a substrate 1 made of n-type GaN. A p-side electrode 7 is formed on the surface of the p-type layer 6, and a part of the p-type layer 6, the light emitting layer 5, and the n-type layer 2 is removed from the surface side of the p-type layer 6 by etching. An n-side electrode 8 is formed on the exposed surface of the n-type layer 2 (for example, Patent Document 2).

特開2001−60719号公報JP 2001-60719 A 特開2001−345476号公報JP 2001-345476 A

しかし、基板にGaN基板を用いた場合、GaN基板の表面をフラットにするための研磨を行うため、GaN基板の表面は物理的なダメージを受け、この上に形成した発光層から放射される光が不均一になるという課題があった。   However, when a GaN substrate is used as the substrate, polishing is performed to flatten the surface of the GaN substrate, so that the surface of the GaN substrate is physically damaged and light emitted from the light emitting layer formed thereon There has been a problem of non-uniformity.

本発明はこのような課題を解決したもので、放射される光の均一性を向上させることを目的とする。   The present invention solves such a problem, and an object thereof is to improve the uniformity of emitted light.

本発明は、上記目的を達成するために、窒化ガリウム系化合物半導体からなる基板と、少なくともInを含む第一のn型層と、発光層とを有しており、第一のn型層は基板と発光層との間に形成されるように構成したものである。フラット化するために表面が研磨された窒化ガリウム系化合物半導体からなる基板が有している、結晶の不均一な歪みやダメージを少なくともInを含む第一のn型層が緩和する。   In order to achieve the above object, the present invention includes a substrate made of a gallium nitride compound semiconductor, a first n-type layer containing at least In, and a light-emitting layer. It is configured to be formed between the substrate and the light emitting layer. The first n-type layer containing at least In relieves uneven distortion and damage of the crystal of the substrate made of a gallium nitride compound semiconductor whose surface is polished for flattening.

基板と第一のn型層との間に窒化ガリウム系化合物半導体からなる第二のn型層を形成することにより、窒化ガリウム系化合物半導体基板が持っている微視的な凸凹を埋め込むことができる。また、基板から発光層までの距離を遠ざけることができるため、基板の表面が不純物などによって汚染されているというような界面の影響を受けにくくなる。更に、基板と略同じ格子定数を持つ第二のn型層を基板の上に成長させることにより、新たな歪みを生じさせずに第二のn型層を形成できるので、第二のn型層の上に成長する第一のn型層が安定に形成できる。また、基板から発光層までの距離を遠ざけるためにInを含む層を厚くすると、クラックが入ってしまうが、第二のn型層を厚く成長させるならば、クラックが入ることも防ぐことができる。   By forming a second n-type layer made of a gallium nitride compound semiconductor between the substrate and the first n-type layer, the microscopic unevenness of the gallium nitride compound semiconductor substrate can be embedded. it can. Further, since the distance from the substrate to the light emitting layer can be increased, the influence of the interface such that the surface of the substrate is contaminated with impurities is less likely to be affected. Furthermore, by growing a second n-type layer having substantially the same lattice constant as that of the substrate on the substrate, the second n-type layer can be formed without causing new distortion. A first n-type layer grown on the layer can be formed stably. In addition, if the layer containing In is thickened to increase the distance from the substrate to the light emitting layer, cracks will occur. However, if the second n-type layer is grown thickly, cracks can be prevented. .

第一のn型層と発光層との間に窒化ガリウム系化合物半導体からなる第三のn型層を形成することにより、基板から発光層までの距離を遠ざけることができるため、基板の表面が不純物などによって汚染されているというような界面の影響を受けにくくなる。また、基板から発光層までの距離を遠ざけるためにInを含む層を厚くすると、クラックが入ってしまうが、第三のn型層を厚く成長させるならば、クラックが入ることも防ぐことができる。   By forming a third n-type layer made of a gallium nitride compound semiconductor between the first n-type layer and the light-emitting layer, the distance from the substrate to the light-emitting layer can be increased. It becomes difficult to be affected by the interface such as being contaminated by impurities. In addition, if the layer containing In is thickened to increase the distance from the substrate to the light emitting layer, cracks will occur. However, if the third n-type layer is grown thickly, cracks can be prevented. .

本発明の窒化ガリウム系化合物半導体発光素子は、少なくともInを含む第一のn型層が窒化ガリウム系化合物半導体基板が持っている不均一な歪みやダメージを緩和するため、発光特性のウェハ面内均一性が向上し、歩留まりがよくなる。   In the gallium nitride compound semiconductor light emitting device of the present invention, the first n-type layer containing at least In alleviates uneven distortion and damage of the gallium nitride compound semiconductor substrate. Uniformity is improved and yield is improved.

従来の窒化ガリウム系化合物半導体素子の構造を示す断面図Sectional view showing the structure of a conventional gallium nitride compound semiconductor device 本発明の発明を実施するための形態に係る窒化ガリウム系化合物半導体素子の構造を示す断面図Sectional drawing which shows the structure of the gallium nitride type compound semiconductor element which concerns on the form for implementing invention of this invention 本発明の発明を実施するための形態に係る窒化ガリウム系化合物半導体素子の構造を示す断面図Sectional drawing which shows the structure of the gallium nitride type compound semiconductor element which concerns on the form for implementing invention of this invention 本発明の実施の形態1に係る窒化ガリウム系化合物半導体素子の構造を示す断面図Sectional drawing which shows the structure of the gallium nitride type compound semiconductor element which concerns on Embodiment 1 of this invention

以下本発明の実施例について添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図2において、窒化ガリウム系化合物半導体からなる基板11の上に、窒化ガリウム系半導体からなる第二のn型層12と、少なくともInを含む第一のn型層13と、クラッド層14と、発光層15と、p型層16、が順次積層されている。p型層16の表面上にはp側電極17が形成されており、p型層16の表面側から、p型層16と発光層15とクラッド層14と第一のn型層13と第二のn型層12の一部をエッチングにより除去して露出された第二のn型層12の表面上に、n側電極18が形成されている。   In FIG. 2, on a substrate 11 made of a gallium nitride based compound semiconductor, a second n type layer 12 made of a gallium nitride based semiconductor, a first n type layer 13 containing at least In, a cladding layer 14, The light emitting layer 15 and the p-type layer 16 are sequentially laminated. A p-side electrode 17 is formed on the surface of the p-type layer 16, and from the surface side of the p-type layer 16, the p-type layer 16, the light emitting layer 15, the cladding layer 14, the first n-type layer 13, and the first An n-side electrode 18 is formed on the surface of the second n-type layer 12 exposed by removing a part of the second n-type layer 12 by etching.

基板11には、n型の窒化ガリウム系化合物半導体(InaAlbGa1-a-bN(但し、0≦a≦1、0≦b≦1、0≦a+b≦1))を使用することができるが、良好な結晶性が得られやすいAlcGa1-cN(但し、0≦c≦1)が望ましい。中でも製造が比較的容易で、かつ最も良好な結晶性が得られるGaNからなるものを使用することが最も好ましい。基板11にはSiやGe等のn型不純物がドープされてなくてもよいが、ドープされていた方が素子抵抗を小さくすることができる。ドープする際には、その電子濃度を概略1×1017cm-3から1×1020cm-3の範囲に制御されたものを用いる。電子濃度が1×1017cm-3よりも低くなると、抵抗率が高くなり、基板11に注入された電子が基板11で広がりにくくなる傾向にあるからであり、1×1020cm-3よりも高くなると、n型不純物を高濃度にドープしたことに起因して基板11の結晶性が悪くなる傾向にあるからである。 For the substrate 11, an n-type gallium nitride compound semiconductor (In a Al b Ga 1-ab N (where 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 ≦ a + b ≦ 1)) is used. Although it is possible, Al c Ga 1-c N (where 0 ≦ c ≦ 1) is desirable because good crystallinity is easily obtained. Among them, it is most preferable to use a material made of GaN that is relatively easy to manufacture and that provides the best crystallinity. The substrate 11 may not be doped with n-type impurities such as Si and Ge, but the element resistance can be reduced by doping. When doping, a material whose electron concentration is controlled in the range of approximately 1 × 10 17 cm −3 to 1 × 10 20 cm −3 is used. This is because, when the electron concentration is lower than 1 × 10 17 cm −3 , the resistivity is increased, and electrons injected into the substrate 11 tend not to spread on the substrate 11, and from 1 × 10 20 cm −3 . This is because the crystallinity of the substrate 11 tends to deteriorate due to the high concentration of n-type impurities.

第二のn型層12には、基板と略同じ格子定数をもつn型の窒化ガリウム系化合物半導体を用いることができる。これにより、窒化ガリウム系半導体からなる基板が持っている微視的な凸凹を埋め込むことができる。また、基板11から発光層15までの距離を遠ざけることができるため、基板11の表面が不純物などによって汚染されているというような界面の影響を受けにくくなる。更に基板11と略同じ格子定数を持つ第二のn型層12を基板11の上に成長させることにより、新たな歪みを生じさせずに第二のn型層12を形成できるので、第二のn型層12の上に成長する第一のn型層13が安定に形成できる。また、基板11から発光層15までの距離を遠ざけるためにInを含む層を厚くすると、クラックが入ってしまうが、第二のn型層12を厚く成長させるならば、クラックが入ることも防ぐことができる。第二のn型層12には、GaNやAlGaN、InGaN、InAlGaN等の単層、若しくはこれらの層を積層したものを用いることができる。第二のn型層12には、基板と略同じ格子定数をもつn型の窒化ガリウム系化合物半導体がよいが、InGaN、InAlGaNであってもInの組成が小さければ、基板との格子定数は近くなるので、用いることができる。   For the second n-type layer 12, an n-type gallium nitride compound semiconductor having substantially the same lattice constant as that of the substrate can be used. Thereby, the microscopic unevenness | corrugation which the board | substrate consisting of a gallium nitride system semiconductor has can be embedded. Further, since the distance from the substrate 11 to the light emitting layer 15 can be increased, the influence of the interface such that the surface of the substrate 11 is contaminated by impurities or the like is less likely to be affected. Furthermore, by growing the second n-type layer 12 having substantially the same lattice constant as that of the substrate 11 on the substrate 11, the second n-type layer 12 can be formed without causing new distortion. The first n-type layer 13 grown on the n-type layer 12 can be formed stably. Further, if the layer containing In is thickened to increase the distance from the substrate 11 to the light emitting layer 15, cracks will occur. However, if the second n-type layer 12 is grown thickly, cracks can be prevented. be able to. As the second n-type layer 12, a single layer of GaN, AlGaN, InGaN, InAlGaN or the like, or a stack of these layers can be used. The second n-type layer 12 is preferably an n-type gallium nitride compound semiconductor having substantially the same lattice constant as the substrate. However, even if InGaN or InAlGaN is used, if the In composition is small, the lattice constant with the substrate is Since it becomes close, it can be used.

第二のn型層12は、少なくともn側電極18が形成される層において、SiやGe等のn型不純物がドープされて、その電子濃度を1×1017cm-3以上で1×1020cm-3未満とすることが望ましい。電子濃度が1×1017cm-3よりも低くなると、n側電極18とのオーミック接触抵抗が高くなり、発光素子の動作電圧が高くなるからであり、1×1020cm-3よりも高くなると、n型不純物を高濃度にドープしたことに起因して第二のn型層12の結晶性が悪くなる傾向にあるからである。 The second n-type layer 12 is doped with an n-type impurity such as Si or Ge at least in the layer where the n-side electrode 18 is formed, and has an electron concentration of 1 × 10 17 cm −3 or more and 1 × 10 7. It is desirable to be less than 20 cm −3 . This is because when the electron concentration is lower than 1 × 10 17 cm −3 , the ohmic contact resistance with the n-side electrode 18 is increased, and the operating voltage of the light emitting element is increased. This is higher than 1 × 10 20 cm −3. This is because the crystallinity of the second n-type layer 12 tends to deteriorate due to the high concentration of n-type impurities.

第二のn型層12の層厚は、100nm以上とすることが望ましい。100nmよりも薄いとエッチングにより第二のn型層12内にn側電極18を形成するための露出面を形成する際のエッチング精度が非常に厳しくなるからである。第二のn型層12の層厚の上限は特にはないが、露出面を形成する際のエッチング精度を緩和するとともに、第二のn型層12の形成時間を不必要に長くならないようにするため、5μm以下程度とすることが望ましい。   The layer thickness of the second n-type layer 12 is desirably 100 nm or more. This is because if the thickness is less than 100 nm, the etching accuracy when forming an exposed surface for forming the n-side electrode 18 in the second n-type layer 12 by etching becomes very strict. The upper limit of the layer thickness of the second n-type layer 12 is not particularly limited, but the etching accuracy when forming the exposed surface is eased and the formation time of the second n-type layer 12 is not unnecessarily prolonged. Therefore, it is desirable that the thickness be about 5 μm or less.

少なくともInを含む第一のn型層13には、InGaNやInAlGaNやInAlNからなる単層、またはこれらのInを含む層を少なくとも一層含む多層膜層、またはこれらのInを含む層のうちの一層とGaNやAlGaN等のInを含まない層を交互に積層した多層膜層を使用することができる。Inを含む半導体層が相対的に軟らかいので、基板のダメージに由来する不均一な歪みを緩和することができる。その中でも製造がし易いInGaNが望ましいが、Alが含まれているとバンドギャップを大きくできるため、発光層15から放射された光が吸収されにくくなるので、特に青から紫外発光領域においては、InAlGaNを用いることもできる。第一のn型層13にはInが少なくとも含まれていればよいが、In組成が0.01〜0.10が望ましい。0.01より多ければ、軟らかいという効果がより一層でてくるため、基板のダメージに由来する不均一な歪みを吸収し易い。0.10より少ないとIn組成が大きくなることにより第一のn型層13自体に生じる圧縮歪みを小さくできるので、この層自体に欠陥が生じない。従って、結晶性が悪くならない。また、In組成は0.02〜0.07が特に好ましい。上記の効果がより顕著であるからである。第一のn型層13の厚さは10nm〜1μmが望ましい。第一のn型層13の厚さが10nmより大きいと、ウェハ面内で発光特性を均一化できるという効果が安定して得られる。1μmより薄いと第一のn型層の結晶性の劣化を防止することができ、また第一のn型層13の製造時間の短縮化が図れる。特に、20nm〜100nmが好ましい。第一のn型層13の厚さが20nmより大きいと、ウェハ面内で発光特性を均一化できるという効果がより一層安定して得られる。100nmより薄いと第一のn型層の結晶性の劣化をより一層防止することができ、また第一のn型層13の製造時間の短縮化がより一層図れる。また、第一のn型層13にはノンドープでも構わないが、n型不純物がドープされていることが望ましい。特にSiやGeが好ましい。面内での電流の広がりをよくすることができる。SiやGe等のn型不純物がドープされて、その電子濃度を1×1017cm-3以上で1×1020cm-3未満とすることが望ましい。 The first n-type layer 13 containing at least In is a single layer made of InGaN, InAlGaN, or InAlN, a multilayer film layer containing at least one layer containing these In, or one of these layers containing In. And a multilayer film in which layers not containing In, such as GaN and AlGaN, are alternately stacked. Since the semiconductor layer containing In is relatively soft, uneven distortion due to substrate damage can be reduced. Among them, InGaN, which is easy to manufacture, is desirable. However, if Al is contained, the band gap can be increased, so that light emitted from the light emitting layer 15 is difficult to be absorbed. Can also be used. The first n-type layer 13 only needs to contain at least In, but the In composition is preferably 0.01 to 0.10. If it is more than 0.01, the effect of being softer will be further enhanced, so that it is easy to absorb non-uniform distortion resulting from damage to the substrate. If it is less than 0.10, the In composition increases, so that the compressive strain generated in the first n-type layer 13 itself can be reduced, so that no defect occurs in this layer itself. Therefore, the crystallinity does not deteriorate. The In composition is particularly preferably 0.02 to 0.07. This is because the above effect is more remarkable. The thickness of the first n-type layer 13 is desirably 10 nm to 1 μm. When the thickness of the first n-type layer 13 is larger than 10 nm, the effect that the light emission characteristics can be made uniform in the wafer surface can be stably obtained. If it is thinner than 1 μm, the crystallinity of the first n-type layer can be prevented from being deteriorated, and the manufacturing time of the first n-type layer 13 can be shortened. In particular, 20 nm to 100 nm is preferable. When the thickness of the first n-type layer 13 is larger than 20 nm, the effect that the light emission characteristics can be made uniform in the wafer surface can be obtained more stably. When the thickness is less than 100 nm, the crystallinity of the first n-type layer can be further prevented from being deteriorated, and the manufacturing time of the first n-type layer 13 can be further shortened. The first n-type layer 13 may be non-doped, but is preferably doped with n-type impurities. Si and Ge are particularly preferable. The current spread in the plane can be improved. It is desirable that an n-type impurity such as Si or Ge is doped so that the electron concentration is 1 × 10 17 cm −3 or more and less than 1 × 10 20 cm −3 .

クラッド層14には、GaNやAlGaNを使用することができる。クラッド層14を第一のn型層よりバンドギャップが大きい窒化ガリウム系化合物半導体とすることにより、発光層からの正孔のオーバーフローを効果的に抑制することができる。また、クラッド層14にはn型不純物がドープされていても、n型不純物がドープされていなくてもよい。クラッド層14は第二もしくは第一のn型層よりもキャリア濃度が小さい方がよい。このような構成にすることにより、n型層内で電子が一時的に発光層15側へ流れにくくなり、n型層の面内で電子が均一に広がり、これにより発光層15への均一な電子の注入が実現できるため、発光層15における発光分布が均一となり、その結果、基板11の裏面側の主発光面で均一な面発光が得られるからである。クラッド層14の厚さは、10nm以上で200nm以下の範囲であることが望ましい。10nmよりも薄いと電流広がりの効果が小さくなる傾向にあり、200nmよりも厚くなると発光素子の直列抵抗が高くなって動作電圧が高くなるからである。   GaN or AlGaN can be used for the clad layer 14. By making the cladding layer 14 a gallium nitride compound semiconductor having a band gap larger than that of the first n-type layer, it is possible to effectively suppress the overflow of holes from the light emitting layer. The clad layer 14 may be doped with n-type impurities or may not be doped with n-type impurities. The cladding layer 14 should have a lower carrier concentration than the second or first n-type layer. With such a configuration, electrons temporarily do not easily flow to the light emitting layer 15 side in the n-type layer, and the electrons spread uniformly in the surface of the n-type layer. This is because electron injection can be realized, so that the light emission distribution in the light emitting layer 15 becomes uniform, and as a result, uniform surface light emission is obtained on the main light emitting surface on the back surface side of the substrate 11. The thickness of the cladding layer 14 is desirably in the range of 10 nm to 200 nm. This is because if the thickness is smaller than 10 nm, the effect of current spreading tends to be small, and if the thickness is larger than 200 nm, the series resistance of the light emitting element becomes high and the operating voltage becomes high.

