JP5045945B2 - Excimer lamp device - Google Patents
Excimer lamp device Download PDFInfo
- Publication number
- JP5045945B2 JP5045945B2 JP2008256584A JP2008256584A JP5045945B2 JP 5045945 B2 JP5045945 B2 JP 5045945B2 JP 2008256584 A JP2008256584 A JP 2008256584A JP 2008256584 A JP2008256584 A JP 2008256584A JP 5045945 B2 JP5045945 B2 JP 5045945B2
- Authority
- JP
- Japan
- Prior art keywords
- excimer lamp
- cylindrical portion
- opening
- light
- excimer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 47
- 239000007789 gas Substances 0.000 claims description 26
- 230000002093 peripheral effect Effects 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 12
- 238000012544 monitoring process Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 229910052760 oxygen Inorganic materials 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
- H01J65/04—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
- H01J65/042—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
- H01J65/046—Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J5/00—Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
- H01J5/50—Means forming part of the tube or lamps for the purpose of providing electrical connection to it
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/305—Flat vessels or containers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/35—Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/24—Manufacture or joining of vessels, leading-in conductors or bases
- H01J9/245—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
- H01J9/247—Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Liquid Crystal (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Description
本発明は、紫外線照射処理に使用されるエキシマランプ装置に係わり、特に、エキシマランプから放射される紫外線を測定する光センサを備えたエキシマランプ装置に関する。 The present invention relates to an excimer lamp device used for ultraviolet irradiation treatment, and more particularly to an excimer lamp device including an optical sensor that measures ultraviolet rays emitted from an excimer lamp.
近年、例えば、液晶表示パネルのガラス基板の紫外線照射による洗浄工程等においては、波長200nm以下の真空紫外光、例えば、172nmの真空紫外光を放射するエキシマランプを備えたエキシマランプ装置が使用されている。このようなエキシマランプ装置においては、真空紫外光が空気中で減衰するため、筐体の開口部となる、半導体基板や液晶基板等のワークからなる被照射物とエキシマランプとの間には、石英ガラスからなる窓材を設け、窓材を通して真空紫外光を被照射物に照射している。しかしながら、石英ガラスからなる窓材は高価であるため、特許文献1に示すように、石英ガラスからなる窓材を取り除き、被照射物とエキシマランプとを近接させた構造が採用されている。 In recent years, for example, in a cleaning process of a liquid crystal display panel glass substrate by ultraviolet irradiation, an excimer lamp device including an excimer lamp that emits vacuum ultraviolet light having a wavelength of 200 nm or less, for example, vacuum ultraviolet light having a wavelength of 172 nm, has been used. Yes. In such an excimer lamp device, since vacuum ultraviolet light attenuates in the air, between the irradiated object made of a workpiece such as a semiconductor substrate or a liquid crystal substrate, which becomes an opening of the housing, and the excimer lamp, A window material made of quartz glass is provided, and the irradiated object is irradiated with vacuum ultraviolet light through the window material. However, since a window material made of quartz glass is expensive, as shown in Patent Document 1, a structure is adopted in which the window material made of quartz glass is removed and the irradiated object and the excimer lamp are brought close to each other.
一方、エキシマランプは、その使用時間の経過に伴う劣化によって、照射する真空紫外光の強度が徐々に低下する。照射する真空紫外光の強度が低下すると、被照射物の表面を洗浄する能力も低下する。そのため、エキシマランプからの真空紫外光の強度を随時測定して、強度が所定値以下に低下しないように、ランプ入力を上げるべくフィードバック制御したり、強度が所定値以上に出力できなくなった場合は、エキシマランプを交換する必要があった。 On the other hand, the intensity of the vacuum ultraviolet light to be irradiated gradually decreases due to the deterioration of the excimer lamp with the passage of time of use. When the intensity of the vacuum ultraviolet light to be irradiated decreases, the ability to clean the surface of the irradiated object also decreases. Therefore, when the intensity of the vacuum ultraviolet light from the excimer lamp is measured as needed, feedback control is performed to increase the lamp input so that the intensity does not decrease below the predetermined value, or when the intensity cannot be output above the predetermined value. It was necessary to replace the excimer lamp.
特許文献1に記載のエキシマランプ装置には、エキシマランプからの真空紫外光の強度を検知する光センサを設けることが記載されている。この光センサは、例えば、172nmの紫外線を蛍光体で可視光に変換し、可視光をフォトダイオードで検知して電気信号に変換して出力を得ている。 The excimer lamp device described in Patent Document 1 describes that an optical sensor for detecting the intensity of vacuum ultraviolet light from the excimer lamp is provided. This optical sensor, for example, converts ultraviolet light of 172 nm into visible light with a phosphor, detects visible light with a photodiode, converts it into an electrical signal, and obtains an output.
図7は、特許文献1に記載されている、エキシマランプ101の長手方向に対して垂直方向に沿ったエキシマランプ装置100の概略構成を示す断面図、図8は、図7に示したエキシマランプ101の構成を示す斜視図である。
図8に示すように、直方体の放電容器102を備えるエキシマランプ101は、ランプの長手方向に対して垂直方向の断面が長方形であり、放電容器102の上下両面には放電容器102の長手方向に沿って延びるように外部電極103,104が設けられている。この例では、上面に設けた一方の外部電極103は板状に構成され、下面に設けた他方の外部電極104は網状に構成されている。さらに、放電容器102の上面には、光センサ105に対向する板状に構成された外部電極103の一部が削除された開口部106が設けられている。
FIG. 7 is a cross-sectional view showing a schematic configuration of the excimer lamp device 100 described in Patent Document 1 along the direction perpendicular to the longitudinal direction of the excimer lamp 101, and FIG. 8 shows the excimer lamp shown in FIG. 1 is a perspective view showing the configuration of 101. FIG.
As shown in FIG. 8, an excimer lamp 101 having a rectangular parallelepiped discharge vessel 102 has a rectangular cross section perpendicular to the longitudinal direction of the lamp, and the discharge vessel 102 has upper and lower surfaces in the longitudinal direction of the discharge vessel 102. External electrodes 103 and 104 are provided so as to extend along. In this example, one external electrode 103 provided on the upper surface is configured in a plate shape, and the other external electrode 104 provided on the lower surface is configured in a net shape. Furthermore, an opening 106 is provided on the upper surface of the discharge vessel 102 from which a part of the external electrode 103 configured in a plate shape facing the optical sensor 105 is deleted.
図7に示すように、エキシマランプ101は、網状に構成された外部電極104が被照射物Wに対向するように、エキシマランプ装置100の筐体107の内部に複数本、例えば、図示するように、3本設置されている。筐体107は一面が開口された箱状に構成されており、その開口面と平行な方向に被照射物Wが搬送される。筐体107の前記開口面に対向する面には、エキシマランプ101からの真空紫外光を測定する光センサ105が導出入される貫通孔108が設けられている。この貫通孔108は、光センサ105が導出入されるので、エキシマランプ101の開口部106に対向する位置に設けられる。 As shown in FIG. 7, the excimer lamp 101 has a plurality of, for example, illustrated inside the casing 107 of the excimer lamp device 100 so that the external electrode 104 configured in a net shape is opposed to the irradiation object W. Three are installed. The casing 107 is formed in a box shape with one surface opened, and the irradiated object W is conveyed in a direction parallel to the opening surface. A through hole 108 into which the optical sensor 105 for measuring vacuum ultraviolet light from the excimer lamp 101 is led out is provided on the surface of the housing 107 facing the opening surface. The through hole 108 is provided at a position facing the opening 106 of the excimer lamp 101 since the optical sensor 105 is led out.
筐体107の貫通孔108から導出入される光センサ105には、エキシマランプ101から真空紫外光が照射される蛍光体109と、蛍光体109により変換された可視光を検知するフォトダイオード110とが設けられている。光センサ105は、エキシマランプ101からの真空紫外光を検知するときは、エアシリンダ111により筐体107の貫通孔108から筐体107の内部に導入され、エキシマランプ101の開口部106に向かって一定量移動して近接される。開口部106に近接された光センサ105は、真空紫外光を、蛍光体109により可視光に変換し、可視光をフォトダイオード110により検知する。検知が終了すると、光センサ105は、エアシリンダ111により、再び貫通孔108を通って筐体107の外部に導出される。この光センサ105の導出入は、光センサ105に連接されたエアシリンダ111により行なわれる。
しかし、このエキシマランプ装置100は、筐体107の一面が開放されているので、筐体107の内部が大気状態になっている。このため、エキシマランプ101の点灯時、エキシマランプ101によって照射された真空紫外光が大気中の酸素と反応するため、大気中の酸素濃度が変動する。一方、図示しない搬送機構による被照射物Wの搬送に伴って、筐体107の内部は酸素濃度の変動した大気の対流Cが発生する。そのため、この対流Cによって、光センサ105とエキシマランプ101との間における酸素濃度が変動し、エキシマランプ101から放射される真空紫外光の酸素による吸収量が変動してしまい、光センサ105によって検知される真空紫外光の酸素による吸収量が変動してしまう。 However, since this excimer lamp device 100 has one surface of the housing 107 opened, the inside of the housing 107 is in an atmospheric state. For this reason, when the excimer lamp 101 is turned on, the vacuum ultraviolet light irradiated by the excimer lamp 101 reacts with oxygen in the atmosphere, so that the oxygen concentration in the atmosphere varies. On the other hand, as the irradiation object W is transported by a transport mechanism (not shown), convection C in the atmosphere with varying oxygen concentration is generated inside the housing 107. Therefore, the oxygen concentration between the optical sensor 105 and the excimer lamp 101 varies due to the convection C, and the amount of absorption of the vacuum ultraviolet light emitted from the excimer lamp 101 varies. The amount of vacuum ultraviolet light absorbed by oxygen fluctuates.
このように、筐体107の下方が開口されたエキシマランプ装置100においては、被照射物Wが搬送されることによって、筐体107の内部における酸素濃度を均一にすることができず、エキシマランプ101とこれに近接する光センサ105との間における酸素濃度と、エキシマランプ101と被照射物Wとの間における酸素濃度とは同じにならない。このため、光センサ105によって検知された真空紫外光の強度に基づいて、エキシマランプ101の入力を制御したとき、被照射物Wには所定値以上の真空紫外光が照射されることもあれば、所定値以下の真空紫外光が照射されることもあり、被照射物Wに対して均一な真空紫外光を照射することができない。 As described above, in the excimer lamp device 100 in which the lower portion of the casing 107 is opened, the oxygen concentration in the casing 107 cannot be made uniform by the object W being conveyed, and the excimer lamp The oxygen concentration between 101 and the optical sensor 105 adjacent thereto is not the same as the oxygen concentration between the excimer lamp 101 and the irradiated object W. For this reason, when the input of the excimer lamp 101 is controlled based on the intensity of the vacuum ultraviolet light detected by the optical sensor 105, the irradiated object W may be irradiated with vacuum ultraviolet light of a predetermined value or more. In some cases, vacuum ultraviolet light of a predetermined value or less may be irradiated, and the object W to be irradiated cannot be irradiated with uniform vacuum ultraviolet light.
本発明の目的は、上記の問題点に鑑み、簡便な構造で酸素濃度の変動した大気の対流による紫外線の測定値変動を抑制した光センサを備えたエキシマランプ装置を提供することにある。 In view of the above-described problems, an object of the present invention is to provide an excimer lamp device including a photosensor that has a simple structure and suppresses fluctuations in measured values of ultraviolet rays due to convection in the atmosphere with varying oxygen concentrations.
本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、エキシマランプと、該エキシマランプから放射される紫外エキシマ光を測定する光センサと、少なくとも前記エキシマランプと前記光センサを収納する筐体とを有するエキシマランプ装置において、前記光センサは、フォトダイオードと蛍光体とを具備した光モニター部と、該光モニター部側と前記エキシマランプ側に開放した開口を有し前記エキシマランプ側の開口が前記エキシマランプに近接配置される筒状部と、前記光モニター部と前記筒状部とを連結する基台部とを有し、前記筒状部は、前記基台部側から前記エキシマランプ側に向けて内径が漸次小径化された漸次小径化部と、該漸次小径化部より前記エキシマランプ寄りに形成された最小内径部と、該最小内径部から前記エキシマランプ側に向けて内径が漸次大径化された漸次大径化部とを有し、前記光モニター部の光入射側の開口周縁と前記筒状部の最小内径部内縁で規定される前記光モニター部の光取り込み角度は、前記筒状部の前記エキシマランプ側の前記開口端域の漸次大径化部の内周面の開き角度より小さく、前記基台部は、前記筒状部に導入される不活性ガスを導入するガス導入口を有し、前記紫外エキシマ光の測定時、前記ガス導入口から導入された不活性ガスを前記筒状部内を通して、前記筒状部の前記エキシマランプ側の前記開口から放出させることを特徴とするエキシマランプ装置である。
第2の手段は、第1の手段において、前記筒状部は、セラミック部材であることを特徴とするエキシマランプ装置である。
第3の手段は、第1の手段又は第2の手段において、前記基台部の前記ガス導入口と前記筒状部との間に、ガス圧調整空間が形成されていることを特徴とするエキシマランプ装置である。
The present invention employs the following means in order to solve the above problems.
The first means includes an excimer lamp, an optical sensor that measures ultraviolet excimer light emitted from the excimer lamp, and an excimer lamp device that includes at least the excimer lamp and a housing that houses the optical sensor. The sensor includes a light monitor unit including a photodiode and a phosphor, an opening opened on the light monitor unit side and the excimer lamp side, and an opening on the excimer lamp side is disposed in proximity to the excimer lamp. And a base part that connects the light monitor part and the cylindrical part, and the cylindrical part has an inner diameter that gradually decreases from the base part side toward the excimer lamp side. The gradually reduced diameter part, the minimum inner diameter part formed closer to the excimer lamp than the gradually reduced diameter part, and the inner diameter gradually increasing from the minimum inner diameter part toward the excimer lamp side. It has been a gradual a large diameter portion, incoupling angles of the light monitoring unit defined by the minimum inner diameter portion inner edge of the tubular portion and the opening edge of the light incident side of the optical monitoring section, the tubular A gas introduction port for introducing an inert gas introduced into the cylindrical portion , the opening angle of which is smaller than the opening angle of the inner peripheral surface of the gradually increasing diameter portion of the opening end region on the excimer lamp side of the portion When the ultraviolet excimer light is measured, the inert gas introduced from the gas introduction port is discharged from the opening on the excimer lamp side of the cylindrical portion through the cylindrical portion. Excimer lamp device.
A second means is an excimer lamp device according to the first means, wherein the cylindrical portion is a ceramic member .
The third means is characterized in that, in the first means or the second means, a gas pressure adjusting space is formed between the gas introduction port of the base portion and the cylindrical portion. Excimer lamp device.
請求項1に記載の発明によれば、不活性ガスをガス導入口から導入したときに、ガスの流れが筒状部内の最小内径部を通り、流速を増し、筒状部の開口からエキシマランプに向けて開口周囲に広がるように放出されるので、酸素濃度の変動した大気の対流による紫外線の測定値変動を抑制した光センサを備えたエキシマランプ装置を提供することができ、また、光センサにおける光モニター部の開口周縁と筒状部の最小内径部内縁で規定される光モニター部の光取り込み角度を、筒状部の開口端域の内周面の開き角度より小さくしたので、筒状部の開口近傍に存在する酸素濃度の変動した大気の乱流による影響を受けることなくランプから放射される紫外線を測定することができる。
請求項2に記載の発明によれば、筒状部はセラミック部材であるため、ランプの電極部に光センサを十分に近づけることができる。
請求項3に記載の発明によれば、ガス圧調整空間が形成されているので、エキシマランプに向けて筒状部開口から放出される不活性ガスの圧力を均一にすることができる。
According to the first aspect of the present invention, when the inert gas is introduced from the gas inlet, the gas flow passes through the minimum inner diameter portion in the cylindrical portion, the flow velocity is increased, and the excimer lamp is opened from the opening of the cylindrical portion. since released so as to spread around the opening toward the can provide an excimer lamp apparatus including an optical sensor which suppresses the measurement value variation of ultraviolet due to variations convection of atmospheric oxygen concentration, also, the light sensor Since the light capturing angle of the light monitoring part defined by the opening peripheral edge of the light monitoring part and the inner edge of the cylindrical part is smaller than the opening angle of the inner peripheral surface of the opening end region of the cylindrical part, Ru can be measured ultraviolet rays emitted from the lamp without being affected by the oxygen concentration turbulence of the atmosphere change was residing in the vicinity of the opening part.
According to the second aspect of the present invention, since the cylindrical portion is a ceramic member, the photosensor can be sufficiently brought close to the electrode portion of the lamp.
According to the invention described in claim 3 , since the gas pressure adjusting space is formed, the pressure of the inert gas discharged from the cylindrical portion opening toward the excimer lamp can be made uniform.
本発明の一実施形態を図1ないし図6を用いて説明する。
図1は、本実施形態の発明に係るエキシマランプ装置1の全体構成を示す断面図である。
同図に示すように、このエキシマランプ装置1は、エキシマランプ2と、エキシマランプ2から放射される紫外エキシマ光を測定する筒状部31、基台部32及び光モニター部33を備える光センサ3と、少なくともエキシマランプ2と光センサ3を収納する筐体4とを有する。なお、エキシマランプ2の詳細な構成は図8に示したものとほぼ同様であるので、説明を省略する。また、エキシマランプ1は、断面矩形形状が角型のエキシマランプに限定されず、2重管タイプのエキシマランプであってもかまわない。また、断面矩形形状の角型のエキシマランプにおいて、電極は対向する電極ともメッシュ状電極であっても構わない。
An embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a cross-sectional view showing the overall configuration of an excimer lamp device 1 according to the invention of this embodiment.
As shown in FIG. 1, the excimer lamp device 1 includes an excimer lamp 2, a cylindrical portion 31 that measures ultraviolet excimer light emitted from the excimer lamp 2, a base portion 32, and a light monitor portion 33. 3 and at least an excimer lamp 2 and a housing 4 for housing the optical sensor 3. The detailed configuration of the excimer lamp 2 is substantially the same as that shown in FIG. The excimer lamp 1 is not limited to a rectangular excimer lamp having a rectangular cross section, and may be a double tube type excimer lamp. Further, in a rectangular excimer lamp having a rectangular cross section, the electrodes may be either opposing electrodes or mesh electrodes.
図2は、図1に示した、導入された不活性ガスの流れの状況を示した光センサ3の詳細な構成を示す断面図であり、図3は、図1に示した、光モニター部33の光取り込み角度βと筒状部31の開口端域の漸次大径化部315の内周面の開き角度αとの関係を示した光センサ3の詳細な構成を示す断面図である。
これらの図に示すように、光センサ3は、フォトダイオード331と蛍光体332とを具備した光モニター部33と、基台部32側とエキシマランプ2側にそれぞれ開放した開口311,312を有し、エキシマランプ2側の開口312がエキシマランプ2に近接配置される筒状部31と、光モニター部33と筒状部31とを連結する基台部32とを有する。また、筒状部31は、基台部32側からエキシマランプ1側に向けて内径が漸次小径化された漸次小径化部313と、漸次小径化部313よりエキシマランプ2寄りに形成された最小内径部314と、最小内径部314からエキシマランプ1側に向けて内径が漸次大径化された漸次大径化部315とを有する。さらに、基台部32には、筒状部32の開口311に流出する不活性ガスを導入するガス導入口321と、ガス導入口321と筒状部31との間に、ガス圧調整空間322とが形成されている。なお、光センサ3は、フォトダイオード331と蛍光体332との間に、例えば、キセノンエキシマ光172nmの光を蛍光体332で可視光に変換された光だけを透過する色ガラスフィルター333のようなフィルターを備えるようにしてもよい。また、筒状部31はセラミック製であり、一例を挙げればステアタイトが好適である。但しステアタイトに限定されるものではなく、他にもアルミナや窒化珪素等も使用可能である。紫外エキシマ光は、ガス導入口321から導入された不活性ガスを基台部32のガス圧調整空間322内を通して、筒状部31のエキシマランプ2側の開口312から放出しながら測定する。
FIG. 2 is a cross-sectional view showing a detailed configuration of the optical sensor 3 shown in FIG. 1 showing the flow of the introduced inert gas, and FIG. 3 shows the optical monitor unit shown in FIG. FIG. 6 is a cross-sectional view showing a detailed configuration of the optical sensor 3 showing a relationship between a light capturing angle β of 33 and an opening angle α of the inner peripheral surface of the gradually increasing diameter portion 315 in the opening end region of the cylindrical portion 31.
As shown in these drawings, the optical sensor 3 has an optical monitor 33 having a photodiode 331 and a phosphor 332, and openings 311 and 312 that are open on the base 32 side and the excimer lamp 2 side, respectively. In addition, the opening 312 on the excimer lamp 2 side includes a cylindrical portion 31 that is disposed close to the excimer lamp 2, and a base portion 32 that connects the optical monitor portion 33 and the cylindrical portion 31. Further, the cylindrical portion 31 includes a gradually reduced diameter portion 313 whose inner diameter is gradually reduced from the base portion 32 side to the excimer lamp 1 side, and a minimum formed closer to the excimer lamp 2 than the gradually reduced diameter portion 313. It has an inner diameter portion 314 and a gradually increasing diameter portion 315 whose inner diameter is gradually increased from the minimum inner diameter portion 314 toward the excimer lamp 1 side. Further, the base portion 32 has a gas inlet 321 for introducing an inert gas flowing out into the opening 311 of the cylindrical portion 32, and a gas pressure adjusting space 322 between the gas inlet 321 and the cylindrical portion 31. And are formed. The optical sensor 3 is, for example, a color glass filter 333 that transmits only light obtained by converting xenon excimer light 172 nm light into visible light between the photodiode 331 and the phosphor 332. A filter may be provided. Moreover, the cylindrical part 31 is a product made from a ceramic, and if an example is given, a steatite is suitable. However, it is not limited to steatite, and alumina, silicon nitride, etc. can also be used. The ultraviolet excimer light is measured while discharging the inert gas introduced from the gas inlet 321 from the opening 312 on the excimer lamp 2 side of the cylindrical portion 31 through the gas pressure adjusting space 322 of the base portion 32.
図2に示すように、筒状部31は、光センサ3側からエキシマランプ2側に向けてその内径が漸次小径化された漸次小径化部313を有し、さらに漸次小径化部313よりエキシマランプ2寄りの位置に最小内径部314を有し、さらに最小内径部314からエキシマランプ2側に漸次大径化された漸次大径化部315を有し、筒状部31と光モニター部33は基台部32により連結されている。基台部32のガス導入口321から導入された窒素ガス等の不活性ガスは、ガス導入口321より大径したガス圧調整空間322によってガス圧が均一に調整される。ガス圧が調整された不活性ガスは、筒状部31内の漸次小径化部313を通過後、最小内径部314を通るために、その流速が増大し、筒状部31の開口312からエキシマランプ2に向けて開口312周囲に広がるように放出される。 As shown in FIG. 2, the cylindrical portion 31 has a gradually decreasing diameter portion 313 whose inner diameter is gradually decreased from the optical sensor 3 side toward the excimer lamp 2 side, and further, the excimer is gradually increased from the gradually decreasing diameter portion 313. It has a minimum inner diameter portion 314 at a position near the lamp 2, and further includes a gradually increasing diameter portion 315 that gradually increases from the minimum inner diameter portion 314 toward the excimer lamp 2, and the cylindrical portion 31 and the light monitor portion 33. Are connected by a base 32. The inert gas such as nitrogen gas introduced from the gas inlet 321 of the base 32 is uniformly adjusted in gas pressure by the gas pressure adjusting space 322 having a larger diameter than the gas inlet 321. The inert gas whose gas pressure has been adjusted passes through the smallest inner diameter portion 314 after passing through the progressively smaller diameter portion 313 in the cylindrical portion 31, so that the flow velocity increases, and the excimer passes through the opening 312 of the cylindrical portion 31. It is emitted toward the lamp 2 so as to spread around the opening 312.
また、図3に示すように、光モニター部33は、フォトダイオード331と蛍光体332とを有し、蛍光体332の下方にはエキシマ光取り込み用の開口334が設けられている。光モニター部33の開口334周縁(f1、f2)と筒状部31の最小内径部314内縁(n1、n2)で規定される光モニター部33の光取り込み角度βよりも、筒状部31の開口312端域の漸次大径化部315内周面の開き角度αの方が大きく作りこまれている。つまり、光センサ3の筒状部31の中心を通り筒状部31の径方向に垂直な断面において、光取り込み角度βを、筒状部31の最小内径部314の一方の内縁点n1と内縁点n1からみた光モニター部33の開口334周縁上の一方の最遠点f1を結ぶ線分と、最小内径部314の他方の内縁点n2と内縁点n2からみた光モニター部33の開口334周縁上の他方の最遠点f2を結ぶ線分との交線が作る90度以下の内角とし、開き角度αを、筒状部31の開口312端域の漸次大径化部315の内周面の開き角度とするとき、光取り込み角度β<開き角度αの関係にある。この関係にあると、筒状部31の開口312近傍に存在する酸素濃度の変動した大気の乱流による影響を受けることなくエキシマランプ2から放射される紫外線を確実に測定することが可能になる。 As shown in FIG. 3, the light monitor unit 33 includes a photodiode 331 and a phosphor 332, and an excimer light capturing opening 334 is provided below the phosphor 332. The cylindrical portion 31 has a light capturing angle β that is defined by the peripheral edge (f1, f2) of the opening 334 of the optical monitor portion 33 and the inner edge (n1, n2) of the minimum inner diameter portion 314 of the cylindrical portion 31. The opening angle α of the inner peripheral surface of the gradually increasing diameter portion 315 in the end region of the opening 312 is made larger. That is, in a cross section that passes through the center of the cylindrical portion 31 of the optical sensor 3 and is perpendicular to the radial direction of the cylindrical portion 31, the light capturing angle β is set to one inner edge point n1 and the inner edge of the minimum inner diameter portion 314 of the cylindrical portion 31. The line segment connecting one farthest point f1 on the periphery of the opening 334 of the light monitor unit 33 viewed from the point n1, and the periphery of the opening 334 of the light monitor unit 33 viewed from the other inner edge point n2 and the inner edge point n2 of the minimum inner diameter portion 314 The inner angle of the gradually increasing diameter portion 315 in the end region of the opening 312 of the cylindrical portion 31 is set to an inner angle of 90 degrees or less that is formed by an intersection with the line segment connecting the other farthest point f2 above. When the opening angle is set as follows, the light capturing angle β <the opening angle α. With this relationship, it is possible to reliably measure the ultraviolet rays emitted from the excimer lamp 2 without being affected by the turbulent flow of the atmospheric air with varying oxygen concentration existing in the vicinity of the opening 312 of the cylindrical portion 31. .
図4は従来技術に係る比較例としての筒状部5と本発明に係る筒状部31との対比を示す図であり、図4(a)は従来技術に係る筒状部5の断面図、図4(b)は本発明に係る筒状部31の断面図である。
図4(a)に示すように、従来技術に係るストレートタイプの筒状部5では、筒状部5の周囲の酸素を含んだガスを筒状部5の内周面52から開口51を通る延長上で巻き込んでしまう。そのため、光モニター部33の開口334周縁と筒状部5の開口51で規定される光モニター部33の光取り込み角度β内に酸素を含んだ空気が入り込んでしまい、エキシマランプ2からの紫外エキシマ光を精度良く測定することができない。
それに対して、図4(b)に示すように、本発明に係る筒状部31では、筒状部31の周囲の酸素を含んだガスは、筒状部31の漸次大径化部315の内周面から開口312を通る延長上、つまり開き角度α内に巻き込むが、光取り込み角度β<開き角度αの関係にあるので、光取り込み角度β内には巻き込まない。その結果、エキシマランプ1からの紫外エキシマ光を精度良く測定することができる。
FIG. 4 is a view showing a comparison between the cylindrical portion 5 as a comparative example according to the prior art and the cylindrical portion 31 according to the present invention, and FIG. 4A is a cross-sectional view of the cylindrical portion 5 according to the prior art. FIG. 4B is a cross-sectional view of the cylindrical portion 31 according to the present invention.
As shown in FIG. 4A, in the straight type tubular portion 5 according to the prior art, an oxygen-containing gas around the tubular portion 5 is extended from the inner peripheral surface 52 of the tubular portion 5 through the opening 51. I get caught up. For this reason, air containing oxygen enters the light capturing angle β of the light monitor 33 defined by the periphery of the opening 334 of the light monitor 33 and the opening 51 of the cylindrical portion 5, and the ultraviolet excimer from the excimer lamp 2. The light cannot be measured with high accuracy.
On the other hand, as shown in FIG. 4 (b), in the cylindrical portion 31 according to the present invention, the gas containing oxygen around the cylindrical portion 31 passes through the gradually increasing diameter portion 315 of the cylindrical portion 31. In the extension through the opening 312 from the inner peripheral surface, that is, within the opening angle α, the light capturing angle β <the opening angle α, so that the light does not enter the light capturing angle β. As a result, the ultraviolet excimer light from the excimer lamp 1 can be measured with high accuracy.
図5は、図2(図3)に示した筒状部31と異なる種々の形状例を示す筒状部31A〜31Dの構成を示す断面図である。
図5(a)〜図5(d)は、図2に示した筒状部31と同様に、光取り込み角度β<開き角度αの関係にあることには変わりはない。しかし、図5(a)の筒状部31Aにおいては、漸次小径化部313Aと漸次大径化部315Aの断面がそれぞれ筒状部31Aの中心部に向かって多少湾曲するように滑らかに形成されている。これによって、筒状部31A内に流入した不活性ガスを容易に流通させることができる。また、図5(b)の筒状部31Bにおいては、漸次小径化部313Bと漸次大径化部315Bの断面がそれぞれ筒状部31Bの中心部から遠ざかる方向に多少湾曲するように形成されている。これによって、漸次小径化部313Bによって形成されるガス圧調整空間を広くすることができる。また、図5(c)の筒状部31Cにおいては、漸次小径化部313Cと漸次大径化部315Cの断面がそれぞれ段階状に形成されている。この場合、漸次小径化部313C及び漸次大径化部315Cを形成する際、特別な加工治具を製作せずに加工することができる利点がある。また、図5(d)の筒状部31Dにおいては、漸次小径化部313Dと漸次大径化部315Dとの間に形成される最小内径部314Dの断面を同一内径からなる直線状に形成する。この場合、セラミックの切削加工において筒状部31Dの内面を成形する際に、所定の内径寸法を実現する切削が容易となり、筒状部31Dを精度良く製造することができる。
FIG. 5 is a cross-sectional view showing the configuration of cylindrical portions 31A to 31D showing various shape examples different from the cylindrical portion 31 shown in FIG. 2 (FIG. 3).
5 (a) to 5 (d), the same as the cylindrical portion 31 shown in FIG. 2, there is no change that the light capturing angle β <the opening angle α. However, in the cylindrical portion 31A of FIG. 5A, the sections of the gradually decreasing diameter portion 313A and the gradually increasing diameter diameter portion 315A are formed so as to be slightly curved toward the central portion of the cylindrical portion 31A. ing. Thereby, the inert gas that has flowed into the cylindrical portion 31A can be easily circulated. Further, in the cylindrical portion 31B of FIG. 5B, the cross sections of the gradually reducing diameter portion 313B and the gradually increasing diameter portion 315B are formed to be slightly curved in the direction away from the center portion of the cylindrical portion 31B. Yes. As a result, the gas pressure adjustment space formed by the gradually reducing diameter portion 313B can be widened. Moreover, in the cylindrical part 31C of FIG.5 (c), the cross section of gradual diameter reduction part 313C and gradual diameter increase part 315C is each formed in the step shape. In this case, there is an advantage that when the gradually reducing diameter portion 313C and the gradually increasing diameter portion 315C are formed, processing can be performed without manufacturing a special processing jig. Further, in the cylindrical portion 31D of FIG. 5D, the cross section of the minimum inner diameter portion 314D formed between the gradually reducing diameter portion 313D and the gradually increasing diameter portion 315D is formed in a straight line having the same inner diameter. . In this case, when the inner surface of the cylindrical portion 31D is formed in the ceramic cutting process, cutting that achieves a predetermined inner diameter dimension is facilitated, and the cylindrical portion 31D can be manufactured with high accuracy.
次に、本発明に係る筒状部を使用したエキシマランプ装置と従来技術に係る筒状部を使用したエキシマランプ装置との比較実験について説明する。
実験に使用した本発明に係るエキシマランプ装置における光センサ3は、図4(b)に示すような形状を有する筒状部31を有し、筒状部31内面の最小内径部314(n1とn2の間)はφ10mmであり、光モニター部33の光取り込み角度βよりも筒状部31の開口312端域の漸次大径化部315の開き角度αが大きく、光モニター部33側の開口311の開口径はφ16mm、エキシマランプ側の開口312の開口径はφ13mmであり、筒状部31の長さは35mmである。
それに対して、実験に使用した従来技術に係るエキシマランプ装置における光センサは、本発明の光センサ3とは筒状部の形状のみが異なり、図4(a)に示すような形状を有する筒状部5を有し、筒状部5の内周面52は10mmの均一内径を有しており、従って、光モニター部33側の開口51の開口径及びエキシマランプ2側の開口53の開口径もφ10mmであり、筒状部5の長さは35mmである。
Next, a comparative experiment between the excimer lamp device using the tubular portion according to the present invention and the excimer lamp device using the tubular portion according to the prior art will be described.
The optical sensor 3 in the excimer lamp device according to the present invention used for the experiment has a cylindrical portion 31 having a shape as shown in FIG. 4B, and a minimum inner diameter portion 314 (n1 and n1) on the inner surface of the cylindrical portion 31. (between n2) is φ10 mm, and the opening angle α of the gradually increasing diameter portion 315 in the end region of the opening 312 of the cylindrical portion 31 is larger than the light capturing angle β of the light monitoring portion 33, and the opening on the light monitoring portion 33 side The opening diameter of 311 is φ16 mm, the opening diameter of the opening 312 on the excimer lamp side is φ13 mm, and the length of the cylindrical portion 31 is 35 mm.
On the other hand, the optical sensor in the excimer lamp device according to the prior art used in the experiment differs from the optical sensor 3 of the present invention only in the shape of the cylindrical portion, and has a cylindrical shape as shown in FIG. The inner peripheral surface 52 of the cylindrical portion 5 has a uniform inner diameter of 10 mm. Therefore, the opening diameter of the opening 51 on the optical monitor portion 33 side and the opening 53 of the excimer lamp 2 side are opened. The diameter is also φ10 mm, and the length of the cylindrical portion 5 is 35 mm.
また、実験に使用した本発明及び従来技術のエキシマランプ2は共に、キセノンエキシマ放電ランプであり、ランプ構成は図8に示したものと同様である。
また、実験に使用した本発明の光モニター部33及び従来技術の光モニター部33は共に、図2(図3)に示したように、紫外可視変換の蛍光体332と色ガラスフィルター333とフォトダイオード331を備えたものである。
紫外エキシマ光の測定は、エキシマランプ2からの172nmの波長の紫外光を光モニター部33の蛍光体332で可視光に変換してフォトダイオード331で受光し、出力の電流値によって波長172nmの光の強度の換算値として検出するものである。
測定に際しては、本発明の筒状部31及び従来技術の筒状部5内に流す窒素ガス量は、それぞれ0リットル/min〜5リットル/minの範囲で段階的に変え、かつ本発明のエキシマランプ表面と筒状部31の開口312間の距離(ギャップという)及び従来技術のエキシマランプ表面の筒状部5の開口53間の距離(ギャップという)を1.5mm及び5.5mmの2種類変えて測定した。
The excimer lamp 2 of the present invention and the prior art used in the experiment are both xenon excimer discharge lamps, and the lamp configuration is the same as that shown in FIG.
In addition, as shown in FIG. 2 (FIG. 3), the optical monitor unit 33 of the present invention and the conventional optical monitor unit 33 used in the experiment are both UV-visible fluorescent substance 332, colored glass filter 333 and photo. A diode 331 is provided.
Ultraviolet excimer light is measured by converting ultraviolet light with a wavelength of 172 nm from the excimer lamp 2 into visible light by the phosphor 332 of the light monitor unit 33 and receiving it with a photodiode 331, and light with a wavelength of 172 nm according to the output current value. It is detected as a converted value of the intensity.
In the measurement, the amount of nitrogen gas flowing through the cylindrical portion 31 of the present invention and the cylindrical portion 5 of the prior art is changed stepwise in the range of 0 liter / min to 5 liter / min, respectively, and the excimer of the present invention. The distance between the lamp surface and the opening 312 of the cylindrical portion 31 (referred to as a gap) and the distance between the opening 53 of the cylindrical portion 5 of the excimer lamp surface of the prior art (referred to as a gap) are 1.5 mm and 5.5 mm. Measured by changing.
図6は、測定結果を示すグラフであり、横軸は筒状部内に流した単位時間当たりの窒素ガス量(リットル/min)、縦軸はフォトダイオードによって検出された検出量(mA)である。
同図に示すように、本発明のエキシマランプ装置においては、筒状部31の最小内径部(絞り)314をφ10mmとし、ギャップを1.5mm及び5.5mmの2種類変え、いずれの場合も窒素ガス量を0リットル/min〜5リットル/minと変えて測定しても、紫外線検出量はほとんど変わらず得られることが分かった。
一方、従来技術のエキシマランプ装置においては、筒状部5の内周面52をφ10mmの均一内径とし、ギャップを1.5mm及び5.5mmの2種類変え、いずれの場合も窒素ガス量を0リットル/min〜5リットル/minと変えて測定すると、紫外線検出量はギャップの大きい場合はギャップの少ない場合に比べて小さくなることが分かった。これは、ランプ近傍に存在する大気(酸素)と筒状部5から放出される窒素ガスが筒状部5の開口53付近で渦流を生じることが避けられず、この渦流が光モニター部33に到達する紫外線量に影響を与えたと考えられる。
FIG. 6 is a graph showing the measurement results, in which the horizontal axis represents the amount of nitrogen gas per unit time (liter / min) flowed in the cylindrical portion, and the vertical axis represents the detected amount (mA) detected by the photodiode. .
As shown in the figure, in the excimer lamp device of the present invention, the minimum inner diameter portion (diaphragm) 314 of the cylindrical portion 31 is changed to φ10 mm, and the gap is changed between two types of 1.5 mm and 5.5 mm. It was found that even when the nitrogen gas amount was changed from 0 liter / min to 5 liter / min, the UV detection amount was almost unchanged.
On the other hand, in the excimer lamp device of the prior art, the inner peripheral surface 52 of the cylindrical portion 5 is made to have a uniform inner diameter of φ10 mm, the gap is changed to two types of 1.5 mm and 5.5 mm, and the nitrogen gas amount is reduced to 0 in either case. When the measurement was changed from liter / min to 5 liter / min, it was found that the UV detection amount was smaller when the gap was large than when the gap was small. This is because it is inevitable that the atmosphere (oxygen) existing in the vicinity of the lamp and the nitrogen gas released from the cylindrical portion 5 generate a vortex near the opening 53 of the cylindrical portion 5. This is thought to have influenced the amount of ultraviolet rays that arrive.
つまり、本発明のエキシマランプ装置における筒状部31の開口312付近においては、渦流による真空紫外光の吸収が生じても、光モニター部33の開口334周縁(f1、f2)と筒状部31の最小内径部314内縁(n1、n2)で規定される光モニター部33の光取り込み角度βよりも、筒状部31の開口312端域の内周面の開き角度αの方が大きいため、光モニター部33に到達する紫外線量に影響を与えないためと考えられ、従来技術の筒状部5の開口53から取り込む紫外線量と差が生じたものと考えられる。 That is, in the vicinity of the opening 312 of the cylindrical portion 31 in the excimer lamp device of the present invention, the periphery (f1, f2) of the opening 334 of the light monitoring portion 33 and the cylindrical portion 31 even if the vacuum ultraviolet light is absorbed by the vortex. Because the opening angle α of the inner peripheral surface of the end region of the opening 312 of the cylindrical portion 31 is larger than the light capturing angle β of the light monitor portion 33 defined by the inner edges (n1, n2) of the minimum inner diameter portion 314 of This is considered to be because the amount of ultraviolet rays reaching the light monitor 33 is not affected, and is considered to be caused by a difference from the amount of ultraviolet rays taken in from the opening 53 of the cylindrical portion 5 of the prior art.
さらに、本発明のエキシマランプ装置においては、従来技術のエキシマランプ装置と比べて流す窒素流量を少なくしても紫外線検出を良好にできることが分かった。また、本発明のエキシマランプマランプ装置によれば、光センサ3をエキシマランプ2から離間させても酸素濃度の変動した大気の対流による紫外線の測定値変動を抑制した状態で紫外エキシマ光の測定ができる。 Furthermore, it has been found that the excimer lamp device of the present invention can detect ultraviolet rays better even if the flow rate of nitrogen flowing is smaller than that of the excimer lamp device of the prior art. Further, according to the excimer lamp lamp apparatus of the present invention, the measurement of the ultraviolet excimer light is performed in a state where the fluctuation of the measurement value of the ultraviolet ray due to the convection in the atmosphere having the oxygen concentration is suppressed even when the optical sensor 3 is separated from the excimer lamp 2. Can do.
1 エキシマランプ装置
2 エキシマランプ
3 光センサ
31 筒状部
311 開口
312 開口
313 漸次小径化部
314 最小内径部
315 漸次大径化部
32 基台部
321 ガス導入口
322 ガス圧調整空間
33 光モニター部
331 フォトダイオード
332 蛍光体
333 色ガラスフィルター
334 開口
4 筐体
5 筒状部
51 開口
52 内周面
31A 筒状部
313A 漸次小径化部
315A 漸次大径化部
31B 筒状部
313B 漸次小径化部
315B 漸次大径化部
31C 筒状部
313C 漸次小径化部
315C 漸次大径化部
31D 筒状部
313D 漸次小径化部
315D 漸次大径化部
DESCRIPTION OF SYMBOLS 1 Excimer lamp apparatus 2 Excimer lamp 3 Optical sensor 31 Cylindrical part 311 Opening 312 Opening 313 Gradually small diameter part 314 Minimum internal diameter part 315 Gradual large diameter part 32 Base part 321 Gas inlet 322 Gas pressure adjustment space 33 Optical monitor part 331 Photodiode 332 Phosphor 333 Color glass filter 334 Opening 4 Housing 5 Tubular part 51 Opening 52 Inner peripheral surface 31A Tubular part 313A Gradually smaller diameter part 315A Gradually larger diameter part
31B Tubular portion 313B Gradually smaller diameter portion 315B Gradually larger diameter portion
31C Tubular portion 313C Gradually smaller diameter portion 315C Gradually larger diameter portion
31D Tubular part 313D Gradually smaller diameter part 315D Gradually larger diameter part
Claims (3)
前記光センサは、フォトダイオードと蛍光体とを具備した光モニター部と、該光モニター部側と前記エキシマランプ側に開放した開口を有し前記エキシマランプ側の開口が前記エキシマランプに近接配置される筒状部と、前記光モニター部と前記筒状部とを連結する基台部とを有し、
前記筒状部は、前記基台部側から前記エキシマランプ側に向けて内径が漸次小径化された漸次小径化部と、該漸次小径化部より前記エキシマランプ寄りに形成された最小内径部と、該最小内径部から前記エキシマランプ側に向けて内径が漸次大径化された漸次大径化部とを有し、
前記光モニター部の光入射側の開口周縁と前記筒状部の最小内径部内縁で規定される前記光モニター部の光取り込み角度は、前記筒状部の前記エキシマランプ側の前記開口端域の漸次大径化部の内周面の開き角度より小さく、
前記基台部は、前記筒状部に導入される不活性ガスを導入するガス導入口を有し、
前記紫外エキシマ光の測定時、前記ガス導入口から導入された不活性ガスを前記筒状部内を通して、前記筒状部の前記エキシマランプ側の前記開口から放出させることを特徴とするエキシマランプ装置。 In an excimer lamp device having an excimer lamp, an optical sensor that measures ultraviolet excimer light emitted from the excimer lamp, and a housing that houses at least the excimer lamp and the optical sensor,
The optical sensor includes an optical monitor unit including a photodiode and a phosphor, an opening opened on the optical monitor unit side and the excimer lamp side, and the opening on the excimer lamp side is disposed close to the excimer lamp. A cylindrical portion, and a base portion that connects the light monitoring portion and the cylindrical portion,
The cylindrical portion includes a gradually reduced diameter portion whose inner diameter is gradually reduced from the base portion side toward the excimer lamp side, and a minimum inner diameter portion formed closer to the excimer lamp than the gradually reduced diameter portion. A gradually increasing diameter portion having an inner diameter gradually increased from the minimum inner diameter portion toward the excimer lamp side,
The light capturing angle of the light monitoring unit defined by the opening peripheral edge on the light incident side of the light monitoring unit and the inner edge of the minimum inner diameter portion of the cylindrical portion is the opening end region of the cylindrical portion on the excimer lamp side. Smaller than the opening angle of the inner peripheral surface of the gradually increased diameter portion,
The base portion has a gas inlet for introducing an inert gas introduced into the cylindrical portion,
An excimer lamp device characterized in that, during the measurement of the ultraviolet excimer light, an inert gas introduced from the gas introduction port is discharged from the opening on the excimer lamp side of the cylindrical portion through the cylindrical portion.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008256584A JP5045945B2 (en) | 2008-10-01 | 2008-10-01 | Excimer lamp device |
TW098127274A TWI394198B (en) | 2008-10-01 | 2009-08-13 | Excimer lamp device |
KR1020090081435A KR101234400B1 (en) | 2008-10-01 | 2009-08-31 | Excimer lamp apparatus |
CN2009101791803A CN101714497B (en) | 2008-10-01 | 2009-09-29 | Excimer lamp apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008256584A JP5045945B2 (en) | 2008-10-01 | 2008-10-01 | Excimer lamp device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010082589A JP2010082589A (en) | 2010-04-15 |
JP5045945B2 true JP5045945B2 (en) | 2012-10-10 |
Family
ID=42214716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008256584A Active JP5045945B2 (en) | 2008-10-01 | 2008-10-01 | Excimer lamp device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5045945B2 (en) |
KR (1) | KR101234400B1 (en) |
CN (1) | CN101714497B (en) |
TW (1) | TWI394198B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5648277B2 (en) * | 2009-11-25 | 2015-01-07 | ウシオ電機株式会社 | Excimer lamp device |
JP6934053B2 (en) * | 2017-07-04 | 2021-09-08 | 旭化成株式会社 | Ultraviolet light emitting device |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62132130A (en) * | 1985-12-04 | 1987-06-15 | Hitachi Ltd | Ultraviolet ray measuring instrument |
JP3381407B2 (en) * | 1994-09-28 | 2003-02-24 | ソニー株式会社 | Plasma monitoring device and plasma monitoring method |
JP3127750B2 (en) * | 1994-10-25 | 2001-01-29 | ウシオ電機株式会社 | Dielectric barrier discharge lamp device |
JPH08233650A (en) * | 1995-02-24 | 1996-09-13 | Ushio Inc | Vacuum ultraviolet light detector |
JP2789557B2 (en) * | 1996-02-09 | 1998-08-20 | ウシオ電機株式会社 | Light source device using dielectric barrier discharge |
JP3564988B2 (en) | 1998-01-09 | 2004-09-15 | ウシオ電機株式会社 | Light source device |
JP2004041843A (en) * | 2002-07-09 | 2004-02-12 | Ushio Inc | Ultraviolet rays irradiation apparatus |
JP2004097986A (en) * | 2002-09-11 | 2004-04-02 | Japan Storage Battery Co Ltd | Ultraviolet irradiation device |
JP2005068169A (en) * | 2003-08-21 | 2005-03-17 | Sumitomo Chemical Co Ltd | Eu-ACTIVATED PHOSPHOR |
TWI264037B (en) * | 2004-01-20 | 2006-10-11 | Harison Toshiba Lighting Corp | Dielectric barrier discharge lamp, and ultraviolet-ray irradiation device |
JP2006040867A (en) * | 2004-06-23 | 2006-02-09 | Hoya Candeo Optronics株式会社 | Excimer lamp apparatus |
JP2006092906A (en) * | 2004-09-24 | 2006-04-06 | Ushio Inc | Rare gas fluorescent lamp device |
JP4595556B2 (en) * | 2005-01-20 | 2010-12-08 | ウシオ電機株式会社 | UV irradiation equipment |
JP5103728B2 (en) * | 2005-11-24 | 2012-12-19 | ウシオ電機株式会社 | Discharge lamp lighting device |
JP4971665B2 (en) * | 2006-03-31 | 2012-07-11 | 公立大学法人名古屋市立大学 | Phototherapy device for the treatment of skin diseases |
JP5019156B2 (en) * | 2006-08-21 | 2012-09-05 | ウシオ電機株式会社 | Excimer lamp device |
JP4830878B2 (en) * | 2007-02-01 | 2011-12-07 | ウシオ電機株式会社 | Vacuum ultraviolet monitor and vacuum ultraviolet irradiation device using the same |
-
2008
- 2008-10-01 JP JP2008256584A patent/JP5045945B2/en active Active
-
2009
- 2009-08-13 TW TW098127274A patent/TWI394198B/en active
- 2009-08-31 KR KR1020090081435A patent/KR101234400B1/en active IP Right Grant
- 2009-09-29 CN CN2009101791803A patent/CN101714497B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TW201015613A (en) | 2010-04-16 |
JP2010082589A (en) | 2010-04-15 |
KR101234400B1 (en) | 2013-02-18 |
CN101714497A (en) | 2010-05-26 |
CN101714497B (en) | 2013-12-04 |
TWI394198B (en) | 2013-04-21 |
KR20100037536A (en) | 2010-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4607437B2 (en) | Particle counter with strap laser diode | |
JP5841601B2 (en) | An improved discharge box for optical emission spectrometry. | |
KR20220103817A (en) | Particulate matter sensor device | |
JP2013101067A (en) | Gas concentration measuring apparatus | |
KR102644216B1 (en) | Apparatus for sensing particle | |
JP6596987B2 (en) | Particle measuring device | |
JP5045945B2 (en) | Excimer lamp device | |
JP6516484B2 (en) | Dissolved matter concentration measuring device | |
KR100664913B1 (en) | Co2 gas measurement equipment having sample cell to adjust length | |
JP2015210189A (en) | Particle measuring apparatus | |
JP5879783B2 (en) | Detection device | |
JP5648277B2 (en) | Excimer lamp device | |
JP5678408B2 (en) | Illuminance measuring device for excimer lamp | |
KR102344462B1 (en) | Apparatus for sensing particle | |
WO2017221495A1 (en) | Liquid film forming nozzle | |
JP3245144U (en) | Gas concentration measuring device | |
JP2019045149A (en) | Functional water concentration sensor | |
JP2006058239A (en) | Particle detector | |
JP5544643B2 (en) | Fluid film measuring instrument | |
US10139334B2 (en) | Particulate measurement device | |
JP2005201687A (en) | Flame photometer for gas chromatograph | |
JP2005070027A (en) | Counting apparatus for light scattering type particles | |
KR20220166288A (en) | Laser sustained plasma light source with gas vortex flow | |
JP2003240718A (en) | Icp emission spectrometric apparatus | |
JP2005201688A (en) | Flame photometer for gas chromatograph |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110922 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120620 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120703 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150727 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5045945 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |