JP2003279466A - Measuring cell for particle size sensor - Google Patents

Measuring cell for particle size sensor

Info

Publication number
JP2003279466A
JP2003279466A JP2002079473A JP2002079473A JP2003279466A JP 2003279466 A JP2003279466 A JP 2003279466A JP 2002079473 A JP2002079473 A JP 2002079473A JP 2002079473 A JP2002079473 A JP 2002079473A JP 2003279466 A JP2003279466 A JP 2003279466A
Authority
JP
Japan
Prior art keywords
particle size
measuring
light
optical window
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002079473A
Other languages
Japanese (ja)
Other versions
JP3679064B2 (en
Inventor
Manabu Ohata
学 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2002079473A priority Critical patent/JP3679064B2/en
Publication of JP2003279466A publication Critical patent/JP2003279466A/en
Application granted granted Critical
Publication of JP3679064B2 publication Critical patent/JP3679064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cost-reducible and miniaturizable measuring cell for a particle size sensor capable of preventing efficiently a powder sample or the like from adhering to optical windows. <P>SOLUTION: This measuring cell for the particle size sensor for measuring the particle size of the sample by irradiating a scattering field 40 inside the measuring cell 4 with measuring light from a light source has a jet nozzle 41 arranged on the position not interfering with the measuring light irradiated from the light source and scattered light diffracted or scattered on the scattering field, for introducing the powder sample into the scattering field, the optical windows 43, 44 for allowing the measuring light to enter the scattering field and emitting the measuring light from the scattering field to the outside of the measuring cell, exhaust nozzles 472, 482 arranged dispersedly on the outer peripheral parts of the inner faces of the optical windows, for jetting pressurized fluid to the inner faces of the optical windows, fluid passages 473, 483 for flowing the pressurized fluid jetted from the exhaust nozzles from the optical windows toward the scattering field, and a discharge nozzle 42 for discharging the powder sample measured in the scattering field. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、粉体工業分野等
において各種粉体試料等の粒度分布等を測定するレーザ
回折・散乱方式の粒度分布測定センサーに使用する測定
セルに関し、詳しくは、光学窓に粉体試料等が付着する
ことを防止することのできる粒度センサー用測定セルに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring cell used for a laser diffraction / scattering type particle size distribution measuring sensor for measuring the particle size distribution of various powder samples in the field of powder industry and the like. The present invention relates to a measuring cell for a particle size sensor capable of preventing a powder sample or the like from adhering to a window.

【0002】[0002]

【従来の技術】粉体工業分野においては、粉体製品の開
発時や製造時の性状や品質を確認する手段として、粒度
分布測定装置(粒度分析計)によって粉体試料の粒度
(粒度分布)等を測定する方法が広く利用されている。
このような粒度分布測定装置としては、測定の簡便性、
迅速性および測定データの再現性の観点から、レーザ回
折・散乱方式の粒度分布測定装置が最も広く使用されて
いる。
2. Description of the Related Art In the field of powder industry, a particle size distribution measuring device (particle size analyzer) is used as a means for confirming the properties and quality of a powder product during development and manufacturing. The method of measuring etc. is widely used.
As such a particle size distribution measuring device, the ease of measurement,
From the viewpoint of speed and reproducibility of measurement data, the laser diffraction / scattering type particle size distribution measuring apparatus is most widely used.

【0003】レーザ回折・散乱方式による粒度分布の測
定は、粒度センサー部においてレーザ光を被測定粒子群
(粉体試料)に照射し、粒子による回折や散乱によって
生じた散乱光の散乱角度に対する強度分布を検出するこ
とにより行う。散乱光は、光学レンズによって集光さ
れ、レンズ焦点面に配置された検出用受光素子によって
検出される。散乱光の散乱角度に対する強度分布から、
フラウンホーファの回折理論あるいはMieの散乱理論
に基づく演算式により、試料粒子の粒度分布を求めるこ
とができる。
The measurement of the particle size distribution by the laser diffraction / scattering method is performed by irradiating a particle group (powder sample) to be measured with a laser beam in the particle size sensor section, and the intensity of the scattered light generated by the particle diffraction or scattering with respect to the scattering angle. This is done by detecting the distribution. The scattered light is collected by the optical lens and detected by the detection light receiving element arranged on the focal plane of the lens. From the intensity distribution for the scattering angle of scattered light,
The particle size distribution of sample particles can be obtained by an arithmetic expression based on Fraunhofer's diffraction theory or Mie's scattering theory.

【0004】粒度分布測定に使用される粒度センサーで
は、測定セル内に設定された散乱場に粉体試料を導入
し、その散乱場の粉体試料に測定光を照射する。測定光
は、測定セル外の光源から光学窓を通して照射される。
また、粉体試料によって回折・散乱された散乱光は、別
の光学窓を通って測定セル外部の光検出器に到達する。
これらの光学窓は、測定セルの内部空間を外部と遮蔽す
る機能も有しており、測定セル内に導入された粉体試料
が外部に漏れることはない。
In a particle size sensor used for particle size distribution measurement, a powder sample is introduced into a scattering field set in a measuring cell and the powder sample in the scattering field is irradiated with measuring light. The measurement light is emitted from a light source outside the measurement cell through the optical window.
Further, the scattered light diffracted and scattered by the powder sample reaches the photodetector outside the measurement cell through another optical window.
These optical windows also have a function of shielding the internal space of the measurement cell from the outside, and the powder sample introduced into the measurement cell does not leak to the outside.

【0005】このような測定セルにおいては、測定光お
よび散乱光を通過させるための光学窓に粉体試料が付着
することを防止する必要がある。光学窓に粉体試料が付
着する等により光学窓が汚染されると、光学窓の汚染に
よる散乱光が測定結果に悪影響を及ぼし、測定精度の悪
化等の問題を生じることになる。
In such a measuring cell, it is necessary to prevent the powder sample from adhering to the optical window for passing the measuring light and the scattered light. When the optical window is contaminated due to the powder sample adhering to the optical window or the like, the scattered light due to the contamination of the optical window adversely affects the measurement result and causes a problem such as deterioration of measurement accuracy.