発光層15には、第二のn型層12並びにp型層16のバンドギャップよりも小さいバンドギャップを有する窒化ガリウム系化合物半導体を用いることができる。特に、Alを含まないInGaNやGaNを用いると、紫外から緑色の波長域での発光強度を高くすることができる。発光層15がInを含む場合は、膜厚を10nmよりも薄くして単一量子井戸層とすると、発光層15の結晶性を高めることができ、発光効率をより一層高めることができる。   For the light emitting layer 15, a gallium nitride compound semiconductor having a band gap smaller than that of the second n-type layer 12 and the p-type layer 16 can be used. In particular, when InGaN or GaN not containing Al is used, the emission intensity in the ultraviolet to green wavelength region can be increased. When the light emitting layer 15 contains In, the crystallinity of the light emitting layer 15 can be increased and the light emission efficiency can be further increased by making the film thickness thinner than 10 nm to be a single quantum well layer.

また、発光層15は、InGaNやGaNからなる量子井戸層と、この量子井戸層よりもバンドギャップの大きいInGaN、GaN、AlGaN等からなる障壁層とを交互に積層させた多重量子井戸構造とすることもできる。   The light emitting layer 15 has a multiple quantum well structure in which a quantum well layer made of InGaN or GaN and a barrier layer made of InGaN, GaN, AlGaN or the like having a larger band gap than the quantum well layer are alternately stacked. You can also

p型層16には、発光層15よりもバンドギャップの大きいp型の窒化ガリウム系化合物半導体を用いることができる。これにより、p型層16にp型クラッド層としての機能を付与できる。p型層16には、GaNやAlGaN、InGaN、InAlGaN等の単層、若しくはこれらの層を積層したものを用いることができる。特に、発光層15に接する側のp型層としてAlGaNを用いると、発光層15への電子の閉じ込めを効率的に行うことができ、発光効率を高くすることができるので好ましい。   For the p-type layer 16, a p-type gallium nitride compound semiconductor having a band gap larger than that of the light emitting layer 15 can be used. Thereby, the p-type layer 16 can be provided with a function as a p-type cladding layer. As the p-type layer 16, a single layer of GaN, AlGaN, InGaN, InAlGaN or the like, or a stack of these layers can be used. In particular, it is preferable to use AlGaN as the p-type layer on the side in contact with the light emitting layer 15 because electrons can be efficiently confined in the light emitting layer 15 and the light emission efficiency can be increased.

p型層16は、p型不純物がドープされて、p型伝導とされている。p型不純物には、Mg、Zn、Cd、C等を用いることができるが、比較的容易にp型とすることができるMgを用いることが好ましい。p型不純物濃度は1×1019cm-3以上で5×1020cm-3未満とすることが望ましい。p型不純物濃度が1×1019cm-3よりも低くなると、p側電極17とのオーミック接触抵抗が高くなり、発光素子の動作電圧が高くなるからであり、5×1020cm-3よりも高くなると、p型不純物を高濃度にドープしたことに起因してp型層16の結晶性が悪くなる傾向になるとともに、発光層15へのp型不純物の拡散が顕著になり、発光効率が低下するからである。 The p-type layer 16 is doped with a p-type impurity to have p-type conduction. Mg, Zn, Cd, C, or the like can be used as the p-type impurity, but it is preferable to use Mg that can be made p-type relatively easily. The p-type impurity concentration is desirably 1 × 10 19 cm −3 or more and less than 5 × 10 20 cm −3 . This is because when the p-type impurity concentration is lower than 1 × 10 19 cm −3 , the ohmic contact resistance with the p-side electrode 17 is increased, and the operating voltage of the light emitting device is increased. From 5 × 10 20 cm −3 Higher, the crystallinity of the p-type layer 16 tends to deteriorate due to the high concentration of the p-type impurity, and the diffusion of the p-type impurity into the light-emitting layer 15 becomes remarkable, and the light emission efficiency. This is because of a decrease.

p型層16に比較的高い濃度のp型不純物をドープする際は、p型不純物の発光層15への過剰な拡散を抑制するために、発光層15とp型層16の間に、中間層を導入することもできる。この中間層には、InAlGaNを用いることができるが、特に、GaNやAlGaNを用いると、発光層15との界面の結晶性を良好に保つことができるので好ましい。中間層は、発光層15の方向に拡散するp型不純物の吸収層としての役目を果たすために、アンドープであることが好ましい。中間層の層厚は、1nm以上で50nm以下の範囲であることが望ましい。1nmよりも薄いとp型不純物の発光層15への拡散を抑制する効果が小さくなり、50nmよりも厚くなると発光層15への正孔の注入効率が低下し、発光効率が低下するようになるからである。   When the p-type layer 16 is doped with a relatively high concentration of p-type impurity, an intermediate between the light-emitting layer 15 and the p-type layer 16 is used to suppress excessive diffusion of the p-type impurity into the light-emitting layer 15. Layers can also be introduced. For this intermediate layer, InAlGaN can be used. In particular, GaN or AlGaN is preferable because the crystallinity at the interface with the light emitting layer 15 can be kept good. The intermediate layer is preferably undoped in order to serve as an absorption layer for p-type impurities that diffuse in the direction of the light emitting layer 15. The thickness of the intermediate layer is preferably in the range of 1 nm to 50 nm. If the thickness is less than 1 nm, the effect of suppressing the diffusion of p-type impurities into the light emitting layer 15 is reduced. Because.

p型層16の層厚は、50nm以上で500nm以下の範囲とすることが好ましい。50nmよりも薄いとp側電極17の構成金属がエレクトロマイグレーション等による発光層15への侵入により、発光素子の寿命が低下しやすくなり、500nmよりも厚くなると電流(正孔)がp型層16を通過する際の電圧降下が増大し、発光素子の動作電圧が高くなるからである。   The layer thickness of the p-type layer 16 is preferably in the range of 50 nm to 500 nm. When the thickness is less than 50 nm, the constituent metal of the p-side electrode 17 easily enters the light-emitting layer 15 due to electromigration or the like, so that the lifetime of the light-emitting element is liable to decrease. This is because the voltage drop at the time of passing through increases to increase the operating voltage of the light emitting element.

p型層16のp側電極17に接する側は、バンドギャップの比較的小さいGaNやInGaNとすることができる。これにより、p側電極17との接触抵抗を小さくでき、動作電圧の低減を効果的に行うことができる。   The side of the p-type layer 16 in contact with the p-side electrode 17 can be made of GaN or InGaN having a relatively small band gap. Thereby, the contact resistance with the p-side electrode 17 can be reduced, and the operating voltage can be effectively reduced.

p側電極17には、AuやNi、Pt、Pd、Mg等の単体金属、あるいはそれらの合金や積層構造を用いることができる。特に、発光波長に対する反射率が高いAg、Pt、Mg、Al、Zn、Rh、Ru、Pd等の金属を用いると、発光層15からp側電極17の側へ向かう光を反射させて、基板11の裏面側から取り出すことができるので、発光強度向上の面で好ましい。   For the p-side electrode 17, a single metal such as Au, Ni, Pt, Pd, or Mg, or an alloy or a laminated structure thereof can be used. In particular, when a metal such as Ag, Pt, Mg, Al, Zn, Rh, Ru, Pd or the like having a high reflectance with respect to the emission wavelength is used, light directed from the light emitting layer 15 toward the p-side electrode 17 is reflected, and the substrate is reflected. 11 can be taken out from the rear surface side, which is preferable in terms of improving the light emission intensity.

n側電極18は、第二のn型層12の上に形成された第一のn型層13とクラッド層14と発光層15とp型層16からなる積層構造の表面側からこれらの一部を除去させて露出させた第二のn型層12の表面に接して形成される。n側電極18をこのように配置する構成とすることにより、基板11の前記積層構造を形成していない裏面側を主発光面とすることができ、主発光面において均一な面発光が得られる。   The n-side electrode 18 is formed of the first n-type layer 13 formed on the second n-type layer 12, the cladding layer 14, the light emitting layer 15, and the p-type layer 16 from the surface side of the laminated structure. It is formed in contact with the surface of the second n-type layer 12 exposed by removing the portion. By adopting a configuration in which the n-side electrode 18 is arranged in this manner, the back surface side of the substrate 11 where the laminated structure is not formed can be used as a main light emitting surface, and uniform surface light emission can be obtained on the main light emitting surface. .

n側電極18には、AlやTi等の単体金属、またはAlやTi、Au、Ni、V、Cr等を含む合金、若しくはそれらの積層構造を用いることができる。   For the n-side electrode 18, a single metal such as Al or Ti, an alloy containing Al, Ti, Au, Ni, V, Cr, or the like, or a laminated structure thereof can be used.

また、基板11の電子キャリア濃度が第二のn型層12の電子キャリア濃度と同等かそれより高い場合は、n側電極18は、第二のn型層12の上に形成された第一のn型層13とクラッド層14と発光層15とp型層16からなる積層構造の表面側からこれらの一部を除去させて露出させた基板11の表面に接して形成してもよい。電子キャリア濃度が高い基板11にn側電極18を設けることにより、n側電極18のオーミック接触抵抗を小さくできるので、動作電圧を低くできる。   In addition, when the electron carrier concentration of the substrate 11 is equal to or higher than the electron carrier concentration of the second n-type layer 12, the n-side electrode 18 is formed on the second n-type layer 12. The n-type layer 13, the clad layer 14, the light emitting layer 15, and the p-type layer 16 may be formed in contact with the surface of the substrate 11 that is exposed by removing a part of the laminated structure. By providing the n-side electrode 18 on the substrate 11 having a high electron carrier concentration, the ohmic contact resistance of the n-side electrode 18 can be reduced, so that the operating voltage can be lowered.

また、n側電極18は、基板11の発光層15とは反対側の表面に接して形成してもよい。n側電極18をこのように配置する構成とすることにより、n側電極を形成するスペースを省略することができるので、チップサイズを小さくすることができる。   Further, the n-side electrode 18 may be formed in contact with the surface of the substrate 11 opposite to the light emitting layer 15. By adopting a configuration in which the n-side electrode 18 is arranged in this manner, the space for forming the n-side electrode can be omitted, and the chip size can be reduced.

また、n側電極18は、第一のn型層13の上に形成されたクラッド層14と発光層15とp型層16からなる積層構造の表面側からこれらの一部を除去させて露出させた第一のn型層13の表面に接して形成してもよい。バンドギャップの小さい第一のn型層13にn側電極18を形成することで、n側電極18のオーミック接触抵抗を小さくできる。   Further, the n-side electrode 18 is exposed by removing a part of the surface from the laminated structure formed of the cladding layer 14, the light emitting layer 15, and the p-type layer 16 formed on the first n-type layer 13. You may form in contact with the surface of the made 1st n-type layer 13 made. By forming the n-side electrode 18 on the first n-type layer 13 having a small band gap, the ohmic contact resistance of the n-side electrode 18 can be reduced.

また、発光層15とp型層16との間にp型クラッド層が形成されていてもよい(図示せず)。p型クラッド層は、発光層15のバンドギャップよりも大きいバンドギャップを有する窒化ガリウム系化合物半導体で形成され、特にMg等のp型不純物がドープされたAluGa1-uN(但し、0≦u<1)で形成されることが好ましい。通常、p型クラッド層は、結晶性良く形成させるために、発光層15の成長に適した温度よりも高い成長温度で形成されることが多く、このため、発光層15の成長後、p型クラッド層の成長温度にまで昇温させる間において、発光層15を構成するインジウムや窒素等の構成元素の解離等により発光層15の結晶性の劣化が生じることがある。そこで、p型クラッド層の発光層15に接する側の一部を、発光層15を成長後に昇温させながら連続して成長形成し、p型クラッド層の成長温度において、引き続いて残りのp型クラッド層を成長させると、発光層15の結晶性の劣化を効果的に防止することが可能となる。このとき、昇温させながら成長させるp型クラッド層の一部は、AlvGa1-vN(但し、0≦v<1、v≦u)で形成されることが好ましい。発光層15に接して形成されクラッド層としての作用を十分達成することができると同時に、発光層15の構成元素の解離等による結晶性の劣化を防止する効果を高めることができるからである。 A p-type cladding layer may be formed between the light emitting layer 15 and the p-type layer 16 (not shown). The p-type cladding layer is formed of a gallium nitride compound semiconductor having a band gap larger than the band gap of the light emitting layer 15, and in particular Al u Ga 1-u N doped with a p-type impurity such as Mg (provided that 0 ≦ u <1) is preferable. Usually, the p-type cladding layer is often formed at a growth temperature higher than the temperature suitable for the growth of the light emitting layer 15 in order to form it with good crystallinity. While the temperature is raised to the growth temperature of the cladding layer, the crystallinity of the light emitting layer 15 may be deteriorated due to dissociation of constituent elements such as indium and nitrogen constituting the light emitting layer 15. Therefore, a part of the p-type cladding layer on the side in contact with the light-emitting layer 15 is continuously grown while the temperature of the light-emitting layer 15 is increased after the growth, and the remaining p-type is subsequently grown at the growth temperature of the p-type cladding layer. When the cladding layer is grown, it is possible to effectively prevent the crystallinity of the light emitting layer 15 from deteriorating. At this time, a part of the p-type cladding layer grown while raising the temperature is preferably formed of Al v Ga 1-v N (where 0 ≦ v <1, v ≦ u). This is because the effect as a cladding layer formed in contact with the light emitting layer 15 can be sufficiently achieved, and at the same time, the effect of preventing the deterioration of crystallinity due to dissociation of the constituent elements of the light emitting layer 15 can be enhanced.

また、図3に示すように、n型層は基板11側からキャリア濃度の低い第四のn型層31とキャリア濃度の高い第五のn型層32を含む積層構造を持ってもよい。すなわち、基板11側にキャリア濃度の低い第四のn型層31を形成した後、この第四のn型層31の上にキャリア濃度の高い第五のn型層32を形成し、この第五のn型層32の上にn側電極18を形成したものである。   As shown in FIG. 3, the n-type layer may have a laminated structure including a fourth n-type layer 31 having a low carrier concentration and a fifth n-type layer 32 having a high carrier concentration from the substrate 11 side. That is, after the fourth n-type layer 31 having a low carrier concentration is formed on the substrate 11 side, the fifth n-type layer 32 having a high carrier concentration is formed on the fourth n-type layer 31. The n-side electrode 18 is formed on the fifth n-type layer 32.

このようなキャリア濃度が異なる第四のn型層31及び第五のn型層32を基板11側から順に形成した積層構造とすることによって、第四のn型層31のn型不純物ドープ量を小さくしてキャリア濃度を低くしても、第四のn型層31の層厚を厚く形成することができるので、この第四のn型層31における抵抗の増加とクラックの発生を同時に抑制することができる。そして、第四のn型層31の上に、n型不純物のドープ量を第四のn型層31よりも大きくしてキャリア濃度を高くした第五のn型層32にn側電極18を形成することで、第五のn型層32とn側電極18の間の接触抵抗を低減することができるので、発光素子の動作電圧を下げることができ、消費電力の削減が可能となる。   By adopting a stacked structure in which the fourth n-type layer 31 and the fifth n-type layer 32 having different carrier concentrations are sequentially formed from the substrate 11 side, the n-type impurity doping amount of the fourth n-type layer 31 is increased. Since the fourth n-type layer 31 can be formed thick even if the carrier concentration is reduced by reducing the thickness of the fourth n-type layer 31, the increase in resistance and the generation of cracks in the fourth n-type layer 31 are simultaneously suppressed. can do. Then, on the fourth n-type layer 31, the n-side electrode 18 is placed on the fifth n-type layer 32 in which the doping amount of the n-type impurity is larger than that of the fourth n-type layer 31 and the carrier concentration is increased. By forming the contact resistance, the contact resistance between the fifth n-type layer 32 and the n-side electrode 18 can be reduced, so that the operating voltage of the light emitting element can be lowered and the power consumption can be reduced.

このように、第四及び第五のn型層31、32のそれぞれのキャリア濃度の差を持たせることが、動作電圧の低減及びクラック発生防止の両面での最適化を促すことができる。そして、それぞれのキャリア濃度の具体的な数値の特定は、本発明者等の知見によれば、以下のとおりである。   As described above, the difference in carrier concentration between the fourth and fifth n-type layers 31 and 32 can promote optimization in terms of both reducing the operating voltage and preventing cracks. According to the knowledge of the present inventors, the specific numerical values of the respective carrier concentrations are specified as follows.

まず、第四のn型層31のキャリア濃度は、1×1017cm-3〜2×1018cm-3の範囲とすることが望ましい。この第四のn型層31のキャリア濃度が1×1017cm-3よりも小さくなると、第四のn型層31自身における直列抵抗が大きくなって素子の動作電圧が高くなる傾向があり、キャリア濃度が2×1018cm-3よりも大きくなると、クラックが発生しやすくなる傾向があるためである。 First, the carrier concentration of the fourth n-type layer 31 is desirably in the range of 1 × 10 17 cm −3 to 2 × 10 18 cm −3 . When the carrier concentration of the fourth n-type layer 31 is smaller than 1 × 10 17 cm −3 , the series resistance in the fourth n-type layer 31 itself tends to increase, and the operating voltage of the element tends to increase. This is because when the carrier concentration is higher than 2 × 10 18 cm −3 , cracks tend to occur.

第四のn型層31よりもキャリア濃度の高い第五のn型層32のキャリア濃度は、2×1018cm-3〜1×1019cm-3とすることが望ましい。この第五のn型層32のキャリア濃度が2×1018cm-3よりも小さくなると、n側電極18との間の接触抵抗を十分に低減することは困難になり、1×1019cm-3よりも大きくなると、この層の結晶性が悪くなる傾向があり、この上に成長させる発光層やp型層の結晶性が悪くなって発光出力が低下する恐れがある。 The carrier concentration of the fifth n-type layer 32 having a carrier concentration higher than that of the fourth n-type layer 31 is preferably 2 × 10 18 cm −3 to 1 × 10 19 cm −3 . If the carrier concentration of the fifth n-type layer 32 is smaller than 2 × 10 18 cm −3 , it is difficult to sufficiently reduce the contact resistance with the n-side electrode 18, and 1 × 10 19 cm. If it exceeds -3 , the crystallinity of this layer tends to deteriorate, and the crystallinity of the light-emitting layer or p-type layer grown on this layer tends to deteriorate and the light emission output may decrease.

また、第五のn型層32は第四のn型層31の層厚よりも小さくし、特に100〜500nmの範囲とすることが好ましい。100nmよりも薄くなると、p型層16と発光層15とクラッド層14と第一のn型層13と第五のn型層32の一部を除去してn型層の表面を露出させるとエッチングの深さを制御することが困難になる。また、500nmよりも厚くなると、第五のn型層32の結晶性が悪くなり、この第五のn型層32の上に成長させる第一のn型層13やクラッド層14や発光層15やp型層16の結晶性が悪くなって発光出力が低下する恐れがある。   Further, the fifth n-type layer 32 is preferably smaller than the thickness of the fourth n-type layer 31, and particularly preferably in the range of 100 to 500 nm. When the thickness is smaller than 100 nm, the p-type layer 16, the light emitting layer 15, the cladding layer 14, the first n-type layer 13 and the fifth n-type layer 32 are partially removed to expose the surface of the n-type layer. It becomes difficult to control the etching depth. On the other hand, if the thickness exceeds 500 nm, the crystallinity of the fifth n-type layer 32 is deteriorated, and the first n-type layer 13, the cladding layer 14, and the light emitting layer 15 grown on the fifth n-type layer 32. In addition, the crystallinity of the p-type layer 16 may be deteriorated and the light emission output may be reduced.

第四のn型層31の層厚は、1〜5μmの範囲とすることが好ましい。1μmよりも薄くなると、素子の直列抵抗が大きくなって動作電圧が高くなる傾向があり、5μmより厚くなると、クラックが発生しやすくなる傾向があるためである。また、上記説明を行ったように、基板11と第一のn型層13との間に第四のn型層31と第五のn型層32が形成され、第一のn型層13と発光層15との間に、キャリア濃度の低いn型層とキャリア濃度の高いn型層を含む積層構造が形成されていてもよい。更に、図示はしないが、第一のn型層13と発光層15との間のみに、キャリア濃度の低いn型層とキャリア濃度の高いn型層を含む積層構造が形成されていてもよい。   The layer thickness of the fourth n-type layer 31 is preferably in the range of 1 to 5 μm. This is because if the thickness is less than 1 μm, the series resistance of the element tends to increase and the operating voltage tends to increase, and if the thickness is greater than 5 μm, cracks tend to occur. In addition, as described above, the fourth n-type layer 31 and the fifth n-type layer 32 are formed between the substrate 11 and the first n-type layer 13, and the first n-type layer 13 is formed. Between the light emitting layer 15 and the light emitting layer 15, a stacked structure including an n-type layer having a low carrier concentration and an n-type layer having a high carrier concentration may be formed. Further, although not shown, a laminated structure including an n-type layer having a low carrier concentration and an n-type layer having a high carrier concentration may be formed only between the first n-type layer 13 and the light emitting layer 15. .

(実施の形態1)
次に本発明における実施の形態1を説明する。本実施の形態1と上述した発明を実施するための形態との間で異なる点は、少なくともInを含む層の上に窒化ガリウム系化合物半導体からなる第三のn型層が形成されていることである。すなわち、少なくともInを含む層は、窒化ガリウム系化合物半導体からなるn型層に挟まれた構造となる。これ以外については、特に説明しない限りは基本的には発明を実施するための形態と同様である。
(Embodiment 1)
Next, a first embodiment of the present invention will be described. The difference between the first embodiment and the embodiment for carrying out the invention is that a third n-type layer made of a gallium nitride compound semiconductor is formed on a layer containing at least In. It is. That is, the layer containing at least In has a structure sandwiched between n-type layers made of a gallium nitride compound semiconductor. Other than this, unless otherwise specified, the embodiment is basically the same as the embodiment for carrying out the invention.

図4に示す、第三のn型層19には、SiやGe等のn型不純物がドープされて、その電子濃度を1×1017cm-3〜1×1020cm-3とすることが望ましい。電子濃度が1×1017cm-3よりも低くなると、n側電極18とのオーミック接触抵抗が高くなり、発光素子の動作電圧が高くなるからであり、1×1020cm-3よりも高くなると、n型不純物を高濃度にドープしたことに起因して第二のn型層12の結晶性が悪くなる傾向にあるからである。 The third n-type layer 19 shown in FIG. 4 is doped with an n-type impurity such as Si or Ge, and the electron concentration is set to 1 × 10 17 cm −3 to 1 × 10 20 cm −3. Is desirable. This is because when the electron concentration is lower than 1 × 10 17 cm −3 , the ohmic contact resistance with the n-side electrode 18 is increased, and the operating voltage of the light emitting element is increased. This is higher than 1 × 10 20 cm −3. This is because the crystallinity of the second n-type layer 12 tends to deteriorate due to the high concentration of n-type impurities.

第三のn型層19の層厚は、100nm以上とすることが望ましい。100nmよりも薄いとエッチングにより第三のn型層19内にn側電極18を形成するための露出面を形成する際のエッチング精度が非常に厳しくなるからである。第三のn型層19の層厚の上限は特にはないが、露出面を形成する際のエッチング精度を緩和するとともに、第三のn型層19の形成時間を不必要に長くならないようにするため、5μm以下程度とすることが望ましい。また、n側電極18は第三のn型層19上に形成される。   The layer thickness of the third n-type layer 19 is preferably 100 nm or more. This is because if the thickness is less than 100 nm, the etching accuracy in forming an exposed surface for forming the n-side electrode 18 in the third n-type layer 19 by etching becomes very strict. The upper limit of the thickness of the third n-type layer 19 is not particularly limited, but the etching accuracy when forming the exposed surface is eased and the formation time of the third n-type layer 19 is not unnecessarily prolonged. Therefore, it is desirable that the thickness be about 5 μm or less. The n-side electrode 18 is formed on the third n-type layer 19.

以下、本発明の窒化ガリウム系化合物半導体発光素子の製造方法の具体例について図面を参照しながら説明する。以下の実施例は、主として有機金属気相成長法を用いた窒化ガリウム系化合物半導体の成長方法を示すものであるが、成長方法はこれに限定されるものではなく、分子線エピタキシー法や有機金属分子線エピタキシー法等を用いることも可能である。   Hereinafter, specific examples of the method for producing a gallium nitride-based compound semiconductor light emitting device of the present invention will be described with reference to the drawings. The following examples mainly show a growth method of a gallium nitride-based compound semiconductor using a metal organic vapor phase growth method, but the growth method is not limited to this, and a molecular beam epitaxy method or an organic metal It is also possible to use a molecular beam epitaxy method or the like.

(実施例1)
図2は本発明の他の実施の形態に係る窒化ガリウム系化合物半導体発光素子の構造を示す断面図である。
Example 1
FIG. 2 is a sectional view showing the structure of a gallium nitride-based compound semiconductor light emitting device according to another embodiment of the present invention.

本実施例においては、図2に示す窒化ガリウム系化合物半導体発光素子を作製した。   In this example, the gallium nitride compound semiconductor light emitting device shown in FIG. 2 was produced.

まず、ハライド気相成長法によりサファイア基板の表面に約370μmの厚さで成長したGaN単結晶膜を、サファイア基板の裏面から波長355nmのYAGレーザ光を照射することでサファイア基板から剥離した。次に剥離したGaN単結晶膜を剥離した側の面を下にして円盤に貼り付け、研磨装置を用いてダイヤモンドの微粒子を含む砥粒により表面を平坦且つ鏡面に研磨した。この後、GaN単結晶膜を円盤から剥がして有機溶剤及び酸溶液により洗浄した。こうしてGaN単結晶膜からなる厚さ約350μm、直径約50mmのGaN基板11を得た。   First, a GaN single crystal film grown to a thickness of about 370 μm on the surface of the sapphire substrate by the halide vapor deposition method was peeled from the sapphire substrate by irradiating YAG laser light having a wavelength of 355 nm from the back surface of the sapphire substrate. Next, the peeled GaN single crystal film was attached to a disk with the peeled side down, and the surface was polished flat and mirror-finished with abrasive grains containing diamond fine particles using a polishing apparatus. Thereafter, the GaN single crystal film was peeled off from the disk and washed with an organic solvent and an acid solution. Thus, a GaN substrate 11 made of a GaN single crystal film and having a thickness of about 350 μm and a diameter of about 50 mm was obtained.

次に、基板11を反応管内の基板ホルダーに載置した後、基板11の温度を1060℃に10分間保ち、水素ガスを7リットル/分、窒素ガスを7リットル/分、アンモニアを6リットル/分で流しながら基板11を加熱することにより、基板11の表面に付着している有機物等の汚れや水分を取り除くためのクリーニングを行った。   Next, after placing the substrate 11 on the substrate holder in the reaction tube, the temperature of the substrate 11 is kept at 1060 ° C. for 10 minutes, hydrogen gas is 7 liters / minute, nitrogen gas is 7 liters / minute, and ammonia is 6 liters / minute. The substrate 11 was heated while flowing for a minute to perform cleaning for removing dirt and moisture such as organic substances adhering to the surface of the substrate 11.

次に、基板11の温度を1060℃に保持したままで、キャリアガスとして窒素ガスを7リットル/分及び水素ガスを7リットル/分で流しながら、アンモニアを6リットル/分、トリメチルガリウム(以下、TMGと略称する。)を80μmol/分、10ppm希釈のモノシランを30cc/分、で供給して、SiをドープしたGaNからなる第二のn型層12を2μmの厚さで成長させた。この第二のn型層12の電子濃度は3×1018cm-3であった。 Next, while maintaining the temperature of the substrate 11 at 1060 ° C., while flowing nitrogen gas as a carrier gas at 7 liter / min and hydrogen gas at 7 liter / min, ammonia is 6 liter / min, trimethylgallium (hereinafter, The second n-type layer 12 made of Si-doped GaN was grown to a thickness of 2 μm by supplying monosilane diluted at 80 μmol / min and 10 ppm diluted at 30 cc / min. The electron concentration of the second n-type layer 12 was 3 × 10 18 cm −3 .

第二のn型層12を成長後、TMGとモノシランとの供給を止め、基板11の温度を760℃まで降下させ、この温度に維持して、キャリアガスとして窒素ガスを14リットル/分で流しながら、アンモニアを6リットル/分、TMGを12μmol/分、トリメチルインジウム(以下、TMIと略称する。)を1μmol/分、モノシランを1.5cc/分、で供給して、SiドープのIn0.05Ga0.95Nからなる第一のn型層13を50nmの厚さで成長させた。第一のn型層13の電子濃度は1×1018cm-3であった。 After the second n-type layer 12 is grown, the supply of TMG and monosilane is stopped, the temperature of the substrate 11 is lowered to 760 ° C. and maintained at this temperature, and nitrogen gas is allowed to flow as a carrier gas at 14 liters / minute. While supplying ammonia at 6 liters / minute, TMG at 12 μmol / minute, trimethylindium (hereinafter abbreviated as TMI) at 1 μmol / minute, and monosilane at 1.5 cc / minute, Si-doped In 0.05 Ga A first n-type layer 13 made of 0.95 N was grown to a thickness of 50 nm. The electron concentration of the first n-type layer 13 was 1 × 10 18 cm −3 .

第一のn型層13を成長後、TMIの供給を止め、キャリアガスとして窒素を14リットル/分、アンモニアを6リットル/分、TMGを2μmol/分で供給して、基板11の温度を1060℃に向けて昇温させながら、引き続きアンドープのGaN(図示せず)を3nmの厚さで成長させ、基板11の温度が1060℃に達したら、キャリアガスとして窒素ガスを8リットル/分及び水素ガスを8リットル/分で流しながら、アンモニアを4リットル/分、TMGを40μmol/分、トリメチルアルミニウム(以下、TMAと略称する。)を3μmol/分、で供給して、アンドープのAl0.05Ga0.95Nからなるクラッド層14を30nmの厚さで成長させた。このクラッド層14の電子濃度は5×1016cm-3であった。 After the growth of the first n-type layer 13, the supply of TMI is stopped, nitrogen is supplied as a carrier gas at 14 liters / minute, ammonia is supplied at 6 liters / minute, and TMG is supplied at 2 μmol / minute. While the temperature is raised toward 0 ° C., undoped GaN (not shown) is continuously grown to a thickness of 3 nm. When the temperature of the substrate 11 reaches 1060 ° C., nitrogen gas is used as a carrier gas at 8 liters / minute and hydrogen. While flowing gas at 8 liters / minute, ammonia was supplied at 4 liters / minute, TMG was supplied at 40 μmol / minute, and trimethylaluminum (hereinafter abbreviated as TMA) was supplied at 3 μmol / minute, and undoped Al 0.05 Ga 0.95 was supplied. A cladding layer 14 made of N was grown to a thickness of 30 nm. The electron concentration of the cladding layer 14 was 5 × 10 16 cm −3 .

クラッド層14を成長後、TMGとTMAの供給を止め、基板11の温度を700℃にまで降下させ、この温度に維持して、キャリアガスとして窒素を12リットル/分、アンモニアを8リットル/分、TMGを4μmol/分、TMIを5μmol/分、で供給して、アンドープのIn0.15Ga0.85Nからなる量子井戸構造の井戸層(図示せず)を2nmの厚さで成長させた。 After growing the clad layer 14, the supply of TMG and TMA is stopped, the temperature of the substrate 11 is lowered to 700 ° C., and maintained at this temperature, the carrier gas is 12 liters / minute nitrogen and 8 liters / minute ammonia. Then, TMG was supplied at 4 μmol / min and TMI was supplied at 5 μmol / min to grow a well layer (not shown) having a quantum well structure made of undoped In 0.15 Ga 0.85 N with a thickness of 2 nm.

井戸層を成長後、TMIの供給を止め、キャリアガスとして窒素を12リットル/分、アンモニアを8リットル/分、TMGを2μmol/分で供給して、基板11の温度を1060℃に向けて昇温させながら、引き続きアンドープのGaN障壁層(図示せず)を3nmの厚さで成長させ、基板11の温度が1060℃に達したら、キャリアガスとして窒素と水素を各々7リットル/分と7リットル/分で流しながら、アンモニアを6リットル/分、TMGを40μmol/分、で供給して、引き続きアンドープのGaN障壁層(図示せず)を12nmの厚さで成長させた。こうしてアンドープのGaNからなる厚さ15nmの障壁層を形成した。そして、TMGの供給を止め、基板温度を再度700℃まで降下させ、井戸層(図示せず)と障壁層(図示せず)の製法と同様の手順を繰り返すことにより、井戸層(図示せず)、障壁層(図示せず)、井戸層(図示せず)、障壁層(図示せず)、井戸層(図示せず)を形成した。   After growing the well layer, supply of TMI is stopped, nitrogen is supplied as a carrier gas at 12 liters / minute, ammonia is supplied at 8 liters / minute, and TMG is supplied at 2 μmol / minute, and the temperature of the substrate 11 is increased toward 1060 ° C. While heating, an undoped GaN barrier layer (not shown) is subsequently grown to a thickness of 3 nm, and when the temperature of the substrate 11 reaches 1060 ° C., nitrogen and hydrogen as carrier gases are 7 liters / minute and 7 liters, respectively. Then, ammonia was supplied at a rate of 6 liters / minute and TMG was supplied at 40 μmol / minute, and an undoped GaN barrier layer (not shown) was subsequently grown to a thickness of 12 nm. Thus, a 15 nm thick barrier layer made of undoped GaN was formed. Then, the supply of TMG is stopped, the substrate temperature is lowered again to 700 ° C., and the procedure similar to the manufacturing method of the well layer (not shown) and the barrier layer (not shown) is repeated, thereby the well layer (not shown). ), A barrier layer (not shown), a well layer (not shown), a barrier layer (not shown), and a well layer (not shown).

最後の井戸層(図示せず)を成長後、TMIの供給を止め、キャリアガスとして窒素を14リットル/分、アンモニアを6リットル/分、TMGを2μmol/分、TMAを0.15μmol/分で供給して、基板11の温度を1060℃に向けて昇温させながら、引き続きアンドープのAl0.05Ga0.95N(図示せず)を3nmの厚さで成長させた。 After growing the last well layer (not shown), the supply of TMI was stopped, nitrogen as carrier gas was 14 liters / minute, ammonia was 6 liters / minute, TMG was 2 μmol / minute, and TMA was 0.15 μmol / minute. Then, while increasing the temperature of the substrate 11 toward 1060 ° C., undoped Al 0.05 Ga 0.95 N (not shown) was subsequently grown to a thickness of 3 nm.

このようにして、4層の井戸層からなるMQWを形成した。   In this way, an MQW composed of four well layers was formed.

次に、基板温度が1060℃に達したら、キャリアガスとして窒素ガスを10リットル/分及び水素ガスを6リットル/分で流しながら、アンモニアを4リットル/分、TMGを40μmol/分、TMAを3μmol/分、ビスシクロペンタジエニルマグネシウム(以下、Cp2Mgと略称する。)を0.1μmol/分、で供給して、MgをドープしたAl0.05Ga0.95Nからなるp型層16を200nmの厚さで成長させた。このp型層16のMg濃度は1×1020cm-3であった。 Next, when the substrate temperature reaches 1060 ° C., nitrogen gas is flowed at 10 liter / minute and hydrogen gas is flowed at 6 liter / minute as carrier gas, ammonia is 4 liter / minute, TMG is 40 μmol / minute, and TMA is 3 μmol. Biscyclopentadienylmagnesium (hereinafter abbreviated as Cp 2 Mg) is supplied at 0.1 μmol / min, and a p-type layer 16 made of Al 0.05 Ga 0.95 N doped with Mg is formed at a thickness of 200 nm. Grown in thickness. The Mg concentration of the p-type layer 16 was 1 × 10 20 cm −3 .

p型層16を成長後、TMGとTMAとCp2Mgの供給を止め、窒素ガスを18リットル/分、アンモニアを2リットル/分で流しながら、基板11の温度を室温程度にまで冷却させて、基板11の上に窒化ガリウム系化合物半導体が積層されたウェハーを反応管から取り出した。 After the growth of the p-type layer 16, the supply of TMG, TMA, and Cp 2 Mg is stopped, and the temperature of the substrate 11 is cooled to about room temperature while supplying nitrogen gas at 18 liters / minute and ammonia at 2 liters / minute. The wafer in which the gallium nitride compound semiconductor was laminated on the substrate 11 was taken out from the reaction tube.

このウェハーを励起光源として波長325nmのHe−Cdレーザ光を用いたフォトルミネッセンスマッピング装置により1mmピッチでフォトルミネッセンス強度のウェハー面内分布を測定したところ、直径50mmのウェハー内で標準偏差は4.1%であった。   When the wafer in-plane distribution of photoluminescence intensity was measured at a pitch of 1 mm by a photoluminescence mapping apparatus using a He—Cd laser beam having a wavelength of 325 nm using this wafer as an excitation light source, the standard deviation was 4.1 in a wafer having a diameter of 50 mm. %Met.

このようにして形成した窒化ガリウム系化合物半導体からなる積層構造に対して、別途アニールを施すことなく、その表面上にCVD法によりSiO2膜を堆積させた後、フォトリソグラフィーとウェットエッチングにより略方形状にパターンニングしてエッチング用のSiO2マスクを形成させた。そして、反応性イオンエッチング法により、p型層16と発光層15とクラッド層14と第一のn型層13と第二のn型層12の一部を約500nmの深さで積層方向と逆の方向に向かって除去させて、第二のn型層12の表面を露出させた。そして、フォトリソグラフィーと蒸着法により、露出させた第二のn型層12の表面上の一部に、100nm厚のTiと500nm厚のAuを積層したn側電極18を蒸着形成させた。さらに、エッチング用のSiO2マスクをウェットエッチングにより除去させた後、フォトリソグラフィーと蒸着法により、p型層16の表面上のほぼ全面に、5nmのPtと、500nmのRhと、100nmのTiと、500nm厚のAuとからなるp側電極17を蒸着形成させた。 After the SiO 2 film is deposited on the surface of the laminated structure made of the gallium nitride compound semiconductor formed in this way by the CVD method without performing any additional annealing, it is roughly processed by photolithography and wet etching. An SiO 2 mask for etching was formed by patterning into a shape. Then, by reactive ion etching, the p-type layer 16, the light emitting layer 15, the cladding layer 14, the first n-type layer 13, and part of the second n-type layer 12 are stacked in the stacking direction at a depth of about 500 nm. The surface of the second n-type layer 12 was exposed by removing in the opposite direction. Then, an n-side electrode 18 in which 100 nm-thick Ti and 500 nm-thick Au were stacked was vapor-deposited on a part of the exposed surface of the second n-type layer 12 by photolithography and vapor deposition. Further, after removing the etching SiO 2 mask by wet etching, 5 nm of Pt, 500 nm of Rh, 100 nm of Ti are formed on almost the entire surface of the p-type layer 16 by photolithography and vapor deposition. The p-side electrode 17 made of Au having a thickness of 500 nm was formed by vapor deposition.

この後、基板11の裏面を研磨して100μm程度の厚さに調整し、スクライブによりチップ状に分離した。このようにして、図2に示す窒化ガリウム系化合物半導体発光素子が得られた。   Thereafter, the back surface of the substrate 11 was polished and adjusted to a thickness of about 100 μm, and separated into chips by scribing. In this manner, the gallium nitride compound semiconductor light emitting device shown in FIG. 2 was obtained.

この発光素子を、電極形成面側を下向きにして、正負一対の電極を有するSiツェナーダイオードの上にAuバンプにより接着させた。このとき、発光素子のp側電極17およびn側電極18が、それぞれSiツェナーダイオードの負電極および正電極と接続されるようにして発光素子を搭載する。この後、発光素子を搭載させたSiツェナーダイオードを、Agペーストによりステム上に載置し、Siツェナーダイオードの正電極をステム上の電極にワイヤで結線し、その後樹脂モールドして発光ダイオードを作製した。この発光ダイオードを20mAの順方向電流で駆動したところ、ピーク発光波長が約470nmの青色で発光し、基板11の裏面側から均一な面発光が得られた。このときの発光出力は個々の発光ダイオード間でばらつきが小さく、約6mWであった。また、順方向動作電圧は約3.0Vであった。   This light emitting element was bonded by Au bumps on a Si Zener diode having a pair of positive and negative electrodes with the electrode formation surface side facing down. At this time, the light-emitting element is mounted so that the p-side electrode 17 and the n-side electrode 18 of the light-emitting element are connected to the negative electrode and the positive electrode of the Si Zener diode, respectively. After that, the Si Zener diode on which the light emitting element is mounted is placed on the stem with Ag paste, the positive electrode of the Si Zener diode is connected to the electrode on the stem with a wire, and then resin molded to produce the light emitting diode. did. When this light emitting diode was driven with a forward current of 20 mA, light was emitted in blue with a peak emission wavelength of about 470 nm, and uniform surface emission was obtained from the back side of the substrate 11. The light emission output at this time was about 6 mW with little variation among individual light emitting diodes. The forward operation voltage was about 3.0V.

(実施例2)
実施例2においては、上記実施例1において、第二のn型層12を成長する前に、GaN基板11の表面を反応性イオンエッチング法によりエッチングした以外は、上記実施例1と同様の手順で発光ダイオードを作製した。
(Example 2)
In Example 2, the same procedure as in Example 1 above, except that the surface of the GaN substrate 11 was etched by the reactive ion etching method before growing the second n-type layer 12 in Example 1 above. A light-emitting diode was manufactured.

具体的には、上記実施例1と同様の手順で表面を平坦且つ鏡面に研磨したGaN基板11を準備した後、GaN基板11を反応性イオンエッチング装置内にセットし、プロセスガスとして塩素ガスを10sccm流し、高周波パワーを100W、基板温度を50℃として、GaN基板11の表面を約100nmの厚さだけエッチングした。   Specifically, after preparing a GaN substrate 11 having a flat and mirror polished surface in the same procedure as in Example 1, the GaN substrate 11 is set in a reactive ion etching apparatus, and chlorine gas is used as a process gas. The surface of the GaN substrate 11 was etched to a thickness of about 100 nm with a flow of 10 sccm, a high frequency power of 100 W, a substrate temperature of 50 ° C.

この後、上記実施例1と同様の手順で、GaN基板11の表面に第二のn型層12、第一のn型層13、クラッド層14、発光層15、p型層16を順次成長して、基板11の上に窒化ガリウム系化合物半導体が積層されたウェハーを形成した。   Thereafter, the second n-type layer 12, the first n-type layer 13, the cladding layer 14, the light emitting layer 15, and the p-type layer 16 are sequentially grown on the surface of the GaN substrate 11 in the same procedure as in the first embodiment. Thus, a wafer in which a gallium nitride compound semiconductor was laminated on the substrate 11 was formed.

次に、上記実施例1と同様の手順で、フォトルミネッセンス強度のウェハー面内分布を測定したところ、直径50mmのウェハー内で標準偏差は3.0%であった。   Next, when the in-plane distribution of photoluminescence intensity was measured in the same procedure as in Example 1, the standard deviation was 3.0% in a wafer having a diameter of 50 mm.

このようにして形成した窒化ガリウム系化合物半導体からなる積層構造に対して、上記実施例1と同様の手順で、電極を形成し、さらに実装して発光ダイオードを作製した。この発光ダイオードを20mAの順方向電流で駆動したところ、ピーク発光波長が約470nmの青色で発光し、基板11の裏面側から均一な面発光が得られた。このときの発光出力は個々の発光ダイオード間でばらつきが小さく、約6mWであった。また、順方向動作電圧は約3.0Vであった。   With respect to the laminated structure made of the gallium nitride compound semiconductor thus formed, electrodes were formed and mounted in the same procedure as in Example 1 to produce a light emitting diode. When this light emitting diode was driven with a forward current of 20 mA, light was emitted in blue with a peak emission wavelength of about 470 nm, and uniform surface emission was obtained from the back side of the substrate 11. The light emission output at this time was about 6 mW with little variation among individual light emitting diodes. The forward operation voltage was about 3.0V.

(比較例)
比較例においては、上記実施例1において、第一のn型層13を形成しなかった以外は、上記実施例1と同様の手順で発光ダイオードを作製した。
(Comparative example)
In the comparative example, a light-emitting diode was manufactured in the same procedure as in Example 1 except that the first n-type layer 13 was not formed in Example 1.

具体的には、上記実施例1において、第二のn型層12を成長後、基板11の温度を1060℃に維持しながら、上記実施例1と同様の手順でアンドープのAl0.05Ga0.95Nからなるクラッド層14を成長させ、引き続き発光層15、p型層16を順次成長して、基板11の上に窒化ガリウム系化合物半導体が積層されたウェハーを形成した。 Specifically, in Example 1 above, after the second n-type layer 12 is grown, undoped Al 0.05 Ga 0.95 N is obtained in the same procedure as in Example 1 above while maintaining the temperature of the substrate 11 at 1060 ° C. Then, the light emitting layer 15 and the p-type layer 16 were successively grown to form a wafer in which a gallium nitride compound semiconductor was laminated on the substrate 11.

次に、上記実施例1と同様の手順で、フォトルミネッセンス強度のウェハー面内分布を測定したところ、直径50mmのウェハー内で標準偏差は32.9%であった。   Next, when the in-plane distribution of photoluminescence intensity was measured in the same procedure as in Example 1, the standard deviation was 32.9% within a wafer having a diameter of 50 mm.

このようにして形成した窒化ガリウム系化合物半導体からなる積層構造に対して、上記実施例1と同様の手順で、電極を形成し、さらに実装して発光ダイオードを作製した。この発光ダイオードを20mAの順方向電流で駆動したところ、ピーク発光波長が約470nmの青色で発光した。このときの発光出力は個々の発光ダイオード間でばらつきが大きく、3mWから6mWの範囲でばらついた。また、順方向動作電圧は3.0Vから3.3Vの範囲でばらついた。   With respect to the laminated structure made of the gallium nitride compound semiconductor thus formed, electrodes were formed and mounted in the same procedure as in Example 1 to produce a light emitting diode. When this light emitting diode was driven with a forward current of 20 mA, it emitted blue light with a peak emission wavelength of about 470 nm. The light emission output at this time varied widely among individual light emitting diodes, and varied in the range of 3 mW to 6 mW. Further, the forward operation voltage varied in the range of 3.0V to 3.3V.

本発明は、少なくともInを含む第一のn型層がGaN基板が持っている不均一な歪みやダメージを緩和するため、発光特性のウェハ面内均一性が向上し、歩留まりがよくなるという効果を有し、製造コストの低い発光ダイオード、レーザダイオードを実現可能とする。   In the present invention, the first n-type layer containing at least In alleviates the non-uniform distortion and damage of the GaN substrate, so that the in-wafer uniformity of the light emission characteristics is improved and the yield is improved. It is possible to realize a light-emitting diode and a laser diode that have low manufacturing costs.

1 n型のGaNからなる基板
2 n型層
5 発光層
6 p型層
7 p側電極
8 n側電極
11 基板
12 第二のn型層
13 第一のn型層
14 クラッド層
15 発光層
16 p型層
17 p側電極
18 n側電極
19 第三のn型層
31 第四のn型層
32 第五のn型層
1 n-type GaN substrate 2 n-type layer 5 light-emitting layer 6 p-type layer 7 p-side electrode 8 n-side electrode 11 substrate 12 second n-type layer 13 first n-type layer 14 clad layer 15 light-emitting layer 16 p-type layer 17 p-side electrode 18 n-side electrode 19 third n-type layer 31 fourth n-type layer 32 fifth n-type layer

Claims (7)

研磨された表面を有する窒化ガリウム系化合物半導体からなる基板と、
前記研磨された表面上に少なくともInを含む第一のn型層と、
発光層とを有しており、
前記第一のn型層は前記基板と前記発光層との間に形成され、前記第一のn型層と前記基板の間に基板側から第四のn型層と第五のn型層を有し、前記第五のn型層は前記第四のn型層よりキャリア濃度が高く、かつn側電極が形成されていることを特徴とする窒化ガリウム系化合物半導体発光ダイオード。
A substrate made of a gallium nitride compound semiconductor having a polished surface;
A first n-type layer comprising at least In on the polished surface;
A light emitting layer,
The first n-type layer is formed between the substrate and the light emitting layer, and a fourth n-type layer and a fifth n-type layer from the substrate side between the first n-type layer and the substrate. And the fifth n-type layer has a carrier concentration higher than that of the fourth n-type layer, and an n-side electrode is formed.
前記基板はGaNであることを特徴とする請求項1に記載の窒化ガリウム系化合物半導体発光ダイオード。 The gallium nitride compound semiconductor light emitting diode according to claim 1, wherein the substrate is GaN. 前記第四のn型層のキャリア濃度は1×1017cm-3〜2×1018cm-3であり、前記第五のn型層のキャリア濃度は2×1018cm-3〜1×1019cm-3であることを特徴とする請求項1または請求項2に記載の窒化ガリウム系化合物半導体発光ダイオード。 The fourth n-type layer has a carrier concentration of 1 × 10 17 cm −3 to 2 × 10 18 cm −3 , and the fifth n-type layer has a carrier concentration of 2 × 10 18 cm −3 to 1 ×. The gallium nitride compound semiconductor light-emitting diode according to claim 1 or 2, wherein the gallium nitride compound semiconductor light-emitting diode is 10 19 cm -3 . 前記第五のn型層の層厚は前記第四のn型層の層厚よりも小さく、100〜500nmであることを特徴とする請求項1〜請求項3のいずれか一つに記載の窒化ガリウム系化合物半導体発光ダイオード。 The layer thickness of said 5th n-type layer is smaller than the layer thickness of said 4th n-type layer, and is 100-500 nm, The layer thickness of any one of Claims 1-3 characterized by the above-mentioned. Gallium nitride compound semiconductor light emitting diode. 前記第四のn型層の層厚は1〜5μmであることを特徴とする請求項1〜請求項4のいずれか一つに記載の窒化ガリウム系化合物半導体発光ダイオード。 5. The gallium nitride-based compound semiconductor light-emitting diode according to claim 1, wherein a thickness of the fourth n-type layer is 1 to 5 μm. 前記第一のn型層の厚さは10nm〜1μmであることを特徴とする請求項1〜請求項5のいずれか一つに記載の窒化ガリウム系化合物半導体発光ダイオード。 6. The gallium nitride compound semiconductor light-emitting diode according to claim 1, wherein the first n-type layer has a thickness of 10 nm to 1 [mu] m. 前記第一のn型層はInAlGaNまたはInGaNである、請求項1〜請求項6のいずれか一つに記載の窒化ガリウム系化合物半導体発光ダイオード。 The gallium nitride-based compound semiconductor light emitting diode according to any one of claims 1 to 6, wherein the first n-type layer is InAlGaN or InGaN.
JP2011021321A 2011-02-03 2011-02-03 Semiconductor light emitting diode of gallium nitride compound Pending JP2011091442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011021321A JP2011091442A (en) 2011-02-03 2011-02-03 Semiconductor light emitting diode of gallium nitride compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021321A JP2011091442A (en) 2011-02-03 2011-02-03 Semiconductor light emitting diode of gallium nitride compound

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004079873A Division JP2005268581A (en) 2004-03-19 2004-03-19 Gallium nitride family compound semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2011091442A true JP2011091442A (en) 2011-05-06

Family

ID=44109332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021321A Pending JP2011091442A (en) 2011-02-03 2011-02-03 Semiconductor light emitting diode of gallium nitride compound

Country Status (1)

Country Link
JP (1) JP2011091442A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010681A (en) * 2011-05-31 2013-01-17 Hitachi Cable Ltd Gallium nitride substrate, light emitting element, field effect transistor, and method for producing epitaxial film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256662A (en) * 1997-03-11 1998-09-25 Nichia Chem Ind Ltd Manufacture of nitride semiconductor substrate and manufacture of nitride semiconductor element
JPH10290047A (en) * 1997-02-17 1998-10-27 Nichia Chem Ind Ltd Nitride semiconductor element
JP2001148546A (en) * 1999-11-22 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290047A (en) * 1997-02-17 1998-10-27 Nichia Chem Ind Ltd Nitride semiconductor element
JPH10256662A (en) * 1997-03-11 1998-09-25 Nichia Chem Ind Ltd Manufacture of nitride semiconductor substrate and manufacture of nitride semiconductor element
JP2001148546A (en) * 1999-11-22 2001-05-29 Nichia Chem Ind Ltd Nitride semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010681A (en) * 2011-05-31 2013-01-17 Hitachi Cable Ltd Gallium nitride substrate, light emitting element, field effect transistor, and method for producing epitaxial film

Similar Documents

Publication Publication Date Title
JP4908381B2 (en) Group III nitride semiconductor layer manufacturing method, group III nitride semiconductor light emitting device, and lamp
KR101646064B1 (en) Method of manufacture for nitride semiconductor light emitting element, wafer, and nitride semiconductor light emitting element
JP5556657B2 (en) Group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
TWI470827B (en) Semiconductor light emitting device, wafer, method for manufacturing semiconductor light emitting device, and method for manufacturing wafer
JP5162016B1 (en) Semiconductor device, wafer, semiconductor device manufacturing method, and wafer manufacturing method
JP5272390B2 (en) Group III nitride semiconductor manufacturing method, group III nitride semiconductor light emitting device manufacturing method, group III nitride semiconductor light emitting device, and lamp
JP5521981B2 (en) Manufacturing method of semiconductor light emitting device
WO2009154215A1 (en) Iii-group nitride semiconductor light emitting element, method for manufacturing the element, and lamp
US20130065340A1 (en) Method for manufacturing semiconductor light emitting device
JP2005268581A (en) Gallium nitride family compound semiconductor light emitting device
JP5948698B2 (en) Ultraviolet light emitting device and manufacturing method thereof
JP6910341B2 (en) Vertical UV light emitting diode
JP6495476B2 (en) UV light emitting element
WO2009142265A1 (en) Iii nitride semiconductor light emitting element and method for manufacturing the same, and lamp
TW201434174A (en) Crystal layered structure and light emitting element
JP2011258843A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JP2006140530A (en) Method of manufacturing p-type nitride semiconductor
JP2011091442A (en) Semiconductor light emitting diode of gallium nitride compound
JP2011082248A (en) Semiconductor light emitting element and method of manufacturing the same, and lamp
JP2009155672A (en) Method for manufacturing group-iii nitride semiconductor, method for manufacturing light-emitting device of group-iii nitride semiconductor, apparatus for manufacturing group-iii nitride semiconductor, group-iii nitride semiconductor and light-emitting device of group-iii nitride semiconductor, and lamp
JP2004179369A (en) Semiconductor device and its manufacturing method
JP5787851B2 (en) Semiconductor device, wafer, semiconductor device manufacturing method, and wafer manufacturing method
JP2005252309A (en) Manufacturing method of gallium nitride based semiconductor light emitting element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304