WO2017221495A1 - Liquid film forming nozzle - Google Patents

Liquid film forming nozzle Download PDF

Info

Publication number
WO2017221495A1
WO2017221495A1 PCT/JP2017/012278 JP2017012278W WO2017221495A1 WO 2017221495 A1 WO2017221495 A1 WO 2017221495A1 JP 2017012278 W JP2017012278 W JP 2017012278W WO 2017221495 A1 WO2017221495 A1 WO 2017221495A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
liquid film
opening
nozzle
sample
Prior art date
Application number
PCT/JP2017/012278
Other languages
French (fr)
Japanese (ja)
Inventor
渡部 明
文平 土井
奥野 雅史
Original Assignee
フェムトディプロイメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フェムトディプロイメンツ株式会社 filed Critical フェムトディプロイメンツ株式会社
Publication of WO2017221495A1 publication Critical patent/WO2017221495A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Definitions

  • the present invention relates to a liquid film generating nozzle, and in particular, for generating a liquid film as a liquid sample in a system in which a liquid sample is arranged in a path through which electromagnetic waves propagate and the characteristics of electromagnetic waves transmitted through the liquid sample are measured. This relates to the nozzle.
  • spectroscopic devices that measure the characteristics of substances using electromagnetic waves such as ultraviolet rays, infrared rays, microwaves, and terahertz waves have been provided.
  • Spectroscopy is classified into absorption spectroscopy, emission spectroscopy, or reflection spectroscopy according to physical quantities measured by electromagnetic waves.
  • absorption spectroscopy the physical or chemical properties of a sample are measured from the change in the electromagnetic wave caused by the electromagnetic wave passing through the sample and the interaction between the electromagnetic wave and the sample while passing through the sample.
  • emission spectroscopy an electromagnetic wave is emitted from a sample by some method, and the intensity of the electromagnetic wave is measured.
  • Reflection spectroscopy is used for spectroscopic measurement of materials that do not transmit light or materials that scatter light, and the properties of a sample are measured by analyzing reflected light from the sample surface.
  • Measured substances used as spectroscopic measurement samples include gaseous, solid, and liquid forms. According to each form, the installation method of a to-be-measured substance is devised so that electromagnetic waves permeate
  • the sample placed in the spectroscopic device needs to be formed thin enough to transmit electromagnetic waves.
  • the absorption effect of terahertz waves by water molecules is strong, so that the liquid is made into a plate-like uniform thin film in order to prevent deterioration of the SN ratio of the measurement signal. It is necessary to perform the measurement by transmitting the terahertz wave to this part.
  • the sample when measuring a liquid sample, the sample is sandwiched in a container (generally called a solution cell) made of a material that transmits electromagnetic waves, such as glass, and electromagnetic waves are incident from the outside of the solution cell. The transmitted electromagnetic wave is measured.
  • a container generally called a solution cell
  • the spectral information of the cell material is superimposed as noise on the spectral information of the liquid sample, which hinders the measurement of the true spectral information.
  • Patent Documents 1 and 2 Conventionally, in view of such problems, there has been proposed an apparatus intended to enable measurement of spectral information with less noise without using a solution cell (for example, see Patent Documents 1 and 2).
  • a nozzle having a special structure is used, and a liquid sample is ejected from the nozzle by the pressure of the pump, thereby generating a thin flat plate-like liquid film. .
  • JP 2011-127950 A Japanese Patent Laid-Open No. 2015-219088
  • Conventional liquid film generating nozzles including the above-mentioned Patent Documents 1 and 2 are generally manufactured by processing metal.
  • a liquid containing gas hereinafter referred to as a gas-containing liquid
  • a liquid film cannot be formed and it can be quickly repelled and cannot be used for measuring spectral information. was there.
  • Metal nozzles have many fine irregularities on the surface. This unevenness tends to be a seed of bubbles in the gas-containing liquid. For this reason, it is considered that it is difficult to form a liquid film because bubbles are explosively generated at the tip of a small nozzle before the liquid is ejected by a metal nozzle. In particular, the nozzle outlet has a metal edge, and the generation of bubbles becomes significant.
  • the present invention has been made to solve such a problem, and an object thereof is to enable generation of a liquid film capable of measuring spectral information even with a gas-containing liquid.
  • At least the periphery of the opening of the liquid film generating nozzle is made of resin.
  • the resin is smooth with few irregularities on the surface, there are very few types of bubbles in the gas-containing liquid, and bubbles are hardly generated. Therefore, the liquid film ejected from the nozzle does not bounce, and a liquid film capable of measuring spectral information can be generated even with a gas-containing liquid. Thereby, it becomes possible to measure spectroscopic information also about a gas containing liquid.
  • FIG. 1 is a diagram illustrating a configuration example of a liquid film generating nozzle according to the present embodiment, in which (a) is a front view, (b) is a side view, and (c) is a plan view of the nozzle tip side.
  • the dotted line indicates the inner wall.
  • generation nozzle of this embodiment has the opening part 20 at the front-end
  • a tapered portion 30 having a gentle inclination is formed between the circular tube 10 and the opening 20.
  • This taper part 30 is formed in the front side and the back side so that it may become symmetrical with respect to the central axis 100 of the circular tube 10, as shown in FIG.1 (b).
  • the front end taper portion 30-1 and the back side taper portion 30-2 have a narrower interval, and the front end portion has the smallest interval. Is connected to the opening 20.
  • the opening 20 has a spout 21 at the center, the periphery thereof is closed, and the space inside the circular tube 10 terminates around the spout 21.
  • the end portion 22 around the spout 21 has a slope that gradually decreases in height from the outer diameter side to the inner diameter side of the circular pipe 10 (toward the tip side). ing.
  • This inclination is formed on both the left and right sides of the ejection port 21 so as to be symmetric with respect to the central axis 100 of the circular pipe 10.
  • this inclination is connected to the opening 20 at a portion on the inner diameter side where the height is the lowest.
  • the opening 20 has a substantially inverted V-shaped opening cut surface 23 at a position further on the tip side from the ejection port 21.
  • the opening cut surface 23 is formed with an inclination that forms a predetermined angle with respect to the central axis 100 of the circular tube 10. Further, the opening cut surface 23 is cut deeper into the circular tube 10 side than the innermost diameter side portion where the height of the end portion 22 is the lowest.
  • the liquid introduced into the circular tube 10 is collected at the ejection port 21 and ejected vigorously from the ejection port 21 to the outside.
  • the action of the liquids colliding from the mutually opposing directions works. Thereby, two string-like fluid columns are formed by the liquid ejected from the ejection port 21, and a thin liquid film surface is formed between the fluid columns by the surface tension of the liquid.
  • the liquid film generating nozzle having the shape shown in FIG. 1 is made of resin. Since the surface of the resin is smooth with few irregularities, there are very few types of bubbles in the gas-containing liquid, and bubbles are hardly generated. Therefore, the liquid film ejected from the ejection port 21 does not bounce, and a liquid film capable of measuring spectral information can be generated even with a gas-containing liquid. Thereby, the measurement of spectroscopic information is realizable also about a gas containing liquid.
  • the nozzle that generates the liquid film is worn on the inner wall surface by vigorously passing the liquid.
  • spectroscopic measurement using terahertz waves is a method capable of instantaneous measurement as compared with other measurement means. Since instantaneous measurement is possible, it is only necessary to generate a liquid film within the short measurement time, and it is not necessary to maintain the physical shape of the nozzle for a long period of time unlike a metal nozzle. Therefore, it is possible to configure the liquid film generating nozzle with resin instead of metal.
  • FIG. 1 was shown as an example of a liquid film production
  • generation nozzle is not limited to this.
  • the liquid film generating nozzle (see FIG. 2) having the shape described in Patent Document 2 may be made of resin.
  • the present invention is not limited to this.
  • only the periphery of the opening 20 or only the tip side including the tapered portion 30 may be made of resin.

Abstract

This liquid film forming nozzle has: an opening 20 through which a liquid is jetted and which is formed at the tip of a cylindrical circular pipe 10; and a tapered part 30 that is formed between the circular pipe 10 and the opening 20. At least the peripheral part of the opening 20 is made of a smooth resin having less recessed and projected patterning on the surface. As a result, the types of bubbles in a gas-containing liquid are decreased and a state where bubbles are unlikely to be generated is achieved. Consequently, a liquid film jetted from the opening 20 is prevented from eruption.