【0006】このような光学窓への粉体試料の付着を防
止するものとしては、特許第3183853号公報に記
載されたようなものがある。特許第3183853号公
報には、測定ヘッドに設けられた遮蔽透明ガラスの内面
から粉粒体の通路に向けてエアーを流すようにしたイン
ライン粒度分布測定装置が記載されている。このインラ
イン粒度分布測定装置は、前述のエアーの流れにより、
遮蔽透明ガラスに粉粒体が付着することを防止しようと
するものである。
As a means for preventing the powder sample from adhering to such an optical window, there is one described in Japanese Patent No. 3183853. Japanese Patent No. 3183853 discloses an in-line particle size distribution measuring device in which air is caused to flow from the inner surface of a shielding transparent glass provided in a measuring head toward a passage of powder particles. This in-line particle size distribution measuring device uses the above-mentioned air flow to
It is intended to prevent the powder particles from adhering to the shielding transparent glass.

【0007】[0007]

【発明が解決しようとする課題】前述の特許第3183
853号公報に記載されたインライン粒度分布測定装置
は、遮蔽透明ガラスに粉粒体が付着することを防止する
には有効なものであるが、それでも、以下のような問題
点を有するものである。遮蔽透明ガラスに空気を噴出す
る部分が、遮蔽透明ガラスの外周に沿った円形状のスリ
ットであるため、空気の噴出速度が低下し、粉粒体が付
着を防止するための十分な噴出速度が得られない場合が
ある。また、空気の噴出速度を十分に大きくするために
は、供給する空気の量も大きくなり、大型の空気加圧装
置を使用する必要が出てくる。このため、装置全体のコ
スト上昇を招くという問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The in-line particle size distribution measuring device described in Japanese Patent No. 853 is effective in preventing powder particles from adhering to the shielding transparent glass, but it still has the following problems. . Since the part that ejects air to the shielding transparent glass is a circular slit along the outer periphery of the shielding transparent glass, the ejection speed of the air decreases, and the ejection speed sufficient to prevent the particles from adhering is reduced. You may not get it. Further, in order to sufficiently increase the ejection speed of air, the amount of air to be supplied also becomes large, and it becomes necessary to use a large air pressurizing device. Therefore, there is a problem in that the cost of the entire apparatus increases.

【0008】また、中空部へのエアー流入孔との位置関
係により、遮蔽透明ガラスへの空気流が均一なものとな
らない場合があった。このような空気流の不均一によ
り、粉粒体の付着を有効に防止できないことがある。中
空部へのエアー流入孔を全周上に多数均一に配置すれ
ば、このような空気流の不均一は減少するが、測定ヘッ
ド全体が大型化してしまうことは避けられない。小型の
測定ヘッドでは、エアー流入孔を多数配置することは困
難であり、空気流の不均一によって粉粒体の付着を有効
に防止できないという問題点がある。
In addition, the air flow to the shielding transparent glass may not be uniform due to the positional relationship with the air inflow hole to the hollow portion. Due to such non-uniformity of the air flow, it may not be possible to effectively prevent the adhesion of the powder or granular material. If a large number of air inlet holes to the hollow portion are uniformly arranged on the entire circumference, such nonuniformity of the air flow is reduced, but it is inevitable that the entire measuring head becomes large. With a small measuring head, it is difficult to arrange a large number of air inflow holes, and there is a problem in that the adhesion of powder particles cannot be effectively prevented due to non-uniform air flow.

【0009】そこで、本発明は、以上のような問題点を
解決して、光学窓に粉体試料等が付着することを効率よ
く防止することができ、しかも低コスト化と小型化が可
能な粒度センサー用測定セルを提供することを目的とす
る。
Therefore, the present invention solves the above problems and can efficiently prevent the powder sample and the like from adhering to the optical window, and further, can reduce the cost and the size. It is intended to provide a measuring cell for a particle size sensor.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の粒度センサー用測定セルは、光源からの測
定光を測定セル内部の散乱場に照射して試料の粒度を測
定する粒度センサー用測定セルであって、前記光源から
照射される測定光および前記散乱場で回折または散乱さ
れた散乱光に干渉しない位置に配置され、粉体試料を前
記散乱場に導入する噴出ノズルと、前記散乱場に測定光
を入射させるとともに、前記散乱場からの散乱光を前記
測定セル外に射出させる光学窓と、前記光学窓の内面の
外周部に離散的に配置され、前記光学窓の内面に加圧流
体を噴出させる噴出口と、前記噴出口から噴出された加
圧流体を前記光学窓から前記散乱場に向けて流通させる
流体通路と、前記散乱場において測定された粉体試料を
排出する排出ノズルとを有するものである。
In order to achieve the above object, a measuring cell for a particle size sensor of the present invention is a particle size for measuring a particle size of a sample by irradiating a scattered field inside the measuring cell with a measuring light from a light source. A sensor measurement cell, which is arranged at a position that does not interfere with the measurement light emitted from the light source and the scattered light diffracted or scattered in the scattering field, and a jet nozzle for introducing a powder sample into the scattering field, While the measurement light is incident on the scattered field, an optical window for emitting scattered light from the scattered field to the outside of the measurement cell, and the optical window is arranged discretely on the outer peripheral portion of the inner surface of the optical window, and the inner surface of the optical window. An outlet for ejecting a pressurized fluid onto the inner surface, a fluid passage for allowing the pressurized fluid ejected from the outlet to flow from the optical window toward the scattering field, and a powder sample measured in the scattering field is discharged. Discharge noz And it has a door.

【0011】また、上記の粒度センサー用測定セルにお
いて、前記噴出口は、加圧流体が前記光学窓の内面にほ
ぼ均一に噴出するように配置されるものであることが好
ましい。
Further, in the above-mentioned measurement cell for particle size sensor, it is preferable that the ejection port is arranged so that the pressurized fluid is ejected onto the inner surface of the optical window substantially uniformly.

【0012】また、上記の粒度センサー用測定セルにお
いて、加圧流体の供給通路を有し、前記噴出口は、前記
供給通路側の分布密度が反対側の分布密度よりも大きく
なるように配置されていることが好ましい。
Further, in the above-mentioned particle size sensor measuring cell, there is a pressurized fluid supply passage, and the ejection ports are arranged such that the distribution density on the supply passage side is higher than the distribution density on the opposite side. Preferably.

【0013】また、上記の粒度センサー用測定セルにお
いて、前記光源から入射される測定光の光軸に対して、
前記光学窓の表面の法線が傾斜するように測定セルを配
置して測定を行うことが好ましい。
Further, in the above measuring cell for particle size sensor, with respect to the optical axis of the measuring light incident from the light source,
It is preferable to perform measurement by arranging the measurement cell so that the normal line of the surface of the optical window is inclined.

【0014】[0014]

【発明の実施の形態】本発明の実施の形態について図面
を参照して説明する。図1は、本発明の測定セル4を使
用した粒度分布測定装置1の構成を示す概略図である。
粒度分布測定装置1内には、レーザ光源2、測定セル
4、集光レンズ5および光検出器6からなる粒度センサ
ーが備えられている。レーザ光源2で発生されたレーザ
光は、コリメータ3を通過して平行光とされ、測定セル
4内の散乱場40に照射される。測定セル4の散乱場4
0には、粒度分布を測定するための粉体試料が導入され
ている。この試料粒子により測定光(平行レーザ光)に
回折・散乱を生じさせ、その散乱光の強度分布を測定す
ることにより試料の粒度分布を測定する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a particle size distribution measuring device 1 using a measuring cell 4 of the present invention.
In the particle size distribution measuring device 1, a particle size sensor including a laser light source 2, a measuring cell 4, a condenser lens 5 and a photodetector 6 is provided. The laser light generated by the laser light source 2 passes through the collimator 3 and is converted into parallel light, which is applied to the scattered field 40 in the measurement cell 4. Scattering field 4 of measuring cell 4
At 0, a powder sample for measuring the particle size distribution is introduced. Diffraction / scattering of the measurement light (parallel laser light) is caused by the sample particles, and the particle size distribution of the sample is measured by measuring the intensity distribution of the scattered light.

【0015】本発明の測定セル4の具体的構成について
は、後に詳しく説明する。集光レンズ5は、散乱場40
の試料粒子により散乱された散乱光を集光するためのも
のである。光検出器6は、散乱光の強度分布を検出する
ためのものであり、後述するように複数の検出素子から
なっている。
The specific structure of the measuring cell 4 of the present invention will be described later in detail. The condenser lens 5 has a scattered field 40.
It is for collecting the scattered light scattered by the sample particles. The photodetector 6 is for detecting the intensity distribution of scattered light, and is composed of a plurality of detection elements as described later.

【0016】光検出器6の複数の検出素子により検出さ
れた散乱光の強度分布は、マルチプレクサ7によって各
検出素子の検出データが時間軸に関して多重化される。
強度分布のデータは、さらに増幅アンプ8により増幅さ
れ、A/D変換器9によって各検出素子の検出データご
とにデジタルデータに変換される。A/D変換器9の出
力は、演算制御手段10に送られる。演算制御手段10
では、各検出素子の検出データから、前述のフラウンホ
ーファの回折理論あるいはMieの散乱理論に基づく所
定の演算式により粒度分布が求められる。
With respect to the intensity distribution of the scattered light detected by the plurality of detection elements of the photodetector 6, the multiplexer 7 multiplexes the detection data of each detection element with respect to the time axis.
The intensity distribution data is further amplified by the amplification amplifier 8 and converted by the A / D converter 9 into digital data for each detection data of each detection element. The output of the A / D converter 9 is sent to the arithmetic control means 10. Arithmetic control means 10
Then, the particle size distribution is obtained from the detection data of each detection element by a predetermined arithmetic expression based on the Fraunhofer diffraction theory or Mie scattering theory.

【0017】そして、演算制御手段10は、算出した試
料の粒度分布を出力手段11に出力して表示を行う。出
力手段11には、文字および図形を表示するCRTや液
晶パネル等の表示装置、文字および図形を印字するプリ
ンタ等が含まれる。また、演算制御手段10には、操作
者がデータを入力するための入力装置(キーボード、マ
ウス等)が付属している。
Then, the arithmetic control means 10 outputs the calculated particle size distribution of the sample to the output means 11 for display. The output means 11 includes a display device such as a CRT or a liquid crystal panel for displaying characters and figures, a printer for printing characters and figures, and the like. Further, the arithmetic and control unit 10 is provided with an input device (keyboard, mouse, etc.) for the operator to input data.

【0018】図2は、光検出器6の全体構成を示す図で
ある。光検出器6の全体の形状は、中心角αのほぼ扇形
に構成されている。中心角αは、例えば20度に設定さ
れる。光検出器6には、散乱光を検出するためのE1〜
E17の17個(17チャンネル)の検出素子が含まれ
る。検出素子E1〜E17は、寸法が順次指数関数的に
拡大するように構成されているので、中心側の検出素子
E1〜E9は、寸法の関係で図2には示されていない。
また、散乱光を検出するための検出素子は、17チャン
ネルに限らず任意のチャンネル数だけ設けることができ
る。
FIG. 2 is a diagram showing the overall structure of the photodetector 6. The overall shape of the photodetector 6 is substantially fan-shaped with a central angle α. The central angle α is set to 20 degrees, for example. The photodetector 6 includes E1 to E1 for detecting scattered light.
Included are 17 (17 channels) detector elements of E17. Since the detection elements E1 to E17 are configured so that their dimensions sequentially expand exponentially, the detection elements E1 to E9 on the center side are not shown in FIG.
Further, the detection element for detecting scattered light is not limited to 17 channels, and any number of channels can be provided.

【0019】また、光検出器6が構成する扇形の中心位
置の近傍には、光軸調整用検出素子が設けられている。
散乱場40に試料の存在しない状態で、レーザ光源2か
らレーザ光を出力して光軸調整を行う。続いて、散乱場
40に試料が存在しない状態でバックグラウンド測定を
行う。レーザ光源2からレーザ光を出力し、検出素子E
1〜E17での検出強度を測定する。
An optical axis adjusting detection element is provided in the vicinity of the central position of the sector formed by the photodetector 6.
In the state where the sample does not exist in the scattered field 40, the laser light is output from the laser light source 2 to adjust the optical axis. Then, background measurement is performed in the state where the sample does not exist in the scattering field 40. The laser light is output from the laser light source 2, and the detection element E
The detection intensity at 1 to E17 is measured.

【0020】これは、試料が存在しない状態でのバック
グラウンドの散乱光強度を検出するための測定である。
バックグラウンドの散乱光は、空気中に浮遊する粒子に
よる散乱、光学系や光学窓による散乱が原因である。次
に、散乱場40に試料を導入して、粒度分布の本測定を
行う。すなわち、検出素子E1〜E17により散乱光の
強度分布を検出して、試料の粒度分布の測定のためのデ
ータ処理を演算制御手段10により行う。
This is a measurement for detecting the background scattered light intensity in the absence of a sample.
The scattered light in the background is caused by particles suspended in the air and scattered by an optical system and an optical window. Next, the sample is introduced into the scattering field 40, and the main measurement of the particle size distribution is performed. That is, the intensity distribution of scattered light is detected by the detection elements E1 to E17, and the arithmetic control means 10 performs data processing for measuring the particle size distribution of the sample.

【0021】図3は、本発明の測定セル4の構成を示す
断面図である。測定セル4のほぼ中央部には、試料粒子
によって測定光に回折・散乱を生じさせるための空間と
して散乱場40が設けられている。粉体試料は、噴出ノ
ズル41から連続的に散乱場40に導入され、測定光の
回折・散乱により粒度分布等の測定がなされた後、気流
に乗って排出ノズル42から排出される。これらの噴出
ノズル41および排出ノズル42は、レーザ光源2から
照射される測定光および散乱場40で回折または散乱さ
れた散乱光に干渉しない位置に配置されている。
FIG. 3 is a sectional view showing the structure of the measuring cell 4 of the present invention. A scattering field 40 is provided as a space for causing the measurement light to be diffracted / scattered by the sample particles at approximately the center of the measurement cell 4. The powder sample is continuously introduced into the scattering field 40 from the jet nozzle 41, the particle size distribution and the like are measured by diffraction and scattering of the measurement light, and then the powder sample is discharged from the discharge nozzle 42 along with the air flow. The jet nozzle 41 and the discharge nozzle 42 are arranged at positions that do not interfere with the measurement light emitted from the laser light source 2 and the scattered light diffracted or scattered by the scattering field 40.

【0022】また、測定セル4には、光学窓43,44
が設けられている。測定光は、光学窓43を通して散乱
場40に入射され、散乱場40で回折・散乱された散乱
光は、光学窓44から射出される。これらの光学窓4
3,44により、散乱場40を物質的に外界から遮蔽し
ている。光学窓43,44は、光学研磨された円板状の
光学ガラス等を密封状態で測定セル4に固定したもので
ある。また、光学窓43,44の表面には、減反射コー
ティング等の光反射を低減させる処理が施されている。
Further, the measuring cell 4 has optical windows 43 and 44.
Is provided. The measurement light is incident on the scattering field 40 through the optical window 43, and the scattered light diffracted / scattered by the scattering field 40 is emitted from the optical window 44. These optical windows 4
The scattered field 40 is physically shielded from the outside by 3,44. The optical windows 43 and 44 are made of optically polished disc-shaped optical glass or the like and fixed to the measurement cell 4 in a sealed state. Further, the surfaces of the optical windows 43 and 44 are subjected to a treatment for reducing light reflection such as antireflection coating.

【0023】光学窓43,44の内側には、ほぼ糸巻き
形状の通路部材47,48が配置されている。通路部材
47の外周側には、ドーナツ形状の空気室471が設け
られている。この空気室471には圧縮空気の供給通路
45が連通しており、外部の圧縮空気源からの圧縮空気
が空気室471に供給される。通路部材47には、空気
室471に連通して、複数の噴出口472が光学窓43
の外周部に沿って離散的に形成されている。また、通路
部材47の中央部には、光学窓43側と散乱場40側と
を貫通する中央通路473が形成されている。中央通路
473は、散乱場40側が小径となるテーパ形状に形成
されている。
Inside the optical windows 43 and 44, passage members 47 and 48 having a substantially pincushion shape are arranged. A donut-shaped air chamber 471 is provided on the outer peripheral side of the passage member 47. A compressed air supply passage 45 communicates with the air chamber 471, and compressed air from an external compressed air source is supplied to the air chamber 471. The passage member 47 communicates with the air chamber 471 and has a plurality of ejection ports 472.
Are discretely formed along the outer peripheral portion of. Further, a central passage 473 is formed in the central portion of the passage member 47 so as to penetrate the optical window 43 side and the scattering field 40 side. The central passage 473 is formed in a tapered shape having a small diameter on the side of the scattered field 40.

【0024】通路部材48の構成も通路部材47と同様
であり、通路部材48には、空気室481、複数の噴出
口482および中央通路483が形成されている。レー
ザ光源2からの測定光は、太線矢印で示すように光学窓
43および中央通路473を通過して散乱場40に到達
し、散乱場40からの散乱光は、点線矢印で示すように
中央通路483および光学窓44を通過して測定セル4
の外部に射出され、光検出器6に到達する。
The structure of the passage member 48 is similar to that of the passage member 47, and the passage member 48 is formed with an air chamber 481, a plurality of ejection ports 482 and a central passage 483. The measurement light from the laser light source 2 passes through the optical window 43 and the central passage 473 to reach the scattering field 40 as indicated by the thick arrow, and the scattered light from the scattering field 40 is indicated by the dotted arrow. Measuring cell 4 passing through 483 and optical window 44
Is emitted outside and reaches the photodetector 6.

【0025】なお、実際の測定においては、光学窓4
3,44の表面を測定光の光軸と直交するようには配置
せず、光学窓43,44の表面の法線が測定光の光軸に
対して僅かな角度だけ傾斜するように測定セル4を配置
して測定を行う。傾斜角度は、例えば1〜2度とする。
このように測定セルを配置することにより、光学窓4
3,44の表面で反射した光がセル内で何度も反射を繰
り返してから光検出器6に到達することが防止され、こ
のような迷光による測定精度の悪化をなくして、測定精
度を向上させることができる。
In the actual measurement, the optical window 4
The measurement cells are not arranged so that the surfaces of the optical fibers 3, 44 are orthogonal to the optical axis of the measuring light, and the normal lines of the surfaces of the optical windows 43, 44 are inclined at a slight angle with respect to the optical axis of the measuring light. 4 is arranged and measurement is performed. The inclination angle is, for example, 1 to 2 degrees.
By arranging the measurement cell in this way, the optical window 4
It is possible to prevent the light reflected by the surfaces of 3, 44 from reaching the photodetector 6 after being repeatedly reflected in the cell, and improve the measurement accuracy by eliminating the deterioration of the measurement accuracy due to such stray light. Can be made.

【0026】空気室471内に供給された圧縮空気は、
細線矢印で示すように、複数の噴出口472から光学窓
43内面の外周部に向かって噴出され、光学窓43の内
面で折り返されて中央通路473を散乱場40に向かう
空気流となって進む。空気室481内に供給された圧縮
空気も同様に、複数の噴出口482から光学窓44内面
の外周部に向かって噴出され、光学窓44の内面で折り
返されて中央通路483を散乱場40に向かう空気流と
なって進む。これらの空気流は、粉体試料とともに排出
ノズル42から測定セル4の外部に排出される。
The compressed air supplied into the air chamber 471 is
As indicated by the thin line arrows, the air is ejected from the plurality of ejection ports 472 toward the outer peripheral portion of the inner surface of the optical window 43, is folded back at the inner surface of the optical window 43, and travels in the central passage 473 as an air flow toward the scattering field 40. . Similarly, the compressed air supplied into the air chamber 481 is also ejected from the plurality of ejection ports 482 toward the outer peripheral portion of the inner surface of the optical window 44, is folded back at the inner surface of the optical window 44, and is scattered in the central passage 483 to the scattering field 40. It becomes a heading air flow. These air streams are discharged from the measurement cell 4 through the discharge nozzle 42 together with the powder sample.

【0027】このように、光学窓43,44側から散乱
場40に向かう空気流が常に存在しているために、散乱
場40に導入された粉体試料が光学窓43,44側に拡
散することが防止され、粉体試料が付着して光学窓4
3,44の内面が汚染されることを効率的に防止でき
る。
As described above, since the air flow from the optical windows 43 and 44 to the scattering field 40 is always present, the powder sample introduced into the scattering field 40 diffuses to the optical windows 43 and 44. And the powder sample adheres to the optical window 4
It is possible to effectively prevent the inner surfaces of 3, 44 from being contaminated.

【0028】ここで、光学窓43,44の外周縁に噴出
口472,482が離散的に設けられているため、噴出
口472,482から噴出する空気流の速度が大きくな
り、たとえ光学窓43,44に粉体が付着していたとし
ても、それらを効率的に除去する作用がある。また、中
央通路473,483を散乱場40の方向に向かう空気
流の速度も大きくなるため、光学窓43,44の汚染防
止効果もさらに向上する。
Here, since the jet outlets 472 and 482 are discretely provided on the outer peripheral edges of the optical windows 43 and 44, the velocity of the air flow jetted from the jet outlets 472 and 482 is increased, and even if the optical window 43 is used. , 44, even if the powder adheres to them, it has an effect of efficiently removing them. In addition, since the velocity of the air flow that goes through the central passages 473 and 483 toward the scattering field 40 also increases, the effect of preventing contamination of the optical windows 43 and 44 is further improved.

【0029】噴出口を光学窓43,44の外周縁の全周
に渡るスリット形状とした場合には、噴出口から噴出す
る空気流の速度が低下するため、光学窓43,44の付
着物除去作用と汚染防止効果も低下してしまう。この場
合、本発明と同程度の付着物除去作用と汚染防止効果を
得るために、圧縮空気の圧力および供給量を増大させる
こともできるが、それには外部に大型大容量の圧縮空気
源が必要になるため、システム全体のコストが上昇して
しまう。本発明では、小型の圧縮空気源によって高速の
空気流を生じさせることができ、システム全体のコスト
を低減させることができる。
When the ejection port is formed in a slit shape over the entire outer peripheral edges of the optical windows 43 and 44, the velocity of the air flow ejected from the ejection port decreases, so that the adhered substances on the optical windows 43 and 44 are removed. The action and the anti-pollution effect are also reduced. In this case, it is possible to increase the pressure and supply amount of the compressed air in order to obtain the deposit removing effect and the pollution preventing effect to the same extent as in the present invention, but this requires an external large-capacity compressed air source. Therefore, the cost of the entire system increases. In the present invention, a high-speed air flow can be generated by a small compressed air source, and the cost of the entire system can be reduced.

【0030】図4は、通路部材47,48における噴出
口472,482の配置を示す図である。図4は、通路
部材47を図3における左方向から見た図である。この
図4では、通路部材47について示しているが、通路部
材48においても同様である。図4(a)では、通路部
材47aの噴出口472が、外周縁の全周に渡り均等に
分布するように配置されている。噴出口472の配置と
しては単純で製造コストも低下する。しかし、圧縮空気
が図に示すように空気室471の一方の側だけから供給
されている場合には、圧縮空気の供給側の噴出口472
からの噴出量よりも、反対側の噴出口472からの噴出
量が少し大きくなるという問題点がある。
FIG. 4 is a view showing the arrangement of the ejection ports 472 and 482 in the passage members 47 and 48. FIG. 4 is a view of the passage member 47 viewed from the left side in FIG. Although FIG. 4 shows the passage member 47, the same applies to the passage member 48. In FIG. 4A, the ejection ports 472 of the passage member 47a are arranged so as to be evenly distributed over the entire circumference of the outer peripheral edge. The arrangement of the ejection port 472 is simple and the manufacturing cost is reduced. However, when the compressed air is supplied from only one side of the air chamber 471 as shown in the drawing, the jet port 472 on the compressed air supply side is provided.
There is a problem that the ejection amount from the ejection port 472 on the opposite side is slightly larger than the ejection amount from the.

【0031】図4(b)は、このような噴出量の不均一
をなくし、噴出量の均一度をさらに向上させる配置を示
すものである。図4(b)では、通路部材47bの噴出
口472が、圧縮空気の供給側の分布密度が反対側の分
布密度よりも大きくなるように配置されている。すなわ
ち、通路部材47bの圧縮空気供給と反対側(図の下
側)では、噴出口472の分布密度が図4(a)の通路
部材47aの配置と同一であるが、圧縮空気の供給側
(図の上側)では、噴出口472の分布密度が下半分よ
りも大きくなるように配置されている。これにより、噴
出口472からの空気噴出量を光学窓の全周でほぼ均一
とすることができる。噴出口472の分布密度は、実験
等により空気噴出量が均一となるように設定する。
FIG. 4B shows an arrangement for eliminating such nonuniformity of the ejection amount and further improving the uniformity of the ejection amount. In FIG. 4B, the ejection ports 472 of the passage member 47b are arranged so that the distribution density of the compressed air on the supply side is higher than the distribution density on the opposite side. That is, on the side of the passage member 47b opposite to the compressed air supply (the lower side of the figure), the distribution density of the ejection ports 472 is the same as the arrangement of the passage member 47a of FIG. 4A, but the compressed air supply side ( In the upper part of the drawing), the distribution density of the ejection ports 472 is arranged to be larger than that of the lower half. Thereby, the amount of air jetted from the jet port 472 can be made substantially uniform over the entire circumference of the optical window. The distribution density of the ejection ports 472 is set by experiments or the like so that the air ejection amount becomes uniform.

【0032】なお、図4(a)のような噴出口472の
配置でも、圧縮空気を空気室471の全周から均等に供
給する(例えば、図の上下対称の2方向から供給する)
ようにすれば、空気噴出量の不均一性を減少させること
ができる。しかし、供給通路45を空気室471の周囲
に均等に配置しなければならず、測定セルの構造が複雑
化してコスト上昇を招くとともに、測定セルの小型化も
困難となる。図4(b)のように、噴出口472の分布
密度を調整して空気噴出量を均一なものとすれば、コス
ト上昇もほとんどなく、測定セルの小型化も容易であ
る。
Even in the arrangement of the jet outlets 472 as shown in FIG. 4A, the compressed air is uniformly supplied from the entire circumference of the air chamber 471 (for example, it is supplied from two vertically symmetrical directions in the drawing).
By doing so, it is possible to reduce the non-uniformity of the air ejection amount. However, the supply passages 45 must be evenly arranged around the air chamber 471, which complicates the structure of the measuring cell and increases the cost, and also makes it difficult to downsize the measuring cell. As shown in FIG. 4B, if the distribution density of the ejection ports 472 is adjusted to make the air ejection amount uniform, the cost hardly increases and the measurement cell can be easily downsized.

【0033】なお、演算制御手段10や他のコンピュー
タ、コントローラによって、供給通路45,46に供給
する圧縮空気の供給量を制御して、噴出口472,48
2からの空気噴出量を最適値に制御することができる。
また、手動操作により空気噴出量を変更可能とすること
もできる。さらに、例えば測定開始時に、噴出口からの
空気噴出量を一時的に増大させて、光学窓表面の付着物
を除去するようにしたり、測定中の任意の時点で、同様
にして付着物を除去することもできる。
The operation control means 10 or another computer or controller controls the amount of compressed air supplied to the supply passages 45 and 46 to control the jet ports 472 and 48.
The air ejection amount from 2 can be controlled to an optimum value.
Further, the air ejection amount can be changed by a manual operation. Furthermore, for example, at the start of measurement, the amount of air ejected from the ejection port can be temporarily increased to remove the deposits on the surface of the optical window, or the deposits can be similarly removed at any time during the measurement. You can also do it.

【0034】以上のように、本発明の測定セルによれ
ば、噴出口からの噴出空気流を高速かつ均一なものとす
ることができ、光学窓に粉体試料等が付着することを効
率よく防止することができ、しかも測定セルの低コスト
化と小型化が可能なる。光学窓の汚染防止効果が向上す
るので、人手による光学窓の清掃等を行うことなく、連
続的あるいは間欠的な粒度測定を長時間に渡って実行す
ることができる。また、測定結果も高精度で安定した結
果が得られる。さらに、測定セルを清掃する作業がほと
んど必要なくなり、メインテナンス作業も軽減できる。
As described above, according to the measuring cell of the present invention, the jet air flow from the jet outlet can be made high speed and uniform, and the powder sample or the like can be efficiently attached to the optical window. This can be prevented, and the cost and size of the measuring cell can be reduced. Since the effect of preventing contamination of the optical window is improved, continuous or intermittent particle size measurement can be performed for a long time without manually cleaning the optical window. In addition, the measurement result is highly accurate and stable. Furthermore, the work of cleaning the measuring cell is almost unnecessary, and the maintenance work can be reduced.

【0035】なお、以上の実施の形態においては、加圧
流体として圧縮空気を例に挙げて説明しているが、その
他の気体や液体でもよい。また、測定光の光源として
も、レーザ光源以外の光源を使用することができる。
In the above embodiment, the compressed fluid is described as an example of the pressurized fluid, but other gas or liquid may be used. Also, as the light source of the measurement light, a light source other than the laser light source can be used.

【0036】[0036]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下のような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0037】光学窓の内面に加圧流体を噴出させる噴出
口を光学窓の内側の外周部に離散的に配置するようにし
たので、噴出口からの噴出空気流を高速で均一なものと
することができ、光学窓に粉体試料等が付着することを
効率よく防止することができ、しかも測定セルの低コス
ト化と小型化が可能なる。光学窓の汚染防止効果が向上
するので、人手による光学窓の清掃等を行うことなく、
連続的あるいは間欠的な粒度測定を長時間に渡って実行
することができる。また、測定結果も高精度で安定した
結果が得られる。さらに、測定セルを清掃する作業がほ
とんど必要なくなり、メインテナンス作業も軽減でき
る。
Since the jet outlets for jetting the pressurized fluid to the inner surface of the optical window are arranged discretely on the outer peripheral portion inside the optical window, the jet air flow from the jet outlet can be made uniform at high speed. Therefore, it is possible to efficiently prevent the powder sample and the like from adhering to the optical window, and further reduce the cost and size of the measurement cell. Since the effect of preventing contamination of the optical window is improved, without manually cleaning the optical window,
Continuous or intermittent particle size measurements can be performed over long periods of time. In addition, the measurement result is highly accurate and stable. Furthermore, the work of cleaning the measuring cell is almost unnecessary, and the maintenance work can be reduced.

【0038】加圧流体が光学窓の内面にほぼ均一に噴出
されるように噴出口を配置するようにしたので、噴出口
からの噴出空気流を均一なものとなり、光学窓に粉体試
料等が付着することを効率よく防止することができる。
Since the ejection port is arranged so that the pressurized fluid is ejected almost uniformly on the inner surface of the optical window, the air flow ejected from the ejection port becomes uniform, and the powder sample or the like is ejected onto the optical window. Can be efficiently prevented from adhering.

【0039】噴出口を供給通路側の分布密度が反対側の
分布密度よりも大きくなるように配置するようにしたの
で、噴出口からの噴出空気流を均一なものとすることが
でき、光学窓に粉体試料等が付着することを効率よく防
止することができる。
Since the jet outlets are arranged so that the distribution density on the supply passage side is higher than the distribution density on the opposite side, the jet air flow from the jet outlets can be made uniform and the optical window It is possible to efficiently prevent the powder sample and the like from adhering to the.

【0040】光源から入射される測定光の光軸に対し
て、光学窓の表面の法線が傾斜するように測定セルを配
置して測定を行うようにしたので、光学窓の表面で反射
した光がセル内で何度も反射を繰り返してから光検出器
に到達することが防止され、このような迷光による測定
精度の悪化をなくして、測定精度を向上させることがで
きる。
Since the measurement cell is arranged so that the normal line of the surface of the optical window is inclined with respect to the optical axis of the measuring light incident from the light source, the measurement is performed, so that the light is reflected by the surface of the optical window. It is possible to prevent the light from reaching the photodetector after being repeatedly reflected in the cell, and to prevent the deterioration of the measurement accuracy due to such stray light and improve the measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の測定セルを使用した粒度分布
測定装置の構成を示す概略図である。
FIG. 1 is a schematic diagram showing the configuration of a particle size distribution measuring apparatus using a measuring cell of the present invention.

【図2】図2は、光検出器の具体例を示す図である。FIG. 2 is a diagram showing a specific example of a photodetector.

【図3】図3は、測定セルの構成を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration of a measuring cell.

【図4】図4は、通路部材における噴出口の配置を示す
図である。
FIG. 4 is a diagram showing an arrangement of ejection ports in a passage member.

【符号の説明】[Explanation of symbols]

1…粒度分布測定装置 2…レーザ光源 3…コリメータ 4…測定セル 5…集光レンズ 6…光検出器 7…マルチプレクサ 8…増幅アンプ 9…A/D変換器 10…演算制御手段 11…出力手段 40…散乱場 41…噴出ノズル 42…排出ノズル 43,44…光学窓 45,46…供給通路 47,48…通路部材 471,481…空気室 472,482…噴出口 473,483…中央通路 1. Particle size distribution measuring device 2 ... Laser light source 3 ... Collimator 4 ... Measuring cell 5 ... Condensing lens 6 ... Photodetector 7 ... Multiplexer 8 ... Amplifying amplifier 9 ... A / D converter 10 ... Arithmetic control means 11 ... Output means 40 ... Scattering field 41 ... Jet nozzle 42 ... Discharge nozzle 43, 44 ... Optical window 45, 46 ... Supply passage 47, 48 ... Passage member 471, 481 ... Air chamber 472, 482 ... Spout 473, 483 ... Central passage

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光源(2)からの測定光を測定セル内部の
散乱場(40)に照射して試料の粒度を測定する粒度セ
ンサー用測定セルであって、 前記光源(2)から照射される測定光および前記散乱場
(40)で回折または散乱された散乱光に干渉しない位
置に配置され、粉体試料を前記散乱場(40)に導入す
る噴出ノズル(41)と、 前記散乱場(40)に測定光を入射させるとともに、前
記散乱場(40)からの散乱光を前記測定セル(4)外
に射出させる光学窓(43,44)と、 前記光学窓(43,44)の内面の外周部に離散的に配
置され、前記光学窓(43,44)の内面に加圧流体を
噴出させる噴出口(472,482)と、 前記噴出口(472,482)から噴出された加圧流体
を前記光学窓(43,44)から前記散乱場(40)に
向けて流通させる流体通路(473,483)と、 前記散乱場(40)において測定された粉体試料を排出
する排出ノズル(42)とを有する粒度センサー用測定
セル。
1. A particle size sensor measuring cell for measuring the particle size of a sample by irradiating the scattered light (40) inside the measuring cell with the measuring light from the light source (2), which is irradiated from the light source (2). An ejection nozzle (41) arranged at a position that does not interfere with the measurement light and the scattered light diffracted or scattered by the scattering field (40) and introducing a powder sample into the scattering field (40); 40), and an optical window (43, 44) that causes the scattered light from the scattered field (40) to be emitted to the outside of the measurement cell (4) while the measuring light is incident on the inner surface of the optical window (43, 44). Of the nozzles (472, 482), which are discretely arranged on the outer peripheral portion of the optical window (43, 44) and eject the pressurized fluid onto the inner surface of the optical window (43, 44), and the pressure applied from the nozzles (472, 482). A fluid from the optical window (43, 44) to the scattering field A measuring cell for a particle size sensor, which has a fluid passage (473, 483) flowing toward (40) and an ejection nozzle (42) for ejecting the powder sample measured in the scattering field (40).
【請求項2】請求項1に記載した粒度センサー用測定セ
ルであって、 前記噴出口(472,482)は、加圧流体が前記光学
窓(43,44)の内面にほぼ均一に噴出するように配
置されるものである粒度センサー用測定セル。
2. The measurement cell for the particle size sensor according to claim 1, wherein the jetted fluid (472, 482) jets the pressurized fluid substantially uniformly onto the inner surface of the optical window (43, 44). A measuring cell for a particle size sensor, which is arranged as follows.
【請求項3】請求項2に記載した粒度センサー用測定セ
ルであって、 加圧流体の供給通路(45,47)を有し、 前記噴出口(472,482)は、前記供給通路(4
5,47)側の分布密度が反対側の分布密度よりも大き
くなるように配置されている粒度センサー用測定セル。
3. The measurement cell for a particle size sensor according to claim 2, further comprising a supply passage (45, 47) for pressurized fluid, wherein the jet outlets (472, 482) are provided in the supply passage (4).
5, 47) A measuring cell for a particle size sensor, which is arranged so that the distribution density on the side is higher than the distribution density on the opposite side.
【請求項4】請求項1〜3のいずれか1項に記載した粒
度センサー用測定セルであって、 前記光源(2)から入射される測定光の光軸に対して、
前記光学窓(43,44)の表面の法線が傾斜するよう
に配置して測定を行うものである粒度センサー用測定セ
ル。
4. The measurement cell for a particle size sensor according to claim 1, wherein the measurement light incident from the light source (2) is an optical axis.
A measuring cell for a particle size sensor, which is arranged so that the normal line of the surface of the optical window (43, 44) is inclined to perform the measurement.
JP2002079473A 2002-03-20 2002-03-20 Measuring cell for particle size sensor Expired - Fee Related JP3679064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079473A JP3679064B2 (en) 2002-03-20 2002-03-20 Measuring cell for particle size sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079473A JP3679064B2 (en) 2002-03-20 2002-03-20 Measuring cell for particle size sensor

Publications (2)

Publication Number Publication Date
JP2003279466A true JP2003279466A (en) 2003-10-02
JP3679064B2 JP3679064B2 (en) 2005-08-03

Family

ID=29228936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079473A Expired - Fee Related JP3679064B2 (en) 2002-03-20 2002-03-20 Measuring cell for particle size sensor

Country Status (1)

Country Link
JP (1) JP3679064B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005900A1 (en) * 2002-06-07 2004-01-15 Kyowa Hakko Kogyo Co., Ltd. Powder density-measuring device and automatic powder spray amount control system using the same
JP2006138833A (en) * 2004-06-11 2006-06-01 Fuji Electric Systems Co Ltd Fine particle measuring device
JP2007024782A (en) * 2005-07-20 2007-02-01 Shimadzu Corp Instrument for measuring particle size distribution
KR101096156B1 (en) 2010-07-07 2011-12-20 안강호 Paticle measurement apparatus
ES2371950A1 (en) * 2009-03-05 2012-01-12 Universidad Del Pais Vasco-Euskal Herriko Unibersitatea Device with agitation for optical measurements in situ. (Machine-translation by Google Translate, not legally binding)
WO2013091118A1 (en) * 2011-12-22 2013-06-27 Nanotion Ag Method and apparatus for analysis of samples containing small particles
JP2013137267A (en) * 2011-12-28 2013-07-11 Sony Corp Microchip and microchip-type fine-particle measuring device
JP2013231638A (en) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd Concentration measuring apparatus and denitrification device
JP2013245952A (en) * 2012-05-23 2013-12-09 Mitsubishi Heavy Ind Ltd Concentration measuring device and denitrification device
JP2015224973A (en) * 2014-05-28 2015-12-14 アズビル株式会社 Particle detector

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005900A1 (en) * 2002-06-07 2004-01-15 Kyowa Hakko Kogyo Co., Ltd. Powder density-measuring device and automatic powder spray amount control system using the same
JPWO2004005900A1 (en) * 2002-06-07 2005-11-04 協和醗酵工業株式会社 Powder concentration measuring device and powder spray amount automatic control system using this powder concentration measuring device
JP2006138833A (en) * 2004-06-11 2006-06-01 Fuji Electric Systems Co Ltd Fine particle measuring device
JP2007024782A (en) * 2005-07-20 2007-02-01 Shimadzu Corp Instrument for measuring particle size distribution
JP4701891B2 (en) * 2005-07-20 2011-06-15 株式会社島津製作所 Particle size distribution measuring device
ES2371950A1 (en) * 2009-03-05 2012-01-12 Universidad Del Pais Vasco-Euskal Herriko Unibersitatea Device with agitation for optical measurements in situ. (Machine-translation by Google Translate, not legally binding)
KR101096156B1 (en) 2010-07-07 2011-12-20 안강호 Paticle measurement apparatus
WO2013091118A1 (en) * 2011-12-22 2013-06-27 Nanotion Ag Method and apparatus for analysis of samples containing small particles
JP2013137267A (en) * 2011-12-28 2013-07-11 Sony Corp Microchip and microchip-type fine-particle measuring device
JP2013231638A (en) * 2012-04-27 2013-11-14 Mitsubishi Heavy Ind Ltd Concentration measuring apparatus and denitrification device
JP2013245952A (en) * 2012-05-23 2013-12-09 Mitsubishi Heavy Ind Ltd Concentration measuring device and denitrification device
JP2015224973A (en) * 2014-05-28 2015-12-14 アズビル株式会社 Particle detector

Also Published As

Publication number Publication date
JP3679064B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3679064B2 (en) Measuring cell for particle size sensor
US6431014B1 (en) High accuracy aerosol impactor and monitor
US7044610B2 (en) Method and apparatus for preventing debris contamination of optical elements used for imaging
GB2544196A (en) Portable real-time biological aerosol-detecting device
JP2011069641A (en) Radiation inspection apparatus
KR20170026108A (en) Particle detecting apparatus for measuring size and concentration of particles by photon counting
CN207396354U (en) A kind of laser-induced breakdown spectroscopy device for powdered ingredients on-line checking
JP5837889B2 (en) Filter and membrane defect detection system
JP2009025036A (en) Particle size distribution measuring instrument
WO2021017673A1 (en) Laser particle size analyzer having liquid sheath flow measuring cell
JPS61189442A (en) Concentration measuring instrument for liquid developer or the like
JPH09304349A (en) Wet magnetic particle examination method and device
US20130141722A1 (en) System and method for analyzing pore sizes of substrates
EP1957949B1 (en) Probe apparatus for measuring a color property of a liquid
CN113125368B (en) Aerosol extinction instrument and measuring method thereof
JP4701891B2 (en) Particle size distribution measuring device
CN210571845U (en) Laser particle size analyzer with liquid sheath flow measuring cell
JP3674203B2 (en) Fine particle measuring device
WO2017221495A1 (en) Liquid film forming nozzle
JP6739094B2 (en) Liquid film generator and liquid film cartridge used therefor
JPH04127033A (en) Particle counter
JPH08128941A (en) Particle size distribution measuring equipment
JP4354132B2 (en) PARTICLE SIZE DISTRIBUTION MEASURING DEVICE, SAMPLING METHOD AND SAMPLING SHEET USED FOR PARTICLE SIZE DISTRIBUTION MEASURING DEVICE
JPS63231244A (en) Cell analysis instrument
JP2581384Y2 (en) Airborne particle size distribution analyzer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Ref document number: 3679064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees