JP5019160B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP5019160B2
JP5019160B2 JP2006324671A JP2006324671A JP5019160B2 JP 5019160 B2 JP5019160 B2 JP 5019160B2 JP 2006324671 A JP2006324671 A JP 2006324671A JP 2006324671 A JP2006324671 A JP 2006324671A JP 5019160 B2 JP5019160 B2 JP 5019160B2
Authority
JP
Japan
Prior art keywords
light extraction
algaas layer
type algaas
light
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006324671A
Other languages
Japanese (ja)
Other versions
JP2008140926A (en
Inventor
均 池田
勇 茂木
金吾 鈴木
秋夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2006324671A priority Critical patent/JP5019160B2/en
Priority to PCT/JP2007/072430 priority patent/WO2008065929A1/en
Priority to TW96144677A priority patent/TWI408830B/en
Publication of JP2008140926A publication Critical patent/JP2008140926A/en
Application granted granted Critical
Publication of JP5019160B2 publication Critical patent/JP5019160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Description

この発明は発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device.

特開平6−151959号公報JP-A-6-151959 特開2001−36129号公報JP 2001-36129 A 特許第3726882号公報Japanese Patent No. 3726882 特開2005−116615号公報JP-A-2005-116615 特許第3657270号公報Japanese Patent No. 3657270 特開平10−200156号公報Japanese Patent Laid-Open No. 10-200196

AlGa1−xAs混晶(ただし、0≦x≦1;以下、AlGaAs混晶、あるいは単にAlGaAsとも記載する)により発光層部が形成された発光素子は、指向性が強く高発光効率の赤色系発光素子として実用化されている。このような発光素子においては、AlGaAs層の金属電極の周囲領域が光取出面として使用されるが、素子内部から光取出領域に向かう光のうち、臨界角度よりも大角度で光取出領域に入射する光(入射角は、光束入射方向と領域面法線とのなす角度)が全反射により素子内部に戻るので、その全てを取り出せるわけではない。そこで、特許文献1〜特許文献6には、光取出面を異方性エッチング液により面粗し処理して微細な凹凸を形成し(フロスト処理とも称される)、発光光束が大角度入射する確率を減じて光取出し効率を高める技術が開示されている。 A light emitting device in which a light emitting layer portion is formed of Al x Ga 1-x As mixed crystal (where 0 ≦ x ≦ 1; hereinafter also referred to as AlGaAs mixed crystal or simply referred to as AlGaAs) has high directivity and high luminous efficiency. It is put into practical use as a red light emitting element. In such a light emitting device, the area around the metal electrode of the AlGaAs layer is used as the light extraction surface, but the light entering from the inside of the device to the light extraction region is incident on the light extraction region at an angle larger than the critical angle. The incident light (incident angle is an angle formed by the incident direction of the light beam and the region surface normal) returns to the inside of the element by total reflection, and thus not all of it can be extracted. Therefore, in Patent Document 1 to Patent Document 6, the light extraction surface is roughened with an anisotropic etching solution to form fine irregularities (also referred to as frost treatment), and the emitted luminous flux is incident at a large angle. A technique for increasing the light extraction efficiency by reducing the probability is disclosed.

しかしながら、上記特許文献1〜特許文献6の方法で面粗し処理した場合、面粗しによる突起形成状態(突起形態や突起高さ)にムラが生じやすく、素子の歩留まり低下や、外観検査工程での不良品除去工数の増大を招きやすい問題がある。特に、光取出面からp−n接合面までを形成する表面層の厚さが小さい場合、深く切れ込む突起が局所的に形成されると、突起に隣接した谷状部がp−n接合界面にまで到達して表面層が面内で途切れ、面内の電流拡散状態が悪化し光取出し効率の低下を招きやすくなる。   However, when the surface roughening process is performed by the methods of Patent Document 1 to Patent Document 6, unevenness is likely to occur in the protrusion formation state (protrusion form and protrusion height) due to the surface roughening, and the yield reduction of the element and the appearance inspection process are performed. There is a problem in that it tends to increase the number of steps for removing defective products. In particular, when the thickness of the surface layer that forms from the light extraction surface to the pn junction surface is small, when a deeply cut protrusion is locally formed, a valley-like portion adjacent to the protrusion is formed at the pn junction interface. And the surface layer is interrupted in the surface, the current diffusion state in the surface is deteriorated, and the light extraction efficiency is easily lowered.

本発明の課題は、AlGaAs発光素子において光取り出し面に面粗し処理を均一に施すことができ、ひいては面粗し状態にムラの生じにくい発光素子の製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a light-emitting element in which an AlGaAs light-emitting element can be uniformly roughened on the light extraction surface, and thus hardly causes unevenness in the surface-roughened state.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の課題を解決するために、本発明の発光素子の製造方法は、
発光素子ウェーハを、組成式(AlxGa1−xAs(ただし、0<x<1)にて表される化合物にて各々構成されたn型AlGaAs層とp型AlGaAs層とがp−n接合を形成するように積層された積層体として製造する発光素子ウェーハ製造工程と、
積層体の主表面を、酢酸と弗酸と硝酸とヨウ素と水とを、その合計が90質量%以上となるように含有し、かつ酢酸と弗酸と硝酸とヨウ素との合計質量含有率が水の質量含有率よりも高い水溶液からなる面粗し用エッチング液にて異方性エッチングすることにより面粗し突起部を形成する主光取出領域面粗し工程と、
がこの順序で実施され
n型AlGaAs層又はp型AlGaAs層からなる積層体の光取出面として使用される主表面を、硫酸過酸化水素水溶液からなる前処理液と接触させて前処理する前処理工程を主光取出領域面粗し工程に先立って実施し、
前処理液は96%硫酸:30%過酸化水素水:水の混合比率が、5:1:1以上20:1:1以下のものが使用され、
主光取出領域面粗し工程は、前記発光素子ウェーハのダイシング前に行われることを特徴とする。
In order to solve the above problems, a method for manufacturing a light-emitting element of the present invention includes:
An n-type AlGaAs layer and a p-type AlGaAs layer each formed of a compound represented by a composition formula (AlxGa1-xAs (where 0 <x <1)) form a pn junction. A light emitting element wafer manufacturing process for manufacturing as a stacked body,
The main surface of the laminate contains acetic acid, hydrofluoric acid, nitric acid, iodine and water so that the total amount is 90% by mass or more, and the total mass content of acetic acid, hydrofluoric acid, nitric acid and iodine is A main light extraction region surface roughening step for forming a protrusion by roughening the surface by anisotropic etching with a surface roughening etchant composed of an aqueous solution higher than the mass content of water;
Are performed in this order ,
A main light extraction region is a pretreatment step in which a main surface used as a light extraction surface of a laminate composed of an n-type AlGaAs layer or a p-type AlGaAs layer is brought into contact with a pretreatment liquid made of a sulfuric acid hydrogen peroxide aqueous solution. Prior to the surface roughening process,
A pretreatment liquid having a mixing ratio of 96% sulfuric acid: 30% hydrogen peroxide water: water of 5: 1: 1 to 20: 1: 1 is used.
Main light extraction area surface roughening process is characterized Rukoto performed before dicing of the light-emitting element wafer.

上記本発明の方法によると、酢酸と弗酸と硝酸とヨウ素とを含有する、本発明特有の面粗し用エッチング液を用いることで、AlGaAsからなる積層体の第一主表面に特にマスク処理などを施さなくとも、該第一主表面にエッチング液を接触させるだけで、異方性エッチング的な原理による凹凸形成が顕著に進行し、ひいては積層体の第一主表面に面粗し突起部を効率よく安価に形成することができる。酢酸と弗酸と硝酸とヨウ素と水の合計は90質量%以上であり、これ以下の含有率では面粗し突起部を効率良く形成できない。また、酢酸と弗酸と硝酸とヨウ素との合計質量含有率が水の質量含有率より低くなっても、同様に面粗し突起部を効率良く形成できない。なお、酢酸と弗酸と硝酸とヨウ素と水との合計を100質量%から差し引いた残部は、AlGaAsに対する異方性エッチング効果が損なわれない範囲内で、他の成分(例えば酢酸以外のカルボン酸等)で占められていてもよい。   According to the above-described method of the present invention, by using the surface roughening etching solution peculiar to the present invention containing acetic acid, hydrofluoric acid, nitric acid and iodine, the first main surface of the laminate made of AlGaAs is particularly masked. Even if the first main surface is not contacted with the first main surface, the formation of irregularities by the anisotropic etching principle proceeds remarkably, and as a result, the first main surface of the laminate is roughened and the protrusion is roughened. Can be formed efficiently and inexpensively. The total of acetic acid, hydrofluoric acid, nitric acid, iodine, and water is 90% by mass or more, and if the content is less than this, the surface is roughened and the protrusions cannot be formed efficiently. Further, even if the total mass content of acetic acid, hydrofluoric acid, nitric acid and iodine is lower than the mass content of water, the surface is similarly roughened and the protrusions cannot be formed efficiently. The balance obtained by subtracting the total of acetic acid, hydrofluoric acid, nitric acid, iodine and water from 100% by mass is within the range where the anisotropic etching effect on AlGaAs is not impaired, and other components (for example, carboxylic acids other than acetic acid) Etc.).

なお、この面粗し用エッチング液を用いたAlGaAsへの突起形成効果(異方性エッチング効果)はAlGaAsの(100)面に対して特に顕著なので、上記の発光素子ウェーハも、主表面が(100)のウェーハとして製造することが望ましい。   Note that the projection formation effect (anisotropic etching effect) on AlGaAs using this surface-roughening etching solution is particularly remarkable with respect to the (100) plane of AlGaAs. 100) wafers are desirable.

上記の面粗し用エッチング液による面粗し工程に先立って、AlGaAsからなる積層体の第一主表面(主光取出領域)を、硫酸過酸化水素水溶液からなる前処理液と接触させて前処理を行なうことができる。これにより、面粗しにより得られるウェーハの突起形成状態にムラが生じることを効果的に防止することができる。その結果、局所的に深い突起の形成が抑制され、光取出面側のAlGaAs層が該深い突起で面内出途切れてしまう不具合も生じにくい。そして、ウェーハをダイシングして得られる素子の歩留まりを向上でき、また、外観検査工程での不良品除去工数の手間を大幅に省くことができる。   Prior to the surface roughening step using the surface roughening etchant, the first main surface (main light extraction region) of the laminate made of AlGaAs is brought into contact with a pretreatment liquid made of a sulfuric acid hydrogen peroxide aqueous solution. Processing can be performed. As a result, it is possible to effectively prevent unevenness in the protrusion formation state of the wafer obtained by surface roughening. As a result, the formation of deep protrusions locally is suppressed, and the inconvenience that the AlGaAs layer on the light extraction surface side is disconnected in-plane by the deep protrusions hardly occurs. And the yield of the element obtained by dicing the wafer can be improved, and the labor of removing defective products in the appearance inspection process can be saved greatly.

この効果は、n型AlGaAs層とp型AlGaAs層との光取出面側に位置するものが10μm以下の薄層に形成されている場合に特に顕著である(ただし、面内の電流拡散を十分に行なうため、該層の厚さは1μm以上であることが望ましい)。 This effect is particularly remarkable when the n-type AlGaAs layer and the p-type AlGaAs layer located on the light extraction surface side are formed as thin layers of 10 μm or less (however, in-plane current diffusion is sufficient). Therefore, the thickness of the layer is preferably 1 μm or more).

面粗し用エッチング液は、具体的には、
酢酸(CHCOOH換算):37.4質量%以上94.8質量%以下、
弗酸(HF換算):0.4質量%以上14.8質量%以下、
硝酸(HNO換算):1.3質量%以上14.7質量%以下、
ヨウ素(I換算):0.12質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上45質量%以下のものを使用することが望ましい。いずれの成分も上記組成の範囲外になると、AlGaAs単結晶の(100)面に対する異方性エッチング効果が十分でなくなり、積層体の第一主表面へ面荒らし突起部を十分に形成できなくなる。面粗し用エッチング液は、より望ましくは、
酢酸(CHCOOH換算):45.8質量%以上94.8質量%以下、
弗酸(HF換算):0.5質量%以上14.8質量%以下、
硝酸(HNO換算):1.6質量%以上14.7質量%以下、
ヨウ素(I換算):0.15質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上32.7質量%以下のものを採用するのがよい。すなわち、AlGaAs単結晶の(100)面に対する異方性エッチング効果を高めるには、特に水の含有量を上記のように少なく留め、かつ、酸主溶媒の機能を水ではなく酢酸に担わせることが重要であるともいえる。
Specifically, the surface roughening etchant is:
Acetic acid (converted to CH 3 COOH): 37.4% by mass or more and 94.8% by mass or less,
Hydrofluoric acid (converted to HF): 0.4 mass% or more and 14.8 mass% or less,
Nitric acid (in terms of HNO 3 ): 1.3% by mass or more and 14.7% by mass or less,
Iodine (I 2 equivalent): It is desirable to use 0.12% by mass or more and 0.84% by mass or less and a water content of 2.4% by mass or more and 45% by mass or less. . If any component is out of the range of the above composition, the anisotropic etching effect on the (100) plane of the AlGaAs single crystal is insufficient, and the surface roughening protrusion cannot be sufficiently formed on the first main surface of the laminate. More preferably, the surface roughening etchant is
Acetic acid (converted to CH 3 COOH): 45.8 mass% or more and 94.8 mass% or less,
Hydrofluoric acid (converted to HF): 0.5% by mass or more and 14.8% by mass or less,
Nitric acid (converted to HNO 3 ): 1.6 mass% or more and 14.7 mass% or less,
Iodine (I 2 equivalent): It is contained in the range of 0.15% by mass or more and 0.84% by mass or less, and the water content is 2.4% by mass or more and 32.7% by mass or less. Is good. That is, in order to enhance the anisotropic etching effect on the (100) plane of the AlGaAs single crystal, the content of water is particularly limited as described above, and the function of the acid main solvent is not accrued by water but by acetic acid. Can be said to be important.

前処理液は96%硫酸:30%過酸化水素水:水の混合比率が、5:1:1以上20:1:1以下のものを使用するのがよい。硫酸の比率が5:1:1未満では前処理による突起形成のムラ抑制効果が不十分となり、15:1:1を超えるとエッチング用の保護レジストが分解され、電極パターン不良を生じやすくなる。保護レジストを使用しない場合は、20:1:1以下であれば十分に突起形成のムラ抑制効果が得られる。   It is preferable to use a pretreatment liquid having a mixing ratio of 96% sulfuric acid: 30% hydrogen peroxide solution: water of 5: 1: 1 or more and 20: 1: 1 or less. If the ratio of sulfuric acid is less than 5: 1: 1, the effect of suppressing unevenness in the formation of protrusions by pretreatment becomes insufficient, and if it exceeds 15: 1: 1, the protective resist for etching is decomposed, and electrode pattern defects are likely to occur. When the protective resist is not used, the effect of suppressing the unevenness of the protrusion formation can be sufficiently obtained if it is 20: 1: 1 or less.

以下、本発明の実施の形態を添付の図面を参照して説明する。
図1は、本発明の一実施形態である発光素子100を示す概念図である。発光素子100は、光取出面(第一主表面)を形成するp型AlGa1−xAs(ただし、0<x<1)層20(以下、p型AlGaAs層20という)と、これと反対側の主表面(第二主表面)を形成するn型AlGa1−xAs(ただし、0<x<1)層90(以下、n型AlGaAs層90という)とが、p−n接合を形成するように積層された積層体として構成されている。p型AlGaAs層20の厚さは1μm以上10μm以下(例えば6μm)、n型AlGaAs層90の厚さは150μm以上200μm以下(例えば170μm)である。いずれも、p型AlGaAs層20とn型AlGaAs層90とは、後述のごとく、n型GaAs単結晶からなる成長用基板(主表面は(100)面)上にn型AlGaAs層90側から順次ホモエピタキシャル成長して形成されたものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a conceptual diagram showing a light emitting device 100 according to an embodiment of the present invention. The light emitting element 100 includes a p-type Al x Ga 1-x As (where 0 <x <1) layer 20 (hereinafter referred to as a p-type AlGaAs layer 20) that forms a light extraction surface (first main surface), N-type Al x Ga 1-x As (where 0 <x <1) layer 90 (hereinafter referred to as n-type AlGaAs layer 90) forming the main surface (second main surface) opposite to the p- It is comprised as a laminated body laminated | stacked so that n junction might be formed. The p-type AlGaAs layer 20 has a thickness of 1 μm to 10 μm (for example, 6 μm), and the n-type AlGaAs layer 90 has a thickness of 150 μm to 200 μm (for example, 170 μm). In either case, the p-type AlGaAs layer 20 and the n-type AlGaAs layer 90 are sequentially formed from the n-type AlGaAs layer 90 side on the growth substrate (the main surface is the (100) plane) made of n-type GaAs single crystal, as will be described later. It is formed by homoepitaxial growth.

p型AlGaAs層20は、第一主表面((100)面)の一部(ここでは中央部)を覆う形で光取出領域側金属電極9が形成されている。光取出領域側金属電極9には、電極ワイヤ17の一端が接合されている。光取出領域側金属電極9の周囲領域が主光取出領域20pを形成している。また、ダイシングにより形成される積層体の側面(つまり、p型AlGaAs層20とn型AlGaAs層90との側面)は側面光取出領域20Sを形成している。一方、n型AlGaAs層90は、第二主表面の全面がAu電極等からなる裏面電極15にて覆われている。裏面電極15とn型AlGaAs層90との間には、両者の接触抵抗を低減するための、AuGeNi合金等からなる接合合金化層15cがドット状に分散形成されている。また、光取出領域側金属電極9とp型AlGaAs層20との間には、AuBe合金等からなる接合合金化層9aが形成されている。   In the p-type AlGaAs layer 20, the light extraction region side metal electrode 9 is formed so as to cover a portion (here, the central portion) of the first main surface ((100) plane). One end of an electrode wire 17 is joined to the light extraction region side metal electrode 9. A peripheral region of the light extraction region side metal electrode 9 forms a main light extraction region 20p. Further, the side surface of the laminate formed by dicing (that is, the side surface of the p-type AlGaAs layer 20 and the n-type AlGaAs layer 90) forms a side surface light extraction region 20S. On the other hand, the entire surface of the second main surface of the n-type AlGaAs layer 90 is covered with a back electrode 15 made of an Au electrode or the like. Between the back electrode 15 and the n-type AlGaAs layer 90, a bonding alloyed layer 15c made of an AuGeNi alloy or the like is formed in a dot-like manner to reduce the contact resistance between them. Further, a bonding alloyed layer 9 a made of AuBe alloy or the like is formed between the light extraction region side metal electrode 9 and the p-type AlGaAs layer 20.

図3に示すように、p型AlGaAs層20の主光取出領域20pと、積層体の側面光取出領域20Sとの双方に、化学エッチングによる面粗し突起部40f,50fが形成されている。面粗し突起部40fは、平坦な(100)結晶主表面を後述の面粗し用エッチング液と接触させることにより異方性エッチングして形成したものである。また、側面主光取出領域20Sは例えば{110}面であり、面粗し突起部50fを同様に異方性エッチングにより形成したものである。面粗し突起部40f,50fを形成することにより、p型AlGaAs層20の厚さ増大により側面面積が増大していることとも相俟って、発光素子100の光取出効率が大幅に高められている。   As shown in FIG. 3, surface roughening projections 40f and 50f by chemical etching are formed in both the main light extraction region 20p of the p-type AlGaAs layer 20 and the side surface light extraction region 20S of the stacked body. The surface roughening protrusion 40f is formed by anisotropic etching by bringing a flat (100) crystal main surface into contact with a surface roughening etching solution described later. Further, the side main light extraction region 20S is, for example, a {110} plane, and the surface roughened protrusion 50f is similarly formed by anisotropic etching. By forming the roughened protrusions 40f and 50f, the light extraction efficiency of the light emitting device 100 can be greatly increased, coupled with the increase in the side surface area due to the increase in the thickness of the p-type AlGaAs layer 20. ing.

以下、図1の発光素子100の製造方法について説明する。
まず、図4の工程1に示すように、成長用基板としてn型のGaAs単結晶基板1を用意する。次に、工程2に示すように、その基板1の主表面に、n型GaAsバッファ層2をエピタキシャル成長し、次いで、n型AlGaAs層90(n型ドーパントはTe)をエピタキシャル成長する。そして、図4の工程3に示すように、その上に、さらにp型AlGaAs層20(p型ドーパントはZn又はC)をエピタキシャル成長する。上記各層のエピタキシャル成長は、公知の液相エピタキシャル成長法により行なわれる。
Hereinafter, a method for manufacturing the light emitting device 100 of FIG. 1 will be described.
First, as shown in step 1 of FIG. 4, an n-type GaAs single crystal substrate 1 is prepared as a growth substrate. Next, as shown in Step 2, an n-type GaAs buffer layer 2 is epitaxially grown on the main surface of the substrate 1, and then an n-type AlGaAs layer 90 (the n-type dopant is Te) is epitaxially grown. Then, as shown in step 3 of FIG. 4, a p-type AlGaAs layer 20 (p-type dopant is Zn or C) is further epitaxially grown thereon. Epitaxial growth of each of the above layers is performed by a known liquid phase epitaxial growth method.

p型AlGaAs層20の成長が終了したら工程4に進み、GaAs基板1をアンモニア/過酸化水素混合液などのエッチング液を用いて化学エッチングすることにより除去する。以上の工程が終了すれば、図6の工程5に示すように、スパッタリングや真空蒸着法により、p型AlGaAs層20の第一主表面及びn型AlGaAs層90の第二主表面に、接合合金化層形成用の金属層をそれぞれ形成し、さらに合金化の熱処理(いわゆるシンター処理)を行なうことにより、接合合金化層9a,15c(図1参照;図6では表示を省略)とする。そして、これら接合合金化層9a,15cをそれぞれ覆うように、光取出領域側電極9及び裏面電極15を形成し、発光素子ウェーハWとする。   When the growth of the p-type AlGaAs layer 20 is completed, the process proceeds to step 4 where the GaAs substrate 1 is removed by chemical etching using an etching solution such as an ammonia / hydrogen peroxide mixture. When the above steps are completed, the bonding alloy is formed on the first main surface of the p-type AlGaAs layer 20 and the second main surface of the n-type AlGaAs layer 90 by sputtering or vacuum evaporation as shown in step 5 of FIG. Each of the metal layers for forming the alloying layer is formed, and heat treatment for alloying (so-called sinter treatment) is performed to form the bonded alloyed layers 9a and 15c (see FIG. 1; not shown in FIG. 6). And the light extraction area | region side electrode 9 and the back surface electrode 15 are formed so that these joining alloying layers 9a and 15c may each be covered, and it is set as the light emitting element wafer W. FIG.

続いて、前述の前処理液PTA中に発光素子ウェーハWを浸漬し、光取出領域側電極9の周囲に露出しているp型AlGaAs層20の第一主表面を前処理する。そして、これに続いて工程6に示すように、p型AlGaAs層20の主光取出領域((100)主表面)に、面粗し用エッチング液FEAを用いて異方性エッチングを施し、面粗し突起部40fを形成する。   Subsequently, the light emitting element wafer W is immersed in the above-described pretreatment liquid PTA, and the first main surface of the p-type AlGaAs layer 20 exposed around the light extraction region side electrode 9 is pretreated. Subsequently, as shown in step 6, the main light extraction region ((100) main surface) of the p-type AlGaAs layer 20 is anisotropically etched using a surface roughening etchant FEA, A rough projection 40f is formed.

面粗し用エッチング液は、酢酸と弗酸と硝酸とヨウ素とを含有する水溶液であり、具体的には
酢酸(CHCOOH換算):37.4質量%以上94.8質量%以下、
弗酸(HF換算):0.4質量%以上14.8質量%以下、
硝酸(HNO換算):1.3質量%以上14.7質量%以下、
ヨウ素(I換算):0.12質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上45質量%以下のもの、より望ましくは、
酢酸(CHCOOH換算):45.8質量%以上94.8質量%以下、
弗酸(HF換算):0.5質量%以上14.8質量%以下、
硝酸(HNO換算):1.6質量%以上14.7質量%以下、
ヨウ素(I換算):0.15質量%以上0.84質量%以下
の範囲で含有し、かつ、水の含有量が2.4質量%以上32.7質量%以下のものを採用する。液温は40℃以上60℃以下が適当である。具体例として、酢酸81.7質量%、弗酸5質量%、硝酸5質量%、ヨウ素0.3質量%、水8質量%の組成を例示できる(液温は例えば50℃)。
The surface roughening etching solution is an aqueous solution containing acetic acid, hydrofluoric acid, nitric acid, and iodine. Specifically, acetic acid (converted to CH 3 COOH): 37.4% by mass or more and 94.8% by mass or less,
Hydrofluoric acid (converted to HF): 0.4 mass% or more and 14.8 mass% or less,
Nitric acid (in terms of HNO 3 ): 1.3% by mass or more and 14.7% by mass or less,
Iodine (I 2 equivalent): it contains in the range of 0.12 mass% or more 0.84 wt% or less, and those water content below 45 wt% to 2.4 wt%, more desirably,
Acetic acid (converted to CH 3 COOH): 45.8 mass% or more and 94.8 mass% or less,
Hydrofluoric acid (converted to HF): 0.5% by mass or more and 14.8% by mass or less,
Nitric acid (converted to HNO 3 ): 1.6 mass% or more and 14.7 mass% or less,
Iodine (I 2 conversion): It is contained in the range of 0.15% by mass or more and 0.84% by mass or less, and the water content is 2.4% by mass or more and 32.7% by mass or less. The liquid temperature is suitably 40 ° C. or higher and 60 ° C. or lower. As a specific example, a composition of 81.7% by mass of acetic acid, 5% by mass of hydrofluoric acid, 5% by mass of nitric acid, 0.3% by mass of iodine, and 8% by mass of water can be exemplified (liquid temperature is, for example, 50 ° C.).

また、前処理液は、96%硫酸:30%過酸化水素水:水の混合比率が、5:1:1以上20:1:1以下のもの(例えば、5:1:1のもの)が使用される。   In addition, the pretreatment liquid has a mixing ratio of 96% sulfuric acid: 30% hydrogen peroxide solution: water of 5: 1: 1 or more and 20: 1: 1 or less (for example, 5: 1: 1). used.

ダイシング前のウェーハのp型AlGaAs層20の第一主表面側に、上記の前処理を行なわずに面粗し処理を行なうと、面粗しによる突起形成状態、特に突起形態や突起高さにムラが生じやすい。特に、本実施形態のごとく、光取出面からp−n接合面までを形成する表面層の厚さが小さい場合、図7に示すように、深く切れ込む突起が局所的に形成されると、突起に隣接した谷状部がp−n接合界面Jにまで到達して表面層(p型AlGaAs層20)が面内で途切れ、面内の電流拡散状態が悪化し光取出し効率の低下を招きやすくなる。こうした局所的に深い突起は、特許文献1〜6で採用されているような弗酸系のエッチング液や、硝酸系のエッチング液、さらには硫酸と硝酸とを混合した混酸系のエッチング液を用いた場合に特に形成されやすかった。   When surface roughening treatment is performed on the first main surface side of the p-type AlGaAs layer 20 of the wafer before dicing without performing the above pretreatment, the state of protrusion formation due to surface roughening, particularly the protrusion form and protrusion height, is obtained. Unevenness is likely to occur. In particular, when the thickness of the surface layer that forms the light extraction surface to the pn junction surface is small as in the present embodiment, as shown in FIG. The valley portion adjacent to the pn junction interface J reaches the pn junction interface J, the surface layer (p-type AlGaAs layer 20) is interrupted in the surface, the current diffusion state in the surface is deteriorated, and the light extraction efficiency is likely to be lowered. Become. For these locally deep protrusions, a hydrofluoric acid-based etching solution, a nitric acid-based etching solution, or a mixed acid-based etching solution in which sulfuric acid and nitric acid are mixed as used in Patent Documents 1 to 6 is used. It was particularly easy to form.

他方、本発明で使用する上記のエッチング液は、AlGaAsの低エネルギー面である{111}に対する選択エッチング性が非常に顕著かつ敏感なので、僅かな歪や結晶欠陥の存在によっても該選択エッチング性が急速に低下し、通常は問題とならないような軽微な擦れなどによっても、面粗し不十分領域の形成につながってしまうと考えられる。しかし、本発明にて採用する面粗しエッチング液は、AlGaAsに適用した場合に、上記先行技術で採用されている面粗しエッチング液よりもエッチングの進行が穏やかであり、p−n接合界面Jにまで到達する深い局所的な突起が比較的形成されにくい。そして、重要な点は、そのエッチングに先立って上記硫酸過酸化水素系の前処理液で前処理を施すことにより、上記のような深い局所的な突起形成をほぼ確実に防止することができ、発光素子チップの製造歩留まりの向上に著しく寄与する。   On the other hand, the etching solution used in the present invention has a very remarkable and sensitive selective etching property with respect to {111}, which is a low energy surface of AlGaAs. It is considered that even a slight rubbing that decreases rapidly and does not normally cause a problem causes roughening and leads to formation of an insufficient region. However, when the surface roughening etchant employed in the present invention is applied to AlGaAs, the progress of etching is gentler than that of the surface roughening etchant employed in the prior art, and the pn junction interface is used. Deep local protrusions reaching J are relatively difficult to form. And, the important point is that by performing pretreatment with the hydrogen peroxide-based pretreatment liquid prior to the etching, deep local protrusion formation as described above can be almost certainly prevented, This significantly contributes to the improvement of the manufacturing yield of the light emitting element chip.

図6に戻り、主光取出領域への面粗し突起部40fの形成が終了すれば、2つの<110>方向に沿って、ウェーハWの第一主表面側からダイシング刃により溝DGを形成する形で、個々のチップ領域にダイシングする。該ダイシング時には、図6の工程7に示すように、結晶欠陥密度の比較的高い加工ダメージ層20Dが形成される。該加工ダメージ層20Dに含まれる多数の結晶欠陥は、発光通電時において電流リークや散乱の原因となるため、工程8に示すように、該加工ダメージ層20Dを、ダメージ層除去用エッチング液DEAを用いた化学エッチングにより除去する。ダメージ層除去用エッチング液DEAとしては、前述の前処理液よりも硫酸含有比率の少ない硫酸−過酸化水素水溶液を使用できる。該水溶液としては、例えば硫酸:過酸化水素:水の質量配合比率が20:1:1のものを使用できる。   Returning to FIG. 6, when the formation of the rough surface protrusion 40f in the main light extraction region is completed, the groove DG is formed by the dicing blade from the first main surface side of the wafer W along the two <110> directions. Then, dicing is performed on each chip area. At the time of dicing, as shown in step 7 of FIG. 6, a processing damage layer 20D having a relatively high crystal defect density is formed. Since a large number of crystal defects included in the processing damage layer 20D cause current leakage and scattering during light-emission energization, the processing damage layer 20D is removed from the damage layer removing etching solution DEA as shown in Step 8. It is removed by the chemical etching used. As the damage layer removing etching solution DEA, a sulfuric acid-hydrogen peroxide aqueous solution having a lower sulfuric acid content ratio than the above-mentioned pretreatment solution can be used. As the aqueous solution, for example, a sulfuric acid: hydrogen peroxide: water mass blending ratio of 20: 1: 1 can be used.

その後、工程9に示すように、加工ダメージ層20Dを除去したチップの側面に、前述の面粗し用エッチング液FEAを接触させ、p型AlGaAs層20の側面を異方性エッチングして面粗し突起部50fを形成する。なお、本実施形態では、ウェーハWを、粘着シート61を介して基材60に貼り付け、その状態でウェーハWをフルダイシングしており、積層体の側面全面に面粗し突起部50fが形成される。   Thereafter, as shown in Step 9, the side surface of the chip from which the processing damage layer 20D has been removed is brought into contact with the surface roughening etching solution FEA, and the side surface of the p-type AlGaAs layer 20 is subjected to anisotropic etching to perform surface roughening. A protrusion 50f is formed. In the present embodiment, the wafer W is attached to the base material 60 via the adhesive sheet 61, and the wafer W is fully diced in that state, and the surface is roughened on the entire side surface of the laminate, and the protrusion 50f is formed. Is done.

なお、側面については、突起50fの形成方向が光取出面側の突起40fとは90°異なり、p−n接合面を分断する惧れがない。従って、突起50fの形成ムラ(前述の、局所的な深い突起)による影響が比較的に小さいので、前処理液PTAを用いた前処理を省略している。また、面粗し用エッチング液FEAは、該側面に限っては、特許文献1〜6で採用されているような弗酸系のエッチング液や、硝酸系のエッチング液、さらには硫酸と硝酸とを混合した混酸系のエッチング液で代用することが可能である。   As for the side surfaces, the formation direction of the projections 50f differs from the projections 40f on the light extraction surface side by 90 °, and there is no possibility of dividing the pn junction surface. Accordingly, since the influence of the unevenness of formation of the protrusion 50f (the above-mentioned local deep protrusion) is relatively small, the pretreatment using the pretreatment liquid PTA is omitted. In addition, the surface roughening etching solution FEA is limited to the hydrofluoric acid etching solution, nitric acid etching solution, sulfuric acid and nitric acid as employed in Patent Documents 1 to 6 only on the side surface. It is possible to substitute with a mixed acid type etching solution mixed with.

なお、側面光取出領域20Sへの面粗し突起部50fの形成時に、そのエッチングの影響を、既に面粗し突起部40fを形成済みの主光取出領域20pに及ぼしたくないときは、工程7〜9に一点鎖線で示すように、主光取出領域20pをエッチングレジストによりマスキングしておくとよい。また、主光取出領域20pへの面粗し突起部40fを形成前に先にダイシングを行ない、主光取出領域20pと側面光取出領域20Sとに一括して面粗し突起部40f及び50fを形成してもよい。この場合は、主光取出領域20pと側面光取出領域20Sとの双方に、面粗し処理に先立って上記の前処理液PTAによる前処理を行なう形になる。   If the roughening protrusion 50f is formed on the side surface light extraction region 20S and the etching effect is not desired to affect the main light extraction region 20p on which the roughening protrusion 40f has already been formed, step 7 is performed. The main light extraction region 20p may be masked with an etching resist, as indicated by the alternate long and short dash line in FIG. Further, dicing is first performed before forming the rough surface protrusion 40f to the main light extraction region 20p, and the rough surface protrusions 40f and 50f are collectively formed into the main light extraction region 20p and the side light extraction region 20S. It may be formed. In this case, both the main light extraction region 20p and the side surface light extraction region 20S are pretreated with the pretreatment liquid PTA prior to the surface roughening treatment.

分離後の発光素子チップは、第二主表面側を、Agペースト層を介して金属ステージに接着し、さらに図1に示すように、光取出側電極9にボンディングワイヤ17を接続し、さらにエポキシ樹脂からなる図示しないモールド部を形成すれば、最終的な発光素子が完成する。   After the separation, the second main surface side of the light emitting element chip is bonded to a metal stage via an Ag paste layer, and further, as shown in FIG. 1, a bonding wire 17 is connected to the light extraction side electrode 9, and an epoxy is further bonded. If a mold part (not shown) made of resin is formed, a final light emitting element is completed.

本発明の適用対象となる発光素子の一例を示す側面断面模式図。The side surface cross-sectional schematic diagram which shows an example of the light emitting element used as the application object of this invention. 同じく平面図模式図。Similarly, a plan view schematic diagram. 図1の積層体に形成する面粗し突起部の概念図。The conceptual diagram of the surface roughening projection part formed in the laminated body of FIG. 図1の発光素子の製造方法を示す工程説明図。Process explanatory drawing which shows the manufacturing method of the light emitting element of FIG. 図4に続く工程説明図。Process explanatory drawing following FIG. 図5に続く工程説明図。Process explanatory drawing following FIG. 突起形成ムラの影響を説明する図。The figure explaining the influence of protrusion formation nonuniformity.

符号の説明Explanation of symbols

20 p型AlGaAs層
90 n型AlGaAs層
20p 主光取出領域
20S 側面光取出領域
W 発光素子ウェーハ
40f 面粗し突起部
50f 面粗し突起部
100 発光素子
PTA 前処理液
FEA 面粗し用エッチング液
DEA ダメージ層除去用エッチング液
20 p-type AlGaAs layer 90 n-type AlGaAs layer 20p main light extraction region 20S side surface light extraction region W light emitting element wafer 40f roughening protrusion 50f roughening protrusion 100 light emitting element PTA pretreatment liquid FEA roughening etching liquid DEA Damage layer removal etchant

Claims (3)

発光素子ウェーハを、組成式(AlxGa1−xAs(ただし、0<x<1)にて表される化合物にて各々構成されたn型AlGaAs層とp型AlGaAs層とがp−n接合を形成するように積層された積層体として製造する発光素子ウェーハ製造工程と、
前記積層体の主表面を、酢酸と弗酸と硝酸とヨウ素と水とを、その合計が90質量%以上となるように含有し、かつ酢酸と弗酸と硝酸とヨウ素との合計質量含有率が水の質量含有率よりも高い水溶液からなる面粗し用エッチング液にて異方性エッチングすることにより面粗し突起部を形成する主光取出領域面粗し工程と、
がこの順序で実施され
前記n型AlGaAs層又はp型AlGaAs層からなる前記積層体の光取出面として使用される主表面を、硫酸過酸化水素水溶液からなる前処理液と接触させて前処理する前処理工程を前記主光取出領域面粗し工程に先立って実施し、
前記前処理液は96%硫酸:30%過酸化水素水:水の混合比率が、5:1:1以上20:1:1以下のものが使用され、
前記主光取出領域面粗し工程は、前記発光素子ウェーハのダイシング前に行われることを特徴とする発光素子の製造方法。
An n-type AlGaAs layer and a p-type AlGaAs layer each formed of a compound represented by a composition formula (AlxGa1-xAs (where 0 <x <1) ) form a pn junction in a light-emitting element wafer. A light emitting element wafer manufacturing process for manufacturing as a laminated body laminated as described above,
The main surface of the laminated body contains acetic acid, hydrofluoric acid, nitric acid, iodine and water so that the sum thereof is 90% by mass or more, and the total mass content of acetic acid, hydrofluoric acid, nitric acid and iodine. A main light extraction region surface roughening step for forming a projection by roughening the surface by anisotropic etching with an etching solution for surface roughening comprising an aqueous solution having a water content higher than the water content;
Are performed in this order ,
A pretreatment step of pretreating a main surface used as a light extraction surface of the laminate composed of the n-type AlGaAs layer or the p-type AlGaAs layer with a pretreatment liquid comprising a hydrogen peroxide aqueous solution; Prior to the light extraction area roughening process,
The pretreatment liquid is 96% sulfuric acid: 30% hydrogen peroxide water: water having a mixing ratio of 5: 1: 1 to 20: 1: 1,
Said main light extraction area surface roughening process, the method of manufacturing the light emitting device characterized Rukoto performed before dicing of the light-emitting element wafer.
前記n型AlGaAs層と前記p型AlGaAs層との前記光取出面側に位置するものが1μm以上10μm以下に形成されてなる請求項1に記載の発光素子の製造方法。 2. The method for manufacturing a light-emitting element according to claim 1, wherein the n-type AlGaAs layer and the p-type AlGaAs layer located on the light extraction surface side are formed to have a thickness of 1 μm to 10 μm. 前記光取出面が前記p型AlGaAs層により形成されてなる請求項2に記載の発光素子の製造方法。 The method for manufacturing a light-emitting element according to claim 2, wherein the light extraction surface is formed by the p-type AlGaAs layer.
JP2006324671A 2006-11-30 2006-11-30 Method for manufacturing light emitting device Active JP5019160B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006324671A JP5019160B2 (en) 2006-11-30 2006-11-30 Method for manufacturing light emitting device
PCT/JP2007/072430 WO2008065929A1 (en) 2006-11-30 2007-11-20 Process for producing light emitting element
TW96144677A TWI408830B (en) 2006-11-30 2007-11-26 Manufacturing method of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006324671A JP5019160B2 (en) 2006-11-30 2006-11-30 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2008140926A JP2008140926A (en) 2008-06-19
JP5019160B2 true JP5019160B2 (en) 2012-09-05

Family

ID=39467721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006324671A Active JP5019160B2 (en) 2006-11-30 2006-11-30 Method for manufacturing light emitting device

Country Status (3)

Country Link
JP (1) JP5019160B2 (en)
TW (1) TWI408830B (en)
WO (1) WO2008065929A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087422A (en) * 2008-10-02 2010-04-15 Sharp Corp Optical-coupling semiconductor device and electronic apparatus equipped with the same
FR3045208A1 (en) * 2015-12-10 2017-06-16 Commissariat Energie Atomique OPTICAL ELECTROLUMINESCENT DIODE DEVICE WITH INCREASED LIGHT EXTRACTION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204679B2 (en) * 1990-05-25 2001-09-04 三井化学株式会社 Semiconductor wafer backside etching method
JP4189710B2 (en) * 1999-07-16 2008-12-03 Dowaエレクトロニクス株式会社 Manufacturing method of light emitting diode
KR20030056326A (en) * 2001-12-28 2003-07-04 주식회사 하이닉스반도체 Method for forming ruthenium storage node of semiconductor device
JP2005183627A (en) * 2003-12-18 2005-07-07 Seiko Epson Corp Method and device for removing unreacted titanium film, and method for manufacturing semiconductor device
JP4092658B2 (en) * 2004-04-27 2008-05-28 信越半導体株式会社 Method for manufacturing light emitting device
JP4442446B2 (en) * 2005-01-27 2010-03-31 信越半導体株式会社 Selective etching method

Also Published As

Publication number Publication date
WO2008065929A1 (en) 2008-06-05
TWI408830B (en) 2013-09-11
JP2008140926A (en) 2008-06-19
TW200832762A (en) 2008-08-01

Similar Documents

Publication Publication Date Title
TWI405350B (en) Light emitting element and manufacturing method thereof
JP5334158B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
US7465592B2 (en) Method of making vertical structure semiconductor devices including forming hard and soft copper layers
US7611992B2 (en) Semiconductor light emitting element and method of manufacturing the same
JP3896044B2 (en) Nitride-based semiconductor light-emitting device manufacturing method and product
JP5881689B2 (en) LIGHT EMITTING ELEMENT CHIP AND ITS MANUFACTURING METHOD
JP3977572B2 (en) Adhesive semiconductor substrate, semiconductor light-emitting device, and method for manufacturing the same
JP2008066704A (en) Nitride semiconductor light emitting element and manufacturing method thereof
JP2004266039A (en) Light emitting device and manufacturing method thereof
JP2008306021A (en) Manufacturing method for led chip
WO2013046267A1 (en) Semiconductor element and method of manufacturing same
JP5019160B2 (en) Method for manufacturing light emitting device
JP4110524B2 (en) Light emitting device and method for manufacturing light emitting device
JP4062111B2 (en) Method for manufacturing light emitting device
JP2011096707A (en) Manufacturing method of semiconductor element
JP2003224116A (en) Etching liquid, etching method and method for manufacturing semiconductor device
JP5083973B2 (en) Method for manufacturing optical semiconductor element
JP4635110B2 (en) Laminated body and light emitting device
JP2005123530A (en) Method for manufacturing light emitting element
US8900800B2 (en) Method for producing a GaNLED device
US10566495B2 (en) Method for producing light-emitting device
JP4183731B2 (en) Adhesive semiconductor substrate and semiconductor light emitting device
JP2010028140A (en) Method of manufacturing nitride-based compound semiconductor light-emitting element
JP2007214597A (en) Semiconductor light emitting element
JP2005197286A (en) Handling method of semiconductor thin film and manufacturing method of light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5019160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250