Description

液膜生成ノズルLiquid film generation nozzle
 本発明は、液膜生成ノズルに関し、特に、電磁波が伝播する経路中に液体試料を配置し、当該液体試料を透過した電磁波の特性を計測するシステムにおいて、液体試料としての液膜を生成するためのノズルに関するものである。 The present invention relates to a liquid film generating nozzle, and in particular, for generating a liquid film as a liquid sample in a system in which a liquid sample is arranged in a path through which electromagnetic waves propagate and the characteristics of electromagnetic waves transmitted through the liquid sample are measured. This relates to the nozzle.
 従来、紫外線、赤外線、マイクロ波、テラヘルツ波などの電磁波を用いて物質の特性を計測する分光装置が提供されている。分光法は、電磁波によって計測される物理量によって、吸収分光法、発光分光法または反射分光法に分類される。吸収分光法では、分光計測の対象となる試料に電磁波を透過させ、試料を通過中に電磁波と試料とが相互作用することによって生じる電磁波の変化から、試料の物理的性質あるいは化学的性質を計測する。発光分光法では、何らかの方法で試料から電磁波を放出させ、その電磁波の強さを計測する。また、反射分光法は、光を透過しない材料や光を散乱する材料などの分光測定に利用されるものあり、試料表面からの反射光を解析することによって試料の性質を計測する。 2. Description of the Related Art Conventionally, spectroscopic devices that measure the characteristics of substances using electromagnetic waves such as ultraviolet rays, infrared rays, microwaves, and terahertz waves have been provided. Spectroscopy is classified into absorption spectroscopy, emission spectroscopy, or reflection spectroscopy according to physical quantities measured by electromagnetic waves. In absorption spectroscopy, the physical or chemical properties of a sample are measured from the change in the electromagnetic wave caused by the electromagnetic wave passing through the sample and the interaction between the electromagnetic wave and the sample while passing through the sample. To do. In emission spectroscopy, an electromagnetic wave is emitted from a sample by some method, and the intensity of the electromagnetic wave is measured. Reflection spectroscopy is used for spectroscopic measurement of materials that do not transmit light or materials that scatter light, and the properties of a sample are measured by analyzing reflected light from the sample surface.
 分光計測の試料として用いる被計測物質には、ガス状、固体状、液体状などの形態がある。それぞれの形態に応じて、電磁波が適切に透過するように被計測物質の設置方法が工夫されている。例えば、液体状の試料について精度の高い計測を行うには、分光装置に配置する試料は、電磁波が透過する程度に薄く形成する必要がある。特に、液体試料をテラヘルツ波で分光計測する場合には、水分子によるテラヘルツ波の吸収効果が強いため、計測信号のSN比の悪化を防ぐために、液体を板状の均一な薄膜にし、板状の部分にテラヘルツ波を透過させて計測を行う必要がある。 Measured substances used as spectroscopic measurement samples include gaseous, solid, and liquid forms. According to each form, the installation method of a to-be-measured substance is devised so that electromagnetic waves permeate | transmit appropriately. For example, in order to perform highly accurate measurement on a liquid sample, the sample placed in the spectroscopic device needs to be formed thin enough to transmit electromagnetic waves. In particular, when a liquid sample is spectroscopically measured with terahertz waves, the absorption effect of terahertz waves by water molecules is strong, so that the liquid is made into a plate-like uniform thin film in order to prevent deterioration of the SN ratio of the measurement signal. It is necessary to perform the measurement by transmitting the terahertz wave to this part.
 一般に、液体試料の計測では、ガラスなどの電磁波を透過する材料で作られた容器(一般的には溶液セルと呼ばれる)に試料を挟みこみ、溶液セルの外部から電磁波を入射し、溶液セルを透過した電磁波を計測している。しかしながら、液体試料を溶液セルに挟み込んで計測すると、液体試料の分光情報に対してセル材料の分光情報がノイズとして重畳し、真の分光情報を計測する妨げとなる。 In general, when measuring a liquid sample, the sample is sandwiched in a container (generally called a solution cell) made of a material that transmits electromagnetic waves, such as glass, and electromagnetic waves are incident from the outside of the solution cell. The transmitted electromagnetic wave is measured. However, if the liquid sample is sandwiched between the solution cells and measured, the spectral information of the cell material is superimposed as noise on the spectral information of the liquid sample, which hinders the measurement of the true spectral information.
 従来、このような問題に鑑みて、溶液セルを用いることなく、ノイズの少ない分光情報を計測可能にすること目的とした装置が提案されている(例えば、特許文献1,2参照)。この特許文献1,2に記載の装置では、特別な構造のノズルを用い、ポンプの圧力によってノズルから液体試料を噴出することにより、薄い平坦な板状の液膜を生成するようになされている。 Conventionally, in view of such problems, there has been proposed an apparatus intended to enable measurement of spectral information with less noise without using a solution cell (for example, see Patent Documents 1 and 2). In the apparatuses described in Patent Documents 1 and 2, a nozzle having a special structure is used, and a liquid sample is ejected from the nozzle by the pressure of the pump, thereby generating a thin flat plate-like liquid film. .
特開2011-127950号公報JP 2011-127950 A 特開2015-219088号公報Japanese Patent Laid-Open No. 2015-219088
 上記特許文献1,2を含む従来の液膜生成ノズルは、金属を加工して製造するのが一般的であった。しかしながら、金属製ノズルでは、ガスが含まれる液体(以下、ガス含有液体という)を液体試料に用いると、液膜はできずすぐに弾けてしまい、分光情報の計測に利用することができないという問題があった。 Conventional liquid film generating nozzles including the above-mentioned Patent Documents 1 and 2 are generally manufactured by processing metal. However, in a metal nozzle, if a liquid containing gas (hereinafter referred to as a gas-containing liquid) is used as a liquid sample, a liquid film cannot be formed and it can be quickly repelled and cannot be used for measuring spectral information. was there.
 金属製ノズルは、表面に細かな凹凸が多数存在する。この凹凸は、ガス含有液体の気泡の種となりやすい。そのため、金属製ノズルで液体を噴出する前に、小さなノズル先端で爆発的に気泡が発生してしまうことが、液膜を作ることが難しいことの原因と考えられる。特に、ノズルの出口は金属のエッジが立っており、気泡の発生が顕著になる。 Metal nozzles have many fine irregularities on the surface. This unevenness tends to be a seed of bubbles in the gas-containing liquid. For this reason, it is considered that it is difficult to form a liquid film because bubbles are explosively generated at the tip of a small nozzle before the liquid is ejected by a metal nozzle. In particular, the nozzle outlet has a metal edge, and the generation of bubbles becomes significant.
 本発明は、このような問題を解決するために成されたものであり、分光情報の計測が可能な液膜をガス含有液体でも生成できるようにすることを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to enable generation of a liquid film capable of measuring spectral information even with a gas-containing liquid.
 上記した課題を解決するために、本発明では、液膜生成ノズルの少なくとも開口部の周辺を樹脂により構成するようにしている。 In order to solve the above-described problem, in the present invention, at least the periphery of the opening of the liquid film generating nozzle is made of resin.
 上記のように構成した本発明によれば、樹脂は表面に凹凸が少なく滑らかであるため、ガス含有液体の気泡の種が非常に少なく、気泡が発生しにくい。そのため、ノズルから噴出された液膜が弾けてしまうことがなく、分光情報の計測が可能な液膜をガス含有液体でも生成することができるようになる。これにより、ガス含有液体に関しても分光情報を計測することが可能となる。 According to the present invention configured as described above, since the resin is smooth with few irregularities on the surface, there are very few types of bubbles in the gas-containing liquid, and bubbles are hardly generated. Therefore, the liquid film ejected from the nozzle does not bounce, and a liquid film capable of measuring spectral information can be generated even with a gas-containing liquid. Thereby, it becomes possible to measure spectroscopic information also about a gas containing liquid.
本実施形態による液膜生成ノズルの構成例を示す図である。It is a figure which shows the structural example of the liquid film production | generation nozzle by this embodiment. 本実施形態による液膜生成ノズルの他の構成例を示す図である。It is a figure which shows the other structural example of the liquid film production | generation nozzle by this embodiment.
 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による液膜生成ノズルの構成例を示す図であり、(a)は正面図、(b)は側面図、(c)はノズル先端側の平面図である。なお、図1において、点線は内壁を示している。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of a liquid film generating nozzle according to the present embodiment, in which (a) is a front view, (b) is a side view, and (c) is a plan view of the nozzle tip side. In FIG. 1, the dotted line indicates the inner wall.
 図1に示すように、本実施形態の液膜生成ノズルは、円筒形の円管10の先端に開口部20を有して構成されている。円管10と開口部20との間には、なだらかな傾きを有するテーパ部30が形成されている。このテーパ部30は、図1(b)に示す通り、円管10の中心軸100に対して対称となるように、正面側および背面側に形成されている。テーパ部30は、円管10の下側(先端側)にいくほど、正面側のテーパ部30-1と背面側のテーパ部30-2との間隔が狭くなり、間隔が最小となる先端部が開口部20に接続されている。 As shown in FIG. 1, the liquid film production | generation nozzle of this embodiment has the opening part 20 at the front-end | tip of the cylindrical circular tube 10, and is comprised. A tapered portion 30 having a gentle inclination is formed between the circular tube 10 and the opening 20. This taper part 30 is formed in the front side and the back side so that it may become symmetrical with respect to the central axis 100 of the circular tube 10, as shown in FIG.1 (b). As the taper portion 30 goes to the lower side (front end side) of the circular tube 10, the front end taper portion 30-1 and the back side taper portion 30-2 have a narrower interval, and the front end portion has the smallest interval. Is connected to the opening 20.
 開口部20は、中央に噴出口21を有し、その周囲は閉じており、円管10の内部の空間は噴出口21の周囲で終端している。噴出口21の周囲の終端部22は、図1(a)に示す通り、円管10の外径側から内径側に向かって徐々に高さが低くなる(先端側に向かう)傾斜を有している。この傾斜は、円管10の中心軸100に対して対称となるように、噴出口21の左右両側に形成されている。また、この傾斜は、高さが最も低くなる内径側の部分で開口部20に接続されている。 The opening 20 has a spout 21 at the center, the periphery thereof is closed, and the space inside the circular tube 10 terminates around the spout 21. As shown in FIG. 1A, the end portion 22 around the spout 21 has a slope that gradually decreases in height from the outer diameter side to the inner diameter side of the circular pipe 10 (toward the tip side). ing. This inclination is formed on both the left and right sides of the ejection port 21 so as to be symmetric with respect to the central axis 100 of the circular pipe 10. In addition, this inclination is connected to the opening 20 at a portion on the inner diameter side where the height is the lowest.
 また、開口部20は、噴出口21から更に先端側の位置に、略逆V字状の開口切断面23を有している。開口切断面23は、円管10の中心軸100に対して所定の角度をなす傾きをもって形成されている。また、この開口切断面23は、終端部22の高さが最も低くなる最内径側の部分よりも円管10側に深く切り込まれている。 Further, the opening 20 has a substantially inverted V-shaped opening cut surface 23 at a position further on the tip side from the ejection port 21. The opening cut surface 23 is formed with an inclination that forms a predetermined angle with respect to the central axis 100 of the circular tube 10. Further, the opening cut surface 23 is cut deeper into the circular tube 10 side than the innermost diameter side portion where the height of the end portion 22 is the lowest.
 以上のようなテーパ部30および終端部22のそれぞれの傾斜により、円管10に導入された液体が噴出口21に集められ、当該噴出口21から外部に勢いよく噴出するようになっている。このとき、テーパ部30、噴出口21、終端部22および開口切断面23の形状により、噴出口21より液体が噴出する際に、互いに対向する方向から液体がぶつかり合う作用が働く。これにより、噴出口21から噴出した液体で2本の紐状の流体柱が形成され、その流体柱の間に液体の表面張力により薄い液膜面が形成される。 Due to the respective inclinations of the tapered portion 30 and the end portion 22 as described above, the liquid introduced into the circular tube 10 is collected at the ejection port 21 and ejected vigorously from the ejection port 21 to the outside. At this time, due to the shapes of the tapered portion 30, the ejection port 21, the terminal end portion 22, and the opening cut surface 23, when the liquid is ejected from the ejection port 21, the action of the liquids colliding from the mutually opposing directions works. Thereby, two string-like fluid columns are formed by the liquid ejected from the ejection port 21, and a thin liquid film surface is formed between the fluid columns by the surface tension of the liquid.
 本実施形態では、図1に示した形状を有する液膜生成ノズルを、樹脂により構成している。樹脂は表面に凹凸が少なく滑らかであるため、ガス含有液体の気泡の種が非常に少なく、気泡が発生しにくい。そのため、噴出口21から噴出された液膜が弾けてしまうことがなく、分光情報の計測が可能な液膜をガス含有液体でも生成することができるようになる。これにより、ガス含有液体に関しても分光情報の計測を実現することができる。 In this embodiment, the liquid film generating nozzle having the shape shown in FIG. 1 is made of resin. Since the surface of the resin is smooth with few irregularities, there are very few types of bubbles in the gas-containing liquid, and bubbles are hardly generated. Therefore, the liquid film ejected from the ejection port 21 does not bounce, and a liquid film capable of measuring spectral information can be generated even with a gas-containing liquid. Thereby, the measurement of spectroscopic information is realizable also about a gas containing liquid.
 液膜を生成するノズルは、液体が勢いよく通過することで内壁面が摩耗する。しかしながら、テラヘルツ波を用いた分光計測は、他の計測手段と比較して、瞬時計測が可能な方式である。瞬時計測が可能であるから、その短い計測時間内だけ液膜を生成することができればよく、金属製のノズルのように、長期間ノズルの物理的形状を維持しておく必要はない。よって、金属に代えて樹脂により液膜生成ノズルを構成することが可能である。 The nozzle that generates the liquid film is worn on the inner wall surface by vigorously passing the liquid. However, spectroscopic measurement using terahertz waves is a method capable of instantaneous measurement as compared with other measurement means. Since instantaneous measurement is possible, it is only necessary to generate a liquid film within the short measurement time, and it is not necessary to maintain the physical shape of the nozzle for a long period of time unlike a metal nozzle. Therefore, it is possible to configure the liquid film generating nozzle with resin instead of metal.
 なお、上記実施形態では、液膜生成ノズルの一例として図1を示したが、液膜生成ノズルの形状はこれに限定されない。例えば、特許文献2に記載された形状の液膜生成ノズル(図2参照)を樹脂により構成するようにしてもよい。 In addition, in the said embodiment, although FIG. 1 was shown as an example of a liquid film production | generation nozzle, the shape of a liquid film production | generation nozzle is not limited to this. For example, the liquid film generating nozzle (see FIG. 2) having the shape described in Patent Document 2 may be made of resin.
 また、上記実施形態では、円管10、開口部20およびテーパ部30の全体を趣旨により構成する例について説明したが、本発明はこれに限定されない。例えば、開口部20の周辺のみ、あるいはテーパ部30を含めてこれより先端側のみを樹脂により構成するようにしてもよい。 In the above embodiment, the example in which the entire circular tube 10, the opening 20, and the tapered portion 30 are configured according to the purpose has been described. However, the present invention is not limited to this. For example, only the periphery of the opening 20 or only the tip side including the tapered portion 30 may be made of resin.
 その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.
 10 円管
 20 開口部
 21 噴出口
 22 終端部
 23 開口切断面
 30 テーパ部
DESCRIPTION OF SYMBOLS 10 Circular pipe 20 Opening part 21 Spout 22 End part 23 Open cut surface 30 Tapered part

