JP5046083B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents

Method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP5046083B2
JP5046083B2 JP2006227650A JP2006227650A JP5046083B2 JP 5046083 B2 JP5046083 B2 JP 5046083B2 JP 2006227650 A JP2006227650 A JP 2006227650A JP 2006227650 A JP2006227650 A JP 2006227650A JP 5046083 B2 JP5046083 B2 JP 5046083B2
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor device
sbd
activation
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006227650A
Other languages
Japanese (ja)
Other versions
JP2008053418A (en
Inventor
明将 木下
憲司 福田
勉 八尾
孝 西
光央 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39237186&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5046083(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006227650A priority Critical patent/JP5046083B2/en
Publication of JP2008053418A publication Critical patent/JP2008053418A/en
Application granted granted Critical
Publication of JP5046083B2 publication Critical patent/JP5046083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、炭化珪素半導体装置の製造方法に関し、特に炭化珪素基板上に形成したショットキーバリアダイオード(以下SBDと略称する)の製造方法に関するものである。   The present invention relates to a method for manufacturing a silicon carbide semiconductor device, and more particularly to a method for manufacturing a Schottky barrier diode (hereinafter abbreviated as SBD) formed on a silicon carbide substrate.

炭化珪素(SiC)は、シリコン(Si)と比較して、1.バンドギャップが広い、2.絶縁破壊強度が大きい、3.電子の飽和ドリフト速度が大きいなどの優れた物性を有する。したがって、炭化珪素(SiC)を基板材料として用いることにより、シリコン(Si)の限界を超えた高性能の高耐圧な電力用半導体素子が製造できる。   Silicon carbide (SiC) is compared to silicon (Si) as follows: 1. Wide band gap. 2. High breakdown strength. Excellent physical properties such as high electron saturation drift velocity. Therefore, by using silicon carbide (SiC) as the substrate material, a high-performance, high-voltage semiconductor element for power that exceeds the limit of silicon (Si) can be manufactured.

また、炭化珪素(SiC)には、シリコン(Si)等の半導体と同様に、金属を表面に堆積させることにより整流特性のあるSBDを製造できる。これらの理由から、炭化珪素(SiC)を基板材料とした高耐圧で低オン抵抗のSBDが実現できると考えられ、数多くの研究開発が行われている。   Moreover, SBD with a rectification | straightening characteristic can be manufactured by depositing a metal on the surface similarly to semiconductors, such as silicon (Si), in silicon carbide (SiC). For these reasons, it is considered that a high breakdown voltage and low on-resistance SBD using silicon carbide (SiC) as a substrate material can be realized, and many researches and developments have been conducted.

炭化珪素SBDの耐圧を上げる方法として、ショットキー電極の終端領域にイオン注入でガードリングを形成した構造が使われている(非特許文献1)。
図1は、一般的な構造の断面図である。この構造では、高濃度n型基板1上に低濃度n型ドリフト層2が堆積されている。その後、p型不純物をイオン注入法によってp型領域3が形成される。イオン注入されたp型不純物は格子間に留まったままであるためキャリアを放出せずp型領域として動作しない。そのため、活性化と呼ばれる高温処理を行うことによって、p型不純物は格子サイトに置換(活性化)されp型領域として動作する。その後、高濃度n型基板1上にオーミック電極(金属又はシリサイド)5を形成し、低濃度n型ドリフト層2上にショットキー電極4として2上に金属を堆積させる。ショットキー電極4の終端はイオン注入と活性化によって形成したp型領域3と重なるように形成される。その結果、逆方向に高電圧をかけたときのショットキー電極終端部での電界集中が緩和され、所定の阻止特性を有する高耐圧SBDとして動作する。
As a method for increasing the breakdown voltage of silicon carbide SBD, a structure in which a guard ring is formed by ion implantation in the termination region of the Schottky electrode is used (Non-Patent Document 1).
FIG. 1 is a cross-sectional view of a general structure. In this structure, a low concentration n-type drift layer 2 is deposited on a high concentration n-type substrate 1. Thereafter, a p-type region 3 is formed by ion implantation using p-type impurities. Since the ion-implanted p-type impurity remains between the lattices, carriers are not emitted and the p-type region does not operate. Therefore, by performing a high temperature treatment called activation, the p-type impurity is replaced (activated) by lattice sites and operates as a p-type region. Thereafter, an ohmic electrode (metal or silicide) 5 is formed on the high-concentration n-type substrate 1, and a metal is deposited on the low-concentration n-type drift layer 2 as the Schottky electrode 4. The end of Schottky electrode 4 is formed so as to overlap p-type region 3 formed by ion implantation and activation. As a result, the electric field concentration at the Schottky electrode termination when a high voltage is applied in the reverse direction is alleviated, and the device operates as a high breakdown voltage SBD having a predetermined blocking characteristic.

イオン注入されたp型不純物の活性化を行うために1600℃以上の温度でアルゴン雰囲気中で高温処理されるが、活性化によりSiCの表面が汚染又は損傷等を受けているため、活性化後の炭化珪素2表面上にショットキー電極4を堆積させると電気特性が劣化する。電気特性の劣化は漏洩電流に顕著に現れ、高耐圧SBDとして動作しない。このため、高温の活性化を行うプロセスで漏洩電流の少ないSBDを歩留まりよく製造はできない問題がある。   In order to activate the ion-implanted p-type impurity, high-temperature treatment is performed in an argon atmosphere at a temperature of 1600 ° C. or higher, but the SiC surface is contaminated or damaged by the activation. When the Schottky electrode 4 is deposited on the surface of the silicon carbide 2, the electrical characteristics deteriorate. The deterioration of the electrical characteristics appears remarkably in the leakage current and does not operate as a high breakdown voltage SBD. For this reason, there is a problem that an SBD with a small leakage current cannot be manufactured with a high yield in the process of activation at a high temperature.

炭化珪素(SiC)は、熱酸化によって二酸化珪素層を炭化珪素(SiC)表面上に形成する。この二酸化珪素層をフッ化水素酸によって処理することにより取り除くことができる。この方法は炭化珪素(SiC)表面を新たな損傷を与えることなく取り除くことができる。炭化珪素(SiC)表面の汚染又は損傷等した層を取り除く方法として知られており、犠牲酸化と呼ばれている。さらに、二酸化珪素の厚さは酸化時間と温度により制御できるため、炭化珪素表面の研削厚さを制御することが可能である。   Silicon carbide (SiC) forms a silicon dioxide layer on the surface of silicon carbide (SiC) by thermal oxidation. This silicon dioxide layer can be removed by treatment with hydrofluoric acid. This method can remove the silicon carbide (SiC) surface without new damage. This method is known as a method for removing a contaminated or damaged layer on the surface of silicon carbide (SiC), and is called sacrificial oxidation. Furthermore, since the thickness of silicon dioxide can be controlled by the oxidation time and temperature, it is possible to control the grinding thickness of the silicon carbide surface.

SBD製造工程において、高温活性化の後ショットキー電極を形成する前に、この犠牲酸化を行う製造工程は知られている(特許文献1)。   In the SBD manufacturing process, a manufacturing process is known in which this sacrificial oxidation is performed before the Schottky electrode is formed after high temperature activation (Patent Document 1).

しかしながら、活性化後に行う犠牲酸化で表面から取り除く量が少なければ漏洩電流の劇的な減少が見られないことが発明者らの実験によって明らかになった。
米国特許第6905916号明細書 IEEE Electron Device Lett., vol.17 (1996)139
However, the inventors' experiments have shown that if the amount removed from the surface by sacrificial oxidation after activation is small, a dramatic reduction in leakage current is not observed.
US Pat. No. 6,905,916 IEEE Electron Device Lett., Vol.17 (1996) 139

本発明は、炭化珪素半導体装置において、活性化後に生じる汚染又は損傷等により劣化した炭化珪素表面上のショットキー電極形成による漏洩電流の問題を解決し、高耐圧SBDを効率良く製造するプロセスを提供することを課題とする。   The present invention provides a process for efficiently manufacturing a high breakdown voltage SBD by solving a problem of leakage current due to Schottky electrode formation on a silicon carbide surface deteriorated due to contamination or damage generated after activation in a silicon carbide semiconductor device. The task is to do.

本発明は、活性化により劣化した炭化珪素(SiC)表面を除去する方法を、酸化により形成された二酸化珪素層をフッ化水素酸等により除去し、除去する量を酸化により形成された二酸化珪素層を40nm以上とすることを特徴とする。
より詳細には次のような手段により解決される。
(1)ショットキー電極の終端領域の下の第1導電型の低濃度の炭化珪素膜に、イオン注入により第2導電型の領域を形成し高温活性化処理する工程を含む炭化珪素半導体装置の製造方法において、第1導電型の低濃度の炭化珪素膜上へのショットキー電極形成に先立って、上記高温活性化処理する工程後に、上記炭化珪素膜表面を犠牲酸化する工程及び犠牲酸化により形成された40nm以上の二酸化珪素層を除去する工程を備えたことを特徴とする炭化珪素半導体装置の製造方法。
(2)犠牲酸化によって形成された140nm未満の二酸化珪素層を除去することを特徴とする(1)の炭化珪素半導体装置の製造方法。
(3)犠牲酸化によって形成した140nm以上の二酸化珪素層を除去することを特徴とする(1)の炭化珪素半導体装置の製造方法。
(4)表面を犠牲酸化する工程及び犠牲酸化により形成された40nm以上の二酸化珪素層を除去する工程を、複数回繰り返して行うことを特徴とする(1)の炭化珪素半導体装置の製造方法。
(5)第1導電型の低濃度の炭化珪素膜は、結晶学的面指数が(0001)面又は(000−1)面を有する第1導電型の炭化珪素基板上に堆積されていることを特徴とする(1)ないし(4)のいずれかに記載の炭化珪素半導体装置の製造方法。
The present invention relates to a method of removing a silicon carbide (SiC) surface deteriorated by activation, removing a silicon dioxide layer formed by oxidation with hydrofluoric acid or the like, and removing the silicon dioxide layer formed by oxidation. The layer is 40 nm or more.
More specifically, the problem is solved by the following means.
(1) A silicon carbide semiconductor device including a step of forming a second conductivity type region by ion implantation in a first conductivity type low-concentration silicon carbide film under a termination region of a Schottky electrode and performing a high temperature activation process In the manufacturing method, prior to the formation of the Schottky electrode on the low-concentration silicon carbide film of the first conductivity type, the silicon carbide film surface is formed by sacrificial oxidation and the sacrificial oxidation after the high-temperature activation process. A method for producing a silicon carbide semiconductor device comprising a step of removing the silicon dioxide layer having a thickness of 40 nm or more.
(2) The method for producing a silicon carbide semiconductor device according to (1), wherein the silicon dioxide layer of less than 140 nm formed by sacrificial oxidation is removed.
(3) The method for producing a silicon carbide semiconductor device according to (1), wherein the silicon dioxide layer of 140 nm or more formed by sacrificial oxidation is removed.
(4) The method for manufacturing a silicon carbide semiconductor device according to (1), wherein the step of sacrificing the surface and the step of removing the silicon dioxide layer of 40 nm or more formed by the sacrificial oxidation are repeated a plurality of times.
(5) The first conductivity type low-concentration silicon carbide film is deposited on a first conductivity type silicon carbide substrate having a crystallographic plane index of (0001) plane or (000-1) plane. A method for manufacturing a silicon carbide semiconductor device according to any one of (1) to (4).

本発明によれば、炭化珪素半導体装置において、活性化後に生じる汚染又は損傷等により劣化した炭化珪素表面上のショットキー電極形成による漏洩電流の問題を解決し、高耐圧SBDを効率良く製造することができる。   According to the present invention, in a silicon carbide semiconductor device, the problem of leakage current due to formation of a Schottky electrode on a silicon carbide surface deteriorated due to contamination or damage generated after activation is solved, and a high breakdown voltage SBD is efficiently manufactured. Can do.

図2は、本発明に係る実施例である炭化珪素SBDの製造工程説明図である。図2Aにおいて、たとえば、1×1018cm−3の窒素がドーピングされた厚さ300μmの(0001)面を有する高濃度n型基板1表面上には、たとえば、5×1015cm−3の窒素がドーピングされた厚さ6μmの低濃度n型ドリフト層2が堆積される。 FIG. 2 is an explanatory view of a manufacturing process of silicon carbide SBD which is an embodiment according to the present invention. In FIG. 2A, on the surface of the high-concentration n-type substrate 1 having a (0001) plane of 300 μm thickness doped with 1 × 10 18 cm −3 of nitrogen, for example, 5 × 10 15 cm −3 of A low concentration n-type drift layer 2 having a thickness of 6 μm doped with nitrogen is deposited.

前記炭化珪素基板に、終端構造用のp型領域を形成するために図2Bにおいて、たとえば、アルミニウム(Al)を注入する。注入するアルミニウムイオンの入射エネルギーと注入量は、たとえば、200keVで4×1016/cm、120keVで2×1016/cm、70keVで1.6×1016/cm、30keVで1×1016/cmの4段階で行い、Al濃度3×1020/cmで厚さ0.3μmの領域3を形成する。 In order to form a p-type region for a termination structure in the silicon carbide substrate, for example, aluminum (Al) is implanted in FIG. 2B. Injection amount and the incident energy of the implantation of aluminum ions, for example, 4 × 10 16 / cm 2 , 2 × 10 16 / cm 2, 1 × with 1.6 × 10 16 / cm 2, 30keV at 70keV with 120keV at 200keV The region 3 having a thickness of 0.3 μm is formed at an Al concentration of 3 × 10 20 / cm 3 in four steps of 10 16 / cm 2 .

前記炭化珪素基板で、終端構造用のp型領域3を形成するために注入されたアルミニウムを活性化するために、図2Cにおいて、たとえば、Ar雰囲気中において1800℃で30秒間の活性化を行う。活性化後汚染又は損傷等の層6が生じる。   In order to activate the aluminum implanted to form the p-type region 3 for the termination structure on the silicon carbide substrate, in FIG. 2C, for example, activation is performed at 1800 ° C. for 30 seconds in an Ar atmosphere. . After activation, a layer 6 such as contamination or damage occurs.

前記炭化珪素基板から、図2Dにおいて、活性化後に生じた汚染又は損傷等の層6を除去するため、たとえば、1200℃の酸素雰囲気中で180分の酸化を行い50nmの二酸化珪素層7を形成する。その結果、活性化で生じた汚染又は損傷等の層4を二酸化珪素層7の中に取り込まれる。その後、たとえば、5%フッ化水素酸に10分間さらすことにより炭化珪素基板上に形成された二酸化珪素層7を除去する(図2E)。この酸化、フッ化水素酸処理を、たとえば、3回繰り返すことにより合計150nmの二酸化珪素層7と同時に活性化で生じた汚染又は損傷等の層6が除去される。   In order to remove the layer 6 such as contamination or damage generated after activation in FIG. 2D from the silicon carbide substrate, for example, oxidation is performed for 180 minutes in an oxygen atmosphere at 1200 ° C. to form a 50 nm silicon dioxide layer 7. To do. As a result, the layer 4 such as contamination or damage caused by the activation is taken into the silicon dioxide layer 7. Thereafter, for example, the silicon dioxide layer 7 formed on the silicon carbide substrate is removed by exposure to 5% hydrofluoric acid for 10 minutes (FIG. 2E). By repeating this oxidation and hydrofluoric acid treatment three times, for example, the silicon dioxide layer 7 having a total thickness of 150 nm is simultaneously removed from the layer 6 such as contamination or damage caused by activation.

図2Fにおいて、前記炭化珪素基板上に、たとえば、ニッケルを9.0×10−8Torrで蒸着することによりショットキー電極4を形成する。ショットキー電極4の終端部分は、SBDを高耐圧素子として動作させるために、たとえば、ショットキー電極4の端とp型領域3が4μm重なるようにする。たとえば、裏面にオーミック電極5を形成する場合は、たとえば、ショットキー電極4の形成前にニッケルを50nm蒸着してアルゴン雰囲気中において1000℃で2分の処理を行う。 In FIG. 2F, the Schottky electrode 4 is formed on the silicon carbide substrate by, for example, depositing nickel at 9.0 × 10 −8 Torr. In order to operate the SBD as a high breakdown voltage element, for example, the end portion of the Schottky electrode 4 is overlapped with the end of the Schottky electrode 4 by 4 μm. For example, when forming the ohmic electrode 5 on the back surface, for example, before forming the Schottky electrode 4, nickel is deposited to a thickness of 50 nm and a treatment is performed at 1000 ° C. for 2 minutes in an argon atmosphere.

図3は、発明を実施するための最良の形態に示した高温処理された炭化珪素(SiC)について、活性化後に酸化処理を行わずショットキー電極を形成したSBDの逆方向電流−電圧特性である。
図4は、発明を実施するための最良の形態に示した高温処理された炭化珪素(SiC)について、活性化後に二酸化珪素を合計140nm形成し、フッ化水素酸処理で除去した後ショットキー電極を形成したSBDの逆方向電流−電圧特性である。活性化後に二酸化珪素を合計140nm形成することにより漏洩電流の少ないSBDが9個中1個から9個中9個に改善されたことが確認できる。漏洩電流の少ないSBDは、逆方向電圧を100V印加した時に流れる電流値が10−6A/cm以下のSBDとする。
FIG. 3 shows reverse current-voltage characteristics of an SBD in which a high-temperature-treated silicon carbide (SiC) shown in the best mode for carrying out the invention is not oxidized after activation and a Schottky electrode is formed. is there.
FIG. 4 shows a Schottky electrode after silicon dioxide having a total thickness of 140 nm is formed after activation and removed by hydrofluoric acid treatment for high-temperature-treated silicon carbide (SiC) shown in the best mode for carrying out the invention. It is the reverse direction current-voltage characteristic of SBD which formed. It can be confirmed that the SBD with less leakage current was improved from 1 in 9 to 9 out of 9 by forming a total of 140 nm of silicon dioxide after activation. An SBD having a small leakage current is an SBD having a current value of 10 −6 A / cm 2 or less when a reverse voltage of 100 V is applied.

図5は、発明を実施するための最良の形態に示した高温処理された炭化珪素(SiC)について、活性化後に形成された二酸化珪素膜厚と製造されたSBD中の漏洩電流の少ないSBDの割合の関係である。活性化後に二酸化珪素膜を合計40nm形成した炭化珪素(SiC)にSBDを製造すると漏洩電流の少ないSBDは0%より大きくなるといえる。さらに、活性化後に二酸化珪素膜を合計40nm以上、且つ140nm未満形成した炭化珪素(SiC)にSBDを製造すると漏洩電流の少ないSBDは100%に近づくといえる。特に活性化後に二酸化珪素膜を合計140nm以上形成した炭化珪素(SiC)にSBDを製造すると漏洩電流の少ないSBDは100%になるといえる。   FIG. 5 shows the SBD of the silicon dioxide film formed after activation and the low leakage current in the manufactured SBD for the high-temperature-treated silicon carbide (SiC) shown in the best mode for carrying out the invention. It is a relationship of proportions. When SBD is manufactured on silicon carbide (SiC) having a total of 40 nm of silicon dioxide film after activation, it can be said that SBD with less leakage current is greater than 0%. Further, when SBD is manufactured on silicon carbide (SiC) in which a silicon dioxide film is formed in a total of 40 nm or more and less than 140 nm after activation, it can be said that SBD with little leakage current approaches 100%. In particular, when an SBD is manufactured on silicon carbide (SiC) in which a silicon dioxide film is formed in total 140 nm or more after activation, it can be said that the SBD with a small leakage current is 100%.

なお、本実施例では、(0001)面基板上の炭化珪素に製造されたSBDの漏洩電流を減少させるための工程について説明したが、(000−1)面基板にも、酸化条件は若干異なるが、同様に適用できる。   In addition, although the present Example demonstrated the process for reducing the leakage current of SBD manufactured to the silicon carbide on a (0001) plane board | substrate, oxidation conditions differ also slightly for a (000-1) plane board | substrate. But is equally applicable.

以上、本発明の実施例を詳述したが、本発明は前記実施例に限定されるものではない。そして、本発明の趣旨を逸脱することがなければ、種々の設計変更を行うことが可能である。
前記発明を実施するための最良の形態において、ある終端構造を持つ炭化珪素SBDにおける断面図に従って説明したが、イオン注入を伴うSBDの構造であれば、本発明の趣旨を逸脱しない範囲の構造を持つSBDに対応させることができることはいうまでもないことである。
例えば、図6に示すように、幾つもの第2導電型のリングでショットキー接合部を取り囲むことにより、ショットキー接合部の周囲の電界を緩和し高耐圧を実現するフィールドリミッティングリング(FLR)構造を持つSBDや、図7に示すように、ショットキー接合面にpn接合を混在させることにより逆電流を抑えようとするジャンクションバリアショットキー(JBS)ダイオードにも適用できる。
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example. Various design changes can be made without departing from the spirit of the present invention.
In the best mode for carrying out the invention, the silicon carbide SBD having a certain termination structure has been described in accordance with a cross-sectional view. However, if the structure of the SBD is accompanied by ion implantation, the structure within the scope of the invention is not deviated. Needless to say, the SBD can be handled.
For example, as shown in FIG. 6, a field limiting ring (FLR) that relaxes the electric field around the Schottky junction and realizes a high breakdown voltage by surrounding the Schottky junction with a number of second conductivity type rings. As shown in FIG. 7, the present invention can also be applied to an SBD having a structure and a junction barrier Schottky (JBS) diode that attempts to suppress a reverse current by mixing a pn junction on a Schottky junction surface.

本発明に係る炭化珪素SBDの断面図である。It is sectional drawing of silicon carbide SBD which concerns on this invention. 炭化珪素SBDの製造工程を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing process of silicon carbide SBD. 活性化後に酸化処理を行わずショットキー電極を形成した炭化珪素SBDの電流−電圧特性図である。FIG. 5 is a current-voltage characteristic diagram of silicon carbide SBD in which a Schottky electrode is formed without performing an oxidation treatment after activation. 活性化後に二酸化珪素を合計140nm形成し、フッ化水素酸処理で除去した後ショットキー電極を形成した炭化珪素SBDの電流−電圧特性図である。It is a current-voltage characteristic view of silicon carbide SBD in which a total of 140 nm of silicon dioxide is formed after activation and removed by hydrofluoric acid treatment and then a Schottky electrode is formed. 活性化後に形成した二酸化珪素膜厚と製造されたSBD中の漏洩電流の少ないSBDの割合の関係である。It is the relationship between the silicon dioxide film thickness formed after activation and the ratio of SBD with less leakage current in the manufactured SBD. 本発明に係るFLR構造を持つ炭化珪素SBDの断面図である。It is sectional drawing of silicon carbide SBD which has a FLR structure based on this invention. 本発明に係るJBS構造を持つ炭化珪素SBDの断面図である。1 is a cross-sectional view of a silicon carbide SBD having a JBS structure according to the present invention.

符号の説明Explanation of symbols

1 高濃度n型基板
2 低濃度n型ドリフト層
3 p型不純物イオン注入領域
4 ショットキー電極
5 オーミック電極(金属又はシリサイド)
6 活性化により生じる劣化層
7 熱酸化によって生成される二酸化珪素層
8 フィールドリミッティングリング構造
9 ジャンクションバリアショットキー構造
1 High-concentration n-type substrate 2 Low-concentration n-type drift layer 3 p-type impurity ion implantation region 4 Schottky electrode 5 Ohmic electrode (metal or silicide)
6 Degraded layer caused by activation 7 Silicon dioxide layer produced by thermal oxidation 8 Field limiting ring structure 9 Junction barrier Schottky structure

Claims (4)

ショットキー電極の終端領域の下の第1導電型の低濃度の炭化珪素膜に、イオン注入により第2導電型の領域を形成し高温活性化処理する工程を含む炭化珪素半導体装置の製造方法において、
上記第1導電型の低濃度の炭化珪素膜は、結晶学的面指数が(0001)面又は(000−1)面を有する第1導電型の炭化珪素基板上に堆積されており
上記第1導電型の低濃度の炭化珪素膜上へのショットキー電極形成に先立って、上記高温活性化処理する工程後に、上記炭化珪素膜表面を犠牲酸化する工程及び犠牲酸化により形成された40nm以上(ただし、50nm未満を除く)の二酸化珪素層を除去する工程を備えたことを特徴とする炭化珪素半導体装置の製造方法。
In a method for manufacturing a silicon carbide semiconductor device including a step of forming a second conductivity type region in a first conductivity type low-concentration silicon carbide film under a termination region of a Schottky electrode by ion implantation and performing a high temperature activation process ,
The first conductivity type low-concentration silicon carbide film is deposited on a first conductivity type silicon carbide substrate having a crystallographic plane index of (0001) or (000-1) .
Prior to the Schottky electrode formed on said first conductivity type low-concentration silicon carbide film, after the step of treating the hot activation, 40 nm formed by the process and sacrificial oxidation to sacrificial oxidation of the silicon carbide film surface A method for manufacturing a silicon carbide semiconductor device, comprising the step of removing the silicon dioxide layer as described above (excluding less than 50 nm).
犠牲酸化によって形成された140nm未満の二酸化珪素層を除去することを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。   2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein the silicon dioxide layer of less than 140 nm formed by sacrificial oxidation is removed. 犠牲酸化によって形成した140nm以上の二酸化珪素層を除去することを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。   2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein a silicon dioxide layer having a thickness of 140 nm or more formed by sacrificial oxidation is removed. 表面を犠牲酸化する工程及び犠牲酸化により形成された40nm以上の二酸化珪素層を除去する工程を、複数回繰り返して行うことを特徴とする請求項1に記載の炭化珪素半導体装置の製造方法。   2. The method for manufacturing a silicon carbide semiconductor device according to claim 1, wherein the step of sacrificing the surface and the step of removing the silicon dioxide layer of 40 nm or more formed by the sacrificial oxidation are repeated a plurality of times.
JP2006227650A 2006-08-24 2006-08-24 Method for manufacturing silicon carbide semiconductor device Expired - Fee Related JP5046083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227650A JP5046083B2 (en) 2006-08-24 2006-08-24 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227650A JP5046083B2 (en) 2006-08-24 2006-08-24 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2008053418A JP2008053418A (en) 2008-03-06
JP5046083B2 true JP5046083B2 (en) 2012-10-10

Family

ID=39237186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227650A Expired - Fee Related JP5046083B2 (en) 2006-08-24 2006-08-24 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP5046083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292682A (en) * 2016-03-31 2018-07-17 新电元工业株式会社 The manufacturing method of semiconductor device and semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978502B (en) * 2008-03-17 2012-11-14 三菱电机株式会社 Semiconductor device
US8232558B2 (en) * 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
JP5207939B2 (en) * 2008-12-09 2013-06-12 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
DE112009004667B4 (en) 2009-04-16 2015-05-28 Mitsubishi Electric Corp. A method of manufacturing a silicon carbide semiconductor device
JP2010262952A (en) * 2009-04-29 2010-11-18 Mitsubishi Electric Corp Method for manufacturing silicon carbide semiconductor device
JP5443908B2 (en) * 2009-09-09 2014-03-19 株式会社東芝 Manufacturing method of semiconductor device
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
JP5406171B2 (en) 2010-12-08 2014-02-05 ローム株式会社 SiC semiconductor device
JP5455973B2 (en) 2011-05-27 2014-03-26 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
DE112012005837T5 (en) * 2012-03-30 2014-10-30 Hitachi, Ltd. A method of manufacturing a silicon carbide semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544123B2 (en) 1997-07-04 2004-07-21 富士電機デバイステクノロジー株式会社 Method for forming thermal oxide film on silicon carbide semiconductor device
JP4100652B2 (en) * 1999-08-10 2008-06-11 富士電機デバイステクノロジー株式会社 SiC Schottky diode
JP4326762B2 (en) * 2002-07-17 2009-09-09 日本インター株式会社 Schottky barrier diode having lateral trench structure and manufacturing method thereof
JP4175157B2 (en) 2003-03-25 2008-11-05 日産自動車株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JP2006210569A (en) * 2005-01-27 2006-08-10 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method thereof
JP4942134B2 (en) * 2005-05-20 2012-05-30 日産自動車株式会社 Method for manufacturing silicon carbide semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292682A (en) * 2016-03-31 2018-07-17 新电元工业株式会社 The manufacturing method of semiconductor device and semiconductor device
CN108292682B (en) * 2016-03-31 2021-04-27 新电元工业株式会社 Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2008053418A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5046083B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6633012B2 (en) Semiconductor device with trench electrode
JP5616911B2 (en) Silicon carbide junction barrier Schottky diode with suppressed minority carrier injection
JP5044117B2 (en) Silicon carbide bipolar semiconductor device
WO2014112204A1 (en) Silicon carbide semiconductor device
JP5119806B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20130140584A1 (en) Semiconductor device
JP6222771B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2004515080A (en) Epitaxial edge termination for silicon carbide schottky device and method of manufacturing silicon carbide device including the same
JP6415946B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6010773B2 (en) Semiconductor device and manufacturing method thereof
US20110193101A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2009158528A (en) Semiconductor device
EP2325872A1 (en) Bipolar semiconductor device and method for manufacturing same
KR102550521B1 (en) Manufacturing method of silicon-carbide trench schottky barrier diode
US11380757B2 (en) Metal terminal edge for semiconductor structure and method of forming the same
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2004266115A (en) Silicon carbide schottky barrier diode
JP2006210693A (en) Semiconductor device and manufacturing method thereof
JP2013074148A (en) Semiconductor device and manufacturing method thereof
KR102329479B1 (en) SiC diode manufacturing method through the active heat treatment
JP2016139698A (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP2015222784A (en) Silicon carbide Schottky barrier diode
WO2024024386A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP5895750B2 (en) Silicon carbide semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5046083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees