JP5207939B2 - Method for manufacturing silicon carbide semiconductor device - Google Patents

Method for manufacturing silicon carbide semiconductor device Download PDF

Info

Publication number
JP5207939B2
JP5207939B2 JP2008313043A JP2008313043A JP5207939B2 JP 5207939 B2 JP5207939 B2 JP 5207939B2 JP 2008313043 A JP2008313043 A JP 2008313043A JP 2008313043 A JP2008313043 A JP 2008313043A JP 5207939 B2 JP5207939 B2 JP 5207939B2
Authority
JP
Japan
Prior art keywords
layer
silicon carbide
oxide film
photoresist
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008313043A
Other languages
Japanese (ja)
Other versions
JP2010140939A (en
Inventor
研一 黒田
寛 渡邊
吉徳 松野
健一 大塚
直毅 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008313043A priority Critical patent/JP5207939B2/en
Publication of JP2010140939A publication Critical patent/JP2010140939A/en
Application granted granted Critical
Publication of JP5207939B2 publication Critical patent/JP5207939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、炭化珪素半導体装置の製造方法に関し、特に炭化珪素ショットキダイオードの製造に好適な炭化珪素半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a silicon carbide semiconductor device, and more particularly to a method for manufacturing a silicon carbide semiconductor device suitable for manufacturing a silicon carbide Schottky diode.

kV級高耐圧の炭化珪素(以下、SiCと呼ぶ)ショットキダイオードは、SiCからなるn型のエピタキシャル層上にショットキ電極が形成されて構成されている。この構造では、エピタキシャル層とショットキ電極との接合面の周縁に電界が集中し易くなるので、その接合面(ショットキ接合面)の周縁の表層に電界集中緩和のためのp型終端構造を形成する必要がある。   A kV class high breakdown voltage silicon carbide (hereinafter referred to as SiC) Schottky diode is configured by forming a Schottky electrode on an n-type epitaxial layer made of SiC. In this structure, the electric field tends to concentrate on the periphery of the junction surface between the epitaxial layer and the Schottky electrode, so that a p-type termination structure for reducing the electric field concentration is formed on the surface layer of the periphery of the junction surface (Schottky junction surface). There is a need.

p型終端構造の形成には、一般にAl(アルミ),B(ボロン)等のp型不純物をn型エピタキシャル層にイオン注入し、1500℃程度以上の高温熱処理で活性化アニールする方法が用いられる。良好な特性のショットキ接合を形成するためには、この高温熱処理によるSiC表面の変質層を除去する必要がある。この変質層を除去する技術としては、例えば特許文献1〜3に記載された技術が知られている。   In order to form the p-type termination structure, a method is generally used in which p-type impurities such as Al (aluminum) and B (boron) are ion-implanted into the n-type epitaxial layer, and activation annealing is performed by high-temperature heat treatment at about 1500 ° C. or higher. . In order to form a Schottky junction with good characteristics, it is necessary to remove the altered layer on the SiC surface by this high-temperature heat treatment. For example, techniques described in Patent Documents 1 to 3 are known as techniques for removing the deteriorated layer.

特開2008−53418号公報JP 2008-53418 A 特開2001−35838号公報JP 2001-35838 A 特開2004−363326号公報JP 2004-363326 A

特許文献1では、上記の変質層を除去する方法として、活性化アニール後にSiC表層に40nm以上の犠牲酸化膜を形成し、その犠牲酸化膜と共に変質層を除去する方法を提唱している。   In Patent Document 1, as a method for removing the above-described deteriorated layer, a method is proposed in which a sacrificial oxide film having a thickness of 40 nm or more is formed on the SiC surface layer after activation annealing, and the deteriorated layer is removed together with the sacrificial oxide film.

活性化アニールによる変質層の厚さは100nm以上であり、特許文献1の方法でその変質層を除去するには、変質層の厚さに合わせて犠牲酸化膜を厚くする必要があり、余剰残留Cの挙動等のSiC特有の問題点や、犠牲酸化膜を形成するのに時間が掛かるという問題点が発生する。そればかりか、犠牲酸化膜はSiC表層全面に形成されるため、p型イオン注入層の表面も100nm以上除去されることになる。   The thickness of the altered layer by activation annealing is 100 nm or more, and in order to remove the altered layer by the method of Patent Document 1, it is necessary to increase the sacrificial oxide film in accordance with the thickness of the altered layer. There are problems peculiar to SiC, such as the behavior of C, and that it takes time to form a sacrificial oxide film. In addition, since the sacrificial oxide film is formed on the entire surface of the SiC surface, the surface of the p-type ion implantation layer is also removed by 100 nm or more.

その結果、その除去量を見込んであらかじめp型イオン注入量を増加するか、より深く注入する必要があり、注入に要する時間とエネルギーが増大するという問題点がある。   As a result, it is necessary to increase the p-type ion implantation amount in advance in anticipation of the removal amount or to perform deeper implantation, which increases the time and energy required for implantation.

特許文献2では、プラズマによる表面エッチングあるいは高温溶融塩中における表面エッチングにより変質層を除去する方法を提案している。しかしこの方法でも、特許文献1の場合と同様にp型イオン注入層の表面も100nm以上除去され、注入層の厚みが薄くなるという問題点がある。   Patent Document 2 proposes a method of removing the altered layer by surface etching with plasma or surface etching in a high-temperature molten salt. However, this method also has a problem that the surface of the p-type ion implantation layer is removed by 100 nm or more as in the case of Patent Document 1, and the thickness of the implantation layer is reduced.

特許文献3では、水素エッチングで変質層を除去する方法を提案しているが、水素エッチングは危険で高価な高温プロセス装置が必要となるという問題点があるばかりでなく、特許文献1の場合と同様にp型イオン注入層の表面も100nm以上除去され、注入層の膜厚が薄くなるという問題点がある。   Patent Document 3 proposes a method of removing a deteriorated layer by hydrogen etching. However, hydrogen etching is not only dangerous and requires an expensive high-temperature process apparatus. Similarly, the surface of the p-type ion implantation layer is also removed by 100 nm or more, and there is a problem that the thickness of the implantation layer becomes thin.

以上のように、活性化アニール後の変質層を除去するにあたって、イオン注入層の表面も同時に除去されるが、その除去量が少ない方法が望ましい。   As described above, when removing the altered layer after the activation annealing, the surface of the ion implantation layer is also removed at the same time, but a method with a small removal amount is desirable.

本発明は、上述のような問題点を解決するためになされたものであり、イオンを注入された領域であるイオン注入層の厚みの除去量を低減できる炭化珪素半導体装置の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method for manufacturing a silicon carbide semiconductor device capable of reducing the amount of removal of the thickness of an ion-implanted layer that is an ion-implanted region. For the purpose.

この発明の第1の態様にかかる炭化珪素半導体装置の製造方法は、(a)炭化珪素層に選択的にイオン注入した後、前記炭化珪素層を活性化アニールする工程と、(b)前記イオン注入された領域上にフォトレジストを形成する工程と、(c)前記フォトレジストをマスクとして、前記活性化アニール後に前記炭化珪素層の表層を100nm以上ドライエッチングにより除去する工程と、(d)前記フォトレジストを除去する工程と、(e)前記工程(d)後、前記炭化珪素層の表層全体に犠牲酸化膜を形成する工程と、(f)前記犠牲酸化膜をウエットエッチングにより除去する工程とを備える。 A method for manufacturing a silicon carbide semiconductor device according to a first aspect of the present invention includes: (a) a step of selectively annealing ions in a silicon carbide layer and then activating annealing the silicon carbide layer; and (b) the ions. forming a photoresist implanted region, removing by (c) said photoresist as a mask, 100 nm or more dry etching of the surface layer of the silicon carbide layer after the activation annealing, (d) the Removing the photoresist; (e) after the step (d), forming a sacrificial oxide film over the entire surface of the silicon carbide layer; and (f) removing the sacrificial oxide film by wet etching. Is provided.

この発明の第1の態様によれば、炭化珪素半導体装置の製造方法において、(a)炭化珪素層に選択的にイオン注入した後、前記炭化珪素層を活性化アニールする工程と、(b)前記イオン注入された領域上にフォトレジストを形成する工程と、(c)前記フォトレジストをマスクとして、前記活性化アニール後に前記炭化珪素層の表層を100nm以上ドライエッチングにより除去する工程と、(d)前記フォトレジストを除去する工程と、(e)前記工程(d)後、前記炭化珪素層の表層全体に犠牲酸化膜を形成する工程と、(f)前記犠牲酸化膜をウエットエッチングにより除去する工程とを備えることにより、フォトレジストをマスクとして、炭化珪素層の表層をドライエッチングした後、犠牲酸化膜をウエットエッチングするので、ウエットエッチングする際のイオン注入した領域の厚みの除去量を低減することが可能となる。 According to a first aspect of the present invention, in the method for manufacturing a silicon carbide semiconductor device, (a) a step of selectively annealing the silicon carbide layer and then activating annealing the silicon carbide layer; wherein the step of forming a photoresist on the ion implanted region, a step of removing by (c) said photoresist as a mask, 100 nm or more dry etching of the surface layer of the silicon carbide layer after the activation annealing, (d ) Removing the photoresist; (e) after the step (d), forming a sacrificial oxide film over the entire surface of the silicon carbide layer; and (f) removing the sacrificial oxide film by wet etching. And the step of dry etching the surface layer of the silicon carbide layer using the photoresist as a mask, and then wet etching the sacrificial oxide film. It is possible to reduce the removal of the ion implanted region of the thickness at the time of wet etching.

<A.実施の形態1>
以下、本実施の形態1に係る炭化珪素半導体装置の製造方法の一例として、炭化珪素ショットキダイオード(SiC−SBD)の製造工程を、図1〜図7に基づき説明する。
<A. Embodiment 1>
Hereinafter, as an example of a method for manufacturing a silicon carbide semiconductor device according to the first embodiment, a manufacturing process of a silicon carbide Schottky diode (SiC-SBD) will be described with reference to FIGS.

<A−1.p型終端構造の形成方法>
まず図1の様に、(0001)シリコン面を有する4H−SiCからなる例えば高濃度のn型の炭化珪素(SiC)基板1を準備する。炭化珪素基板1の抵抗率は、例えば0.02Ω・cm程度である。
<A-1. Method for forming p-type termination structure>
First, as shown in FIG. 1, a high-concentration n-type silicon carbide (SiC) substrate 1 made of 4H—SiC having a (0001) silicon surface is prepared. The resistivity of silicon carbide substrate 1 is, for example, about 0.02 Ω · cm.

次に炭化珪素基板1の(0001)シリコン面において、炭化珪素層である不純物濃度が5×1015/cm3程度の低濃度n型のエピタキシャル層(以後、エピ層と呼ぶ)2を成長させる。尚、エピ層2の形成後、そのエピ層2の表面に、加熱処理により熱酸化膜(SiO2熱酸化膜)を形成しても良い。その場合は、その熱酸化膜がプロセス保護膜として機能する。 Next, on the (0001) silicon surface of the silicon carbide substrate 1, a low-concentration n-type epitaxial layer (hereinafter referred to as an epi layer) 2 having an impurity concentration of about 5 × 10 15 / cm 3 as a silicon carbide layer is grown. . Note that after the formation of the epi layer 2, a thermal oxide film (SiO 2 thermal oxide film) may be formed on the surface of the epi layer 2 by heat treatment. In that case, the thermal oxide film functions as a process protective film.

次にkV超級の耐圧を確保するp型終端構造を作成するために、エピ層2の表層に、p型ドーパントである例えばAl(アルミニウム)イオンを注入して、イオン注入された領域であるp型イオン注入層3を0.8μm程度の深さで選択的に形成する。この形成には、写真製版によりフォトレジストで注入パターンを形成して行えば良い。   Next, in order to create a p-type termination structure that secures a breakdown voltage exceeding kV, for example, Al (aluminum) ions, which are p-type dopants, are implanted into the surface layer of the epi layer 2, and p is a region where ions are implanted. The type ion implantation layer 3 is selectively formed at a depth of about 0.8 μm. This formation may be performed by forming an implantation pattern with a photoresist by photolithography.

尚ここでは、p型イオン注入層3は、p型終端構造となる環状のGR(Guard Ring)と、そのGRの外側に連続して形成され、表面電界を低減するためのJTE(Junction Termination Extension)とから構成される。JTEのAlイオン濃度は、GRのそれよりも若干薄く設定されている。   Here, the p-type ion implantation layer 3 is formed continuously from an annular GR (Guard Ring) serving as a p-type termination structure and the outside of the GR, and JTE (Junction Termination Extension) for reducing the surface electric field. ). The Al ion concentration of JTE is set slightly lower than that of GR.

p型終端構造として完成させるためには、p型イオン注入層3を活性化する必要がある。そのため、例えばRTA(Rapid Thermal Anneal)タイプのアニール炉を用いて、エピ層2全体を、常圧Ar(アルゴン)雰囲気で1600℃、10分程度、高温熱処理(活性化アニール)する。   In order to complete the p-type termination structure, it is necessary to activate the p-type ion implantation layer 3. Therefore, for example, using an RTA (Rapid Thermal Anneal) type annealing furnace, the entire epi layer 2 is subjected to high-temperature heat treatment (activation annealing) at 1600 ° C. for about 10 minutes in an atmospheric pressure Ar (argon) atmosphere.

そして、活性化アニールされたエピ層2の表層には、活性化アニールによる変質層(活性化アニール後最表面変質層)4が発生する。変質層4の厚みは、100〜200nm程度であると考えられる。良好なショットキ接合を形成するには、この変質層4を除去する必要がある。   Then, in the surface layer of the epi layer 2 that has been subjected to the activation annealing, a modified layer (an outermost surface modified layer after the activation annealing) 4 is generated by the activation annealing. The thickness of the altered layer 4 is considered to be about 100 to 200 nm. In order to form a good Schottky junction, it is necessary to remove the altered layer 4.

<A−2.変質層の除去方法>
次にこの変質層4を除去する方法を説明する。以下では、説明の便宜上、変質層4の厚さが150nmの場合を想定する。
<A-2. Removal method of altered layer>
Next, a method for removing the deteriorated layer 4 will be described. In the following, for convenience of explanation, it is assumed that the altered layer 4 has a thickness of 150 nm.

まず図2の様に、p型イオン注入層3上に写真製版によりフォトレジスト5でパターンを形成しマスクすることで、p型イオン注入層を保護する。   First, as shown in FIG. 2, the p-type ion implantation layer 3 is protected by forming a pattern with a photoresist 5 on the p-type ion implantation layer 3 by photolithography and masking.

次に図3の様に、変質層4が生じたエピ層2の表層を、ドライエッチング(ここではRIE(Reactive ion eting))により、例えば約150nm程度の厚さを除去し変質層4を除去する。この時のエッチング条件は、例えば、SF6ガス流量30sccm、処置室圧力0.5Pa、エッチング時間20秒、エッチング速度7.5nm/秒程度とする。なお、p型イオン注入層3はフォトレジスト5で保護されているのでエッチングされることはない。 Next, as shown in FIG. 3, the surface layer of the epi layer 2 where the altered layer 4 is generated is removed by dry etching (here, RIE (Reactive ion etching)), for example, to a thickness of about 150 nm to remove the altered layer 4. To do. The etching conditions at this time are, for example, an SF 6 gas flow rate of 30 sccm, a treatment chamber pressure of 0.5 Pa, an etching time of 20 seconds, and an etching rate of about 7.5 nm / second. The p-type ion implantation layer 3 is not etched because it is protected by the photoresist 5.

表層6aを除去後のエピ層2の新たな表面には、このドライエッチングにより、例えば約20nm程度未満の厚さの新たな変質層6bが発生する。   On the new surface of the epi layer 2 after removing the surface layer 6a, a new altered layer 6b having a thickness of, for example, less than about 20 nm is generated by this dry etching.

次にこの新たな変質層6bを除去する。尚、変質層4がドライエッチングによって完全に除去されず、その下層部分が残っていたとしても、その部分は新たな変質層6bに含まれた状態になっているので、新たな変質層6bを除去すれば、変質層4の残りの下層部分も除去される。   Next, the new altered layer 6b is removed. Even if the deteriorated layer 4 is not completely removed by dry etching and the lower layer portion remains, the portion is included in the new deteriorated layer 6b. If removed, the remaining lower layer portion of the altered layer 4 is also removed.

変質層6bの除去について図4の様に、プラズマ・アッシング装置またはアセトン溶液でフォトレジスト5を除去し、表面を硫酸で洗浄する。   Regarding the removal of the altered layer 6b, as shown in FIG. 4, the photoresist 5 is removed with a plasma ashing apparatus or an acetone solution, and the surface is washed with sulfuric acid.

次に、図5の様に、エピ層2の新たな表面の表層を犠牲酸化して、その表層に厚さ20nm程度の犠牲酸化膜(SiO2酸化膜)7を形成する。犠牲酸化膜7はエピ層2の表面の全面に形成されるので、p型イオン注入層3の表面にも形成される。この時の犠牲酸化の条件は、乾式酸化で、1150℃で、酸化時間2時間とする。この犠牲酸化により、エピ層2の表層には、新たな変質層6bを取り込む様にして犠牲酸化膜7が形成される。 Next, as shown in FIG. 5, the surface layer of the new surface of the epi layer 2 is sacrificial oxidized, and a sacrificial oxide film (SiO 2 oxide film) 7 having a thickness of about 20 nm is formed on the surface layer. Since the sacrificial oxide film 7 is formed on the entire surface of the epi layer 2, it is also formed on the surface of the p-type ion implantation layer 3. The conditions for the sacrificial oxidation at this time are dry oxidation, 1150 ° C., and oxidation time of 2 hours. By this sacrificial oxidation, a sacrificial oxide film 7 is formed on the surface layer of the epi layer 2 so as to incorporate a new altered layer 6b.

次に図6の様に、この犠牲酸化膜7を例えば10倍希釈のフッ酸中で例えば5分間ウエットエッチングして除去することで、その犠牲酸化膜7と共に新たな変質層6bを除去する。ただしこの時、p型イオン注入層3の表面もまた除去される。   Next, as shown in FIG. 6, the sacrificial oxide film 7 is removed by wet etching, for example, in a 10-fold diluted hydrofluoric acid for 5 minutes, for example, thereby removing the new altered layer 6b together with the sacrificial oxide film 7. However, at this time, the surface of the p-type ion implantation layer 3 is also removed.

この様に、ドライエッチングによって変質層4を除去し、その後ドライエッチングによって新たに発生した変質層6bを、犠牲酸化膜7の形成およびウエットエッチングによって除去することにより、エピ層2の表面は変質層の無い状態にされる。   In this way, the altered layer 4 is removed by dry etching, and then the altered layer 6b newly generated by dry etching is removed by formation of the sacrificial oxide film 7 and wet etching, whereby the surface of the epi layer 2 is altered. There is no state.

なお、図1の工程においてイオン注入層3に活性化アニールにより形成される図示しないダメージ層(変質層)は、図5から図6の工程において完全に除去されないかもしれないが、その除去が結果的に少なくてもよいのは、イオン注入層3が低抵抗なので、ダメージが部分的に残存していても実質的に問題ないからである。   Note that a damage layer (modified layer) (not shown) formed in the ion implantation layer 3 by activation annealing in the step of FIG. 1 may not be completely removed in the steps of FIGS. 5 to 6, but the removal results. The reason why it may be reduced is that the ion-implanted layer 3 has a low resistance, so that even if some damage remains, there is substantially no problem.

<A−3.電極等の形成方法>
次に図7の様に、炭化珪素(SiC)基板1の裏面の全面に、例えばNiシリサイドによるオーミック電極8を形成すると共に、変質層4の除去されたエピ層2の表面に、例えばTiメタルによるショットキ電極9を選択的に形成する。
<A-3. Method for forming electrodes, etc.>
Next, as shown in FIG. 7, an ohmic electrode 8 made of, for example, Ni silicide is formed on the entire back surface of the silicon carbide (SiC) substrate 1, and, for example, Ti metal is formed on the surface of the epi layer 2 from which the altered layer 4 has been removed. The Schottky electrode 9 is selectively formed.

尚、オーミック電極8の形成時のプロセス温度が、ショットキ接合(ショットキ電極9とエピ層2との接合部分)に損傷を与える1000℃程度になる場合は、オーミック電極8をショットキ電極9よりも先に形成する必要がある。この場合は、犠牲酸化膜7の除去は、オーミック電極8の形成後が望ましい。   If the process temperature during the formation of the ohmic electrode 8 is about 1000 ° C. that damages the Schottky junction (the junction between the Schottky electrode 9 and the epi layer 2), the ohmic electrode 8 is placed before the Schottky electrode 9. Need to be formed. In this case, the sacrificial oxide film 7 is preferably removed after the ohmic electrode 8 is formed.

そして更に図示を省略するが、エピ層2の表面にAl等の金属によりワイヤボンディング用の金属膜を形成し、その金属膜上にワイヤボンディングのための開口部を有する様にポリイミド等の樹脂層を形成する。そしてエピ層2の裏面には、Ni,Au等の金属によりダイボンド用の金属膜を形成する。この様にして炭化珪素半導体装置を製造する。   Further, although not shown in the drawing, a metal film for wire bonding is formed on the surface of the epi layer 2 with a metal such as Al, and a resin layer such as polyimide so as to have an opening for wire bonding on the metal film. Form. On the back surface of the epi layer 2, a metal film for die bonding is formed from a metal such as Ni or Au. In this way, a silicon carbide semiconductor device is manufactured.

なお、本実施の形態1においては、p型終端構造の形成に関して記載したが、この発明は導電型が限定されるものではない。   In the first embodiment, the formation of the p-type termination structure has been described. However, the present invention is not limited to the conductivity type.

<A−4.効果>
この発明にかかる実施の形態1によれば、炭化珪素半導体装置の製造方法において、(a)エピタキシャル層(炭化珪素層)2に選択的にイオン注入した後、エピ層2を活性化アニールする工程と、(b)前記イオン注入された領域上であるp型イオン注入層3上にフォトレジスト5を形成する工程と、(c)前記フォトレジスト5をマスクとして、前記エピ層2の表層をドライエッチングする工程と、(d)前記フォトレジスト5を除去する工程と、(e)前記工程(d)後、前記エピ層2の表層全体に犠牲酸化膜7を形成する工程と、(f)前記犠牲酸化膜7をウエットエッチングにより除去する工程とを備えることにより、p型イオン注入層3上に写真製版によりフォトレジスト5でパターンを形成し、p型イオン注入層3を保護しているので、活性化アニールにより変質したエピ層(炭化珪素層)2の表層の変質層4をドライエッチングにより除去したとき、p型イオン注入層3の表面はエッチングされず、p型イオン注入層3の厚みの減少は発生しないという効果がある。
<A-4. Effect>
According to the first embodiment of the present invention, in the method for manufacturing a silicon carbide semiconductor device, (a) a step of selectively annealing the epitaxial layer (silicon carbide layer) 2 and then activating annealing the epi layer 2 (B) a step of forming a photoresist 5 on the p-type ion implantation layer 3 which is on the ion-implanted region; and (c) a surface layer of the epi layer 2 is dried using the photoresist 5 as a mask. An etching step; (d) a step of removing the photoresist 5; (e) a step of forming a sacrificial oxide film 7 over the entire surface of the epilayer 2 after the step (d); And a step of removing the sacrificial oxide film 7 by wet etching, thereby forming a pattern on the p-type ion implantation layer 3 by photolithography and protecting the p-type ion implantation layer 3. Therefore, when the altered layer 4 on the surface layer of the epi layer (silicon carbide layer) 2 altered by the activation annealing is removed by dry etching, the surface of the p-type ion implanted layer 3 is not etched, and the p-type ion implanted layer 3 There is an effect that the thickness of the film does not decrease.

ただしドライエッチングによって発生した表面の新たな変質層6bを犠牲酸化してウエットエッチングで除去する時、p型イオン注入層3の表面も除去される。この時の犠牲酸化膜7の厚さは20nm程度であり、p型イオン注入層3の表面も除去量も20nm程度となる。p型イオン注入層3の厚みは0.8μmであり、したがってその減少割合は3%以下となるので、実質的な厚みは変わらない。したがってあらかじめp型イオン注入層3の厚みの減少を見込んでp型イオン注入量を増加したり深く注入したりする必要がなく、注入に要する時間とエネルギーが増大するという問題点を回避し、エッチング量に対する制約も小さくすることができる。   However, when the new altered layer 6b on the surface generated by the dry etching is sacrificed and removed by wet etching, the surface of the p-type ion implantation layer 3 is also removed. At this time, the thickness of the sacrificial oxide film 7 is about 20 nm, and the surface of the p-type ion implantation layer 3 and the removal amount are about 20 nm. The thickness of the p-type ion implantation layer 3 is 0.8 μm, and therefore the reduction rate is 3% or less, so that the substantial thickness is not changed. Therefore, it is not necessary to increase or deeply implant the p-type ion implantation in anticipation of a decrease in the thickness of the p-type ion implantation layer 3 in advance, avoiding the problem of increasing the time and energy required for implantation, and etching. Limits on quantity can also be reduced.

<B.実施の形態2>
<B−1.変質層の除去方法>
実施の形態1では図5において、ドライエッチングによって新たに発生した表面変質層6bを除去するために犠牲酸化膜7を形成し除去した。この新たな表面変質層6bを除去するための方法は実施の形態1に示す方法に限らない。
<B. Second Embodiment>
<B-1. Removal method of altered layer>
In Embodiment 1, the sacrificial oxide film 7 is formed and removed in FIG. 5 in order to remove the surface alteration layer 6b newly generated by dry etching. The method for removing the new surface-affected layer 6b is not limited to the method shown in the first embodiment.

図1〜図4のような工程を経てフォトレジスト5を除去した後、図8の様にエピ層2の表面全体を研磨して新たな表面変質層6bを除去してもよい。   After removing the photoresist 5 through the steps as shown in FIGS. 1 to 4, the entire surface of the epi layer 2 may be polished as shown in FIG. 8 to remove the new surface-modified layer 6b.

なお、図1〜図4における工程については実施の形態1に記載するものと同様であるので、説明は省略する。   The steps in FIGS. 1 to 4 are the same as those described in the first embodiment, and a description thereof will be omitted.

<B−2.効果>
この発明にかかる本実施の形態2によれば、炭化珪素半導体装置の製造方法において、(a)エピタキシャル層(炭化珪素層)2に選択的にイオン注入した後、エピ層2を活性化アニールする工程と、(b)前記イオン注入された領域上であるp型イオン注入層3上にフォトレジスト5を形成する工程と、(c)前記フォトレジスト5をマスクとして、前記エピ層2の表層をドライエッチングする工程と、(d)前記フォトレジスト5を除去する工程と、(e)前記工程(d)の後、前記エピ層2の表層全体を研磨する工程とを備えることにより、実施の形態1と同様に、p型イオン注入層3上に写真製版によりフォトレジスト5でパターンを形成し、p型イオン注入層3を保護しているので、活性化アニールにより変質したエピ層(炭化珪素層)2の表層の変質層4をドライエッチングにより除去したとき、p型イオン注入層3の表面はエッチングされず、さらに本実施の形態2においては、犠牲酸化膜7を形成する替わりに研磨するが、その際に、p型イオン注入層3の厚みの減少は小さく、実質的には実施の形態1と同様に発生しないという効果がある。
<B-2. Effect>
According to the second embodiment of the present invention, in the method for manufacturing a silicon carbide semiconductor device, (a) after selectively implanting ions into epitaxial layer (silicon carbide layer) 2, epi layer 2 is activated and annealed. A step, (b) a step of forming a photoresist 5 on the p-type ion implantation layer 3 that is on the ion-implanted region, and (c) a surface layer of the epilayer 2 using the photoresist 5 as a mask. Embodiments comprising: a step of dry etching; (d) a step of removing the photoresist 5; and (e) a step of polishing the entire surface layer of the epilayer 2 after the step (d). 1, a pattern is formed with a photoresist 5 on the p-type ion implantation layer 3 by photoengraving, and the p-type ion implantation layer 3 is protected. Therefore, an epitaxial layer (silicon carbide) altered by activation annealing is used. When the altered layer 4 of the surface layer 2 is removed by dry etching, the surface of the p-type ion implantation layer 3 is not etched, and in the second embodiment, polishing is performed instead of forming the sacrificial oxide film 7. However, at this time, the decrease in the thickness of the p-type ion implantation layer 3 is small, and there is an effect that the p-type ion implantation layer 3 does not substantially occur as in the first embodiment.

実施の形態1に係る炭化珪素半導体装置の製造工程(炭化珪素層2に活性化アニールを実施する工程)を説明する図である。FIG. 6 is a diagram for describing a process for manufacturing a silicon carbide semiconductor device according to the first embodiment (a process for performing activation annealing on silicon carbide layer 2). 実施の形態1に係る炭化珪素半導体装置の製造工程(p型イオン注入層3の表層をフォトレジスト5で保護する工程)を説明する図である。It is a figure explaining the manufacturing process (The process of protecting the surface layer of the p-type ion implantation layer 3 with the photoresist 5) of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造工程(炭化珪素層2の変質層をドライエッチングで除去する工程)を説明する図である。It is a figure explaining the manufacturing process (process which removes the altered layer of the silicon carbide layer 2 by dry etching) of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造工程(フォトレジスト5除去する工程)を説明する図である。It is a figure explaining the manufacturing process (process of removing photoresist 5) of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造工程(炭化珪素層2の表層に犠牲酸化を行って犠牲酸化膜7を形成する工程)を説明する図である。FIG. 6 is a diagram illustrating a manufacturing process of the silicon carbide semiconductor device according to the first embodiment (a process of forming sacrificial oxide film 7 by performing sacrificial oxidation on the surface layer of silicon carbide layer 2). 実施の形態1に係る炭化珪素半導体装置の製造工程(犠牲酸化膜7をウエットエッチングで除去する工程)を説明する図である。It is a figure explaining the manufacturing process (The process of removing the sacrificial oxide film 7 by wet etching) of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態1に係る炭化珪素半導体装置の製造工程(ショットキ電極9を形成する工程)を説明する図である。It is a figure explaining the manufacturing process (process which forms the Schottky electrode 9) of the silicon carbide semiconductor device which concerns on Embodiment 1. FIG. 実施の形態2に係る炭化珪素半導体装置の製造工程(新たな変質層6bを表面研磨で除去する工程)を説明する図である。It is a figure explaining the manufacturing process (The process of removing the new alteration layer 6b by surface polishing) of the silicon carbide semiconductor device which concerns on Embodiment 2. FIG.

符号の説明Explanation of symbols

1 炭化珪素(SiC)基板、2 n型エピタキシャル層(炭化珪素層)、3 p型イオン注入層、4 活性化アニールによる変質層、5 フォトレジスト、6a ドライエッチングによる除去部分、6b ドライエッチングによる新たな変質層、7 犠牲酸化膜、8 オーミック電極、9 ショットキ電極。   1 silicon carbide (SiC) substrate, 2 n-type epitaxial layer (silicon carbide layer), 3 p-type ion implantation layer, 4 altered layer by activation annealing, 5 photoresist, 6a removed portion by dry etching, 6b new by dry etching Altered layer, 7 sacrificial oxide film, 8 ohmic electrode, 9 Schottky electrode.

Claims (1)

(a)炭化珪素層に選択的にイオン注入した後、前記炭化珪素層を活性化アニールする工程と、
(b)前記イオン注入された領域上にフォトレジストを形成する工程と、
(c)前記フォトレジストをマスクとして、前記活性化アニール後に前記炭化珪素層の表層を100nm以上ドライエッチングにより除去する工程と、
(d)前記フォトレジストを除去する工程と、
(e)前記工程(d)後、前記炭化珪素層の表層全体に犠牲酸化膜を形成する工程と、
(f)前記犠牲酸化膜をウエットエッチングにより除去する工程と、
を備える、炭化珪素半導体装置の製造方法。
(A) after selectively implanting ions into the silicon carbide layer, activation annealing the silicon carbide layer;
(B) forming a photoresist on the ion-implanted region;
(C) the photoresist as a mask, removing the surface layer of 100nm or more dry etching of the silicon carbide layer after the activation annealing,
(D) removing the photoresist;
(E) after the step (d), forming a sacrificial oxide film over the entire surface layer of the silicon carbide layer;
(F) removing the sacrificial oxide film by wet etching;
A method for manufacturing a silicon carbide semiconductor device comprising:
JP2008313043A 2008-12-09 2008-12-09 Method for manufacturing silicon carbide semiconductor device Active JP5207939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008313043A JP5207939B2 (en) 2008-12-09 2008-12-09 Method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008313043A JP5207939B2 (en) 2008-12-09 2008-12-09 Method for manufacturing silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JP2010140939A JP2010140939A (en) 2010-06-24
JP5207939B2 true JP5207939B2 (en) 2013-06-12

Family

ID=42350854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008313043A Active JP5207939B2 (en) 2008-12-09 2008-12-09 Method for manufacturing silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP5207939B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145022A1 (en) * 2012-03-30 2013-10-03 株式会社日立製作所 Method for manufacturing silicon carbide semiconductor device
JPWO2013145022A1 (en) * 2012-03-30 2015-08-03 株式会社日立製作所 Method for manufacturing silicon carbide semiconductor device
KR102329479B1 (en) * 2015-10-15 2021-11-19 한국전기연구원 SiC diode manufacturing method through the active heat treatment
KR102311791B1 (en) * 2015-10-16 2021-10-08 한국전기연구원 Diode manufacturing method, including the amine-based polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733792B2 (en) * 1999-07-22 2006-01-11 富士電機ホールディングス株式会社 Method for manufacturing silicon carbide semiconductor element
DE19954866A1 (en) * 1999-11-15 2001-05-31 Infineon Technologies Ag Process for treating a surface of an SiC semiconductor body produced by epitaxy and Schottky contact produced thereafter
JP3963154B2 (en) * 2003-06-04 2007-08-22 富士電機ホールディングス株式会社 Method for manufacturing silicon carbide Schottky barrier diode
JP2005303010A (en) * 2004-04-12 2005-10-27 Matsushita Electric Ind Co Ltd Silicon carbide element and its manufacturing method
JP5046083B2 (en) * 2006-08-24 2012-10-10 独立行政法人産業技術総合研究所 Method for manufacturing silicon carbide semiconductor device

Also Published As

Publication number Publication date
JP2010140939A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US8569123B2 (en) Method for manufacturing silicon carbide semiconductor device
JP4942134B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5046083B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2003243654A (en) Silicon carbide semiconductor device and method for manufacturing the same
US8377811B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2013146326A1 (en) Silicon carbide semiconductor device
JP5845714B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5408248B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2013145022A1 (en) Method for manufacturing silicon carbide semiconductor device
JP5207939B2 (en) Method for manufacturing silicon carbide semiconductor device
CN107785250B (en) Silicon carbide-based Schottky contact manufacturing method and Schottky diode manufacturing method
WO2010024243A1 (en) Bipolar semiconductor device and method for manufacturing same
JP4942255B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20200027716A1 (en) Method of Manufacturing an Insulation Layer on Silicon Carbide and Semiconductor Device
JP6152701B2 (en) Silicon carbide semiconductor device manufacturing method and silicon carbide semiconductor device
JP2010262952A (en) Method for manufacturing silicon carbide semiconductor device
JP2010068008A (en) Method of manufacturing silicon carbide schottky barrier diode
JP6648574B2 (en) Method for manufacturing silicon carbide semiconductor device
CN109755109B (en) Manufacturing method of SiC JBS device anode electrode
JP2006229135A (en) Manufacturing method for semiconductor device
JP5036399B2 (en) Method for manufacturing silicon carbide semiconductor device
JP5738376B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
JP2012222060A (en) Manufacturing method of silicon carbide semiconductor device
JP5975940B2 (en) Method for manufacturing silicon carbide semiconductor device
JP6597215B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250