Claims (3)

  1.  電磁波が伝播する経路中に液体試料を配置し、上記液体試料を透過した電磁波の特性を計測するシステムに用いられ、上記液体試料としての液膜を生成するための液膜生成ノズルであって、
     円筒形の円管の先端に、上記液体が噴出する開口部を有し、
     上記円管と上記開口部との間にテーパ部が形成されており、
     上記開口部の少なくとも周辺部を樹脂により構成したことを特徴とする液膜生成ノズル。
    A liquid film generating nozzle for generating a liquid film as the liquid sample, which is used in a system for measuring a characteristic of an electromagnetic wave transmitted through the liquid sample by arranging a liquid sample in a path through which the electromagnetic wave propagates,
    At the tip of a cylindrical tube, it has an opening from which the liquid is ejected,
    A tapered portion is formed between the circular tube and the opening,
    A liquid film generating nozzle, wherein at least a peripheral part of the opening is made of a resin.
  2.  上記テーパ部を含めてこれより先端側を樹脂により構成したことを特徴とする請求項1に記載の液膜生成ノズル。 The liquid film generating nozzle according to claim 1, wherein the tip side including the tapered portion is made of resin.
  3.  上記円管、上記開口部および上記テーパ部の全体を趣旨により構成したことを特徴とする請求項1に記載の液膜生成ノズル。 2. The liquid film generating nozzle according to claim 1, wherein the whole of the circular tube, the opening, and the taper portion are configured according to the purpose.
PCT/JP2017/012278 2016-06-21 2017-03-27 Liquid film forming nozzle WO2017221495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-122440 2016-06-21
JP2016122440A JP2017227488A (en) 2016-06-21 2016-06-21 Liquid film generation nozzle

Publications (1)

Publication Number Publication Date
WO2017221495A1 true WO2017221495A1 (en) 2017-12-28

Family

ID=60783981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012278 WO2017221495A1 (en) 2016-06-21 2017-03-27 Liquid film forming nozzle

Country Status (2)

Country Link
JP (1) JP2017227488A (en)
WO (1) WO2017221495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764078A4 (en) * 2018-03-05 2021-12-22 Femto Deployments Inc. Liquid film generation device and liquid film cartridge for use therein

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618101A (en) * 1983-11-25 1986-10-21 Piggott Richard G Spray nozzle
US20020096579A1 (en) * 2000-05-25 2002-07-25 Steven Sinders Variable angle airless nozzle and dispensing method
JP2005021838A (en) * 2003-07-04 2005-01-27 Konica Minolta Opto Inc Needle and discharge outlet member of discharging device
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618101A (en) * 1983-11-25 1986-10-21 Piggott Richard G Spray nozzle
US20020096579A1 (en) * 2000-05-25 2002-07-25 Steven Sinders Variable angle airless nozzle and dispensing method
JP2005021838A (en) * 2003-07-04 2005-01-27 Konica Minolta Opto Inc Needle and discharge outlet member of discharging device
JP2015219088A (en) * 2014-05-16 2015-12-07 フェムトディプロイメンツ株式会社 Liquid membrane nozzle device, injection needle, syringe, syringe type liquid membrane generation device, liquid sterilization device, liquid screen formation device, and method for manufacturing liquid membrane nozzle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764078A4 (en) * 2018-03-05 2021-12-22 Femto Deployments Inc. Liquid film generation device and liquid film cartridge for use therein

Also Published As

Publication number Publication date
JP2017227488A (en) 2017-12-28

Similar Documents

Publication Publication Date Title
US7386199B2 (en) Providing light to channels or portions
US8379192B2 (en) Apparatus for optical measurement of substance concentrations
US8976353B2 (en) Multiwell plate lid for improved optical measurements
US10156513B2 (en) Reduced volume spectroscopic sample cell
JP2011127950A (en) Liquid thin-film forming device
WO2017221495A1 (en) Liquid film forming nozzle
US20220136955A1 (en) Laser particle size analyzer with liquid sheath flow measuring cell
JP7407160B2 (en) Flowing nanoparticle measuring device and method for determining nanoparticles using the same
CN105424604A (en) Sensor based on sleeved waveguide tube
US20050163662A1 (en) Fluid analyzing cell using a cavity with pipeline
JP2003279466A (en) Measuring cell for particle size sensor
JP5954136B2 (en) Gas cell
WO2017138525A1 (en) Liquid film generating device and liquid film cartridge used therein
JP6739094B2 (en) Liquid film generator and liquid film cartridge used therefor
CN210571845U (en) Laser particle size analyzer with liquid sheath flow measuring cell
KR102009370B1 (en) Speckle inspection apparatus and speckle amplification apparatus
WO2017037899A1 (en) Analysis device and exhaust gas treatment device
US20210172870A1 (en) Optical detection system for detecting a substance in a measurement region
JP2023511502A (en) Cavity for gas measurement
JP5045945B2 (en) Excimer lamp device
US20210123858A1 (en) Multipass Optical Spectroscopy Cell and Use Thereof
JP5843284B2 (en) Impurity removing device and spectroscopic analyzer
Fernandes et al. A 3D printed microliquid jet with an adjustable nozzle diameter
EP3764078A1 (en) Liquid film generation device and liquid film cartridge for use therein
US20230032774A1 (en) Omni-stream nozzle

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17814967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17814967

Country of ref document: EP

Kind code of ref document: A1