JP5050569B2 - 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法 - Google Patents

電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法 Download PDF

Info

Publication number
JP5050569B2
JP5050569B2 JP2007052638A JP2007052638A JP5050569B2 JP 5050569 B2 JP5050569 B2 JP 5050569B2 JP 2007052638 A JP2007052638 A JP 2007052638A JP 2007052638 A JP2007052638 A JP 2007052638A JP 5050569 B2 JP5050569 B2 JP 5050569B2
Authority
JP
Japan
Prior art keywords
electroosmotic material
electrode
electroosmotic
liquid feeding
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007052638A
Other languages
English (en)
Other versions
JP2008212805A (ja
Inventor
貴之 砂子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007052638A priority Critical patent/JP5050569B2/ja
Publication of JP2008212805A publication Critical patent/JP2008212805A/ja
Application granted granted Critical
Publication of JP5050569B2 publication Critical patent/JP5050569B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、電気浸透現象を用いた電気浸透流ポンプに用いられる電気浸透材の導通構造、その構造を備える送液装置、送液装置を備える燃料電池型発電装置、及び燃料電池型発電装置を備えた電子機器並びに送液装置の製造方法に関する。
近年、エネルギー変換効率の高いクリーンな電源として燃料電池が注目されるようになり、燃料電池自動車、携帯機器、電化住宅などに幅広く実用化されてきている。燃料電池は改質方式と燃料直接方式の2つに分類される。改質方式は、燃料と水から水素を改質器で生成した後に、水素を発電セルに供給する方式であり、燃料直接方式は、燃料と水を改質せずに発電セルに供給する方式である。
何れの場合でも、燃料や水を送液するための動力源としてポンプが用いられる。ポンプには、遠心式、容積回転式、容積往復式等といった機械的に動作するものがあるが、機械的可動部を持たずに液体を送液する電気浸透流ポンプを備える送液装置が考案されている(例えば、特許文献1参照)。
電気浸透流ポンプは電気浸透現象を用いたものであり、管材に充填された誘電体からなる電気浸透材と、電気浸透材の上流側及び下流側に配置された電極とを備える。電気浸透材は、例えば、管材の流れ方向に配置されたシリカ繊維等の誘電体からなる。
電気浸透流ポンプは以下のような原理により動作する。即ち、電気浸透材(誘電体)に液体が接触すると、電気浸透材の表面が帯電し、その接触界面近傍には液体中のカウンターイオンが集まり、電荷が過剰となる。ここで、電極間に電圧を印加することで電気浸透材内に電界が生じると、液体中のカウンターイオンが移動し、液体の粘性により液体全体が流れる。例えば、電気浸透材がシリカで、液体が水とメタノールの混合液である場合には、シリカの表面、に「−Si−OH」(シラノール基)が生成され、シラノール基がSi−Oとなり、シリカの表面が負に帯電し、界面近傍には、液体中の正イオン(カウンターイオン)が集まり、液体中では正電荷が過剰となる。そして、電極間に電圧を加えると過剰な正電荷が陰極方向に移動し、粘性により液体全体が陰極側に流れる。
このような原理で駆動する電気浸透流ポンプは、可動部がなく構造が単純であり、小型化が可能、無脈動、無騒音、等の利点がある。
特開2006−22807号公報
図12は本出願人が開発中(出願中)の送液装置140を比較のために示す分解斜視図であり、図13は図12のXII−XII矢視断面図であり、図14は図13のXIII部の拡大図である。
この送液装置140は、電気浸透材151を収納するホルダー152の両端に引き出し電極153,154を設けた電気浸透流ポンプ150と、その上流側の流路を形成する上流側流路構造体160及び下流側の流路を形成する下流側流路構造体170とからなる。図13に示すように、上流側流路構造体160及び下流側流路構造体170は、非導電性接着剤169,179により、引き出し電極153,154と接着される。
引き出し電極153,154には電気浸透材151よりも小さい径の開口153a,154aが形成されている。図13に示すように、導電性接着剤152b,152bで引き出し電極153,154がホルダー152及び電極151a,151bに接着されることで、電気浸透材151の軸方向の位置が固定される。同時に、図14に示すように、開口153a,154aの周縁部において、電気浸透材151の両端に設けられた電極151a,151bと引き出し電極153,154とを導通させることができる。
一般に、電気浸透流ポンプの流量は、電気浸透材の流路断面積に依存する。しかし、上記構造においては、電気浸透材51の外周部が開口153a,154aの周縁部と重なるため、電気浸透材51の流路断面積が開口153a,154aの大きさに限定され、ポンプ性能が低下するという問題があった。
本発明の課題は、電気浸透流ポンプの性能を向上させることができる電気浸透材の導通構造、その構造を備える送液装置、その送液装置を用いた燃料電池型発電装置、及びその燃料電池型発電装置を備えた電子機器並びに送液装置の製造方法を提供することである。
以上の課題を解決するため、請求項1に記載の発明は、両面に電極が設けられた電気浸透材と、前記電気浸透材が収容される内空が形成されたホルダーと、前記ホルダーの両面から挟み込み、前記電気浸透材の両面の電極と導通する引き出し電極と、を有し、前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されていることを特徴とする電気浸透材の導通構造である。
請求項2に記載の発明は、請求項1に記載の電気浸透材の導通構造であって、前記引き出し電極の前記開口の周縁部の少なくとも一部に、内側に入り込み、前記電気浸透材と導通する電極接続部が設けられていることを特徴とする。
請求項3に記載の発明は、請求項2に記載の電気浸透材の導通構造であって、前記電極接続部は、前記電気浸透材の外周の内側まで入り込んでいることを特徴とする。
請求項4に記載の発明は、請求項2または3に記載の電気浸透材の導通構造であって、前記電極接続部は、1又は複数の突起部からなることを特徴とする。
請求項5に記載の発明は、請求項4に記載の電気浸透材の導通構造であって、前記突起部は、2以上の突起部からなる入江部を備えていることを特徴とする。
請求項6に記載の発明は、請求項4に記載の電気浸透材の導通構造であって、前記突起部は、貫通孔を備えていることを特徴とする。
請求項7に記載の発明は、請求項2または3に記載の電気浸透材の導通構造であって、前記電極接続部は、導電性接着剤のみからなることを特徴とする。
請求項8に記載の発明は、請求項2〜7のいずれか一項に記載の電気浸透材の導通構造であって、前記電極接続部は、少なくとも3箇所に設けられていることを特徴とする。
請求項9に記載の発明は、請求項1〜8のいずれか一項に記載の電気浸透材の導通構造であって、前記電気浸透材の側面は、前記ホルダー内側に接着されていることを特徴とする。
請求項10に記載の発明は、請求項1〜9のいずれか一項に記載の電気浸透材の導通構造であって、前記ホルダーと前記引き出し電極とは、非導電性接着剤により接着されていることを特徴とする。
請求項11に記載の発明は、両面に電極が設けられた電気浸透材と、前記電気浸透材が収容される内空が形成されたホルダーと、前記ホルダーを両面から挟み込み、前記電気浸透材の両面の電極と導通する引き出し電極と、前記電気浸透材の上流側及び下流側に液体の流路を形成する流路構造体と、を有し、前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されていることを特徴とする燃料電池を含む発電装置に搭載される送液装置である。
請求項12に記載の発明は、請求項11に記載の燃料電池を含む発電装置に搭載される送液装置であって、前記引き出し電極の前記開口の周縁部の少なくとも一部に、内側に入り込み、前記電気浸透材と導通する電極接続部が設けられていることを特徴とする。
請求項13に記載の発明は、請求項11または12に記載の送液装置と、前記送液装置により燃料が供給される発電セルと、を備えることを特徴とする燃料電池型発電装置である。
請求項14に記載の発明は、請求項13に記載の燃料電池型発電装置と、前記燃料電池型発電装置によって発電された電気により動作する電子機器本体と、を備えることを特徴とする電子機器である。
請求項15に記載の発明は、電気浸透材の両面に電極を形成する工程と、前記電気浸透材を内空が形成されたホルダーに収容する工程と、前記ホルダーの両面と、前記ホルダーを両面から挟み込み前記電気浸透材の両面の電極に導通する引き出し電極とを接着する工程と、前記電気浸透材の電極と前記引き出し電極とを接着する工程と、を含み、前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されることを特徴とする送液装置の製造方法である。
請求項16に記載の発明は、請求項15に記載の電気浸透材の導通構造であって、前記電気浸透材の電極と前記引き出し電極とを接着する工程は、前記導電性接着剤を滴下する工程を含むことを特徴とする。
請求項17に記載の発明は、請求項15に記載の電気浸透材の導通構造であって、前記ホルダーの両面と前記引き出し電極とを接着する工程は、非導電性接着剤により接着されることを特徴とする。
本発明によれば、電気浸透流ポンプの性能を向上させることができる。
以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。
〔電子機器〕
図1は電子機器1000のブロック図である。電子機器1000は、燃料電池型の燃料電池型発電装置1と、燃料電池型発電装置1により生成された電気エネルギーを適切な電圧に変換するDC/DCコンバータ904と、DC/DCコンバータ904に接続される2次電池905と、それらを制御する制御部906と、DC/DCコンバータ904より電気エネルギーが供給される電子機器本体901と、を備える。
燃料電池型発電装置1は後述するように、電気エネルギーを生成しDC/DCコンバータ904に出力する。DC/DCコンバータ904は燃料電池型発電装置1により生成された電気エネルギーを適切な電圧に変換したのちに電子機器本体901や制御部906に供給する機能の他に、燃料電池型発電装置1により生成された電気エネルギーを2次電池905に充電し、燃料電池型発電装置1が動作していない時に、2次電池905に蓄電された電気エネルギーを電子機器本体901や制御部906に供給する機能も果たせるようになっている。制御部906は電子機器本体901に安定して電気エネルギーが供給されるように燃料電池型発電装置1やDC/DCコンバータ904の制御を行う。
次に、燃料電池型発電装置1について詳細に説明する。
〔燃料電池型発電装置〕
図2は燃料電池型発電装置1のブロック図である。燃料電池型発電装置1は、燃料カートリッジ2,2と、送液装置40,40と、流路制御部100と、マイクロリアクタ6及び発電セル20と、エアポンプ30等とからなる。燃料電池型発電装置1は二つの燃料カートリッジ2,2を持つシステムとしている。
流路制御部100は例えば、複数枚の基板を積層した多層基板からなり、流路制御部100には送液装置40、マイクロリアクタ6、発電セル20、エアポンプ30が表面実装されている。また、流路制御部100はマイクロバルブ33〜35、及び流量センサ36〜38を備える(内蔵している)。
マイクロバルブ33は、送液装置40から気化器7に流れる混合液の流れを開弁・閉弁することによって許容または阻止するon−offバルブである。マイクロバルブ34はエアポンプ30からマイクロリアクタ6内の一酸化炭素除去器9に流れる空気の流量を制御する制御バルブ(可変バルブ)である。マイクロバルブ35はエアポンプ30からマイクロリアクタ6内の燃焼器10に流れる空気の流量を制御する制御バルブ(可変バルブ)である。
流量センサ36は燃料カートリッジ2,2からマイクロリアクタ6内の気化器7までの流路中に設けられ、燃料カートリッジ2,2から気化器7に流れる混合液の流量を検出する。流量センサ37はエアポンプ30からマイクロリアクタ6内の一酸化炭素除去器9までの流路中に設けられ、エアポンプ30から一酸化炭素除去器9に流れる空気の流量を検出する。流量センサ38はエアポンプ30からマイクロリアクタ6内の燃焼器10までの流路中に設けられ、エアポンプ30からマイクロリアクタ6内の燃焼器10に流れる空気の流量を検出する。
燃料カートリッジ2内には燃料と水の混合液が貯留されている。燃料カートリッジ2,2の壁面には、燃料排出孔が形成されている。燃料排出孔には送液装置40に通じる配管が挿入される。
この燃料排出孔には逆止弁2aが設けられている。この逆止弁2aは例えば、可撓性・弾性を有する材料(例えば、エラストマー)をダックビル状に形成したダックビル弁であり、そのダックビル状の先端を燃料カートリッジ2,2の内部に向けた状態で嵌め込まれている。逆止弁2aによって、混合液が燃料排出孔から燃料カートリッジ2の外への漏れを防止することができる。
燃料排出孔は送液装置40と対向して設けられ、燃料カートリッジ2,2が送液装置40に対して着脱可能とされている。
ここでは、送液装置40は後述するように、燃料カートリッジ2から混合液を吸引し、マイクロリアクタ6内の気化器7へ送液する例で説明するが、送液装置40は上記の場所に限らず、システム内の液体を送る部分に同様に用いることができる。
マイクロリアクタ6は、図1に示すように、気化器7、改質器8、一酸化炭素除去器9及び燃焼器10をユニット化したものであり、気化器7が改質器8に通じ、改質器8が一酸化炭素除去器9に通じている。マイクロリアクタ6は真空断熱パッケージ11の中に収容されている。
マイクロリアクタ6の流路制御部100との対向面には6つのポート12〜17が設けられている。マイクロリアクタ第一ポート12は気化器7に通じる入力ポート、マイクロリアクタ第二ポート13は一酸化炭素除去器9に通じる入力ポート、マイクロリアクタ第三ポート14は燃焼器10に通じる入力ポート、マイクロリアクタ第四ポート15は燃焼器10からの出力ポート、マイクロリアクタ第五ポート16は燃焼器10に通じる入力ポート、マイクロリアクタ第六ポート17は一酸化炭素除去器9からの出力ポートである。
発電セル20は、触媒を担持した燃料極21と、触媒を担持した酸素極22と、燃料極21と酸素極22の間に挟持された電解質膜23とをユニット化したものである。
発電セル20の流路制御部100との対向面には4つのポート24〜27が設けられている。発電セル第一ポート24は燃料極21に通じる入力ポート、発電セル第二ポート25は燃料極21からの出力ポート、発電セル第三ポート26は酸素極22に通じる入力ポート、発電セル第四ポート27は酸素極22からの出力ポートである。
図2に示すように、エアポンプ30の吸引側にはエアフィルタ31が設けられており、外部の空気がエアフィルタ31を介してエアポンプ30に吸引される。エアポンプ30には排出ポート32が設けられ、エアポンプ30に吸引された空気が排出ポート32から排出され、流路制御部100内の流路を通して、各部に供給される。
〔燃料電池型発電装置の動作〕
次に、この燃料電池型発電装置1の動作について説明する。
まず、送液装置40の作用によって、燃料カートリッジ2から気化器7へ混合液が送液される。
一方、エアポンプ30が作動すると、外部の空気がエアフィルタ31を通ってエアポンプ30に吸引され、吸引された空気が排出ポート32から一酸化炭素除去器9、燃焼器10及び酸素極22に送られる。
気化器7に送られた混合液は気化され、気化した燃料と水の混合気は改質器8に送られる。改質器8では、気化器7から供給された混合気から水素及び二酸化炭素が改質反応触媒により生成され、更に微量な一酸化炭素も生成される。なお、燃料カートリッジ2内の混合液がメタノールと水の混合液である場合には、化学反応式(1)、(2)のような触媒反応が改質器8で起こる。
CH3OH+H2O→3H2+CO2 … (1)
2+CO2→H2O+CO … (2)
改質器8で生成された混合気は一酸化炭素除去器9に供給されて、エアポンプ30の排出ポート32からマイクロリアクタ第二ポート13経由で供給された空気と混合される。一酸化炭素除去器9では、混合気中の一酸化炭素ガスが化学反応式(3)に示すように選択酸化反応触媒により優先的に酸化(燃焼)されて、一酸化炭素が除去される。
2CO+O2→2CO2 … (3)
一酸化炭素が除去された状態の混合気には水素ガスが含まれ、その混合気がマイクロリアクタ第六ポート17から発電セル第一ポート24を経由して、発電セル20の燃料極21に供給される。酸素極22にはエアポンプ30の排出ポート32から発電セル第三ポート26経由で空気が供給される。そして、燃料極21にマイクロリアクタ第六ポート17から発電セル第一ポート24経由で供給された混合気中の水素が、電解質膜23を介して、酸素極22に供給された空気中の酸素と電気化学反応することによって、燃料極21と酸素極22との間で電力が生じる。
なお、電解質膜23が水素イオン透過性の電解質膜(例えば、固体高分子電解質膜)の場合には、燃料極21では次式(4)のような反応が起き、燃料極21で生成された水素イオンが電解質膜23を透過し、酸素極22では次式(5)のような反応が起こる。
2→2H++2e- …(4)
2H++1/2O2+2e-→H2O …(5)
酸素極22で未反応の空気は発電セル第四ポート27から外部に放出される。燃料極21で未反応の水素が含まれる混合気は出力ポートである発電セル第二ポート25からマイクロリアクタ第五ポート16経由で燃焼器10に送られる。更に、燃焼器10にはエアポンプ30の排出ポート32からマイクロリアクタ第三ポート14経由で空気が供給される。そして、燃焼器10内では水素が酸化されることで燃焼熱が発生し、その燃焼熱によって気化器7、改質器8及び一酸化炭素除去器9が加熱される。そして、各種の生成物を含む混合気が燃焼器10の出力ポートであるマイクロリアクタ第四ポート15から外部に排出される。
〔送液装置〕
ここで、送液装置40の詳細な構造について説明する。図3は送液装置40を燃料カートリッジ2側から見た斜視図、図4は送液装置40を燃料カートリッジ2側から見た分解斜視図、図5は図3のV−V矢視断面図である。
送液装置40は、図3〜図5に示すように、電気浸透流ポンプ50と、上流側流路構造体60と、下流側流路構造体70とを接合してなる。
図6は電気浸透流ポンプ50の斜視図であり、図7は電気浸透流ポンプ50の平面図であり、図8は図7のVIII−VIII矢視断面図である。電気浸透流ポンプ50は、電気浸透材51と、ホルダー52と、引き出し電極53,54とを備える。
電気浸透材51は、誘電体の多孔質材(例えば多孔質のセラミック等)、繊維材又は粒子充填材が板状、ここでは円板状に形成されてなり、吸液性を有する。電気浸透材51の両面には、白金等がスパッタ、蒸着等されることにより電極51a,51bが形成されている。
そして、電気浸透材51がホルダー52内に側面を密着して納められる。
ホルダー52は絶縁体からなり、電気浸透材51を収容する内空52aが形成されている。ホルダー52の厚さは、電気浸透材の厚さとほぼ同じになっている。内空52aに電気浸透材51が収容されることにより、電気浸透材51の径方向の位置が固定される。そして、電気浸透材51の側面とホルダー52との間を非導電性接着剤により確実に接着するようにしてもよい。これにより、シール性を高めることができる。また、耐衝撃性を高めるために電気浸透材51とホルダー52との間に緩衝材を充填してもよい。ホルダー52の両面は非導電性接着剤52b,52bにより引き出し電極53,54と接着される。
引き出し電極53,54は、同一の形状をしており、電気浸透材51及びホルダー52の両面に配置される。引き出し電極53,54の材料としては、鉄、銅合金、SUS等を用いることができ、電極及び混合液との接触による酸化反応を防止するために金メッキ処理が施されている。
引き出し電極53,54には、電気浸透材51の径と同じまたはそれよりも大きい径の開口53a,54aが形成されている。つまり、引き出し電極53,54には、電気浸透材51の外周と同じか外周の外側まで広がる開口が形成されている。
この開口53a,54aの周縁部の複数個所(図では3箇所)には、開口53a,54aの内側に向かって突出する電極接続部55A,56Aが設けられている。
また、この実施形態では、図7に示されるように、突出する電極接続部55A,56Aが電気浸透材51の外周の内側まで入り込むようにしている。
電極接続部55Aは隣接配置された突起部57aと突起部57bとからなり、その間隙(入江部)57cに導電性接着剤51cを滴下することにより電極51aと接着される。これにより、図6に示すように、電極51aと引き出し電極53とは導通されている。
同様に、下側(裏面側)の電極接続部56Aは隣接配置された突起部58aと突起部58bとからなり、その間隙(入江部)58cに導電性接着剤51dを滴下することにより電極51bと接着される。これにより、電極51bと引き出し電極54とは導通されている。
このとき、その間隙57c、58cが導電性接着剤51c、51dの液だまりとして機能し、導電性接着剤はその濡れ性により間隙57c、58cに確実に広がるので、滴下の精度はそれ程必要がない。
導電性接着剤51c,51dとしては、例えば藤倉化成製ドータイトFA−730、XA−819A等を用いることができる。
電気浸透材51の両面が引き出し電極53,54と接着されることにより電気浸透材51の軸方向の位置が固定される。なお、電気浸透材51をより確実に固定するためには、開口53a,54aの周縁部の3箇所以上に、電極接続部55A,56Aを設けることが望ましい。
ここでは、電極接続部55A,56Aを円周方向に同位相で設けたが、平面視して、互い違いに電極接続部が配置されるように設けてもよい。
上流側流路構造体60は電気浸透流ポンプ50に対して燃料カートリッジ2側に設けられる。
上流側流路構造体60の電気浸透流ポンプ50側の面には、凹部61が設けられている。凹部61の中央には導入孔62が貫通している。
上流側流路構造体60の燃料カートリッジ2側の面には、中央に導入管66が設けられている。導入管66の内空は導入孔62に繋がっており、導入管66が燃料カートリッジ2,2のダックビル弁に挿入されることで、電気浸透流ポンプ50に混合液を導入する導入流路となる。
上流側流路構造体60の電気浸透流ポンプ50側の面は、凹部61の外周部において非導電性接着剤69により引き出し電極53と接合される。
下流側流路構造体70は電気浸透流ポンプ50に対して流路制御部100側に設けられる。
下流側流路構造体70の電気浸透流ポンプ50側の面には、凹部71が設けられている。凹部71の底部には中央に排出孔72が貫通している。
下流側流路構造体70の流路制御部100側の面には、中央に排出管76が設けられている。排出管76の内空は排出孔72に繋がっており、排出管76が流路制御部100のマイクロバルブ33へ繋がる流路に接続されており、混合液の流路となる。
下流側流路構造体70の電気浸透流ポンプ50側の面は、凹部71の外周部において非導電性接着剤79により引き出し電極54と接着される。
〔送液装置の組み立て方法〕
次に、送液装置40を組み立てる方法について説明する。
まず、ホルダー52の内空52aに電気浸透材51を挿入した状態で、例えば、シルクスクリーンで非導電性接着剤52b,52bを接着部に塗布し、非導電性接着剤52b,52bにより引き出し電極53,54をホルダー52に接着する。この状態では、電極接続部55A,56Aと電気浸透材51とが係合するため、電気浸透材51の軸方向の位置が固定される。なお、上述したように電気浸透材51の側面とホルダー52との間を非導電性接着剤により確実に接着するようにしてもよい。
次に、電極接続部55Aの間隙57cに導電性接着剤51cを滴下するとともに、電極接続部56Aの間隙58cに導電性接着剤51dを滴下し、電極51aと引き出し電極53を接着するとともに、電極51bと引き出し電極54とを接着する。
滴下によって接着させる方法は、マスクを用いてシルクスクリーンで接着剤を塗布して接着させる方法に比べて簡便で、上述の引き出し電極53,54とホルダー52間の非導電性接着剤での接着工程との干渉をなくすことができる。
その後、上流側流路構造体60と引き出し電極53とを非導電性接着剤69により接着するとともに、下流側流路構造体70と引き出し電極54とを非導電性接着剤79により接着する。以上により、送液装置40の組み立てが完成する。
一般に、導電性接着剤は非導電性接着剤よりも接着力が弱いが、本実施の形態においては、引き出し電極53,54と電極51a,51bとが電極接続部55A,56Aで係合し、接着強度はそれ程要求されないため、接着力の弱い導電性接着剤を用いて導電性を確保することができる。
なお、接着強度が要求されるホルダー52と引き出し電極53,54との接着、及び引き出し電極53,54と上流側流路構造体60、下流側流路構造体70との接着に非導電性接着剤を用いることができ、接着強度を確保することができる。
〔送液装置の動作〕
次に、送液装置40の動作について説明する。
まず、燃料カートリッジ2,2の逆止弁2aに導入管66を挿入すると、燃料カートリッジ2,2内の混合液が送液装置40に供給される。そして、混合液は、電気浸透材51に浸透する。
電気浸透材51に混合液が浸透した状態で、引き出し電極53が陽極、引き出し電極54が陰極となるように電圧を印加すると、電気浸透材51内の混合液が陰極側に駆動力を得て移動する。これにより混合液が引き出し電極53側から引き出し電極54側へ送液される。
引き出し電極54側へ送液された混合液は、排出孔72から排出管76に流される。
本実施形態の送液装置40によれば、電気浸透材51が電極接続部55A,56Aのみで固定されるため、電気浸透材51の流路断面積を大きくすることができ、ポンプ性能を十分に発揮させることができる。
<変形例1>
図9は本実施形態の第1の変形例に係る引き出し電極53(54)の電極接続部55B(56B)を示す平面図である。図9に示すように、電極接続部55B(56B)は、単一の突起部57d(58d)からなる。この突起部57d(58d)の両脇に導電性接着剤51c(51d)を滴下することで、電極51a(51b)と引き出し電極53(54)とを導通させることができる。
このとき、導電性接着剤51c(51d)はその濡れ性により突起部57d(58d)の両脇に広がるので、滴下の精度はそれ程必要がない。
本変形例においても、電気浸透材51が電極接続部55B,56Bのみで固定されるため、電気浸透材51の流路断面積をより大きくすることができ、ポンプ性能を十分に発揮させることができる。
<変形例2>
図10は本実施形態の第2の変形例に係る引き出し電極53(54)の電極接続部55C(56C)を示す平面図である。図10に示すように、電極接続部55C(56C)は、単一の突起部57e(58e)からなるが、第1の変形例と異なり、この突起部57e(58e)には、貫通孔57f(58f)が設けられている。この実施形態でも、図10に示されるように、突出する電極接続部57e(58e)(貫通孔57f(58f))が電気浸透材51の外周の内側まで入り込むようにしている。
この貫通孔57f(58f)に導電性接着剤51c(51d)を滴下することで、電極51a(51b)と引き出し電極53(54)とを導通させることができる。
本変形例においても、電気浸透材51が電極接続部55C,56C部のみで導通されるため、電気浸透材51の流路断面積を大きくすることができ、ポンプ性能を十分に発揮させることができる。
また、貫通孔57f(58f)が導電性接着剤51c(51d)の液だまりとしての役割を果たすため、滴下時の工程がより容易にでき、確実に導通をとることができる。
<変形例3>
図11は本実施形態の第3の変形例に係る引き出し電極53(54)の電極接続部55D(56D)を示す平面図である。図11に示すように、特別な突起部を設けずに、導電性接着剤51c(51d)を滴下して、引き出し電極53(54)と電極51a(51b)とを導通させるようにしている。導電性接着剤51c(51d)はその濡れ性により引き出し電極53(54)の開口の内壁部から電極51a(51b)にかけて広がるので、引き出し電極53(54)と電極51a(51b)とを導通させることができる。
この実施形態では、突起部の面積分も流路断面積として有効に使えるので、ポンプ性能を十分に発揮させることができる。
また、この場合、電極接続部55D(56D)に引き出し電極53(54)の部材による突起部がないので、電気浸透材51にかかる応力の集中を抑えることができる。
この変形例の場合、電気浸透材51の側面とホルダー52との間を非導電性接着剤により接着し、軸方向に固定を確実におこなうようにするとよい。また、電極接続部55D(56D)として突起部を備える上記の実施形態(図3〜図8)または変形例と併用するようにしてもよい。
同様に上記実施形態(図3〜図8)、他の変形例も、他の変形例または上記実施形態と併用するようにしてもよい。
また、上記実施形態、変形例では電気浸透材51の形状を円板状としたが、外周は円形に限らず、矩形等の他の形状でもよいことは言うまでもない。
電子機器1000のブロック図である。 燃料電池型発電装置1のブロック図である。 送液装置40を燃料カートリッジ2側から見た斜視図である。 送液装置40を燃料カートリッジ2側から見た分解斜視図である。 図3のV−V矢視断面図である。 電気浸透流ポンプ50の斜視図である。 電気浸透流ポンプ50の平面図である。 図7のVIII−VIII矢視断面図である。 本実施形態の第1の変形例に係る引き出し電極53(54)の電極接続部55B(56B)を示す平面図である。 本実施形態の第2の変形例に係る引き出し電極53(54)の電極接続部55C(56C)を示す平面図である。 本実施形態の第3の変形例に係る引き出し電極53(54)の電極接続部55D(56D)を示す平面図である。 本出願人が開発中(出願中)の送液装置140を示す比較例としての分解斜視図である。 図12のXII−XII矢視断面図である。 図13のXIII部の拡大図である。
符号の説明
1 燃料電池型発電装置
2 燃料カートリッジ
20 発電セル
40 送液装置
50 電気浸透流ポンプ
51 電気浸透材
51a,51b 電極
51c,51d 導電性接着剤
52 ホルダー
52a 内空
52b,52b 非導電性接着剤
53,54 引き出し電極
53a,54a 開口
55A,56A 電極接続部
57c,58c 間隙(入江部)
60 上流側流路構造体
70 下流側流路構造体
901 電子機器本体
1000 電子機器

Claims (17)

  1. 両面に電極が設けられた電気浸透材と、
    前記電気浸透材が収容される内空が形成されたホルダーと、
    前記ホルダーの両面から挟み込み、前記電気浸透材の両面の電極と導通する引き出し電極と、
    を有し、
    前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、
    前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されている
    ことを特徴とする電気浸透材の導通構造。
  2. 前記引き出し電極の前記開口の周縁部の少なくとも一部に、内側に入り込み、前記電気浸透材と導通する電極接続部が設けられていることを特徴とする請求項1に記載の電気浸透材の導通構造。
  3. 前記電極接続部は、前記電気浸透材の外周の内側まで入り込んでいることを特徴とする請求項2に記載の電気浸透材の導通構造。
  4. 前記電極接続部は、1又は複数の突起部からなることを特徴とする請求項2または3に記載の電気浸透材の導通構造。
  5. 前記突起部は、2以上の突起部からなる入江部を備えていることを特徴とする請求項4に記載の電気浸透材の導通構造。
  6. 前記突起部は、貫通孔を備えていることを特徴とする請求項4に記載の電気浸透材の導通構造。
  7. 前記電極接続部は、導電性接着剤のみからなることを特徴とする請求項2または3に記載の電気浸透材の導通構造。
  8. 前記電極接続部は、少なくとも3箇所に設けられていることを特徴とする請求項2〜7のいずれか一項に記載の電気浸透材の導通構造。
  9. 前記電気浸透材の側面は、前記ホルダー内側に接着されていることを特徴とする請求項1〜8のいずれか一項に記載の電気浸透材の導通構造
  10. 前記ホルダーと前記引き出し電極とは、非導電性接着剤により接着されていることを特徴とする請求項1〜9のいずれか一項に記載の電気浸透材の導通構造。
  11. 両面に電極が設けられた電気浸透材と、
    前記電気浸透材が収容される内空が形成されたホルダーと、
    前記ホルダーを両面から挟み込み、前記電気浸透材の両面の電極と導通する引き出し電極と、
    前記電気浸透材の上流側及び下流側に液体の流路を形成する流路構造体と、
    を有し、
    前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、
    前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されていることを特徴とする燃料電池を含む発電装置に搭載される送液装置。
  12. 前記引き出し電極の前記開口の周縁部の少なくとも一部に、内側に入り込み、前記電気浸透材と導通する電極接続部が設けられていることを特徴とする請求項11に記載の燃料電池を含む発電装置に搭載される送液装置。
  13. 請求項11または12に記載の送液装置と、前記送液装置により燃料が供給される発電セルと、を備えることを特徴とする燃料電池型発電装置。
  14. 請求項13に記載の燃料電池型発電装置と、前記燃料電池型発電装置によって発電された電気により動作する電子機器本体と、を備えることを特徴とする電子機器。
  15. 電気浸透材の両面に電極を形成する工程と、
    前記電気浸透材を内空が形成されたホルダーに収容する工程と、
    前記ホルダーの両面と、前記ホルダーを両面から挟み込み前記電気浸透材の両面の電極に導通する引き出し電極とを接着する工程と、
    前記電気浸透材の電極と前記引き出し電極とを接着する工程と、
    を含み、
    前記引き出し電極には、前記電気浸透材の外周と同じか外周の外側まで広がる開口が形成され、
    前記電気浸透材の電極と前記引き出し電極とは、導電性接着剤により接着されることを特徴とする送液装置の製造方法。
  16. 前記電気浸透材の電極と前記引き出し電極とを接着する工程は、前記導電性接着剤を滴下する工程を含むことを特徴とする請求項15に記載の送液装置の製造方法。
  17. 前記ホルダーの両面と前記引き出し電極とを接着する工程は、非導電性接着剤により接着されることを特徴とする請求項15に記載の送液装置の製造方法。
JP2007052638A 2007-03-02 2007-03-02 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法 Expired - Fee Related JP5050569B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052638A JP5050569B2 (ja) 2007-03-02 2007-03-02 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052638A JP5050569B2 (ja) 2007-03-02 2007-03-02 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法

Publications (2)

Publication Number Publication Date
JP2008212805A JP2008212805A (ja) 2008-09-18
JP5050569B2 true JP5050569B2 (ja) 2012-10-17

Family

ID=39833494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052638A Expired - Fee Related JP5050569B2 (ja) 2007-03-02 2007-03-02 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法

Country Status (1)

Country Link
JP (1) JP5050569B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949337B1 (ko) * 2008-02-19 2010-03-26 삼성에스디아이 주식회사 유체 회수장치 및 이를 구비한 연료전지 시스템

Also Published As

Publication number Publication date
JP2008212805A (ja) 2008-09-18

Similar Documents

Publication Publication Date Title
US8246801B2 (en) Support structure of electroosmotic member, electroosmosis pump, electric power generation apparatus and electronic equipment
JP4981331B2 (ja) 燃料電池セルスタック及び集電体
CN110214392A (zh) 双极板密封组件以及带有其的燃料电池堆垛
KR20020089107A (ko) 연료 전지, 연료 전지 발전 장치 및 이것을 이용한 기기
JP4285518B2 (ja) 接続構造体、流路制御部、燃料電池型発電装置及び電子機器
JP2010162487A (ja) 圧電振動機器システムおよび電子機器
JP5050569B2 (ja) 電気浸透材の導通構造、送液装置、燃料電池型発電装置、及び電子機器並びに送液装置の製造方法
JP4893195B2 (ja) 送液装置の接続構造体、燃料電池型発電装置及び電子機器
JP5061666B2 (ja) 送液装置、燃料電池型発電装置、及び電子機器
JP2008123751A (ja) 燃料電池
JP2008136964A (ja) 気液分離装置及び発電装置
JP5228697B2 (ja) 燃料電池システムおよび電子機器
JP2005276818A (ja) 燃料電池システム
JP2006202509A (ja) 携帯型コンピュータ
JP5082979B2 (ja) 電気浸透流ポンプの制御方法及び制御装置並びに燃料電池システム
JP5104434B2 (ja) 流体機器
JP5061682B2 (ja) 流体機器、発電装置、電子機器及び下流部構造
JP4366906B2 (ja) 電子機器
JP2005166355A (ja) 燃料電池システム
JP5104900B2 (ja) 発電装置
JP6332621B2 (ja) 燃料電池モジュール
TW201125204A (en) Cell stack
JP4892809B2 (ja) 電子機器
CN113451603A (zh) 圆管式微流体燃料电池
KR20060108111A (ko) 연료 전지 시스템용 개질기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees