JP5042602B2 - 遊技機 - Google Patents

遊技機 Download PDF

Info

Publication number
JP5042602B2
JP5042602B2 JP2006319375A JP2006319375A JP5042602B2 JP 5042602 B2 JP5042602 B2 JP 5042602B2 JP 2006319375 A JP2006319375 A JP 2006319375A JP 2006319375 A JP2006319375 A JP 2006319375A JP 5042602 B2 JP5042602 B2 JP 5042602B2
Authority
JP
Japan
Prior art keywords
game
state
board
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006319375A
Other languages
English (en)
Other versions
JP2008132086A (ja
Inventor
和俊 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP2006319375A priority Critical patent/JP5042602B2/ja
Publication of JP2008132086A publication Critical patent/JP2008132086A/ja
Application granted granted Critical
Publication of JP5042602B2 publication Critical patent/JP5042602B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、遊技媒体を用いて遊技者が所定の遊技を行うことが可能であり、外枠に対して開閉自在に設置される遊技枠と、遊技枠に取り付けられ、所定の板状体および板状体に取り付けられる各種部品を含む遊技盤とを備えた遊技機に関する。
遊技機として、遊技球などの遊技媒体を発射装置によって遊技領域に発射し、遊技領域に設けられている入賞口などの入賞領域に遊技媒体が入賞すると、所定個の賞球が遊技者に払い出されるものがある。さらに、識別情報を可変表示(「変動」ともいう。)可能な可変表示装置が遊技盤に設けられ、可変表示装置において識別情報の可変表示の表示結果が特定表示結果となった場合に遊技者にとって有利な特定遊技状態に制御可能になるように構成されたものがある。
特定遊技状態とは、所定の遊技価値が付与された遊技者にとって有利な状態を意味する。具体的には、特定遊技状態は、例えば特別可変入賞装置の状態を打球が入賞しやすい遊技者にとって有利な状態(大当り遊技状態)、遊技者にとって有利な状態になるための権利が発生した状態、景品遊技媒体払出の条件が成立しやすくなる状態などの所定の遊技価値が付与された状態である。
そのような遊技機では、識別情報としての図柄を表示する可変表示装置の表示結果があらかじめ定められた特定の表示態様の組合せ(特定表示結果)になることを、通常、「大当り」という。大当りが発生すると、例えば、大入賞口が所定回数開放して打球が入賞しやすい大当り遊技状態に移行する。そして、各開放期間において、所定個(例えば10個)の大入賞口への入賞があると大入賞口は閉成する。そして、大入賞口の開放回数は、所定回数(例えば15ラウンド)に固定されている。なお、各開放について開放時間(例えば29.5秒)が決められ、入賞数が所定個に達しなくても開放時間が経過すると大入賞口は閉成する。また、大入賞口が閉成した時点で所定の条件(例えば、大入賞口内に設けられているVゾーンへの入賞)が成立していない場合には、大当り遊技状態を終了するように構成されたものもある。
また、そのような遊技機では、演出用の電気部品としてランプが設けられ、遊技状態に応じて可変表示装置における表示状態を制御するとともに、ランプの表示状態を制御することによって、各種の遊技演出を実行することが行われている。例えば、特許文献1には、玉貯留皿の遊技球が一杯になったときに点灯して遊技者に知らせるためのオーバーフローランプが設けられた遊技機が記載されている。
特開平6−71033号公報(段落0027−0028、図2)
特許文献1に記載された遊技機によれば、可変表示装置やスピーカなど遊技演出用の演出装置とは別に玉貯留皿(貯留部)に設けられたオーバーフローランプを用いて満タン状態を報知するので、遊技演出(例えば、大当り中の演出)を途中で中断して満タンエラーを報知する事態を防止することができる。しかし、遊技制御手段が玉貯留皿に設けられたオーバーフローランプを含む複数のランプを直接制御しなければならず、遊技制御手段の処理負担が大きい。
そこで、本発明は、実行中の演出を中断させることなく貯留部の満タン状態を報知することができ、遊技制御手段の処理負担を軽減できる遊技機を提供することを目的とする。
本発明による遊技機は、遊技媒体(例えば、遊技球)を用いて遊技者が所定の遊技を行うことが可能であり、外枠に対して開閉自在に設置される遊技枠(例えば、遊技枠11)と、遊技枠に取り付けられ、所定の板状体および板状体に取り付けられる各種部品を含む遊技盤(例えば、遊技盤6)とを備えた遊技機であって、遊技機の前面に配置され、所定の発光体(例えば、下皿ランプの各LED84a〜84f)が設けられるとともに遊技媒体を貯留可能な貯留部(例えば、余剰球受皿(下皿)4)と、遊技の進行を制御し、演出用の電気部品(例えば、可変表示装置9、スピーカ27、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)を制御させるための演出制御コマンドを送信する遊技制御手段(例えば、遊技制御用マイクロコンピュータ560)と、遊技制御手段が送信した演出制御コマンドに応じて、貯留部に設けられた発光体を含む演出用の電気部品を制御する演出制御手段(例えば、演出制御用マイクロコンピュータ100)とを備え、遊技制御手段の送信する演出制御コマンドは、貯留部に所定量以上の遊技媒体が貯留された状態である満タン状態となったことにもとづいて送信されるコマンド(例えば、入力ポートデータ指定コマンド)が含まれ、演出制御手段は、遊技制御手段から送信された演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段(例えば、演出制御用マイクロコンピュータ100におけるステップS708を実行する部分)を含み、遊技盤に設けられた盤側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC616〜618)および遊技枠に設けられた枠側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC610〜615)をさらに備え、盤側シリアル−パラレル変換回路は、出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技盤に設けられた電気部品(例えば、ランプのLED125a〜125f,126a〜126f、モータ151a,152a)に出力し、枠側シリアル−パラレル変換回路は、出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技枠に設けられた電気部品(例えば、ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)に出力し、出力手段は、遊技制御手段から貯留部が満タン状態となったことを示すコマンドが送信されたことにもとづいて、貯留部に設けられた所定の発光体により、貯留部の満タン状態を報知するための制御信号をシリアル信号方式で出力する満タン報知制御手段(例えば、演出制御用マイクロコンピュータ100におけるステップS1941,S1998を実行する部分)を含むことを特徴とする。
貯留部に設けられた所定の発光体(例えば、下皿ランプの各LED84a〜84f)がは、貯留部の周縁部(例えば、余剰球受皿(下皿)4の上面側)に設けられているように構成されていることが望ましい。
演出制御手段は、遊技状態に応じて貯留部に設けられた所定の発光体を含む遊技機に設けられた発光体の発光状態を制御する貯留部発光体制御手段(例えば、演出制御用マイクロコンピュータ100におけるステップS835C,S845C,S1917,S1923,S1928,S1934,S1941,S1945,S1949,S1970,S1976,S1983,S1990,S1998,S2003,S2008のシリアル設定処理の設定内容に従ってステップS708を実行する部分)を含み、満タン報知制御手段は、貯留部発光体制御手段によって貯留部に設けられた発光体の発光状態が制御されるときとは異なる発光態様で、貯留部に設けられた所定の発光体の発光状態を制御して満タン報知を実行する(例えば、演出制御用マイクロコンピュータ100は、ステップS1941,S1998を実行することによって、下皿ランプの各LED84a〜84fを点滅させることによって満タンエラーを報知する。)ように構成されていてもよい。
遊技機は、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板(例えば、中継基板606,607)、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板(例えば、中継基板607)が設けられているように構成されていてもよい。
遊技機は、枠側シリアル−パラレル変換回路または盤側シリアル−パラレル変換回路を複数搭載した集合基板(例えば、複数のシリアル−パラレル変換IC616〜618を搭載した盤側IC基板601、複数のシリアル−パラレル変換IC610,611を搭載した枠側IC基板602)が設けられているように構成されていてもよい。
遊技機は、遊技制御手段(例えば、遊技制御用マイクロコンピュータ560)が搭載された遊技制御基板(例えば、主基板31)と、遊技媒体の払い出しを行う払出手段(例えば、球払出装置97)と、払出手段を制御する払出制御処理を実行する払出制御手段(例えば、払出制御用マイクロコンピュータ370)が搭載された払出制御基板(例えば、払出制御基板37)と、演出制御手段(例えば、演出制御用マイクロコンピュータ100)が搭載された演出制御基板(例えば、演出制御基板80)とを備え、払出制御基板に、遊技媒体の払い出しに関するエラー状態を含む遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号(例えば、図15に示す入力ポート1のビット0〜4のデータ)を遊技制御基板に対して出力する状態通知手段(例えば、払出制御用マイクロコンピュータ370において入力判定処理を実行する部分(図75参照)、および出力回路373B)が設けられ、遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号は、遊技制御基板において一時にアクセス可能な入力ポート部(例えば、図15に示す入力ポート1)に入力され、遊技制御手段は、入力ポート部に入力される複数の状態検出信号のうちのいずれか1つ以上の状態が変化したか否かを判定する状態検出信号判定手段(例えば、遊技制御用マイクロコンピュータ560においてステップS1582,S1583の処理(図61参照)を実行する部分)と、状態検出信号判定手段が複数の状態検出信号のうちのいずれか1つ以上の状態が変化したと判定したときに、入力ポート部に入力されている複数の状態検出信号の状態を一括してコマンドとして送信する入力ポートデータ送信手段(例えば、遊技制御用マイクロコンピュータ560においてステップS1584〜S1586、S591〜S593の処理(図61および図62参照)を実行する部分)とを含み、演出制御手段は、入力ポートデータ送信手段が送信したコマンドにもとづいて遊技機の状態に関する複数種類の情報のいずれの状態が変化したかを判定する入力ポートデータ判定手段(例えば、演出制御用マイクロコンピュータ100においてステップS611,S651〜S653,S655,S656,S658,S660,S662,S664,S671,S673,S676の処理を実行する部分)を含み、出力手段は、入力ポートデータ判定手段が判定した遊技機の状態に関する情報に対応する報知をするための制御信号をシリアル信号方式で出力する状態報知制御手段(例えば、演出制御用マイクロコンピュータ100において報知開始処理および報知中処理を実行する部分(図95参照))を含むように構成されていてもよい。
請求項1記載の発明によれば、遊技制御手段の送信する演出制御コマンドは、貯留部に所定量以上の遊技媒体が貯留された状態である満タン状態となったことにもとづいて送信されるコマンドが含まれ、出力手段が、遊技制御手段から貯留部が満タン状態となったことを示すコマンドが送信されたことにもとづいて、貯留部に設けられた所定の発光体により、貯留部の満タン状態を報知するための制御信号をシリアル信号方式で出力する満タン報知制御手段を含むように構成されているので、スピーカや可変表示装置による遊技演出(例えば、大当り中の演出)を中断することなく、満タン状態を報知することができる。また、貯留部に設けられた所定の発光体の発光状態の制御を演出制御手段が行うので、遊技制御手段の処理負担を軽減することができる。また、演出制御手段が、遊技制御手段から受信した演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段を含み、遊技盤に設けられた盤側シリアル−パラレル変換回路および遊技枠に設けられた枠側シリアル−パラレル変換回路を備え、盤側シリアル−パラレル変換回路が、出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技盤に設けられた電気部品に出力し、枠側シリアル−パラレル変換回路が、出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技枠に設けられた電気部品に出力するように構成されているので、シリアル信号方式の制御信号を用いて発光体を含む電気部品を制御することができ、遊技盤と遊技枠との間の配線数を低減することができるとともに、遊技盤と遊技枠との間の配線の取り回しを容易化することができる。
請求項2記載の発明によれば、貯留部に設けられた所定の発光体は、貯留部の周縁部に設けられているように構成されているので、貯留部を囲むような態様で設けられた所定の発光体を発光させることによって、満タン報知などの報知状態を遊技者に認識させやすくすることができる。
請求項3記載の発明によれば、演出制御手段が、遊技状態に応じて貯留部に設けられた所定の発光体を含む遊技機に設けられた発光体の発光状態を制御する貯留部発光体制御手段を含み、満タン報知手段が、貯留部発光体制御手段によって貯留部に設けられた発光体の発光状態が制御されるときとは異なる発光態様で、貯留部に設けられた所定の発光体の発光状態を制御して満タン報知を実行するように構成されているので、満タン状態を報知するためだけに特別な発光体を設ける必要をなくすことができ、満タン報知のためのコストを低減することができる。
請求項4記載の発明によれば、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板が設けられているように構成されているので、中継基板への接続作業や取り外し作業を行うだけで遊技枠と遊技盤との脱着作業を容易に行うことができる。
請求項5記載の発明によれば、枠側シリアル−パラレル変換回路または盤側シリアル−パラレル変換回路を複数搭載した集合基板が設けられているように構成されているので、遊技機における部品点数を低減することができる。
請求項6記載の発明によれば、遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号が、遊技制御基板において一時にアクセス可能な入力ポート部に入力され、遊技制御手段が、入力ポート部に入力される複数の状態検出信号のうちのいずれか1つ以上の状態が変化したか否かを判定する状態検出信号判定手段と、状態検出信号判定手段が複数の状態検出信号のうちのいずれか1つ以上の状態が変化したと判定したときに、入力ポート部に入力されている複数の状態検出信号の状態を一括してコマンドとして送信する入力ポートデータ送信手段とを含み、演出制御手段が、入力ポートデータ送信手段が送信したコマンドにもとづいて遊技機の状態に関する複数種類の情報のいずれの状態が変化したかを判定する入力ポートデータ判定手段を含み、出力手段が、入力ポートデータ判定手段が判定した遊技機の状態に関する情報に対応する報知をするための制御信号をシリアル信号方式で出力する状態報知制御手段を含むように構成されているので、遊技機の状態に関する複数種類の情報のそれぞれを区別して報知できるようになるとともに、そのようにした場合に遊技制御手段の情報判定の制御負担を増大させないようにすることができる。また、入力ポート部に入力される複数の状態検出信号のうちのいずれか1つ以上の状態が変化したことを条件に、遊技制御基板から複数の状態検出信号が送信されるので、遊技制御基板から送信される信号にもとづいて遊技制御手段の制御状態を把握することは困難であり、結果として、不正行為を防止できる可能性が高くなる。
以下、本発明の実施形態を図面を参照して説明する。
まず、遊技機の一例であるパチンコ遊技機の全体の構成について説明する。図1はパチンコ遊技機を正面からみた正面図である。図2は遊技枠11の前面を示す正面図である。図3は遊技盤の前面を示す正面図である。また、図4は遊技枠11に設けられた打球供給皿(上皿)3の正面および上面を示す図である。また、図5は遊技枠11に設けられた余剰球受皿(下皿)4の正面および上面を示す図である。なお、以下の実施の形態では、パチンコ遊技機を例に説明を行うが、本発明による遊技機はパチンコ遊技機に限られず、スロット機などの他の遊技機に適用することもできる。
パチンコ遊技機1は、縦長の方形状に形成された外枠(図示せず)と、外枠の内側に開閉可能に取り付けられた遊技枠11とで構成される。また、パチンコ遊技機1は、遊技枠11に開閉可能に設けられている額縁状に形成されたガラス扉枠2を有する。遊技枠11は、外枠に対して開閉自在に設置される前面枠(図示せず)と、機構部品等が取り付けられる機構板と、それらに取り付けられる種々の部品(後述する遊技盤を除く。)とを含む構造体である。
図1〜図3に示すように、パチンコ遊技機1は、額縁状に形成されたガラス扉枠2を有する。ガラス扉枠2の下部表面には、払出装置97から払い出された遊技球を貯留可能な打球供給皿(上皿)3がある。打球供給皿3の下部には、打球供給皿3に収容しきれない遊技球を貯留する余剰球受皿(下皿)4と遊技球を発射する打球操作ハンドル(操作ノブ)5が設けられている。なお、打球供給皿(上皿)3と余剰球受皿(下皿)4とは一体型に構成されていてもよい。ガラス扉枠2の背面には、図3に示すように、遊技枠11の一部を構成するプラ枠がある。プラ枠は、機構板を含み、機構板に電源回路(図示せず)やスピーカ27などの部品が取り付けられている。また、遊技枠11のプラ枠には、遊技枠11と遊技盤6との間の配線を中継する中継基板607が設けられている。また、遊技枠11の前面枠には、図3に示すように、遊技盤6が着脱可能に取り付けられている。なお、遊技盤6は、それを構成する板状体と、その板状体に取り付けられた種々の部品とを含む構造体である。また、遊技盤6の前面には遊技領域7が形成されている。
遊技領域7の中央付近には、それぞれが演出用の飾り図柄を可変表示する複数の可変表示部を含む可変表示装置(画像表示装置)9が設けられている。可変表示装置9には、例えば「左」、「中」、「右」の3つの可変表示部(図柄表示エリア)がある。可変表示装置9は、特別図柄表示器8による特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての飾り図柄の可変表示を行う。飾り図柄の可変表示を行う可変表示装置9は、演出制御基板に搭載されている演出制御用マイクロコンピュータによって制御される。
可変表示装置9の下方には、識別情報としての特別図柄を可変表示する特別図柄表示器(特別図柄表示装置)8が設けられている。この実施の形態では、特別図柄表示器8は、例えば00〜99の数字を可変表示可能な簡易で小型の表示器(例えば7セグメントLED)で実現されている。なお、特別図柄表示器8は、2桁の数字を表示するものに限らず、0〜9など他の桁数の数字を可変表示するように構成されていてもよい。また、可変表示装置9は、特別図柄表示器8による特別図柄の可変表示期間中に、装飾用(演出用)の図柄としての飾り図柄の可変表示を行う。
なお、この実施の形態において、遊技機1は、特別図柄表示器8および可変表示装置9において識別情報の可変表示の表示結果が特定表示結果(大当り図柄(小当り図柄を含む))となった場合に遊技者にとって有利な特定遊技状態(大当り遊技状態(具体的には、確変大当り状態、通常大当り状態、突然確変大当り状態、小当り状態)に制御可能になるように構成されている。特定遊技状態とは、所定の遊技価値が付与された遊技者にとって有利な状態を意味する。具体的には、特定遊技状態(大当り遊技状態(小当り状態を含む))に移行されると、大入賞口の状態を打球が入賞しやすい遊技者にとって有利な状態となる。なお、後述するように、遊技制御用マイクロコンピュータ560は、特別図柄プロセス処理において特別図柄プロセスフラグの値にもとづいて遊技状態を制御する。この実施の形態では、後述するように、特別図柄プロセスフラグの値が5以上である場合に、遊技状態が特別遊技状態に移行された状態となる。
特別図柄表示器8の右側には、始動入賞口13,14に入った有効入賞球数すなわち保留記憶(始動記憶または始動入賞記憶ともいう。)数を表示する4つの表示器からなる特別図柄保留記憶表示器18が設けられている。有効始動入賞がある毎に、1つの表示器の表示色を変化させる。そして、特別図柄表示器8の可変表示が開始される毎に、1つの表示器の表示色をもとに戻す。なお、可変表示装置9の表示領域内に、保留記憶数を表示する4つの表示領域からなる特別図柄保留記憶表示領域を設けるようにしてもよい。また、この実施の形態では、保留記憶数の上限値を4とするが、上限値をより大きい値にしてもよい。さらに、上限値を、遊技状態に応じて変更可能であるようにしてもよい。
可変表示装置9の下方には、第1始動入賞口13が設けられている。第1始動入賞口13に入賞した遊技球は、遊技盤6の背面に導かれ、第1始動口スイッチ13aによって検出される。
また、第1始動入賞口13の真下には、第2始動入賞口14が形成されている。そして、第2始動入賞口14には開閉動作を行う可変入賞球装置15が設けられている。可変入賞球装置15が閉状態のときは第2始動入賞口14に遊技球が入賞せず、可変入賞球装置15が開状態のときに第2始動入賞口14に遊技球が入賞可能となる。可変入賞球装置15は、ソレノイド16によって開閉される。可変入賞球装置15が開状態になることによって、遊技球が第2始動入賞口14に入賞し易くなり(始動入賞し易くなり)、遊技者にとって有利な状態になる。第2始動入賞口14に入賞した遊技球は、遊技盤6の背面に導かれ、第2始動口スイッチ14aによって検出される。
第2始動入賞口14の下方には、大当り遊技状態または小当り遊技状態においてソレノイド21によって開状態とされる特別可変入賞装置が設けられている。特別可変入賞装置は、開閉板20を備え、大入賞口を形成する。大入賞口に入った遊技球はカウントスイッチ23で検出される。
可変表示装置9の右側には、遊技演出に用いられる可動部材としてのトロッコ151が設けられている。トロッコ151は、遊技演出において、演出制御手段の制御に従って、図6に示すように、可変表示装置9の右側から左側方向に飛び出すような演出を行うことができる。
また、可変表示装置9の上部および右側には、遊技演出に用いられる可動部材としての梁152が設けられている。梁152は、遊技演出において、演出制御手段の制御に従って、図7に示すように、可変表示装置9の上部および右側から崩れ落ちるような演出を行うことができる。
また、パチンコ遊技機1は、図4に示すように、遊技の進行中に遊技者が操作可能な操作ボタン81a〜81eを打球供給皿(上皿)3に備えている。例えば、操作ボタン81a〜81eが操作(押下)されると、可動部材としてのトロッコ151や梁152が動作する。
ゲート32に遊技球が入賞しゲートスイッチ32aで検出されると、普通図柄表示器10の表示の可変表示が開始される。この実施の形態では、左右のランプ(点灯時に図柄が視認可能になる)が交互に点灯することによって可変表示が行われ、例えば、可変表示の終了時に右側のランプが点灯すれば当りになる。そして、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定回数、所定時間だけ開放状態になる。普通図柄表示器10の下部には、ゲート32に入った入賞球数を表示する4つのLEDによる表示部を有する普通図柄始動記憶表示器41が設けられている。ゲート32への入賞がある毎に、普通図柄始動記憶表示器41は点灯するLEDを1増やす。そして、普通図柄表示器10の可変表示が開始される毎に、点灯するLEDを1減らす。
遊技盤6には、複数の入賞口(普通入賞口)29,30,33,39が設けられ、遊技球の入賞口29,30,33,39への入賞は、それぞれ入賞口スイッチ29a,30a,33a,39aによって検出される。各入賞口29,30,33,39は、遊技媒体を受け入れて入賞を許容する領域として遊技盤6に設けられる入賞領域を構成している。なお、始動入賞口13,14や大入賞口も、遊技媒体を受け入れて入賞を許容する入賞領域を構成する。また、それぞれの入賞口29,30,33,39に入賞した遊技球を1つのスイッチで検出するようにしてもよい。
遊技領域7の中央部には、可変表示装置9を囲むように飾り部材154が取り付けられており、飾り部材154の上部には、遊技中に点灯表示したり点滅表示される装飾ランプ(センター飾り用ランプ)が設けられている。なお、この実施の形態では、センター飾り用ランプとして6個のLED125a〜125fが設けられている。また、飾り部材154には、可変表示装置9を囲むように、遊技中に点灯表示したり点滅表示される装飾ランプ(ステージランプ)が設けられている。なお、この実施の形態では、ステージランプとして6個のLED126a〜126fが設けられている。
また、遊技領域7の下部には、入賞しなかった遊技球を吸収するアウト口26がある。また、遊技領域7の外側の左右上部には、効果音を発する2つのスピーカ27が設けられている。遊技領域7の外周には、天枠ランプ、左枠ランプおよび右枠ランプが設けられている。さらに、遊技領域7における各構造物の周囲には装飾LEDが設置されている。天枠ランプ、左枠ランプ、右枠ランプおよび装飾用LEDは、遊技機に設けられている装飾発光体の一例である。この実施の形態では、天枠ランプとして12個のLED281a〜281lが設けられている。また、左枠ランプとして6個のLED282a〜282fが設けられている。また、右枠ランプとして6個のLED283a〜283fが設けられている。
また、図4に示すように、打球供給皿(上皿)3に、上皿ランプとして6個のLED82a〜82fが設けられている。この実施の形態では、図4に示すように、打球供給皿(上皿)3の左側面に2個のLED82a,82bが、正面に2個のLED82c,82dが、右側面に2個のLED82e,82fが設けられている。なお、この実施の形態において、遊技機の正面とは、遊技者が遊技をしているときに遊技者と対向する側(遊技者が見ている側)の面をいう。また、遊技機の側面とは、遊技者が遊技をしているときに遊技者の視線方向と直交する側の面をいう。この場合に、遊技者から見て左側の側面を左側面といい、遊技者から見て右側の側面を右側面という。これらのLED82a〜82fは、それぞれ打球供給皿(上皿)3の背面に設けられた各基板331,332,333,334に搭載されている。
また、打球供給皿(上皿)3の左側面には、図4に示すように、逆「く」の字形状のレンズカバー821が取り付けられており、LED82a,82bが点灯または点滅すると、レンズカバー821で光が拡散されてレンズカバー821全体が光って見える。具体的には、レンズカバー821は、保護用のレンズカバーと、ローレット状やクロスカット状に形成され裏面がギザギザ形状に形成された光拡散用のレンズカバーとで構成されており、LED82a,82bが点灯または点滅すると、光拡散用のレンズカバーで光が拡散されてレンズカバー821全体が光って見えるようにすることができる。また、光拡散用のレンズカバーには、所定色(例えば青)が着色されており、LED82a,82bが点灯または点滅することより、レンズカバー821全体が所定色(例えば青)に光って見える。なお、レンズカバー821として透明なものを用い、LED82a,82bとしてフルカラーLEDを用いて、LED82a,82bの発光色を変えることによって、レンズカバー821全体が所定色(例えば青)に光って見えるようにしてもよい。なお、打球供給皿(上皿)3の左側面のレンズカバー821の内側の三角形状の部分821Aにもレンズ部品(例えば、ロゴマークなどが描かれたもの)を用いて、内側のLED82a,82b(LED82a,82bとは別のLEDを設けてもよい)によって発光して見えるようにしてもよい。また、打球供給皿(上皿)3の左側面のレンズカバー821の内側の三角形状の部分821Aとして単に不透明な合成樹脂製の部品を用いてもよい。
また、打球供給皿(上皿)3の正面には、図4に示すように、帯型形状のレンズカバー822が取り付けられており、LED82c,82dが点灯または点滅すると、レンズカバー822で光が拡散されてレンズカバー822全体が光って見える。具体的には、レンズカバー822は、保護用のレンズカバーと、ローレット状やクロスカット状に形成され裏面がギザギザ形状に形成された光拡散用のレンズカバーとで構成されており、LED82c,82dが点灯または点滅すると、光拡散用のレンズカバーで光が拡散されてレンズカバー822全体が光って見えるようにすることができる。また、光拡散用のレンズカバーには、所定色(例えば青)が着色されており、LED82c,82dが点灯または点滅することより、レンズカバー822全体が所定色(例えば青)に光って見える。なお、レンズカバー822として透明なもの(無色の透明性のある部材)を用い、LED82c,82dとしてフルカラーLEDを用いて、LED82c,82dの発光色を変えることによって、レンズカバー822全体が所定色(例えば青)に光って見えるようにしてもよい。
また、打球供給皿(上皿)3の右側面には、図4に示すように、「く」の字形状のレンズカバー823が取り付けられており、LED82e,82fが点灯または点滅すると、レンズカバー823で光が拡散されてレンズカバー823全体が光って見える。具体的には、レンズカバー823は、保護用のレンズカバーと、ローレット状やクロスカット状に形成され裏面がギザギザ形状に形成された光拡散用のレンズカバーとで構成されており、LED82e,82fが点灯または点滅すると、光拡散用のレンズカバーで光が拡散されてレンズカバー823全体が光って見えるようにすることができる。また、光拡散用のレンズカバーには、所定色(例えば青)が着色されており、LED82e,82fが点灯または点滅することより、レンズカバー823全体が所定色(例えば青)に光って見える。なお、レンズカバー823として透明なものを用い、LED82e,82fとしてフルカラーLEDを用いて、LED82e,82fの発光色を変えることによって、レンズカバー823全体が所定色(例えば青)に光って見えるようにしてもよい。なお、打球供給皿(上皿)3の右側面のレンズカバー823の内側の三角形状の部分823Aにもレンズ部品(例えば、ロゴマークなどが描かれたもの)を用いて、内側のLED82e,82f(LED82e,82fとは別のLEDを設けてもよい)によって発光して見えるようにしてもよい。また、打球供給皿(上皿)3の右側面のレンズカバー823の内側の三角形状の部分823Aとして単に不透明な合成樹脂製の部品を用いてもよい。
なお、打球供給皿(上皿)3の各レンズカバーのうちの2つのレンズカバー821,823および上皿ランプの各LEDのうちの4つのLED82a,82b,82e,82fは、それぞれ打球供給皿(上皿)3の左側面および右側面に、遊技中の遊技者からは視認しずらい位置に設けられている。また、図4に示すように、操作ボタン81a〜81eに操作ボタンランプとして1個のLED83が設けられている。
また、図5に示すように、余剰球受皿(下皿)4に、下皿ランプとして、6個のLED84a〜84fが設けられている。この実施の形態では、図5に示すように、余剰球受皿(下皿)4の周縁部(本例では、余剰球受皿(下皿)4の上面)に6個のLED84a〜84fが設けられている。なお、これらのLED84a〜84fは、余剰球受皿(下皿)4の背面に設けられた基板431に搭載されている。
また、余剰球受皿(下皿)4の上面には、図5に示すように、「コ」の字形状のレンズカバー841が取り付けられており、LED84a〜84fが点灯または点滅すると、レンズカバー841で光が拡散されてレンズカバー841全体が光って見える。具体的には、レンズカバー841は、保護用のレンズカバーt9、ローレット状やクロスカット状に形成され裏面がギザギザ形状に形成された光拡散用のレンズカバーとで構成されており、LED84a〜84fが点灯または点滅すると、光拡散用のレンズカバーで光が拡散されてレンズカバー841全体が光って見えるようにすることができる。また、光拡散用のレンズカバーには、所定色(例えば青)が着色されており、LED84a〜84fが点灯または点滅することより、レンズカバー841全体が所定色(例えば青)に光って見える。なお、レンズカバー841として透明なものを用い、LED84a〜84fとしてフルカラーLEDを用いて、LED84a〜84fの発光色を変えることによって、レンズカバー841全体が所定色(例えば青)に光って見えるようにしてもよい。
なお、この実施の形態では、通常の遊技演出に応じた上皿ランプや下皿ランプを含む各ランプのLEDの制御として、変動パターンに応じた点灯または点滅の制御が行われる。この実施の形態では、後述するように、変動パターンに応じたプロセスデータにもとづいて各ランプのLEDの点灯または点滅の制御が行われる。
また、打球供給皿(上皿)3は、図4に示すように、ヒンジ部312を介して回動可能に遊技枠11に取り付けられている。また、ヒンジ部312がある側とは反対側の右側面には、打球供給皿(上皿)3を開放するための開放レバー317が設けられており、開放レバー317を押下することによって、遊技枠との係合状態が解除され、ヒンジ部312を軸に打球供給皿(上皿)3が回動可能な状態とされる。また、打球供給皿(上皿)3には、遊技球を貯留するための皿部350が設けられており、払出処理や球貸し処理が行われると、遊技球の注入口311から遊技球が注入され、皿部350に遊技球が貯留される。また、皿部350は左側面から右側面に向かう方向に低くなるように傾斜が設けられており、皿部350に貯留された遊技球は左側面から右側面の方向に誘導され、通路350Aを通って打球位置に誘導される。また、打球供給皿(上皿)3には上皿スライドレバー313が設けられている。打球供給皿(上皿)3の底部には打球供給皿(上皿)3に溜まった遊技球を余剰球受皿(下皿)4に移すための貫通口が設けられており、上皿スライドレバー313をスライドさせることによって打球供給皿(上皿)3の底部の貫通口が開いた状態となり、打球供給皿(上皿)3に溜まっている遊技球を余剰球受皿(下皿)4側に流入させることができる。また、打球供給皿(上皿)3には、球貸し要求操作を行うための球貸しスイッチ314や、カードユニットに挿入されたプリペイドカード等の返却操作を行うための返却スイッチ315が設けられている。なお、プリペイドカードの返却操作を行う場合に限らず、例えば、コイン形の記録媒体(例えば、ICコイン)をカードユニットに投入することにより球貸し処理を行う遊技機である場合には、返却スイッチ315を操作することによってコインが返却されるようにしてもよい。また、打球供給皿(上皿)3には、プリペイドカード等の残り度数(球貸し可能な度数、すなわち記録媒体に記録されている価値の量)を表示するための度数表示LED316が設けられている。
また、余剰球受皿(下皿)4は、図5に示すように、ヒンジ部401を介して回動可能に遊技枠11に取り付けられている。また、余剰球受皿(下皿)4には、遊技球を貯留するための皿部450が設けられており、上皿スライドレバー313が操作されたときに打球供給皿(上皿)3から流入した遊技球や、打球供給皿(上皿)3が満タン状態となってあふれて流入した遊技球が貯留される。この場合、上皿スライドレバー313が操作されたり、打球供給皿(上皿)3が満タン状態となると、打球供給皿(上皿)3からの遊技球は注入口403を通って注入され皿部450に貯留される。また、余剰球受皿(下皿)4には下皿スライドレバー402が設けられている。余剰球受皿(下皿)4の底部には余剰球受皿(下皿)4に溜まった遊技球を玉箱(遊技球を入れるための箱)に移すための貫通口が設けられており、下皿スライドレバー402をスライドさせることによって余剰球受皿(下皿)4の底部の貫通口が開いた状態となり、余剰球受皿(下皿)4に溜まっている遊技球を玉箱に流入させることができる。
打球発射装置から発射された遊技球は、打球レールを通って遊技領域7に入り、その後、遊技領域7を下りてくる。遊技球が第1始動入賞口13に入り第1始動口スイッチ13aで検出されると、または遊技球が第2始動入賞口14に入り第2始動入賞口スイッチ14aで検出されると、図柄の可変表示を開始できる状態であれば、特別図柄表示器8において特別図柄が可変表示(変動)を始めるとともに、可変表示装置9において飾り図柄が可変表示(変動)を始める。図柄の可変表示を開始できる状態でなければ、始動入賞記憶数を1増やす。
特別図柄表示器8における特別図柄の可変表示、および可変表示装置9における飾り図柄の可変表示は、一定時間が経過したときに停止する。停止時の特別図柄(停止図柄)が大当り図柄(特定表示結果)であると、大当り遊技状態に移行する。すなわち、大入賞口が、一定時間経過するまで、または、所定個数(例えば10個)の遊技球が入賞するまで開放する。
遊技球がゲート32に入賞すると、普通図柄表示器10において普通図柄が可変表示される状態になる。また、普通図柄表示器10における停止図柄が所定の図柄(当り図柄)である場合に、可変入賞球装置15が所定時間だけ開放状態になる。さらに、確変状態では、普通図柄表示器10における停止図柄が当り図柄になる確率が高められるとともに、可変入賞球装置15の開放時間と開放回数が高められる。また、時短状態(特別図柄の可変表示時間が短縮される遊技状態)において、可変入賞球装置15の開放時間と開放回数が高められるようにしてもよい。
上記のように、この実施の形態のパチンコ遊技機1には、発光体としてのランプやLEDが各所に設けられている。さらに、プリペイドカードが挿入されることによって球貸しを可能にするプリペイドカードユニット(以下、単に「カードユニット」ともいう。)が、パチンコ遊技機1に隣接して設置される(図示せず)。
図8は、遊技枠11を開いた状態を示す説明図である。図8に示すように、遊技枠11側の裏面には、ICなどを搭載するための5つの基板(枠側IC基板)602,603,604,605A,605Bが取り付けられている。遊技枠11の上部に取り付けられた枠側IC基板602は、シリアルデータをパラレルデータに変換するシリアル−パラレル変換IC610,611が搭載されており、各シリアル−パラレル変換IC610,611から、天枠ランプの各LED281a〜281lに制御信号が供給される。また、遊技枠11の右側(裏面から見て左側)に取り付けられた枠側IC基板603は、シリアル−パラレル変換IC612が搭載されており、シリアル−パラレル変換IC612から、右枠ランプの各LED283a〜283fに制御信号が供給される。また、遊技枠11の左側(裏面から見て右側)に取り付けられた枠側IC基板604は、シリアル−パラレル変換IC613が搭載されており、シリアル−パラレル変換IC613から、左枠ランプの各LED282a〜282fに制御信号が供給される。
また、遊技枠11の下部であって打球供給皿(上皿)3の背面側の位置に取り付けられた枠側IC基板605Aは、シリアル−パラレル変換IC614、およびパラレルデータをシリアルデータに変換する入力IC620が搭載されており、シリアル−パラレル変換IC614から、操作ボタン81a〜81eに設けられた操作ボタンランプのLED83および打球供給皿(上皿)3に設けられた上皿ランプの各LED82a〜82fに制御信号が供給される。また、操作ボタン81a〜81eからの検出信号が入力IC620にパラレルに入力される。また、遊技枠11の下部であって余剰球受皿(下皿)4の背面側の位置に取り付けられた枠側IC基板605Bは、シリアル−パラレル変換IC615が搭載されており、シリアル−パラレル変換IC615から、余剰球受皿(下皿)4に設けられた下皿ランプの各LED84a〜84fに制御信号が供給される。
なお、図8に示すように、この実施の形態では、各枠側IC基板602,603,604,605A,605Bうち遊技枠11の上部に取り付けられた枠側IC基板602は、2つのシリアル−パラレル変換ICを搭載した集合基板として構成されている。そのように構成することによって、シリアル−パラレル変換ICを搭載する基板を集約することができ、遊技機における部品点数を低減することができる。
また、図8に示すように、遊技枠11側には中継基板607が取り付けられており、中継基板607からの配線は、枠側IC基板604に接続され、枠側IC基板604から枠側IC基板602に接続され、さらに枠側IC基板602から枠側IC基板603に接続される。また、中継基板607からの配線は、枠側基板605Aに接続される。また、中継基板607からの配線は、枠側基板605Bに接続される。また、各枠側IC基板602〜604間の配線や、枠側IC基板604,605A,605Bと中継基板607との間の配線は、図8に示すように、各基板にコネクタ156a〜156jを用いて接続される。なお、図8では、基板に垂直方向に接続するタイプのコネクタを用いて配線接続を行う場合を示しているが、例えば、基板に対して水平方向に接続するタイプのコネクタを用いて配線接続を行うようにしてもよい。
図6に示すように、中継基板607のコネクタ156aからの配線は、枠側IC基板604のコネクタ156bに接続される。枠側IC基板604の配線パターンは、コネクタ156bからさらに分岐され、一方がシリアル−パラレル変換IC613に接続され、他の一方がコネクタ156cに接続されるようになっている。また、枠側IC基板604において、コネクタ156cは、枠側IC基板602側の端部に配置されている。枠側IC基板604のコネクタ156cからの配線は、枠側IC基板602のコネクタ156dに接続される。枠側IC基板602の配線パターンは、コネクタ156dからさらに3つに分岐され、シリアル−パラレル変換IC610、シリアル−パラレル変換IC611およびコネクタ156eに接続されるようになっている。また、枠側IC基板602において、コネクタ156eは、枠側IC基板603側の端部に配置されている。枠側IC基板602のコネクタ156eからの配線は、枠側IC基板603のコネクタ156fに接続される。枠側IC基板603の配線パターンは、シリアル−パラレル変換IC612に接続されるようになっている。
また、中継基板607のコネクタ156gからの配線は、枠側IC基板605Aのコネクタ156hに接続される。枠側IC基板605Aの配線パターンは、コネクタ156hからさらに分岐され、一方がシリアル−パラレル変換IC614に接続され、他の一方が入力IC620に接続されるようになっている。
また、中継基板607のコネクタ156iからの配線は、枠側IC基板605Bのコネクタ156jに接続される。枠側IC基板605Bの配線パターンは、シリアル−パラレル変換IC615に接続されるようになっている。
また、図8に示すように、遊技枠11の開放を検出するためのドア開放センサ155が取り付けられている。
図9は、遊技盤6の裏面を示す説明図である。図9に示すように、遊技盤6の裏面には、ICなどを搭載するための基盤(盤側IC基板)601が取り付けられている。盤側IC基板601には、シリアルデータをパラレルデータに変換する3つのシリアル−パラレル変換IC616〜618が搭載されており、シリアル−パラレル変換IC616から、各可動部材151,152を駆動するためのモータ151a,152aに制御信号が供給される。また、シリアル−パラレル変換IC617から、センター飾り用ランプの各LED125a〜125fに制御信号が供給される。また、シリアル−パラレル変換IC618から、ステージランプの各LED126a〜126fに制御信号が供給される。
なお、図9に示すように、この実施の形態では、盤側IC基板601は、3つのシリアル−パラレル変換ICを搭載した集合基板として構成されている。そのように構成することによって、シリアル−パラレル変換ICを搭載する基板を集約することができ、遊技機における部品点数を低減することができる。
また、盤側IC基板601は、パラレルデータをシリアルデータに変換する入力IC621が搭載されており、各可動部材151,152の位置を検出するための位置センサ151b,152bからの検出信号が入力IC621にパラレルに入力される。
また、図9に示すように、遊技盤6側には中継基板606が取り付けられており、遊技枠11側には中継基板607が設けられている。演出制御手段からの配線は、まず中継基板606に接続され、さらに中継基板607に接続される。そして、中継基板606からの配線は、盤側IC基板601に接続される。また、盤側IC基板601と中継基板606との間の配線や、中継基板606,607間の配線、中継基板606と演出制御手段との間の配線は、図9に示すように、各基板にコネクタ157a〜157eを用いて接続される。なお、コネクタ157a〜157eの接続方法は、図8に示すコネクタ156a〜156hの接続方法と同様である。
また、各枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615と、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618とを中継する中継基板を設けるようにしてもよい。この場合、中継基板は、遊技枠11側と遊技盤6側とのいずれに配置されていてもよい。
また、演出制御基板80と各枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とを中継する中継基板を設けるようにしてもよい。この場合、中継基板は、遊技枠11側と遊技盤6側とのいずれに配置されていてもよい。
プラ枠の上皿には遊技球を払い出す穴の上側に開口が形成され、開口に中継基板607が設けられる。中継基板607は表裏のコネクタを介して中継する基板であり、プラ枠表側にコネクタ157aが配置され裏側にコネクタ156a,156g,156iが配置されている。また、中継基板607は、遊技盤6が取り付けられる開口の端部に配置される。また、図6に示すように、中継基板607は、遊技盤6が取り付けられる開口の端部の形状に沿うような形状に形成されている。なお、中継基板607は、表側に配置されるコネクタ157aと裏側に配置されるコネクタ156a,156g,156iとの位置が重ならないようにずれた状態とされている。
遊技盤6の裏側には中継基板606が設けられる。中継基板606は、図9に示すように、遊技盤6の端部に、プラ枠の中継基板607の近傍に位置するように設けられる。中継基板606はコネクタを介して中継する基板であり、コネクタ157b〜157dが配置されている。また、コネクタ157bは、遊技盤6が搭載する演出制御用マイクロコンピュータ100に接続されている。
図10は、主基板(遊技制御基板)31における回路構成の一例を示すブロック図である。なお、図10には、払出制御基板37および演出制御基板80等も示されている。主基板31には、プログラムに従ってパチンコ遊技機1を制御する遊技制御用マイクロコンピュータ(遊技制御手段に相当)560が搭載されている。遊技制御用マイクロコンピュータ560は、ゲーム制御(遊技進行制御)用のプログラム等を記憶するROM54、ワークメモリとして使用される記憶手段としてのRAM55、プログラムに従って制御動作を行うCPU56、I/Oポート部57、およびパラレルデータをシリアルデータに変換して出力するシリアル出力回路を含む。この実施の形態では、ROM54およびRAM55は遊技制御用マイクロコンピュータ560に内蔵されている。すなわち、遊技制御用マイクロコンピュータ560は、1チップマイクロコンピュータである。1チップマイクロコンピュータには、少なくともCPU56のほかRAM55が内蔵されていればよく、ROM54は外付けであっても内蔵されていてもよい。また、I/Oポート部57は、外付けであってもよい。
遊技制御用マイクロコンピュータ560には、ハードウェア乱数を発生する乱数回路503が接続されている。遊技制御用マイクロコンピュータ560は、乱数値を抽出するための条件が成立すると、乱数回路503から乱数値を読み出す。乱数回路503は、所定周波数のクロック信号を計数するカウンタであり、カウンタのカウント値が乱数値になる。乱数回路503に供給されている所定周波数のクロック信号は、監視回路(ウォッチドッグタイマ(WDT))504のクリア端子に入力されている。監視回路は、クリア端子に入力されるクロック信号の周波数よりも高い周波数のクロック信号を計数するカウンタであるが、クリア端子に入力されるクロック信号が例えばハイレベルになるとカウント値がリセットされる。よって、クリア端子に入力されるクロック信号が何らかの理由で停止した場合には、監視回路504はカウントアップする。監視回路504がカウントアップしたということは、乱数回路503にクロック信号が供給されていないことを示す。監視回路504は、カウントアップすると、乱数回路503が正常に動作していないことを示す乱数エラー信号を遊技制御用マイクロコンピュータ560に出力する。
なお、遊技制御用マイクロコンピュータ560においてCPU56がROM54に格納されているプログラムに従って制御を実行するので、以下、遊技制御用マイクロコンピュータ560(またはCPU56)が実行する(または、処理を行う)ということは、具体的には、CPU56がプログラムに従って制御を実行することである。このことは、主基板31以外の他の基板に搭載されているマイクロコンピュータについても同様である。
また、ゲートスイッチ32a、第1始動口スイッチ13a、第2始動口スイッチ14a、カウントスイッチ23、入賞口スイッチ29a,30a,33a,39aからの検出信号を遊技制御用マイクロコンピュータ560に与える入力ドライバ回路58も主基板31に搭載されている。また、可変入賞球装置15を開閉するソレノイド16、および大入賞口を形成する特別可変入賞球装置20を開閉するソレノイド21を遊技制御用マイクロコンピュータ560からの指令に従って駆動する出力回路59も主基板31に搭載されている。
また、遊技制御用マイクロコンピュータ560は、特別図柄を可変表示する特別図柄表示器8、普通図柄を可変表示する普通図柄表示器10、特別図柄保留記憶表示器18および普通図柄保留記憶表示器41の表示制御を行う。
また、遊技制御用マイクロコンピュータ560が搭載するシリアル出力回路78は、シフトレジスタなどによって構成され、CPU56が出力する演出制御コマンドをシリアルデータに変換して、中継基板77を介して演出制御基板80に送信する。また、シリアル出力回路78は、CPU56が出力する制御信号をシリアルデータに変換して、中継基板77を介して特別図柄表示器8や特別図柄保留記憶表示器18、普通図柄表示器10、普通図柄保留記憶表示器41に出力する。なお、特別図柄表示器8、特別図柄保留記憶表示器18、普通図柄表示器10および普通図柄保留記憶表示器41には、シリアルデータをパラレルデータに変換するシリアル−パラレル変換ICがそれぞれ設けられ、中継基板77からの制御信号をパラレルデータに変換して、特別図柄表示器8や特別図柄保留記憶表示器18、普通図柄表示器10、普通図柄保留記憶表示器41に供給される。
なお、遊技制御用マイクロコンピュータ560は、演出制御コマンドをパラレル信号形式で送信する出力回路を備えるようにし、CPU56が出力する演出制御コマンドをパラレル信号形式で演出制御基板80に送信してもよい。
なお、大当り遊技状態の発生を示す大当り情報等の情報出力信号を、情報端子盤(枠盤兼用外部端子基板)34を介してホールコンピュータ等の外部装置に対して出力する情報出力回路64も主基板31に搭載されている。情報端子盤34は、遊技機の裏面に設置されている。情報端子盤34には、払出制御基板37からの情報出力信号も入力される(図11参照)。
また、遊技機の裏面には、遊技球を貯留する貯留タンクが設置され、貯留タンクに貯留された遊技球は球払出装置に至る。球払出装置の上部には、遊技媒体切れ検出手段としての球切れスイッチが設けられている。球切れスイッチが球切れを検出すると、球払出装置の払出動作が停止する。球切れスイッチは遊技球通路内の遊技球の有無を検出するスイッチであるが、貯留タンク内の補給球の不足を検出する球切れ検出スイッチも貯留タンクに近接する部分に設けられている。球切れ検出スイッチが遊技球の不足を検知すると、遊技機設置島に設けられている補給機構から遊技機に対して遊技球の補給が行われる。
入賞にもとづく景品としての遊技球や球貸し要求にもとづく遊技球が多数払い出されて打球供給皿3が満杯になると、遊技球は、余剰球通路を経て余剰球受皿4に導かれる。さらに遊技球が払い出されると、感知レバー(図示せず)が貯留状態検出手段としての満タンスイッチ(図示せず)を押圧して、貯留状態検出手段としての満タンスイッチがオンする。その状態では、球払出装置内の払出モータの回転が停止して球払出装置の動作が停止するとともに打球発射装置の駆動も停止する。
また、この実施の形態では、演出制御基板80に搭載されている演出制御手段(演出制御用マイクロコンピュータで構成される。)が、中継基板77を介して遊技制御用マイクロコンピュータ560からの演出制御コマンドをシリアル信号方式(シリアル通信方式:データを一つの信号線で送出する方式)で受信し、飾り図柄を可変表示する可変表示装置9の表示制御を行う。
また、演出制御基板80に搭載されている演出制御手段が、遊技盤6に設けられているセンター飾り用ランプ125a〜125fおよびステージランプ126a〜126fの表示制御を行うとともに、枠側に設けられている天枠ランプ281a〜281l、左枠ランプ282a〜282f、右枠ランプ283a〜283f、上皿ランプ82a〜82f、操作ボタンランプ83および下皿ランプ84a〜84fの表示制御を行い、スピーカ27からの音出力の制御を行う。
また、演出制御基板80の演出制御用マイクロコンピュータ100には、演出制御手段が出力する各ランプ125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを表示制御するための制御信号をパラレルデータからシリアルデータに変換するシリアル出力回路353が搭載されている。また、演出制御基板80の演出制御用マイクロコンピュータ100には、入力したシリアルデータをパラレルデータに変換して演出制御手段に出力するシリアル入力回路354が搭載されている。したがって、演出制御手段は、シリアル出力回路353を介して制御信号をシリアルデータ方式として出力することによって、各ランプ125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fの表示制御(具体的には、発光制御すなわち点灯制御(点滅制御))を行う。
また、遊技盤側には、シリアルデータをパラレルデータに変換するためのシリアル−パラレル変換ICが搭載された盤側IC基板601が設けられている。盤側IC基板601は、中継基板606を介して演出制御基板80と接続される。また、遊技枠11側には、シリアルデータをパラレルデータに変換するためのシリアル−パラレル変換ICが搭載された各枠側IC基板602,603,604,605A,605Bが設けられている。各枠側IC基板602,603,604,605A,605Bは、中継基板606,607を介して演出制御基板80と接続される。
なお、図10に示すように、演出制御基板80、中継基板606および中継基板607は、バス型に1系統の配線ルートで接続される。
図11は、払出制御基板37および球払出装置97などの払出に関連する構成要素を示すブロック図である。図11に示すように、払出制御基板37には、払出制御用用CPU371を含む払出制御用マイクロコンピュータ(電気的に駆動される電気部品の制御を行う電気部品制御用マイクロコンピュータの一例)370が搭載されている。この実施の形態では、払出制御用マイクロコンピュータ370は、1チップマイクロコンピュータであり、少なくともRAMが内蔵されている。払出制御用CPU371、RAM(図示せず)、払出制御用プログラムを格納したROM(図示せず)およびI/Oポート等は、払出制御手段を構成する。すなわち、払出制御手段は、払出制御用CPU371、RAMおよびROMを有する払出制御用マイクロコンピュータ370と、I/Oポートとで実現される。また、I/Oポートは、払出制御用マイクロコンピュータ370に内蔵されていてもよい。
球切れスイッチ187、満タンスイッチ48の検出信号は、中継基板72を介して払出制御基板37のI/Oポート372fに入力される。払出個数カウントスイッチ301の検出信号は、中継基板72を介して払出制御基板37のI/Oポート372eに入力される。また、払出モータ位置センサ295からの検出信号は、中継基板72を介して払出制御基板37のI/Oポート372eに入力される。払出モータ289は、球払出装置97に設けられ、回転することによって、遊技機の裏面において貯留されている払出用の遊技球を払い出す。払出モータ位置センサ295は、払出モータ289の回転位置を検出するための発光素子(LED)と受光素子とによるセンサであり、遊技球が詰まったこと、すなわち、いわゆる球噛みを検出するために用いられる。払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、球切れスイッチ187からの検出信号が球切れ状態を示していたり、満タンスイッチ48からの検出信号が満タン状態を示していると、球払出処理を停止する。さらに、満タンスイッチ48からの検出信号が満タン状態を示していると、打球発射装置からの球発射を停止させる。なお、満タンスイッチ48からの検出信号が満タン状態を示していても、打球発射装置からの球発射を停止させないようにしてもよい。また、打球発射装置に遊技制御用マイクロコンピュータ560からの信号線が接続されるように構成されている場合には、遊技制御用マイクロコンピュータ560が打球発射装置からの球発射を停止させるようにしてもよい。
入賞口への遊技球の入賞があると、主基板31の出力回路67から、払出指令信号として、払い出すべき賞球個数を示す賞球個数信号(払出数データ)および賞球個数信号の取り込み(受信)を要求する賞球REQ信号(取込要求信号)が出力(送信)される。具体的には、オン状態になる。賞球個数信号は、4ビットのデータ(2進4桁のデータ)によって構成され、4本の信号線によって出力される。なお、信号のオン状態すなわち出力状態は、信号が有意である状態であり、オン状態になることは、信号を受ける側に対してその信号にもとづく何らかの処理を開始することを指令することを意味する。例えば、賞球個数を示す賞球個数信号および賞球REQ信号がオン状態になるということは、払出制御用マイクロコンピュータ370に対して、賞球個数信号が示す払出数を認識するように指令することを意味する。また、信号を出力することによってオン状態とし、信号出力を停止することによってオフ状態としてもよいが、オン状態にするときにはオン状態に応じた信号を出力し、オフ状態にするときにはオフ状態に応じた信号を出力することによって、オン状態とオフ状態とを切り替えてもよい。
賞球REQ信号および賞球個数信号は、入力回路373Aを介してI/Oポート372eに入力される。払出制御用マイクロコンピュータ370は、I/Oポート372eを介して賞球個数信号を入力すると、賞球個数信号が示す個数の遊技球を払い出すために球払出装置97を駆動する制御を行う。なお、賞球REQ信号および賞球個数信号は、払出数を指定する払出指令信号に相当する。
払出制御用マイクロコンピュータ370は、出力ポート372gを介して、賞球払出数を示す賞球情報信号および貸し球数を示す球貸し個数信号を情報端子盤(枠盤兼用外部端子基板)34に出力する。なお、出力ポート372gの外側に、ドライバ回路が設置されているが、図11では記載省略されている。
また、払出制御用マイクロコンピュータ370は、出力ポート372cを介して、7セグメントLEDによるエラー表示用LED374にエラー信号を出力する。なお、払出制御基板37の入力ポート372fには、エラー状態を解除するためのエラー解除スイッチ375からの検出信号が入力される。エラー解除スイッチ375は、ソフトウェアリセットによってエラー状態を解除するために用いられる。
さらに、払出制御用マイクロコンピュータ370からの払出モータ289への駆動信号は、出力ポート372aおよび中継基板72を介して球払出装置97の払出機構部分における払出モータ289に伝えられる。なお、出力ポート372aの外側に、ドライバ回路(モータ駆動回路)が設置されているが、図11では記載省略されている。
遊技機に隣接して設置されているカードユニット50には、カードユニット制御用マイクロコンピュータが搭載されている。また、カードユニット50には、使用可表示ランプ、連結台方向表示器、カード投入表示ランプおよびカード挿入口が設けられている。インタフェース基板(中継基板)66には、打球供給皿3の近傍に設けられている度数表示LED60、球貸し可LED61、球貸しスイッチ62および返却スイッチ63(図1において図示せず)が接続される。
インタフェース基板66からカードユニット50には、遊技者の操作に応じて、球貸しスイッチ62が操作されたことを示す球貸しスイッチ信号および返却スイッチ63が操作されたことを示す返却スイッチ信号が与えられる。また、カードユニット50からインタフェース基板66には、プリペイドカードの残高を示すカード残高表示信号および球貸し可表示信号が与えられる。カードユニット50と払出制御基板37の間では、接続信号(VL信号)、ユニット操作信号(BRDY信号)、球貸し要求信号(BRQ信号)、球貸し完了信号(EXS信号)およびパチンコ機動作信号(PRDY信号)が入力ポート372fおよび出力ポート372dを介して送受信される。カードユニット50と払出制御基板37の間には、インタフェース基板66が介在している。よって、接続信号(VL信号)等の信号は、図11に示すように、インタフェース基板66を介してカードユニット50と払出制御基板37の間で送受信されることになる。
パチンコ遊技機1の電源が投入されると、払出制御基板37に搭載されている払出制御用マイクロコンピュータ370は、カードユニット50にPRDY信号を出力する。また、カードユニット制御用マイクロコンピュータは、電源が投入されると、VL信号を出力する。払出制御用マイクロコンピュータ370は、VL信号の入力状態によってカードユニット50の接続状態/未接続状態を判定する。カードユニット50においてカードが受け付けられ、球貸しスイッチが操作され球貸しスイッチ信号が入力されると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRDY信号を出力する。この時点から所定の遅延時間が経過すると、カードユニット制御用マイクロコンピュータは、払出制御基板37にBRQ信号を出力する。
そして、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち上げ、カードユニット50からのBRQ信号の立ち下がりを検出すると、払出モータ289を駆動し、所定個の貸し球を遊技者に払い出す。そして、払出が完了したら、払出制御用マイクロコンピュータ370は、カードユニット50に対するEXS信号を立ち下げる。その後、カードユニット50からのBRDY信号がオン状態でないことを条件に、遊技制御手段から払出指令信号を受けると賞球払出制御を実行する。
なお、この実施の形態では、カードユニット50が遊技機とは別体として遊技機に隣接して設置されている場合を例にするが、カードユニット50は遊技機と一体化されていてもよい。また、コイン投入に応じてその金額に応じた遊技球が貸し出されるような場合でも本発明を適用できる。
また、ドア開放センサ155の検出信号が、払出制御基板37に入力される。払出制御基板37において、ドア開放センサ155の検出信号は、払出制御用マイクロコンピュータ370には入力されず、出力回路373Bを介して主基板31に出力される。なお、出力回路373Bを介さずに主基板31に出力されるようにしてもよい。また、払出制御用マイクロコンピュータ370は、満タンスイッチ48、球切れスイッチ187および払出個数カウントスイッチ301の検出信号に相当する信号を出力ポート372bおよび出力回路373Bを介して主基板31に出力する。しかし、払出制御用マイクロコンピュータ370に入力される満タンスイッチ48、球切れスイッチ187および払出個数カウントスイッチ301の検出信号を、払出制御基板37において分岐させ、分岐された検出信号を出力回路373Bを介して主基板31に出力するように構成してもよい。そのように構成した場合には、払出制御用マイクロコンピュータ370は、満タンスイッチ48、球切れスイッチ187および払出個数カウントスイッチ301の検出信号に相当する信号を出力ポート372bから出力する必要はない。
なお、払出制御基板37に入力されたドア開放センサ155の検出信号を、さらに主基板31を介して情報出力回路64から情報端子盤34に出力するようにしてもよい。この場合、ドア開放センサ155の検出信号を、遊技制御用マイクロコンピュータ560および払出制御用マイクロコンピュータ370ともに入力することなく、そのまま主制御基板31および払出制御基板37を介して情報端子盤34に出力するようにしてもよい。
図12は、中継基板77および演出制御基板80の回路構成例を示すブロック図である。なお、図12に示す例では、演出制御に関して演出制御基板80のみを設ける場合を示すが、ランプドライバ基板および音声出力基板を設けてもよい。この場合、ランプドライバ基板および音声出力基板には、マイクロコンピュータは搭載されていないが、マイクロコンピュータを搭載してもよい。
演出制御基板80は、演出制御用CPU101、RAM(図示せず)、シリアル出力回路353、シリアル入力回路354、クロック信号出力部356および入力取込信号出力部357を含む演出制御用マイクロコンピュータ100を搭載している。なお、RAMは外付けであってもよい。演出制御基板80において、演出制御用CPU101は、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作し、シリアル入力回路102および入力ポート103を介して演出制御コマンドを受信する。この場合、シリアル入力回路102は、シリアルデータ方式として受信した演出制御コマンドをパラレルデータに変換し出力する。また、演出制御用CPU101は、演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に可変表示装置9の表示制御を行わせる。
この実施の形態では、演出制御用マイクロコンピュータ100と共動して可変表示装置9の表示制御を行うVDP109が演出制御基板80に搭載されている。VDP109は、演出制御用マイクロコンピュータ100とは独立したアドレス空間を有し、そこにVRAMをマッピングする。VRAMは、画像データを展開するためのバッファメモリである。そして、VDP109は、VRAM内の画像データをフレームメモリを介して可変表示装置9に出力する。
演出制御用CPU101は、受信した演出制御コマンドに従ってCGROM(図示せず)から必要なデータを読み出すための指令をVDP109に出力する。CGROMは、可変表示装置9に表示されるキャラクタ画像データや動画像データ、具体的には、人物、文字、図形や記号等(飾り図柄を含む)、および背景画像のデータをあらかじめ格納しておくためのROMである。VDP109は、演出制御用CPU101の指令に応じて、CGROMから画像データを読み出す。そして、VDP109は、読み出した画像データにもとづいて表示制御を実行する。
中継基板77には、主基板31から入力された信号を演出制御基板80に向かう方向にしか通過させない(演出制御基板80から中継基板77への方向には信号を通過させない)信号方向規制手段としての単方向性回路74が搭載されている。単方向性回路として、例えばダイオードやトランジスタが使用される。図12には、ダイオードが例示されている。
さらに、演出制御用CPU101は、シリアル出力回路353を介してランプを駆動する信号を出力する。シリアル出力回路は、入力したランプのLEDを駆動する信号(パラレルデータ)をシリアルデータに変換して中継基板606に出力する。また、演出制御用CPU101は、音声合成用IC173に対して音番号データを出力する。
また、クロック信号出力部356は、クロック信号を中継基板606に出力する。クロック信号出力部356からのクロック信号は、中継基板606,607を介して各枠側IC基板602,603,604,604A,605Bに搭載されたシリアル−パラレル変換IC610〜615や入力IC620に供給される。また、クロック信号出力部356からのクロック信号は、中継基板606を介して盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618や入力IC621に供給される。したがって、この実施の形態では、各シリアル−パラレル変換IC610〜618および各入力IC620,621に共通のクロック信号が供給されることになる。
また、入力取込信号出力部357は、演出制御用CPU101の指示に従って、中継基板606,607を介して、盤側IC基板601または枠側IC基板602,603,604,604A,605Bに入力取込信号(ラッチ信号)を出力する。枠側IC基板605Aに搭載された入力IC620は、演出制御用マイクロコンピュータ100からの入力取込信号を入力すると、操作ボタン81a〜81eの検出信号をラッチし、シリアルデータ方式として中継基板606,607を介して演出制御用マイクロコンピュータ100に出力する。また、盤側IC基板601に搭載された入力IC621は、演出制御用マイクロコンピュータ100からの入力取込信号を入力すると、各位置センサ151b,152bの検出信号をラッチし、シリアルデータ方式として中継基板606を介して演出制御用マイクロコンピュータ100に出力する。
音声合成用IC173は、音番号データを入力すると、音番号データに応じた音声や効果音を発生し増幅回路175に出力する。増幅回路175は、音声合成用IC173の出力レベルを、ボリューム176で設定されている音量に応じたレベルに増幅した音声信号をスピーカ27に出力する。音声データROM174には、音番号データに応じた制御データが格納されている。音番号データに応じた制御データは、所定期間(例えば飾り図柄の変動期間)における効果音または音声の出力態様を時系列的に示すデータの集まりである。
図13は、情報端子盤34の構成例を示すブロック図である。図13に示す例では、情報端子盤34には、ケーブル343およびコネクタ341を介して主基板31から信号が入力され、ケーブル344およびコネクタ342を介して払出制御基板37から信号が入力される。そして、ケーブル343を介して入力された信号は、ドライバ回路345、コネクタ347およびケーブル349を介して、例えばホールコンピュータに対して出力される。また、ケーブル344を介して入力された信号は、ドライバ回路346、コネクタ348およびケーブル349を介して、例えばホールコンピュータに対して出力される。
なお、図13に示す情報端子盤(枠盤兼用外部端子基板)34において、図13における上側の部分(コネクタ341、ドライバ回路345およびコネクタ347が設けられている領域)は盤用外部端子基板に相当し、下側の部分(コネクタ342、ドライバ回路346およびコネクタ348が設けられている領域)は枠用外部端子基板に相当する。すなわち、主基板31からの信号に関する部分か、払出制御基板37からの信号(例えば、払出制御基板37からの情報出力信号(具体的には、賞球払出数を示す賞球情報信号や、貸し球数を示す球貸し個数信号))に関する部分かを容易に判別できる。
図14は、遊技制御手段における出力ポートの割り当ての例を示す説明図である。図14に示すように、出力ポート0は払出制御基板37に送信される払出指令信号の出力ポートである。なお、図14に示された「論理」(例えば1がオン状態)と逆の論理(例えば0がオン状態)を用いてもよい。
出力ポート1から、大入賞口を開閉する可変入賞球装置20を開閉するためのソレノイド(大入賞口扉ソレノイド)21および可変入賞球装置15を開閉するためのソレノイド(普通電動役物ソレノイド)16に対する駆動信号が出力される。なお、出力ポート0,1は、図1に示されたI/Oポート部57の一部である。また、信号がオン状態になっているときが、「信号が出力されている」状態に相当する。
図15は、遊技制御手段における入力ポートのビット割り当ての例を示す説明図である。図15に示すように、入力ポート0のビット0〜7には、それぞれ、カウントスイッチ23、ゲートスイッチ32a、入賞口スイッチ33a,39a,29a,30a、第2始動口スイッチ14a、第1始動口スイッチ13aの検出信号が入力される。
また、入力ポート1のビット0〜4には、それぞれ、払出制御基板37からの賞球カウント信号、満タン信号、球切れ信号、払出エラー信号、ドア開閉信号が入力される。賞球カウント信号のハイレベル「1」がオン状態(払出個数カウントスイッチ301がオンした状態)に対応する。満タン信号のハイレベル「1」がオン状態(満タンスイッチ48がオンした状態)に対応する。球切れ信号のハイレベル「1」がオン状態(球切れスイッチ187がオンした状態)に対応する。ドア開閉信号のハイレベル「1」は、ドア開放センサ155が遊技枠11の開放を検出していない状態(ドアが閉鎖している状態)に対応する。
入力ポート1のビット5には、監視回路504からの乱数エラー信号が入力される。乱数エラー信号のローレベル(「0」)がオン状態(乱数エラーが生じた状態)に対応する。すなわち、監視回路504は、正常時には乱数エラー信号をハイレベルに維持しているが、異常時には乱数エラー信号をローレベルに変化させる。なお、図15に示された「論理」と逆の論理を用いてもよい。例えば、1がオン状態である入力信号を0をオン状態である入力信号にしてもよい。
入力ポート2のビット0,1には、それぞれ、電源基板からの電源断信号およびクリアスイッチの検出信号(クリア信号)が入力される。電源断信号は、電源基板に搭載されている電源監視回路が所定電圧の低下を検出したときに出力する信号である。クリアスイッチは遊技店員等が操作可能なスイッチあり、RAM55を初期化したいときに操作されるスイッチである。なお、入力ポート0〜2は、図1に示されたI/Oポート部57の一部である。また、信号がオン状態になっているときが、「信号が入力されている」状態に相当する。
図16は、演出制御基板80、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの構成例を示すブロック図である。演出制御基板80の演出制御用マイクロコンピュータ100は、制御信号としてのシリアルデータとともに、クロック信号を中継基板606に出力する。また、入力IC620,621に入力信号をラッチさせるための入力取込信号を中継基板606に出力する。
中継基板606は、演出制御用マイクロコンピュータ100から入力したシリアルデータおよびクロック信号を、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618に供給する。そして、各シリアル−パラレル変換IC616〜618は、入力したシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLED125a〜125f,126a〜126fや、各可動部材のモータ151a,152aに供給する。
また、中継基板607は、バス型に1系統の配線ルートで中継基板606と接続されており、各シリアル−パラレル変換IC616〜618に接続されるシリアルデータ線300およびクロック信号線301は、盤側IC基板601上でバス形式に接続されている。なお、バス型に接続とは、1つの配線ルートに複数のシリアル−パラレル変換ICまたは中継基板が接続されていることである。
また、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618にはそれぞれ固有のIDがある。この実施の形態では、図16に示すように、IC616のIDは06であり、IC617のIDは07であり、IC618のIDは08である。
また、盤側IC基板601には、遊技盤6上に設けられた各可動部材の位置センサの検出信号を入力する入力IC621が搭載されている。この実施の形態では、盤側IC基板601に搭載された入力IC621と演出制御用マイクロコンピュータ100とは、中継基板606を介して入力信号線302、クロック信号線301および入力取込信号線303が接続されており、演出制御用マイクロコンピュータ100は、所定のタイミングで、入力取込信号を中継基板606を介して入力IC621に出力する。すると、入力IC621は、入力取込信号(ラッチ信号)にもとづいて各位置センサの検出信号をラッチし、中継基板606を介して演出制御用マイクロコンピュータ100に出力する。この場合、入力IC621は、各位置センサからパラレルに入力した検出信号をシリアルデータに変換して出力する。なお、この実施の形態では、図16に示すように、入力IC621の固有のIDは11である。
中継基板607に入力されたシリアルデータおよびクロック信号は、図16に示すように、各枠側IC基板602,603,604,605A,605Bに搭載された各シリアル−パラレル変換IC610〜615に供給される。そして、各シリアル−パラレル変換IC610〜615は、入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fに供給する。
また、各シリアル−パラレル変換IC610〜613に接続されるシリアルデータ線およびクロック信号線は、各枠側IC基板602〜604上でバス形式に接続されている。この実施の形態では、図16に示すように、まず、枠側IC基板604のシリアル−パラレル変換IC613に入力され、シリアル−パラレル変換IC613から枠側IC基板602のシリアル−パラレル変換IC610およびシリアル−パラレル変換IC611の順に入力され、さらにシリアル−パラレル変換IC611から枠側IC基板603のシリアル−パラレル変換IC612に入力される。また、シリアル−パラレル変換IC614に接続されるシリアルデータ線およびクロック信号線は、中継基板607から直接接続される。また、シリアル−パラレル変換IC615に接続されるシリアルデータ線およびクロック信号線は、中継基板607から直接接続される。
また、各枠側IC基板602,603,604,605A,605Bに搭載された各シリアル−パラレル変換IC610〜615にはそれぞれ固有のIDがある。この実施の形態では、図16に示すように、IC610のIDは00であり、IC611のIDは01であり、IC612のIDは02であり、IC613のIDは03であり、IC614のIDは04であり、IC615のIDは05である。
また、枠側IC基板605Aには、遊技枠11に設けられた操作ボタン81a〜81eの検出信号を入力する入力IC620が搭載されている。この実施の形態では、枠側IC基板605Aに搭載された入力IC620と演出制御用マイクロコンピュータ100とは、中継基板606,607を介して入力信号線、クロック信号線および入力取込信号線が接続されており、演出制御用マイクロコンピュータ100は、所定のタイミングで、入力取込信号を中継基板606,607を介して入力IC620に出力する。この場合、演出制御用マイクロコンピュータ100は、入力IC621に入力取込信号を出力するタイミングとは異なるタイミングで、入力取込信号を入力IC620に出力する。すると、入力IC620は、入力取込信号(ラッチ信号)にもとづいて操作ボタン81a〜81eからの検出信号をラッチし、中継基板606,607を介して演出制御用マイクロコンピュータ100に出力する。この場合、入力IC620は、操作ボタン81a〜81eからパラレルに入力した検出信号をシリアルデータに変換して出力する。なお、この実施の形態では、図16に示すように、入力IC620の固有のIDは10である。
盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と各枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とは、1系統の配線を介して接続されている。1系統の配線を介して接続とは、具体的には、各中継基板606,607がバス型に接続されているとともに、各シリアル−パラレル変換IC610〜618がバス型またはデイジーチェーン型に接続されていることである。なお、この実施の形態では、図16に示すように、各シリアル−パラレル変換IC610〜618はバス型に接続されている。このように、この実施の形態では、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618と、各枠側IC基板602,603,604,605A,605Bに搭載された各シリアル−パラレルIC610〜615とが、中継基板606,607を介してコネクタ156a〜156j,157a〜157eを用いて1系統の配線を介して接続されている。そのため、コネクタの着脱を行うだけで遊技枠11と遊技盤6との配線作業を行うことができ、遊技枠11遊技盤6との着脱作業をさらに容易に行えるようにすることができる。
また、この実施の形態によれば、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615および入力IC620,621に、演出制御用マイクロコンピュータ100から共通のクロック信号を入力する。そのため、シリアル−パラレル変換IC610〜618へのクロック信号の配線と入力IC620,621へのクロック信号の配線とを共通化することができ、演出制御手段と盤側IC601基板との間の通信、および演出制御手段と枠側IC基板602,603,604,605A,605Bとの間の通信を、それぞれ1チャネルを用いて実現することができ、配線数を低減することができる。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615、および入力IC620,621とを容易に同期させることができ、クロック信号用の配線数も低減することができる。
この実施の形態では、各シリアル−パラレル変換IC610〜618には、あらかじめアドレスが付与されており、演出制御用マイクロコンピュータ100は、シリアルデータに変換した制御信号を出力する際に、シリアルデータにアドレスを付加して出力する。各シリアル−パラレル変換IC610〜618は、シリアルデータを入力すると、入力したシリアルデータに付加されているアドレスが自分のアドレスに合致するか否かを確認し、合致していればパラレルデータに変換して各ランプのLEDに供給する(すなわち、出力する)。アドレスが合致していなければ各ランプのLEDへの供給は行わない。
なお、図16に示すように、演出制御用マイクロコンピュータ100は、盤側IC基板601および枠側IC基板602,603,604,605A,605Bと双方向通信を行う(具体的には、シリアルデータを各シリアル−パラレル変換IC610〜618に送信し、入力信号を入力IC620,621から入力する)ものであるので、データ入力端子とデータ出力端子とを備えており、1チャネルでデータ入力とデータ出力とを行うことができる。この実施の形態では、図16に示すように、1つのチャネルのデータ入力端子とデータ出力端子とを、それぞれ異なる出力対象機器(本例では、シリアル−パラレル変換IC610〜618)と入力対象機器(本例では、入力IC620,621)に接続している。そのように構成することによって、本来、出力対象機器と入力対象機器とが別の機器である場合にはそれぞれ別のチャネルを用いて通信を行うべきところを、1つのチャネルのみを用いて双方向通信を可能としており、演出制御用マイクロコンピュータ100と盤側IC基板601および枠側IC基板602,603,604,605A,605Bとの間のチャネル数を低減している。
この実施の形態において、チャネルとは、データ線(出力データ線)、クロック信号線、入力信号線(入力データ線)、および入力取込信号線(入力データの読出要求の信号線)用の端子をセットにしたものである。なお、1つのチャネルにアース線や電源専用の端子を含んでもよい。また、この実施の形態では、1チャネルを用いてデータ入力とデータ出力の両方を行う場合を示すが、データ線(出力データ線)およびクロック信号線用の端子のみをセットにした出力専用のチャネルを用いてもよい。また、入力信号線(入力データ線)および入力取込信号線(入力データの読出要求の信号線)用の端子のみをセットにした入力専用のチャネルを用いてもよい。
図17および図18は、各シリアル−パラレル変換IC610〜618に付与されるアドレスの例を示す説明図である。この実施の形態では、演出制御用マイクロコンピュータ100は、あらかじめROMに設けられた所定のアドレス記憶領域に、図17および図18に示す各シリアル−パラレル変換IC610〜618のアドレスを記憶している。
この実施の形態では、図17および図18に示すように、各枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615において、IC610にはアドレス00が付与され、IC611にはアドレス01が付与され、IC612にはアドレス02が付与され、IC613にはアドレス03が付与され、IC614にはアドレス04が付与され、IC615にはアドレス05が付与されている。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618において、IC616にはアドレス06が付与され、IC617にはアドレス07が付与され、IC618にはアドレス08が付与されている。
なお、各シリアル−パラレル変換IC610〜618に、アドレスとしてICの固有のIDと同じものを付与してもよく、ICの固有のIDとは異なる数字や文字、記号を含むアドレスを付与してもよい。
また、図17および図18に示すように、アドレスが00であるシリアル−パラレル変換IC610は、シリアルデータをパラレルデータに変換し、遊技枠11の天枠ランプのLED(本例では天枠ランプ281a〜281lのうちのLED6個(281a〜281f))に供給する。また、アドレスが01であるシリアル−パラレル変換IC611は、シリアルデータをパラレルデータに変換し、遊技枠11の天枠ランプのLED(本例では天枠ランプ281a〜281lの他のLED6個(281g〜281l))に供給する。また、アドレスが02であるシリアル−パラレル変換IC612は、シリアルデータをパラレルデータに変換し、遊技枠11の右枠ランプのLED(本例ではLED6個(283a〜283f))に供給する。また、アドレスが03であるシリアル−パラレル変換IC613は、シリアルデータをパラレルデータに変換し、遊技枠11の左枠ランプのLED(本例ではLED6個(282a〜282f))に供給する。
また、アドレスが04であるシリアル−パラレル変換IC614は、シリアルデータをパラレルデータに変換し、遊技枠11の打球供給皿3に設けられた上皿ランプ(本例ではLED6個(82a〜82f))に供給するとともに、操作ボタン81a〜81eに設けられた操作ボタンランプ83(本例ではランプ1個)に供給する。なお、図17に示すように、打球供給皿3には上皿ランプとして、正面、左側面および右側面にそれぞれ2個ずつのLEDが設けられている。
また、アドレスが05であるシリアル−パラレル変換IC615は、シリアルデータをパラレルデータに変換し、遊技枠11の余剰球受皿4に設けられた下皿ランプ(本例ではLED6個(84a〜84f))に供給する。
また、アドレスが06であるシリアル−パラレル変換IC616は、シリアルデータをパラレルデータに変換し、遊技盤6に設けられた各可動部材(本例では、梁およびトロッコの形状を模した役物)を駆動するためのモータ(本例ではモータ3個(151a,152a)のそれぞれ正方向と逆方向)に供給する。また、アドレスが07であるシリアル−パラレル変換IC617は、シリアルデータをパラレルデータに変換し、遊技盤6中央に設けられた装飾用構造物(センター飾り)の各ランプ(本例ではLED6個(125a〜125f))に供給する。また、アドレスが08であるシリアル−パラレル変換IC618は、シリアルデータをパラレルデータに変換し、可変表示装置9の周囲に設けられた各ステージランプ(本例ではLED6個(126a〜126f))に供給する。
また、この実施の形態では、各入力IC620,621にも、あらかじめアドレスが付与されている。図19は、各入力IC620,621に付与されるアドレスの例を示す説明図である。そして、演出制御用マイクロコンピュータ100は、あらかじめROMに設けられた所定のアドレス記憶領域に、各入力IC620,621のアドレスを記憶している。この実施の形態では、図19に示すように、枠側IC基板605に搭載された入力IC620にはアドレス10が付与され、盤側IC基板601に搭載された入力IC621にはアドレス11が付与されている。
なお、各入力IC620,621に、アドレスとしてICの固有のIDと同じものを付与してもよく、ICの固有のIDとは異なる数字や文字、記号を含むアドレスを付与してもよい。
また、図19に示すように、アドレスが10である入力IC620は、遊技枠11に設けられた操作ボタン81a〜81eの検出信号(操作ボタン81a〜81e自体がオンされたか否か、操作ボタン81a〜81eの上下左右のいずれの部位がオンされたかを示す信号)をパラレルで入力し、シリアルデータに変換して出力する。また、アドレスが11である入力IC621は、遊技盤6の各可動部材に設けられた位置センサ151b,152b(本例では2個)の検出信号をパラレルで入力し、シリアルデータに変換して出力する。
図20は、各シリアル−パラレル変換IC610〜618の構成を示すブロック図である。図20に示すように、シリアル−パラレル変換IC610〜618は、データラッチ部651、シフトレジスタ652、ヘッダ/アドレス検出部653、データバッファ655およびシンクドライバ656を含む。
データラッチ部651は、例えばラッチ回路によって構成され、シリアルデータが入力されると、クロック信号のパルスの立ち上がりのタイミングで入力データを1ビット毎にラッチし、シフトレジスタ652に出力する。シフトレジスタ652は、データラッチ部651から1ビットずつ入力されたデータを順に格納する。また、シフトレジスタ652は、クロック信号のパルスの立ち上がりのタイミングで、格納データを1ビットずつシフトする。そのように繰り返し格納データを1ビットずつシフトしていくことによって、最終的にシフトレジスタ652にシリアルデータとして(すなわち、シリアル方式で)入力したデータが格納されることになる。
図21は、演出制御用マイクロコンピュータ100から出力されるシリアルデータのフォーマットの例を示す説明図である。図21(A)は、遊技盤6や遊技枠11に設けられた各ランプのLEDを個別に点灯または消灯させるためのランプ点灯データとして出力されるシリアルデータのデータフォーマットである。また、図21(B)は、遊技盤6や遊技枠11に設けられた各ランプのLEDをリセットして全て消灯させるためのリセットコマンドとして出力されるシリアルデータのフォーマットである。
図21(A)に示すように、ランプ点灯データは、28ビットで構成され、9ビットのヘッダデータ、マークビット(M)、8ビットのアドレス、8ビットのデータおよびエンドビット(E)を含む。
ヘッダデータは、データの先頭を表すものであり、本例では1FF(h)である。マークビット(M)は、データの区切りを表すビット(本例では論理値0)であり、ヘッダデータとアドレスとの間、およびアドレスとデータとの間にそれぞれ挿入される。アドレスは、データ出力先のシリアル−パラレル変換ICのアドレスである。なお、アドレスとして、各シリアル−パラレル変換IC610〜618の固有の通し番号であるIDを用いてもよい。
データ(8ビット)は、各ランプのLEDの点灯状態を制御するためのものであり、例えば、点灯対象のランプのLEDに対応するビットとして論理値1を含み、非点灯対象のランプのLEDに対応するビットとして論理値0を含む。エンドビット(E)は、データの終了を示すものであり、本例では論理値0である。
図21(B)に示すように、リセットコマンドは、19ビットで構成され、9ビットのヘッダデータ、マークビット(M)、8ビットのリセットデータおよびエンドビット(E)を含む。
ヘッダデータは、データの先頭を表すものであり、本例では1FF(h)である。マークビット(M)は、データの区切りを表すビット(本例では論理値0)であり、ヘッダデータとリセットデータとの間に挿入される。リセットデータは、各ランプのLEDの点灯状態をリセットして全て消灯させるためのものであり、例えば、全て論路値1を含むデータである。エンドビット(E)は、データの終了を示すものであり、本例では論理値0である。
この実施の形態では、図21(A)に示すランプ点灯データまたは図21(B)に示すリセットコマンドが入力され、クロック信号のパルスの立ち上がりのタイミングで、ビット単位で繰り返しシフトされてシフトレジスタ652に格納されることになる。
ヘッダ/アドレス検出部653は、シフトレジスタ652の格納データからヘッダおよびアドレスを検出する。まず、ヘッダ/アドレス検出部653は、シフトレジスタ652からのデータを常時検出し、検出したデータの内容がヘッダデータに相当する1FF(h)と一致するか否かを確認する。ヘッダデータ(1FF(h))と一致すれば、そのヘッダデータと一致した箇所をデータの先頭と判断し、シフトレジスタ652に1セットのランプ点灯データまたはリセットコマンドが格納されたと判断する。次いで、ヘッダ/アドレス検出部653は、シフトレジスタ652からアドレスに相当する先頭から11ビット目〜18ビット目のデータを検出し、そのシリアル−パラレル変換ICにあらかじめ付与されたアドレスと一致するか否かを確認する。盤側IC基板601および各枠側IC基板602,603,604,605A,605Bには、例えば、それぞれ搭載するシリアル−パラレル変換ICのアドレスを格納したアドレス格納レジスタ654が設けられており、ヘッダ/アドレス検出部653は、シフトレジスタ652から検出したアドレスが、あらかじめアドレス格納レジスタ654に格納するアドレスと一致するか否かを確認すればよい。アドレスが一致すれば、ヘッダ/アドレス検出653は、そのシリアル−パラレル変換ICを宛先とするデータを入力したと判定し、入力取込信号(ラッチ信号)をデータバッファ655に出力する。アドレスが一致しなければ、ヘッダ/アドレス検出653は、入力取込信号をデータバッファ655に出力しない。すなわち、この場合、そのシリアル−パラレル変換ICを宛先とするデータではないので、シフトレジスタ652に格納したデータをデータバッファ655に出力することなく、そのまま破棄することになる。
なお、図20では、盤側IC基板601および各枠側IC基板602,603,604,605A,605Bにあらかじめアドレス格納レジスタ654が設けられている場合を示しているが、アドレス格納レジスタ654に代えて、シリアル−パラレル変換ICに設けられているアドレス端子(8端子(8ビットのアドレスの各ビットにそれぞれ対応する))を介して、外部のハードウェア回路(例えば、演出制御基板80が搭載する回路)からアドレスを入力するようにしてもよい。そして、外部のハードウェア回路側から、各アドレス端子の入力をhighまたはlowに制御することによって、シリアル−パラレル変換ICにアドレスを入力してもよい。この場合、例えば、外部のハードウェア回路は、アドレスのいずれかのビットに対応する端子に電圧をかけることによってその端子に対する入力をhighとし、またはグランドにスイッチングすることによってその端子に対する入力をLowとするように制御する。
データバッファ655は、例えば、ラッチレジスタによって構成され、ヘッダ/アドレス検出部653から入力取込信号を入力すると、シフトレジスタ652からデータ部分に相当する先頭から20ビット目〜27ビット目のデータを取り込んでラッチする。そして、データバッファ655は、取り込んだデータをパラレルデータ(Q0〜Q7)として各ランプのLEDに供給(すなわち、出力)することになる。
なお、シフトレジスタ652が格納したデータがリセットコマンドであった場合には、先頭から11ビット目〜18ビット目が全て論理値1のデータを格納することになる。この場合、データバッファ655は全ての論理値が1であるデータを取り込んだ場合にはリセットコマンドを入力したと判断し、全てのランプのLEDがリセットされ消灯されることになる。
シンクドライバ656は、所定の論理反転設定信号にもとづいて、データバッファ655が出力するパラレルデータの論理値を反転して出力したり、そのまま出力したりする。例えば、所定の論理反転設定信号がHighである場合には、データバッファ655が出力するパラレルデータのビット値が1である(すなわち、ランプ点灯データの対応するビット値が1)ときにオンとなり、各ランプのLEDにオン信号を出力する。この実施の形態では、あらかじめ論理反転設定信号の設定値が盤側IC基板601や各枠側IC基板602,603,604,605A,605Bに設けられたレジスタなどに設定されており、あらかじめ設定された設定値に従って各ランプのLEDにオン信号が出力され、各ランプのLEDが点灯するものとする。
図22は、シリアル−パラレル変換ICへのシリアルデータおよびクロック信号の入力タイミングと、パラレルデータの出力タイミングとの例を示すタイミング図である。なお、図22では、シリアルデータ方式としてランプ点灯データを入力する場合を説明する。図22に示すように、シリアルデータは、ヘッダデータ、マークビット、アドレス、マークビット、データ、エンドビットの順に、シリアル−パラレル変換ICのシフトレジスタ652に1ビット単位で入力される。そして、この一連のデータを1セットとする。1セットのシリアルデータ(本例ではランプ点灯データ)が全て入力され終わるまで、ヘッダ/アドレス検出部653ではヘッダデータが検出されないので、データバッファ655の出力は変化しない。そのため、シリアル−パラレル変換ICからは、前回受信したシリアルデータにもとづく点灯パターンがそのままパラレルデータ方式として出力されている。
1セットのシリアルデータが全て入力され終わると、シフトレジスタ652の格納データからデータ部分がデータバッファ655にラッチされ、新たに受信したシリアルデータにもとづく点灯パターンがパラレルデータ方式として出力される。なお、この実施の形態では、図22に示すように、シリアル−パラレル変換ICが出力するパラレルデータのうち、Q0,Q4は、シリアルデータ入力完了後の次のクロック信号のパルスの立ち上がりのタイミングで、直ちに新たな点灯パターンのデータに切り替わる。また、Q1,Q5は、Q0,Q4より1クロック分遅れて新たな点灯パターンのデータに切り替わる。また、Q2,Q6は、Q0,Q4より2クロック分遅れて新たな点灯パターンのデータに切り替わる。さらに、Q3,Q7は、Q0,Q4より3クロック分遅れて新たな点灯パターンのデータに切り替わる。
図23は、各入力IC620,621の構成を示すブロック図である。図23に示すように、この実施の形態では、各入力IC620,621は、複数(本例では8個)のDフリップフロップ661〜668によって構成される。この実施の形態では、操作ボタン81a〜81eまたは各位置センサ151b,152bからの検出信号が各入力IC620,621にパラレルに入力され、検出信号ごとにいずれかのDフリップフロップ661〜668に入力される。また、各Dフリップフロップ661〜668にはクロック信号が入力され、各Dフリップフロップ661〜668は、クロックの立ち上がりで順次シフト動作を行う。そして、パラレルに入力した検出信号をシリアルデータに変換して出力することになる。
各Dフリップフロップ661〜668には、演出制御用マイクロコンピュータ100から所定のタイミングで入力取込信号(ラッチ信号)が入力される。入力取込信号が入力されると、操作ボタン81a〜81eまたは各位置センサ151b,152bから検出信号が、各Dフリップフロップ661〜668にラッチされる。そして、ラッチされた検出信号は、クロックの立ち上がりで順次シフトされ、シリアルデータ方式として出力される。
次に、遊技機の動作について説明する。図24および図25は、主基板31における遊技制御用マイクロコンピュータ560が実行するメイン処理を示すフローチャートである。遊技機に対して電源が投入され電力供給が開始されると、リセット信号が入力されるリセット端子の入力レベルがハイレベルになり、遊技制御用マイクロコンピュータ560(具体的には、CPU56)は、プログラムの内容が正当か否か確認するための処理であるセキュリティチェック処理を実行した後、ステップS1以降のメイン処理を開始する。メイン処理において、CPU56は、まず、必要な初期設定を行う。
初期設定処理において、CPU56は、まず、割込禁止に設定する(ステップS1)。次に、割込モードを割込モード2に設定し(ステップS2)、スタックポインタにスタックポインタ指定アドレスを設定する(ステップS3)。そして、内蔵デバイスの初期化(内蔵デバイス(内蔵周辺回路)であるCTC(カウンタ/タイマ)およびPIO(パラレル入出力ポート)の初期化など)を行った後(ステップS4)、RAMをアクセス可能状態に設定する(ステップS5)。なお、割込モード2は、CPU56が内蔵する特定レジスタ(Iレジスタ)の値(1バイト)と内蔵デバイスが出力する割込ベクタ(1バイト:最下位ビット0)とから合成されるアドレスが、割込番地を示すモードである。
次いで、CPU56は、入力ポートを介して入力されるクリアスイッチ(例えば、電源基板に搭載されている。)の出力信号の状態を確認する(ステップS6)。その確認においてオンを検出した場合には、CPU56は、通常の初期化処理を実行する(ステップS10〜S15。S44,S45を含む。)。
クリアスイッチがオンの状態でない場合には、遊技機への電力供給が停止したときにバックアップRAM領域のデータ保護処理(例えばパリティデータの付加等の電力供給停止時処理)が行われたか否か確認する(ステップS7)。そのような保護処理が行われていないことを確認したら、CPU56は初期化処理を実行する。バックアップRAM領域にバックアップデータがあるか否かは、例えば、電力供給停止時処理においてバックアップRAM領域に設定されるバックアップフラグの状態によって確認される。
電力供給停止時処理が行われたことを確認したら、CPU56は、バックアップRAM領域のデータチェックを行う(ステップS8)。この実施の形態では、データチェックとしてパリティチェックを行う。よって、ステップS8では、算出したチェックサムと、電力供給停止時処理で同一の処理によって算出され保存されているチェックサムとを比較する。不測の停電等の電力供給停止が生じた後に復旧した場合には、バックアップRAM領域のデータは保存されているはずであるから、チェック結果(比較結果)は正常(一致)になる。チェック結果が正常でないということは、バックアップRAM領域のデータが、電力供給停止時のデータとは異なっていることを意味する。そのような場合には、内部状態を電力供給停止時の状態に戻すことができないので、電力供給の停止からの復旧時でない電源投入時に実行される初期化処理を実行する。
チェック結果が正常であれば、CPU56は、遊技制御手段の内部状態と演出制御手段等の電気部品制御手段の制御状態を電力供給停止時の状態に戻すための遊技状態復旧処理(ステップS41〜S43の処理)を行う。具体的には、ROM54に格納されているバックアップ時設定テーブルの先頭アドレスをポインタに設定し(ステップS41)、バックアップ時設定テーブルの内容を順次作業領域(RAM55内の領域)に設定する(ステップS42)。作業領域はバックアップ電源によって電源バックアップされている。バックアップ時設定テーブルには、作業領域のうち初期化してもよい領域についての初期化データが設定されている。ステップS41およびS42の処理によって、作業領域のうち初期化してはならない部分については、保存されていた内容がそのまま残る。初期化してはならない部分とは、例えば、電力供給停止前の遊技状態を示すデータ(特別図柄プロセスフラグ、確変フラグ、時短フラグなど)、出力ポートの出力状態が保存されている領域(出力ポートバッファ)、未払出賞球数を示すデータが設定されている部分などである。
また、CPU56は、電力供給復旧時の初期化コマンドとしての停電復旧指定コマンドを送信する(ステップS43)。そして、ステップS14Aに移行する。
なお、この実施の形態では、バックアップフラグとチェックデータとの双方を用いてバックアップRAM領域のデータが保存されているか否か確認しているが、いずれか一方のみを用いてもよい。すなわち、バックアップフラグとチェックデータとのいずれかを、遊技状態復旧処理を実行するための契機としてもよい。
初期化処理では、CPU56は、まず、RAMクリア処理を行う(ステップS10)。なお、RAMクリア処理によって、所定のデータ(例えば大当り判定用乱数を生成するためのカウンタのカウント値のデータ)は0に初期化されるが、任意の値またはあらかじめ決められている値に初期化するようにしてもよい。また、RAM55の全領域を初期化せず、所定のデータ(例えば大当り判定用乱数を生成するためのカウンタのカウント値のデータ)をそのままにしてもよい。また、ROM54に格納されている初期化時設定テーブルの先頭アドレスをポインタに設定し(ステップS11)、初期化時設定テーブルの内容を順次作業領域に設定する(ステップS12)。
ステップS11およびS12の処理によって、例えば、普通図柄判定用乱数カウンタ、普通図柄判定用バッファ、特別図柄バッファ、総賞球数格納バッファ、特別図柄プロセスフラグ、賞球中フラグ、球切れフラグ、払出停止フラグなど制御状態に応じて選択的に処理を行うためのフラグに初期値が設定される。
また、CPU56は、サブ基板(主基板31以外のマイクロコンピュータが搭載された基板。)を初期化するための初期化指定コマンド(遊技制御用マイクロコンピュータ560が初期化処理を実行したことを示すコマンドでもある。)をサブ基板に送信する(ステップS13)。例えば、演出制御用マイクロコンピュータ100は、初期化指定コマンドを受信すると、可変表示装置9において、遊技機の制御の初期化がなされたことを報知するための画面表示、すなわち初期化報知を行う。
さらに、CPU56は、異常報知禁止フラグをセットするとともに(ステップS44)、禁止期間タイマに禁止期間値に相当する値を設定する(ステップS45)。禁止期間値は、後述する異常入賞の報知を禁止する期間を示す値である。また、異常報知禁止フラグは、異常入賞の報知が禁止されていることを示すフラグであり、禁止期間タイマがタイムアウトするまでセット状態に維持される。よって、可変表示装置9において初期化報知が開始されてから所定期間は、異常入賞の報知の開始が禁止される。
なお、遊技制御用マイクロコンピュータ560側で異常入賞の報知を禁止する期間を管理するのではなく、演出制御用マイクロコンピュータ100側で管理するようにしてもよい。この場合、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から初期化指定コマンドを受信すると、異常報知禁止フラグをセットするとともに、禁止期間タイマに禁止期間値に相当する値を設定する。そして、演出制御用マイクロコンピュータ100は、禁止期間タイマがタイムアウトするまで異常報知禁止フラグをセット状態に維持し、異常入賞の報知を禁止するように制御する。なお、この場合、遊技制御用マイクロコンピュータ560は、ステップS13で初期化指定コマンドを送信すると、ステップS44,S45の処理を実行することなく、そのままステップS14Aに移行するように制御する。
さらに、CPU56は、入力ポート1(図14参照)のデータ(入力データ)を入力し(ステップS14A)、入力データを2バイト目に設定した入力ポートデータ指定コマンド(図30参照)を演出制御基板に送信する(ステップS14B)。なお、遊技機に対する電源供給が開始された直後に、乱数回路503に対してクロック信号が供給されていない異常が生じているときには、入力ポート1のビット5のデータは「0」になっている。また、CPU56は、入力データを、RAM55の領域である入力ポート1バッファに保存する(ステップS14C)。
なお、メイン処理でステップS14A〜S14Cの処理を実行せずに、後述するタイマ割込処理のみで、入力ポート1のデータを入力し、入力データを2バイト目に設定した入力ポートデータ指定コマンドを演出制御基板に送信するようにしてもよい。
そして、ステップS15において、CPU56は、所定時間(例えば2ms)毎に定期的にタイマ割込がかかるように遊技制御用マイクロコンピュータ560に内蔵されているCTCのレジスタの設定を行なう。すなわち、初期値として例えば2msに相当する値が所定のレジスタ(時間定数レジスタ)に設定される。この実施の形態では、2ms毎に定期的にタイマ割込がかかるとする。
初期化処理の実行(ステップS10〜S15)が完了すると、CPU56は、メイン処理で、表示用乱数更新処理(ステップS17)および初期値用乱数更新処理(ステップS18)を繰り返し実行する。表示用乱数更新処理および初期値用乱数更新処理を実行するときには割込禁止状態に設定し(ステップS16)、表示用乱数更新処理および初期値用乱数更新処理の実行が終了すると割込許可状態に設定する(ステップS19)。この実施の形態では、表示用乱数とは、変動パターンを決定するための乱数であり、表示用乱数更新処理とは、表示用乱数を発生するためのカウンタのカウント値を更新する処理である。また、初期値用乱数更新処理とは、初期値用乱数を発生するためのカウンタのカウント値を更新する処理である。この実施の形態では、初期値用乱数とは、普通図柄に関して当りとするか否か決定するための乱数を発生するためのカウンタ(例えば、特別図柄決定用(大当り種類決定用)乱数発生カウンタや、普通図柄当り判定用乱数発生カウンタ)等の、カウント値の初期値を決定するための乱数である。また、大当りの判定をソフトウェア乱数を用いて行う場合には、初期値用乱数には、大当り判定用乱数発生カウンタのカウント値の初期値を決定するための乱数も含まれる。後述する遊技の進行を制御する遊技制御処理(遊技制御用マイクロコンピュータ560が、遊技機に設けられている可変表示装置、可変入賞球装置、球払出装置等の遊技用の装置を、自身で制御する処理、または他のマイクロコンピュータに制御させるために指令信号を送信する処理、遊技装置制御処理ともいう)において、普通図柄当り判定用乱数のカウント値が1周(普通図柄当り判定用乱数の取りうる値の最小値から最大値までの間の数値の個数分歩進したこと)すると、そのカウンタに初期値が設定される。
タイマ割込が発生すると、CPU56は、図26に示すステップS20〜S35のタイマ割込処理を実行する。タイマ割込処理において、まず、電源断信号が出力されたか否か(オン状態になったか否か)を検出する電源断検出処理を実行する(ステップS20)。電源断信号は、例えば電源基板に搭載されている電圧低下監視回路が、遊技機に供給される電源の電圧の低下を検出した場合に出力する。そして、電源断検出処理において、CPU56は、電源断信号が出力されたことを検出したら、必要なデータをバックアップRAM領域に保存するための電力供給停止時処理を実行する。次いで、入力ドライバ回路58を介して、ゲートスイッチ32a、第1始動口スイッチ13a、第2始動口スイッチ14a、カウントスイッチ23、および入賞口スイッチ29a,30a,33a,39aの検出信号を入力し、それらの状態判定を行う(スイッチ処理:ステップS21)。
次に、CPU56は、特別図柄表示器8、普通図柄表示器10、特別図柄保留記憶表示器18、普通図柄保留記憶表示器41の表示制御を行う表示制御処理を実行する(ステップS22)。特別図柄表示器8および普通図柄表示器10については、ステップS34,S35で設定される出力バッファの内容に応じて各表示器に対して駆動信号を出力する制御を実行する。
また、CPU56は、正規の時期以外の時期において大入賞口に遊技球が入賞したことを検出した場合に異常入賞の報知を行わせるための処理を行う(ステップS23:異常入賞報知処理)。
また、CPU56は、入力ポート1(図15参照)の入力データに変化が生じたときに、入力ポート1の入力データを演出制御用マイクロコンピュータ100に送信する入力ポートデータ確認処理を実行する(ステップS23A)。
次に、遊技制御に用いられる大当り図柄決定用の乱数等の各判定用乱数を生成するための各カウンタのカウント値を更新する処理を行う(判定用乱数更新処理:ステップS24)。CPU56は、さらに、初期値用乱数および表示用乱数を生成するためのカウンタのカウント値を更新する処理を行う(初期値用乱数更新処理,表示用乱数更新処理:ステップS25,S26)。
図27は、各乱数を示す説明図である。各乱数は、以下のように使用される。
(1)ランダム1:特別図柄のはずれ図柄(停止図柄)を決定する(はずれ図柄決定用)
(2)ランダム2:大当りを発生させるときの特別図柄の停止図柄を決定する(大当り図柄決定用)
(3)ランダム3:特別図柄の変動パターン(変動時間)を決定する(変動パターン決定用)
(4)ランダム4:普通図柄にもとづく当りを発生させるか否か決定する(普通図柄当り判定用)
(5)ランダム5:ランダム4の初期値を決定する(ランダム4初期値決定用)
なお、特別図柄通常処理で後述するように、この実施の形態では、乱数回路503から読み出したハードウェア乱数(ランダムR)にもとづいて、大当りとするか否かを判定するとともに、大当りとする場合には大当りの種類(例えば、確変大当りとするか通常大当りとするか)を決定する。そして、図27に示す大当り図柄決定用乱数(ランダム2)にもとづいて、大当り図柄の停止図柄(例えば、奇数図柄のいずれか)が決定される。すなわち、この実施の形態では、まず、ハードウェア乱数であるランダムRにもとづいて、大当りとするか否かと大当りの種類とを一括して決定する。そして、大当りにすると決定すると、ソフトウェア乱数である大当り図柄決定用乱数にもとづいて、特別図柄の停止図柄を決定する。具体的には、後述する特別図柄通常処理において、遊技制御用マイクロコンピュータ560は、ランダムRにもとづいて大当り判定処理を行い、大当りとするか否かを決定するとともに大当りの種類を決定する(ステップS61〜S63参照)。そして、大当りとすると決定すると(ステップS63のY参照)、大当り図柄決定用乱数にもとづいて、特別図柄の停止図柄を決定する(ステップS82,S83参照)。
なお、大当りとするか否かと大当りの種類とを、別々の乱数を用いて決定するようにしてもよい。例えば、遊技制御用マイクロコンピュータ560は、まず、ランダムRを用いて大当りとするか否かのみを決定するようにし、次に大当り図柄決定用乱数にもとづいて特別図柄の停止図柄とともに大当りの種類を決定するようにしてもよい。
図26に示された遊技制御処理におけるステップS24では、遊技制御用マイクロコンピュータ560は、(2)の大当り図柄決定用乱数、および(4)の普通図柄当り判定用乱数を生成するためのカウンタのカウントアップ(1加算)を行う。すなわち、それらが判定用乱数であり、それら以外の乱数が表示用乱数または初期値用乱数である。なお、遊技効果を高めるために、上記(1)〜(5)の乱数以外の乱数も用いるようにしてもよい。また、この実施の形態では、大当り判定用乱数は遊技制御用マイクロコンピュータ560に内蔵されたハードウェア(乱数回路)が生成する乱数であるが、大当り判定用乱数として、遊技制御用マイクロコンピュータ560によってプログラムにもとづいて生成されるソフトウェア乱数を用いてもよい。
さらに、CPU56は、特別図柄プロセス処理を行う(ステップS27)。特別図柄プロセス処理では、特別図柄表示器8および大入賞口を所定の順序で制御するための特別図柄プロセスフラグに従って該当する処理を実行する。CPU56は、特別図柄プロセスフラグの値を、遊技状態に応じて更新する。
次いで、普通図柄プロセス処理を行う(ステップS28)。普通図柄プロセス処理では、CPU56は、普通図柄表示器10の表示状態を所定の順序で制御するための普通図柄プロセスフラグに従って該当する処理を実行する。CPU56は、普通図柄プロセスフラグの値を、遊技状態に応じて更新する。
また、CPU56は、演出制御用マイクロコンピュータ100に演出制御コマンドを送出する処理を行う(演出制御コマンド制御処理:ステップS29)。なお、この実施の形態では、ステップS29において、遊技制御用マイクロコンピュータ560は、演出制御コマンドを構成するMODEデータまたはEXTデータ(送信先のシリアル−パラレル変換IC610〜618のアドレスが付加されたMODEデータまたはEXTデータ)に、ヘッダデータやマークビット、エンドビットを付加して送信制御を行う。そして、演出制御コマンドは、シリアル出力回路78によってシリアルデータに変換され、中継基板77を介して演出制御基板80に送信される。
さらに、CPU56は、例えばホール管理用コンピュータに供給される大当り情報、始動情報、確率変動情報などのデータを出力する情報出力処理を行う(ステップS30)。
また、CPU56は、第1始動口スイッチ13a、第2始動口スイッチ14a、カウントスイッチ23および入賞口スイッチ29a,30a,33a,39aの検出信号にもとづく賞球個数の設定などを行う賞球処理を実行する(ステップS31)。具体的には、第1始動口スイッチ13a、第2始動口スイッチ14a、カウントスイッチ23および入賞口スイッチ29a,30a,33a,39aのいずれかがオンしたことにもとづく入賞検出に応じて、払出制御基板37に搭載されている払出制御用マイクロコンピュータに賞球個数を示す払出制御コマンド(賞球個数信号)を出力する。払出制御用マイクロコンピュータは、賞球個数を示す払出制御コマンドに応じて球払出装置97を駆動する。
この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポートバッファ)が設けられているのであるが、CPU56は、出力ポートの出力状態に対応したRAM領域におけるソレノイドのオン/オフに関する内容を出力ポートに出力する(ステップS32:出力処理)。
また、CPU56は、特別図柄プロセスフラグの値に応じて特別図柄の演出表示を行うための特別図柄表示制御データを特別図柄表示制御データ設定用の出力バッファに設定する特別図柄表示制御処理を行う(ステップS33)。CPU56は、例えば、特別図柄プロセス処理でセットされる開始フラグがセットされると終了フラグがセットされるまで、変動速度が1コマ/0.2秒であれば、0.2秒が経過する毎に、出力バッファに設定される表示制御データの値を+1する。また、CPU56は、出力バッファに設定された表示制御データに応じて、ステップS22において駆動信号を出力することによって、特別図柄表示器8における特別図柄の可変表示を実行する。
さらに、CPU56は、普通図柄プロセスフラグの値に応じて普通図柄の演出表示を行うための普通図柄表示制御データを普通図柄表示制御データ設定用の出力バッファに設定する普通図柄表示制御処理を行う(ステップS34)。CPU56は、例えば、普通図柄の変動に関する開始フラグがセットされると終了フラグがセットされるまで、普通図柄の変動速度が0.2秒ごとに表示状態(「○」および「×」)を切り替えるような速度であれば、0.2秒が経過する毎に、出力バッファに設定される表示制御データの値(例えば、「○」を示す1と「×」を示す0)を切り替える。また、CPU56は、出力バッファに設定された表示制御データに応じて、ステップS22において駆動信号を出力することによって、普通図柄表示器10における普通図柄の演出表示を実行する。
その後、割込許可状態に設定し(ステップS35)、処理を終了する。
以上の制御によって、この実施の形態では、遊技制御処理は2ms毎に起動されることになる。なお、遊技制御処理は、タイマ割込処理におけるステップS21〜S34(ステップS30を除く。)の処理に相当する。また、この実施の形態では、タイマ割込処理で遊技制御処理が実行されているが、タイマ割込処理では例えば割込が発生したことを示すフラグのセットのみがなされ、遊技制御処理はメイン処理において実行されるようにしてもよい。
図28は、大当り判定テーブルを示す説明図である。大当り判定テーブルとは、ランダムRと比較される大当り判定値が設定されているテーブルである。大当り判定判定テーブルには、通常状態(確変状態でない遊技状態)において用いられる通常時大当り判定テーブル(図28(A)参照)と、確変状態において用いられる確変時大当り判定テーブル(図28(B)参照)とがある。図28(A),(B)の左欄に記載されている数値が大当り判定値である。CPU56は、ランダムRの値がいずれかの大当り判定値と一致すると、大当りとすることに決定する。CPU56は、所定の時期に、乱数回路のカウント値を抽出して抽出値を大当り判定用乱数値とするのであるが、大当り判定用乱数値が図21に示す大当り判定値に一致すると、特別図柄に関して大当り(確変大当りまたは通常大当り)とすることに決定する。
確変大当りとは、大当り遊技後の遊技状態を、通常状態に比べて大当りとすることに決定される確率が高い状態である確変状態に移行させるような大当りである。通常大当りとは、大当り遊技後の遊技状態を確変状態ではない状態に移行させるような大当りである。なお、確変大当りおよび通常大当りの場合には、ラウンド数は、小当りおよび突然確変大当りの場合よりも多く、例えば15ラウンドである。
小当りとは、大当り遊技状態において大入賞口の開放回数が2回まで許容される当りである。なお、小当り遊技が終了した場合、遊技状態が確変状態に移行することはない。突然確変大当りとは、大当り遊技状態において大入賞口の開放回数が2回まで許容されるが大入賞口の開放時間が極めて短い大当りであり、かつ、大当り遊技後の遊技状態を確変状態に移行させるような大当りである。つまり、この実施の形態では、突然確変大当りと小当りとは、ラウンド数が同じである。
なお、突然確変大当りの大当り遊技では、ラウンド数は、通常大当りおよび確変大当りの場合よりも少なく、かつ、各ラウンドの大入賞口開放許容時間(例えば、通常大当りおよび確変大当りの場合の29秒に対して、0.5秒)は通常大当りおよび確変大当りの場合よりも短いが、ラウンド数のみを少なくしたり、大入賞口開放許容時間のみを短くするようにしてもよい。
なお、大当り判定用乱数(ランダムR)を用いた判定では、大当りとするか否かのみを判定するようにし、大当り図柄決定用乱数(ランダム2)を用いて決定した図柄の種類に応じて大当りの種類(例えば、確変大当りとするか通常大当りとするか)を決定するようにしてもよい。
図29は、この実施の形態で用いられる変動パターンの一例を示す説明図である。後述するように、この実施の形態では、演出制御コマンドは2バイト構成であり、1バイト目はMODE(コマンドの分類)を表し、2バイト目はEXT(コマンドの種類)を表す。図29において、「EXT」とは、2バイト構成の演出制御コマンドにおける2バイト目のEXTデータを示す。また、「変動時間」は特別図柄の変動時間(識別情報の可変表示期間)を示す。
「通常変動」は、リーチ態様を伴わない変動パターンである。「通常変動・短縮」は、リーチ態様を伴わない変動パターンであり、かつ、変動時間が「通常変動」よりも短い変動パターンである。「ノーマルリーチ」は、リーチ態様を伴うが表示結果(停止図柄)が大当り図柄にならない変動パターンである。「リーチA」は、「ノーマルリーチ」とは異なるリーチ態様を持つ変動パターンである。リーチ態様が異なるとは、リーチ変動時間(リーチ演出が行われる期間)で可変表示装置9において異なった態様の変動態様(速度や回転方向等)やキャラクタ画像等が現れたり、可変表示装置9における背景図柄が異なることをいう。例えば、「ノーマルリーチ」では単に1種類の変動態様によってリーチ態様が実現されるのに対して、「リーチA」では、変動速度や変動方向が異なる複数の変動態様を含むリーチ態様が実現される。また、「リーチA・短縮」は、「リーチA」に類似したリーチ態様を持つ変動パターンであるが、リーチ変動時間は、「リーチA」に比べて短い。「リーチA・延長」は、「リーチA」に類似したリーチ態様を持つ変動パターンであるが、リーチ変動時間は、「リーチA」に比べて長い。
「リーチB」は、「ノーマルリーチ」および「リーチA」とは異なるリーチ態様を持つ変動パターンである。また、「リーチB・短縮」は、「リーチB」に類似したリーチ態様を持つ変動パターンであるが、リーチ変動時間は、「リーチB」に比べて短い。「リーチB・延長」は、「リーチB」に類似したリーチ態様を持つ変動パターンであるが、リーチ変動時間は、「リーチB」に比べて長い。「リーチC」は、「ノーマルリーチ」、「リーチA」および「リーチB」とは異なるリーチ態様を持つ変動パターンである。「リーチC・短縮」は、「リーチC」に類似したリーチ態様を持つ変動パターンであるが、リーチ変動時間は、「リーチC」に比べて短い。
また、「スーパーリーチA」は、「ノーマルリーチ」、「リーチA」、「リーチB」および「リーチC」とは異なるリーチ態様を持つ変動パターンであり、例えば動画像によるリーチ態様を持つ変動パターンである。「スーパーリーチB」は、「ノーマルリーチ」、「リーチA」、「リーチB」、「リーチC」および「スーパーリーチA」とは異なるリーチ態様を持つ変動パターンであり、例えば動画像によるリーチ態様を持つ変動パターンである。「リーチA・突確」は、「ノーマルリーチ」、「リーチA」、「リーチB」、「リーチC」、「スーパーリーチA」および「スーパーリーチB」とは異なるリーチ態様を持つ変動パターンである。なお、「リーチA・突確」のリーチ態様は、「リーチA」に類似するリーチ態様である。
この実施の形態では、通常大当りの場合には、遊技制御用マイクロコンピュータ560は、「リーチA・短縮」、「リーチA」、「リーチB・短縮」、「リーチB」、「リーチC・短縮」、「リーチC」、「スーパーリーチA」または「スーパーリーチB」を選択する。また、確変大当りの場合には、遊技制御用マイクロコンピュータ560は、「リーチA・延長」、「リーチB・延長」、「リーチC・短縮」、「リーチC」、「スーパーリーチA」または「スーパーリーチB」を選択する。突然確変大当りの場合には、「リーチA・突確」を選択する。小当りの場合には、「リーチA・小当り」を選択する。
また、図29に示すように、通常大当りの場合にのみ選択される変動パターンと、確変大当りの場合にのみ選択される変動パターンと、通常大当りのときにも確変大当りのときにも選択されうる変動パターンとがある。
また、時短状態では、「通常変動・短縮」、「リーチA・短縮」、「リーチB・短縮」、および「リーチC・短縮」の変動パターンが選択される。非時短状態では、それ以外の変動パターンが選択される。ただし、「リーチA・突確」の変動パターンは、時短状態でも非時短状態でも使用される。
なお、この実施の形態では、大当りが発生し、大当り遊技が終了すると、その後、100回の特別図柄の変動(可変表示)の実行が完了するまで、遊技状態は時短状態になる。また、可変表示が終了すると大当り遊技が開始されるときの特別図柄の可変表示を開始するときに、確変状態にすることに決定された場合には、大当り遊技が終了すると遊技状態が確変状態に移行される。なお、そのときの遊技状態が確変状態であれば、確変状態が継続することになる。
確変状態に移行されたら、その後、100回の特別図柄の変動(可変表示)の実行が完了するまでは、確変状態かつ時短状態である。また、大当り遊技が終了した後の非確変状態において、100回の特別図柄の変動(可変表示)の実行が完了すると遊技状態は通常状態(確変状態でなく、かつ、時短状態でない遊技状態)に移行する。
次に、遊技制御用マイクロコンピュータ560から演出制御用マイクロコンピュータ100に対する制御コマンドの送出方式について説明する。この実施の形態では、演出制御コマンドは、シリアル出力回路78によってパラレルデータからシリアルデータに変換され、主基板31から中継基板77を介して演出制御基板80に送信される。
この実施の形態では、演出制御コマンドは2バイト構成であり、1バイト目はMODE(コマンドの分類)を表し、2バイト目はEXT(コマンドの種類)を表す。MODEデータの先頭ビット(ビット7)は必ず「1」に設定され、EXTデータの先頭ビット(ビット7)は必ず「0」に設定される。なお、そのようなコマンド形態は一例であって他のコマンド形態を用いてもよい。例えば、1バイトや3バイト以上で構成される制御コマンドを用いてもよい
図30は、シリアルデータ方式として送信される演出制御コマンドのフォーマットの例を示す説明図である。図30に示すように、演出制御コマンドを送信する際、遊技制御用マイクロコンピュータ560(具体的にはCPU56)は、まず、MODEデータ(アドレスが付加されたMODEデータ)にヘッダデータやマークビット、エンドビットを付加して送信制御を行う。すると、シリアル出力回路78は、ヘッダデータやアドレス、マークビット、エンドビットが付加されたMODEデータをシリアルデータに変換して、中継基板77を介して演出制御基板80に送信する。次いで、遊技制御用マイクロコンピュータ560は、EXTデータ(アドレスが付加されたEXTデータ)にヘッダデータやマークビット、エンドビットを付加して送信制御を行う。すると、シリアル出力回路78は、ヘッダデータやアドレス、マークビット、エンドビットが付加されたEXTデータをシリアルデータに変換して、中継基板77を介して演出制御基板80に送信する。
図31は、遊技制御用マイクロコンピュータ560が送信する演出制御コマンドの内容の一例を示す説明図である。図31に示す例において、コマンド8001(H)〜800F(H)は、特別図柄の可変表示に対応して可変表示装置9において可変表示される飾り図柄の変動パターンを指定する演出制御コマンド(変動パターンコマンド)である。なお、変動パターンを指定する演出制御コマンドは、変動開始を指定するためのコマンドでもある。従って、演出制御用マイクロコンピュータ100は、コマンド8001(H)〜800F(H)のいずれかを受信すると、可変表示装置9において飾り図柄の可変表示を開始するように制御する。なお、この実施の形態では、特別図柄の可変表示と飾り図柄の可変表示とは同期(可変表示開始時期および可変表示終了時期が同じ。)しているので、飾り図柄の変動パターン(変動時間)を決定することは、特別図柄の変動パターン(変動時間)を決定することも意味する。
コマンド8C01(H)〜8C05(H)は、大当りとするか否か、および大当り遊技の種類を示す演出制御コマンドである。演出制御用マイクロコンピュータ100は、コマンド8C01(H)〜8C05(H)の受信に応じて飾り図柄の表示結果を決定するので、コマンド8C01(H)〜8C05(H)を表示結果特定コマンドという。なお、変動パターンコマンドとして、変動パターンを特定可能であるとともに、大当りであるか否かや、確変大当りであるか否か、小当りであるか否かを全て特定可能な演出制御コマンドを送信する場合には、表示結果特定コマンドは送信しないようにしてもよい。そのようにすれば、演出制御用マイクロコンピュータ100に送信する演出制御コマンドのコマンド数を低減することができる。
コマンド8F00(H)は、飾り図柄の可変表示(変動)を終了して表示結果(停止図柄)を導出表示することを示す演出制御コマンド(図柄確定指定コマンド)である。演出制御用マイクロコンピュータ100は、図柄確定指定コマンドを受信すると、飾り図柄の可変表示(変動)を終了して表示結果を導出表示する。なお、導出表示とは、図柄を最終的に停止表示させることである。
コマンド9000(H)は、遊技機に対する電力供給が開始されたときに送信される演出制御コマンド(初期化指定コマンド:電源投入指定コマンド)である。コマンド9200(H)は、遊技機に対する電力供給が再開されたときに送信される演出制御コマンド(停電復旧指定コマンド)である。遊技制御用マイクロコンピュータ560は、遊技機に対する電力供給が開始されたときに、バックアップRAMにデータが保存されている場合には、停電復旧指定コマンドを送信し、そうでない場合には、初期化指定コマンドを送信する。
コマンド9F00(H)は、客待ちデモンストレーションを指定する演出制御コマンド(客待ちデモ指定コマンド)である。
コマンドA001〜A004(H)は、ファンファーレ画面を表示すること、すなわち大当り遊技の開始を指定する演出制御コマンド(大当り開始指定コマンド:ファンファーレ指定コマンド)である。大当り開始指定コマンドには、大当りの種類に応じて、大当り開始1指定〜大当り開始指定4指定コマンドがある。コマンドA1XX(H)は、XXで示す回数目(ラウンド)の大入賞口開放中の表示を示す演出制御コマンド(大入賞口開放中指定コマンド)である。A2XX(H)は、XXで示す回数目(ラウンド)の大入賞口閉鎖を示す演出制御コマンド(大入賞口開放後指定コマンド)である。
コマンドA301(H)は、大当り終了画面を表示すること、すなわち大当り遊技の終了を指定するとともに、非確変大当り(通常大当り)であったことを指定する演出制御コマンド(大当り終了1指定コマンド:エンディング1指定コマンド)である。コマンドA302(H)は、大当り終了画面を表示すること、すなわち大当り遊技の終了を指定するとともに、確変大当りであったことを指定する演出制御コマンド(大当り終了2指定コマンド:エンディング2指定コマンド)である。
コマンドD001(H)は、異常入賞の報知を指示する演出制御コマンド(異常入賞報知指定コマンド)である。
コマンドFFYY(H)は、入力ポート1の入力データを示す演出制御コマンド(入力ポートデータ指定コマンド)である。YYは、入力ポート1の入力データを示す。
演出制御基板80に搭載されている演出制御用マイクロコンピュータ100(具体的には、演出制御用CPU101)は、主基板31に搭載されている遊技制御用マイクロコンピュータ560から上述した演出制御コマンドを受信すると、図31に示された内容に応じて可変表示装置9の表示状態を変更したり、ランプの表示状態を変更したり、音声出力基板70に対して音番号データを出力したりする。
図32は、演出制御コマンドの送信タイミングの一例を示す説明図である。図32に示すように、遊技制御用マイクロコンピュータ560は、変動開始時に、変動パターンコマンドおよび表示結果特定コマンドを送信する。そして、可変表示時間が経過すると、図柄確定指定コマンドを送信する。
なお、変動パターンコマンドを送信する前に、遊技状態(例えば、通常状態/時短状態/確変状態)に応じた可変表示装置9における背景画像を指定する背景指定コマンドを送信するようにしてもよい。また、表示結果特定コマンドに続いて保留記憶数を示す演出制御コマンドを送信するようにしてもよい。
図33は、コマンドFFYY(H)(入力ポートデータ指定コマンド)のEXTデータ(YYの部分)の構成を示す説明図である。EXTデータのビット割り当ては、図15に示された入力ポート1のビット割り当てと同じである。すなわち、ビット5(D5)には、乱数エラー信号に対応する乱数エラー指定ビットが割り当てられている。ビット4(D4)には、ドア開閉信号に対応するドア開放エラー指定ビットが割り当てられている。ビット3(D3)には、払出エラー信号に対応する払出エラー指定ビットが割り当てられている。ビット2(D2)には、球切れエラー信号に対応する球切れエラー指定ビットが割り当てられている。ビット1(D1)には、満タンエラー信号に対応する満タンエラー指定ビットが割り当てられている。そして、ビット0(D0)には、賞球カウント信号に対応する賞球カウント指定ビットが割り当てられている。なお、図33に示す例では、入力ポートデータ指定コマンドのEXTデータのビット6,7は未使用であるから、それらのビットを、遊技制御用マイクロコンピュータ560が判定したエラーを示す情報(例えば、大入賞口への異常入賞が生じたか否か判定するように構成されている場合には、異常入賞の発生、すなわち大入賞口を開放する制御を行っていないにもかかわらずカウントスイッチ23の検出信号がオン状態になったことを示す情報)を演出制御用マイクロコンピュータ100に送信する場合に使用することができる。
なお、入力ポート1の全てのビット状態をそのまま入力ポートデータ指定コマンドとして送信するのではなく、いずれかのエラーが発生したときに、そのエラー状態を付加して入力ポートデータ指定コマンドを送信するようにしてもよい。例えば、乱数回路エラーが発生したか否かを判定し、発生していれば、乱数回路エラーに対応するビット(ビットD5)に値を付加して入力ポートデータ指定コマンドを送信してもよい。
なお、賞球カウント信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。さらに、賞球カウント信号を、払出制御用マイクロコンピュータ370にも入力することなく、そのまま主基板31および払出制御基板37を介して(すなわち、主基板31および払出制御基板37の両方をスルーして)、情報端子盤34に入力するように構成してもよい。また、賞球カウント信号を、払出制御用マイクロコンピュータ370に一旦入力したあとに、さらに遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して情報端子盤34に入力するようにしてもよい。また、賞球カウント信号を演出制御基板80には入力しないように構成してもよい。
なお、満タンエラー信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。さらに、満タンエラー信号を、払出制御用マイクロコンピュータ370にも入力することなく、そのまま主基板31および払出制御基板37を介して(すなわち、主基板31および払出制御基板37の両方をスルーして)、情報端子盤34に入力するように構成してもよい。また、満タンエラー信号を、払出制御用マイクロコンピュータ370に一旦入力したあとに、さらに遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して情報端子盤34に入力するようにしてもよい。また、満タンエラー信号を演出制御基板80には入力しないように構成してもよい。
なお、球切れエラー信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。さらに、球切れエラー信号を、払出制御用マイクロコンピュータ370にも入力することなく、そのまま主基板31および払出制御基板37を介して(すなわち、主基板31および払出制御基板37の両方をスルーして)、情報端子盤34に入力するように構成してもよい。また、球切れエラー信号を、払出制御用マイクロコンピュータ370に一旦入力したあとに、さらに遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して情報端子盤34に入力するようにしてもよい。また、球切れエラー信号を演出制御基板80には入力しないように構成してもよい。
なお、払出エラー信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。また、払出エラー信号を、払出制御用マイクロコンピュータ370からさらに遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して情報端子盤34に入力するようにしてもよい。また、払出エラー信号を演出制御基板80には入力しないように構成してもよい。
なお、ドア開閉信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。さらに、ドア開閉信号を、払出制御用マイクロコンピュータ370にも入力することなく、そのまま主基板31および払出制御基板37を介して(すなわち、主基板31および払出制御基板37の両方をスルーして)、情報端子盤34に入力するように構成してもよい。また、ドア開閉信号を、払出制御用マイクロコンピュータ370に一旦入力したあとに、さらに遊技制御用マイクロコンピュータ560に入力するようにし、遊技制御用マイクロコンピュータ560を介して情報端子盤34に入力するようにしてもよい。また、ドア開閉信号を演出制御基板80には入力しないように構成してもよい。
なお、乱数エラー信号を、遊技制御用マイクロコンピュータ560に入力することなく、そのまま主基板31を介して(すなわち、主基板31をスルーして)、情報端子盤34に入力するように構成してもよい。さらに、乱数エラー信号を、払出制御用マイクロコンピュータ370にも入力することなく、そのまま主基板31および払出制御基板37を介して(すなわち、主基板31および払出制御基板37の両方をスルーして)、情報端子盤34に入力するように構成してもよい。また、乱数エラー信号を演出制御基板80には入力しないように構成してもよい。
図34および図35は、主基板31に搭載される遊技制御用マイクロコンピュータ560(具体的には、CPU56)が実行する特別図柄プロセス処理(ステップS27)のプログラムの一例を示すフローチャートである。上述したように、特別図柄プロセス処理では特別図柄表示器8および大入賞口を制御するための処理が実行される。特別図柄プロセス処理において、CPU56は、始動入賞口13に遊技球が入賞したことを検出するための第1始動口スイッチ13aまたは第2始動口スイッチ14aがオンしていたら、すなわち始動入賞が発生していたら、始動口スイッチ通過処理を実行する(ステップS311,S312)。そして、ステップS300〜S310のうちのいずれかの処理を行う。
ステップS300〜S310の処理は、以下のような処理である。
特別図柄通常処理(ステップS300):特別図柄プロセスフラグの値が0であるときに実行される。遊技制御用マイクロコンピュータ560は、特別図柄の可変表示が開始できる状態になると、保留記憶数(始動入賞記憶数)を確認する。保留記憶数は保留記憶数カウンタのカウント値により確認できる。保留記憶数が0でない場合には、大当りとするか否か決定する。そして、内部状態(特別図柄プロセスフラグ)をステップS301に対応した値(この例では1)に更新する。
変動パターン設定処理(ステップS301):特別図柄プロセスフラグの値が1であるときに実行される。特別図柄の可変表示後の停止図柄を決定する。また、変動パターンを決定し、その変動パターンにおける変動時間(可変表示時間:可変表示を開始してから表示結果が導出表示(停止表示)するまでの時間)を特別図柄の可変表示の変動時間とすることに決定する。また、特別図柄の変動時間を計測する変動時間タイマをスタートさせる。そして、内部状態(特別図柄プロセスフラグ)をステップS302に対応した値(この例では2)に更新する。
表示結果特定コマンド送信処理(ステップS302):特別図柄プロセスフラグの値が2であるときに実行される。演出制御用マイクロコンピュータ100に、表示結果特定コマンドを送信する制御を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS303に対応した値(この例では3)に更新する。
特別図柄変動中処理(ステップS303):特別図柄プロセスフラグの値が3であるときに実行される。変動パターン設定処理で選択された変動パターンの変動時間が経過(ステップS301でセットされる変動時間タイマがタイムアウトすなわち変動時間タイマの値が0になる)すると、内部状態(特別図柄プロセスフラグ)をステップS304に対応した値(この例では4)に更新する。
特別図柄停止処理(ステップS304):特別図柄プロセスフラグの値が4であるときに実行される。特別図柄表示器8における可変表示を停止して停止図柄を導出表示させる。また、演出制御用マイクロコンピュータ100に、図柄確定指定コマンドを送信する制御を行う。そして、大当りフラグがセットされ、かつ、小当りフラグがセットされていない場合には、内部状態(特別図柄プロセスフラグ)をステップS305に対応した値(この例では5)に更新する。小当りフラグがセットされている場合には、内部状態(特別図柄プロセスフラグ)をステップS308に対応した値(この例では8)に更新する。大当りフラグがセットされていない場合には、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。なお、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560が送信する図柄確定指定コマンドを受信すると可変表示装置9において飾り図柄が停止されるように制御する。
大入賞口開放前処理(ステップS305):特別図柄プロセスフラグの値が5であるときに実行される。大入賞口開放前処理では、大入賞口を開放する制御を行う。具体的には、カウンタ(例えば大入賞口に入った遊技球数をカウントするカウンタ)などを初期化するとともに、ソレノイド21を駆動して大入賞口を開放状態にする。また、タイマによって大入賞口開放中処理の実行時間を設定し、内部状態(特別図柄プロセスフラグ)をステップS306に対応した値(この例では6)に更新する。なお、大入賞口開放前処理は各ラウンド毎に実行されるが、第1ラウンドを開始する場合には、大入賞口開放前処理は大当り遊技を開始する処理でもある。
大入賞口開放中処理(ステップS306):特別図柄プロセスフラグの値が6であるときに実行される。大当り遊技状態中のラウンド表示の演出制御コマンドを演出制御用マイクロコンピュータ100に送信する制御や大入賞口の閉成条件の成立を確認する処理等を行う。大入賞口の閉成条件が成立し、かつ、まだ残りラウンドがある場合には、内部状態(特別図柄プロセスフラグ)をステップS305に対応した値(この例では5)に更新する。また、全てのラウンドを終えた場合には、内部状態(特別図柄プロセスフラグ)をステップS307に対応した値(この例では7)に更新する。
大当り終了処理(ステップS307):特別図柄プロセスフラグの値が7であるときに実行される。大当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御用マイクロコンピュータ100に行わせるための制御を行う。また、遊技状態を示すフラグ(例えば、確変フラグ)をセットする処理を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。
小当り開放前処理(ステップS308):特別図柄プロセスフラグの値が8であるときに実行される。小当り開放前処理では、大入賞口を開放する制御を行う。具体的には、カウンタ(例えば大入賞口に入った遊技球数をカウントするカウンタ)などを初期化するとともに、ソレノイド21を駆動して大入賞口を開放状態にする。また、タイマによって大入賞口開放中処理の実行時間を設定し、内部状態(特別図柄プロセスフラグ)をステップS309に対応した値(この例では9)に更新する。なお、小当り開放前処理は小当りにおいて大入賞口を開放する毎に実行されるが、1回目に大入賞口の開放を開始する場合には、小当り開放前処理は小当り遊技を開始する処理でもある。
小当り開放中処理(ステップS309):特別図柄プロセスフラグの値が9であるときに実行される。小当り遊技状態中の大入賞口の開放回表示(大当りのラウンド表示に相当する)の演出制御コマンドを演出制御用マイクロコンピュータ100に送信する制御や大入賞口の閉成条件の成立を確認する処理等を行う。大入賞口の閉成条件が成立し、かつ、まだ大入賞口の開放回数が残っている場合には、内部状態(特別図柄プロセスフラグ)をステップS308に対応した値(この例では8)に更新する。また、全ての開放回数(例えば2回)の大入賞口の開放を終えた場合には、内部状態(特別図柄プロセスフラグ)をステップS310に対応した値(この例では10(10進数))に更新する。
小当り終了処理(ステップS310):特別図柄プロセスフラグの値が10であるときに実行される。小当り遊技状態が終了したことを遊技者に報知する表示制御を演出制御用マイクロコンピュータ100に行わせるための制御を行う。そして、内部状態(特別図柄プロセスフラグ)をステップS300に対応した値(この例では0)に更新する。
図36は、ステップS312の始動口スイッチ通過処理を示すフローチャートである。始動口スイッチ通過処理において、CPU56は、保留記憶数が上限値である4になっているか否か確認する(ステップS211)。保留記憶数が4になっている場合には、処理を終了する。
保留記憶数が4になっていない場合には、保留記憶数を示す保留記憶数カウンタの値を1増やす(ステップS212)。また、CPU56は、ソフトウェア乱数(大当り図柄決定用乱数等を生成するためのカウンタの値等)およびランダムR(大当り判定用乱数)を抽出し、それらを、抽出した乱数値として保留記憶数カウンタの値に対応する保留記憶バッファにおける保存領域に格納する処理を実行する(ステップS213)。ステップS213では、CPU56は、ソフトウェア乱数としてランダム1〜3(図27参照)の値を抽出し、乱数回路のカウント値を読み出すことによってランダムRを抽出する。また、保留記憶バッファにおいて、保存領域は、保留記憶数の上限値と同数確保されている。また、大当り図柄決定用乱数等を生成するためのカウンタや保留記憶バッファは、RAM55に形成されている。「RAMに形成されている」とは、RAM内の領域であることを意味する。
図37および図38は、特別図柄プロセス処理における特別図柄通常処理(ステップS300)を示すフローチャートである。特別図柄通常処理において、CPU56は、保留記憶数の値を確認する(ステップS51)。具体的には、保留記憶数カウンタのカウント値を確認する。保留記憶数が0であれば処理を終了する。
保留記憶数が0でなければ、CPU56は、RAM55の保留記憶数バッファにおける保留記憶数=1に対応する保存領域に格納されている各乱数値を読み出してRAM55の乱数バッファ領域に格納する(ステップS52)。そして、保留記憶数の値を1減らし(保留記憶数カウンタのカウント値を1減算し)、かつ、各保存領域の内容をシフトする(ステップS53)。すなわち、RAM55の保留記憶数バッファにおいて保留記憶数=n(n=2,3,4)に対応する保存領域に格納されている各乱数値を、保留記憶数=n−1に対応する保存領域に格納する。よって、各保留記憶数に対応するそれぞれの保存領域に格納されている各乱数値が抽出された順番は、常に、保留記憶数=1,2,3,4の順番と一致するようになっている。
そして、CPU56は、乱数バッファ領域からランダムR(大当り判定用乱数)を読み出し(ステップS61)、大当り判定モジュールを実行する(ステップS62)。大当り判定モジュールは、あらかじめ決められている大当り判定値(図28参照)と大当り判定用乱数とを比較し、それらが一致したら大当り(通常大当り、確変大当りまたは突然確変大当り)または小当りとすることに決定する処理を実行するプログラムである。
なお、CPU56は、遊技状態が確変状態であるときには、図28(B)に示すような大当り判定値が設定されているテーブルにおける大当り判定値を使用し、遊技状態が通常状態(非確変状態)であるときには、図28(A)に示すような大当り判定値が設定されているテーブルにおける大当り判定値を使用する。大当りとすることに決定した場合には(ステップS63)、ステップS81に移行する。なお、大当りとするか否か決定するということは、大当り遊技状態に移行させるか否か決定するということであるが、特別図柄表示器8における停止図柄を大当り図柄とするか否か決定するということでもある。
大当りとしないことに決定した場合には、CPU56は、乱数バッファ領域からはずれ図柄決定用乱数を読み出し(ステップS64)、はずれ図柄決定用乱数にもとづいて停止図柄を決定する(ステップS65)。この場合には、はずれ図柄(例えば、偶数図柄のいずれか)を決定する。
さらに、時短状態であることを示す時短フラグがセットされている場合には(ステップS66)、時短状態における特別図柄の変動可能回数を示す時短回数カウンタの値を−1する(ステップS67)。そして、時短回数カウンタの値が0になった場合には、可変表示が終了したときに遊技状態を非時短状態に移行させるために時短終了フラグをセットする(ステップS68,S69)。そして、ステップS90に移行する。
ステップS81では、CPU56は、大当りフラグをセットする。そして、乱数バッファ領域から大当り図柄決定用乱数を読み出し(ステップS82)、大当り図柄決定用乱数にもとづいて停止図柄としての大当り図柄(例えば、奇数図柄のいずれか)を決定する(ステップS83)。なお、ここでは、確変大当りと通常大当りとを区別せずに停止図柄を決定する。
次いで、CPU56は、確変大当りとすることに決定されている場合には、確変大当りフラグをセットする(ステップS84,S85)。また、突然確変大当りとすることに決定されている場合には、突然確変大当りフラグをセットする(ステップS86,S87)。また、小当りとすることに決定されている場合には、小当りフラグをセットする(ステップS88,S89)。そして、特別図柄プロセスフラグの値を変動パターン設定処理(ステップS301)に対応した値に更新する(ステップS90)。なお、確変大当りフラグまたは突然確変大当りフラグがセットされた場合には、大当り遊技が終了したときに遊技状態が確変状態に移行される。
なお、この実施の形態では、大当り判定用乱数にもとづいて、大当りとするか否かと大当りの種類とを決定するようにしているが(図28参照)、大当り判定用乱数にもとづいて大当りとするか否かを決定し、大当りとすることに決定された場合に大当り図柄決定用乱数にもとづいて所定の大当り図柄(あらかじめ決められている確変大当り図柄や突然確変大当り図柄)が決定されたときに確変状態に制御するようにしてもよい。
図39は、特別図柄プロセス処理における変動パターン設定処理(ステップS301)を示すフローチャートである。変動パターン設定処理において、CPU56は、乱数バッファ領域から変動パターン決定用乱数を読み出す(ステップS100)。そして、変動パターン決定用乱数にもとづいて変動パターンを決定する(ステップS101)。
ここで、遊技状態が非時短状態であって、はずれとすることに決定されている場合には、「通常変動」または「ノーマルリーチ」を選択する(図29参照)。遊技状態が非時短状態であって、大当りとすることに決定されている場合には、「リーチA」、「リーチA・延長」、「リーチB」、「リーチB・延長」、「リーチC」、「スーパーリーチA」、「スーパーリーチB」または「リーチA・突確」を選択する(図29参照)。大当りのうち確変大当りとすることに決定されている場合に、「リーチA・延長」、「リーチB・延長」、「リーチC」、「スーパーリーチA」または「スーパーリーチB」を選択する。また、突然確変大当りとすることに決定されている場合に、「リーチA・突確」を選択する。また、小当りとすることに決定されている場合に、「リーチA・小当り」を選択する。大当りのうち通常大当りとすることに決定されている場合には、「リーチA」、「リーチB」、「リーチC」または「スーパーリーチA」を選択する。
遊技状態が時短状態であって、はずれとすることに決定されている場合には、「通常変動・短縮」を選択する(図29参照)。遊技状態が時短状態であって、大当りとすることに決定されている場合には、「リーチA・短縮」、「リーチB・短縮」、「リーチC・短縮」または「リーチA・突確」を選択する(図29参照)。大当りのうち確変大当りとすることに決定されている場合に、「リーチC・短縮」を選択する。突然確変大当りとすることに決定されている場合に、「リーチA・突確」を選択する。また、小当りとすることに決定されている場合に、「リーチA・小当り」を選択する。大当りのうち通常大当りとすることに決定されている場合には、「リーチA・短縮」、「リーチB・短縮」または「リーチC・短縮」を選択する。
以上のような選択を容易にするために、遊技状態(時短状態か否か)と大当りとするか否かの決定結果(はずれ、および大当りの種類のそれぞれ)とに応じた変動パターンテーブルを用いる。変動パターンテーブルは、ROM54に記憶されるが、遊技状態と大当りとするか否かの決定結果とに応じて用意される。それぞれの変動パターンテーブルには、選択されうる変動パターンを示すデータと、それに対応する数値とが設定される。そして、CPU56は、遊技状態と大当りとするか否かの決定結果とに応じて、変動パターンテーブルを選択し、選択した変動パターンテーブルにおいて、変動パターン決定用乱数の値と一致する数値に対応する変動パターンを選択する。よって、遊技制御用マイクロコンピュータ560は、既に決定されている大当りとするか否か、および確変大当りとするか否かに応じて、変動パターンを選択することになる。
そして、CPU56は、ステップS101で選択した変動パターンに応じた変動パターンコマンド(図29参照)を演出制御用マイクロコンピュータ100に送信する制御を行う(ステップS103)。具体的には、CPU56は、演出制御用マイクロコンピュータ100に演出制御コマンドを送信する際に、演出制御コマンドに応じたコマンド送信テーブル(あらかじめROMにコマンド毎に設定されている)のアドレスをポインタにセットする。そして、演出制御コマンドに応じたコマンド送信テーブルのアドレスをポインタにセットして、演出制御コマンド制御処理(ステップS29)において演出制御コマンドを送信する。
また、特別図柄の変動を開始する(ステップS104)。例えば、ステップS34の特別図柄表示制御処理で参照される開始フラグをセットする。また、RAM55に形成されている変動時間タイマに、選択された変動パターンに対応した変動時間(図29参照)に応じた値を設定する(ステップS105)。そして、特別図柄プロセスフラグの値を表示結果特定コマンド送信処理(ステップS302)に対応した値に更新する(ステップS106)。
図40は、表示結果特定コマンド送信処理(ステップS302)を示すフローチャートである。表示結果特定コマンド送信処理において、CPU56は、決定されている大当りの種類(小当りを含む。)に応じて、表示結果1指定〜表示結果5指定のいずれかの演出制御コマンド(図31参照)を送信する制御を行う。具体的には、CPU56は、まず、大当りフラグ(小当りに決定されている場合にもセットされている。)がセットされているか否か確認する(ステップS110)。セットされていない場合には、表示結果1指定コマンドを送信する制御を行う(ステップS111)。大当りフラグがセットされている場合、確変大当りフラグがセットされているときには、表示結果4指定コマンドを送信する制御を行う(ステップS112,S113)。突然確変大当りフラグがセットされているときには、表示結果5指定コマンドを送信する制御を行う(ステップS114,S115)。小当りフラグがセットされているときには、表示結果3指定コマンドを送信する制御を行う(ステップS116,S117)。確変大当りフラグ、突然確変大当りフラグおよび小当りフラグのいずれもセットされていないときには、表示結果2指定コマンドを送信する制御を行う(ステップS118)。そして、特別図柄プロセスフラグの値を特別図柄変動中処理(ステップS303)に対応した値に更新する(ステップS119)。
図41は、特別図柄プロセス処理における特別図柄変動中処理(ステップS303)を示すフローチャートである。特別図柄変動中処理において、CPU56は、変動時間タイマを1減算し(ステップS121)、変動時間タイマがタイムアウトしたら(ステップS122)、特別図柄プロセスフラグの値を特別図柄停止処理(ステップS304)に対応した値に更新する(ステップS123)。変動時間タイマがタイムアウトしていない場合には、そのまま処理を終了する。
図42は、特別図柄プロセス処理における特別図柄停止処理(ステップS304)を示すフローチャートである。特別図柄停止処理において、CPU56は、ステップS34の特別図柄表示制御処理で参照される終了フラグをセットして特別図柄の変動を終了させ、特別図柄表示器8に停止図柄を導出表示する制御を行う(ステップS131)。また、演出制御用マイクロコンピュータ100に図柄確定指定コマンドを送信する制御を行う(ステップS132)。そして、大当りフラグがセットされていない場合には、ステップS146に移行する(ステップS133)。
大当りフラグがセットされている場合には、CPU56は、セットされていれば、確変フラグや時短フラグをリセットする(ステップS134)とともに、大当り開始指定コマンドを送信する制御を行う(ステップS135)。具体的には、確変大当りフラグがセットされている場合には大当り開始3指定コマンドを送信し、突然確変大当りフラグがセットされている場合には大当り開始4指定コマンドを送信し、小当りフラグがセットされている場合には大当り開始2指定コマンドを送信し、そうでない場合には大当り開始1指定コマンドを送信する。
また、大当り表示時間タイマに大当り表示時間(大当りが発生したことを例えば可変表示装置9において報知する時間)に相当する値を設定する(ステップS136)。そして、小当りフラグがセットされている場合には、特別図柄プロセスフラグの値を小当り開放前処理(ステップS308)に対応した値に更新する(ステップS137,S138)。小当りフラグがセットされていない場合には、特別図柄プロセスフラグの値を大入賞口開放前処理(ステップS305)に対応した値に更新する(ステップS139)。なお、小当りフラグがセットされていない場合とは、通常大当り、確変大当りまたは突然確変大当りに決定されている場合である。
ステップS146では、CPU56は、時短終了フラグがセットされているか否か確認する。時短終了フラグがセットされていない場合には、ステップS149に移行する。時短終了フラグがセットされている場合には、時短終了フラグをリセットし(ステップS147)、遊技状態が時短状態であることを示す時短フラグをリセットする(ステップS148)。そして、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS149)。
なお、時短終了フラグは、特別図柄通常処理におけるステップS69でセットされている。また、時短フラグがリセットされることによって、遊技状態は非時短状態に移行する。この段階で遊技状態が確変状態であれば、遊技状態は、非時短状態の確変状態になる。また、非確変状態であれば、通常状態(確変状態でなく、かつ、時短状態でない状態)に移行する。
大入賞口開放前処理では、CPU56は、大当り表示時間タイマが設定されている場合には、大当り表示時間タイマがタイムアウトしたら、大入賞口を開放する制御を行うとともに、大入賞口開放時間タイマに開放時間(例えば、通常大当りおよび確変大当りの場合には29秒。突然確変大当りの場合には0.5秒)に相当する値を設定し、特別図柄プロセスフラグの値を大入賞口開放中処理(ステップS306)に対応した値に更新する。なお、大当り表示時間タイマが設定されている場合とは、第1ラウンドの開始前の場合である。インターバルタイマ(ラウンド間のインターバル時間を決めるためのタイマ)が設定されている場合には、インターバルタイマがタイムアウトしたら、大入賞口を開放する制御を行うとともに、大入賞口開放時間タイマに開放時間(例えば、通常大当りおよび確変大当りの場合には29秒。突然確変大当りの場合には0.5秒)に相当する値を設定し、特別図柄プロセスフラグの値を大入賞口開放中処理(ステップS306)に対応した値に更新する。
大入賞口開放中処理では、CPU56は、大入賞口開放時間タイマがタイムアウトするか、または大入賞口への入賞球数が所定数(例えば10個)に達したら、最終ラウンドが終了していない場合には、大入賞口を閉鎖する制御を行うとともに、インターバルタイマにインターバル時間に相当する値を設定し、特別図柄プロセスフラグの値を大入賞口開放前処理(ステップS305)に対応した値に更新する。最終ラウンドが終了した場合には、特別図柄プロセスフラグの値を大当り終了処理(ステップS307)に対応した値に更新する。
図43は、特別図柄プロセス処理における大当り終了処理(ステップS307)を示すフローチャートである。大当り終了処理において、CPU56は、大当り終了表示タイマが設定されているか否か確認し(ステップS150)、大当り終了表示タイマが設定されている場合には、ステップS154に移行する。大当り終了表示タイマが設定されていない場合には、大当りフラグをリセットし(ステップS151)、大当り終了指定コマンドを送信する制御を行う(ステップS152)。ここで、確変大当りフラグまたは突然確変大当フラグがセットされている場合には大当り終了2指定コマンドを送信し、確変大当りフラグおよび突然確変大当フラグがセットされていない場合には大当り終了1指定コマンドを送信する。そして、大当り終了表示タイマに、可変表示装置9において大当り終了表示が行われている時間(大当り終了表示時間)に対応する表示時間に相当する値を設定し(ステップS153)、処理を終了する。なお、大当り終了表示タイマには、表示時間として、大当りの終了後であっても大当り終了直前に大入賞口に入賞した遊技球をカウントスイッチ23で検出しうる時間であるカウントスイッチ検出時間よりも長い時間が設定される。そのようにすることによって、大当り終了直後に異常入賞を検出した場合に不自然なタイミングで異常入賞報知を実行してしまう事態を防止することができる。
ステップS154では、大当り終了表示タイマの値を1減算する。そして、CPU56は、大当り終了表示タイマの値が0になっているか否か、すなわち大当り終了表示時間が経過したか否か確認する(ステップS155)。経過していなければ処理を終了する。経過していれば、時短フラグをセットして遊技状態を時短状態に移行させ(ステップS156)、時短回数カウンタに100を設定する(ステップS157)。
そして、確変大当りフラグまたは突然確変大当フラグがセットされているか否か確認する(ステップS158)。確変大当りフラグまたは突然確変大当フラグがセットされている場合は、セットされているフラグ(確変大当りフラグまたは突然確変大当フラグ)をリセットし(ステップS159)、確変フラグをセットして遊技状態を確変状態に移行させる(ステップS161)。なお、そのときの遊技状態が確変状態である場合には、既に確変フラグはセットされている。そして、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS162)。
ステップS308の小当り開放前処理では、大入賞口開放前処理(ステップS305)と同様の処理を行う。ただし、特別図柄プロセスフラグの値を、大入賞口開放中処理に対応した値に更新することに代えて、小当り開放中処理に対応した値に更新する。また、ステップS309の小当り開放中処理では、大入賞口開放中処理(ステップS306)と同様の処理を行う。ただし、小当りにおいて大入賞口を1回目に開放する場合(すなわち、小当り中に2回大入賞口を開放するうちの1回目)には、特別図柄プロセスフラグの値を小当り開放前処理(ステップS308)に対応した値に更新し、2回目に開放する場合である場合(すなわち、小当り中に2回大入賞口を開放するうちの2回目)には、特別図柄プロセスフラグの値を小当り終了処理(ステップS310)に対応した値に更新する。
図44は、特別図柄プロセス処理における小当り終了処理(ステップS310)を示すフローチャートである。小当り終了処理において、CPU56は、小当り終了表示タイマが設定されているか否か確認し(ステップS170)、小当り終了表示タイマが設定されている場合には、ステップS174に移行する。小当り終了表示タイマが設定されていない場合には、大当りフラグおよび小当りフラグをリセットし(ステップS171A,S171B)、大当り終了1指定コマンドを送信する制御を行う(ステップS172)。そして、小当り終了表示タイマに、可変表示装置9において小当り終了表示が行われている時間(小当り終了表示時間)に対応する表示時間に相当する値を小当り終了表示タイマが設定し(ステップS173)、処理を終了する。なお、小当り終了表示タイマには、表示時間として、小当りの終了後であっても小当り終了直前に大入賞口に入賞した遊技球をカウントスイッチ23で検出しうる時間であるカウントスイッチ検出時間よりも長い時間が設定される。そのようにすることによって、小当り終了直後に異常入賞を検出した場合に不自然なタイミングで異常入賞報知を実行してしまう事態を防止することができる。
ステップS174では、小当り終了表示タイマの値を1減算する。そして、CPU56は、小当り終了表示タイマの値が0になっているか否か、すなわち小当り終了表示時間が経過したか否か確認する(ステップS175)。経過していなければ処理を終了する。経過していれば、特別図柄プロセスフラグの値を特別図柄通常処理(ステップS300)に対応した値に更新する(ステップS176)。
次に、遊技制御用マイクロコンピュータ560が実行する普通図柄プロセス処理(ステップS28)について説明する。図45は、普通図柄プロセス処理の一例を示すフローチャートである。普通図柄プロセス処理では、遊技制御用マイクロコンピュータ560は、ゲート32を遊技球が通過してゲートスイッチ32aがオン状態となったことを検出すると(ステップS111)、ゲートスイッチ通過処理(ステップS112)を実行する。そして、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値に応じてステップS100〜S103に示された処理のうちのいずれかの処理を実行する。
ゲートスイッチ通過処理(ステップS112):遊技制御用マイクロコンピュータ560は、ゲート通過記憶カウンタのカウント値(ゲート通過記憶数)が最大値(この例では「4」)に達しているか否か確認する。最大値に達していなければ、ゲート通過記憶カウンタのカウント値を+1する。なお、ゲート通過記憶カウンタの値に応じて普通図柄保留記憶表示器41のLEDが点灯される。そして、遊技制御用マイクロコンピュータ560は、普通図柄当り判定用乱数(ランダム4)の値を抽出し、ゲート通過記憶数の値に対応した保存領域(普通図柄判定用バッファ)に格納する処理を行う。
普通図柄通常処理(ステップS100):遊技制御用マイクロコンピュータ560は、普通図柄の変動を開始することができる状態(例えば普通図柄プロセスフラグの値がステップS100を示す値となっている場合、具体的には、普通図柄表示器10において普通図柄の変動表示がなされておらず、かつ、普通図柄表示器10に当たり図柄が導出表示されたことにもとづく可変入賞球装置15の開閉動作中でもない場合)には、ゲート通過記憶数の値を確認する。具体的には、ゲート通過記憶数カウンタのカウント値を確認する。ゲート通過記憶数が0でなければ、当りとするか否か(普通図柄の停止図柄を当り図柄とするか否か)を決定する。そして、普通図柄プロセスタイマに普通図柄の変動時間をセットし、タイマをスタートさせる。そして、普通図柄プロセスフラグの値を普通図柄変動処理(ステップS101)を示す値(具体的には「1」)に更新する。
普通図柄変動処理(ステップS101):遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマがタイムアウトしたか否か確認し、タイムアウトしていたら、普通図柄表示器10における普通図柄の変動を停止し、普通図柄プロセスタイマに普通図柄停止図柄表示時間をセットし、タイマをスタートさせる。そして、普通図柄プロセスフラグの値を普通図柄停止処理(ステップS102)を示す値(具体的には「2」)に更新する。
普通図柄停止処理(ステップS102):遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマがタイムアウトしたか否かを確認し、タイムアウトしていたら、普通図柄の停止図柄が当り図柄であるかどうかを確認する。当り図柄でなければ(はずれ図柄であれば)、普通図柄プロセスフラグの値を普通図柄通常処理(ステップS100)を示す値(具体的には「0」)に更新する。一方、普通図柄の停止図柄が当り図柄であれば、普通図柄プロセスタイマに普通電動役物作動時間をセットし、タイマをスタートさせる。また、現在の遊技状態が高ベース状態であるか否かを確認し、高ベース状態であれば、高ベース状態のときの普通電動役物(可変入賞球装置15)の開放パターンを選択し、低ベース状態であれば、低ベース状態のときの普通電動役物(可変入賞球装置15)の開放パターンを選択し、選択した開放パターンを設定する。そして、普通図柄プロセスフラグの値を普通電動役物作動処理(ステップS103)を示す値(具体的には「3」)に更新する。
普通電動役物作動処理(ステップS103):遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマがタイムアウトしていないことを条件に、普通電動役物(可変入賞球装置15)への遊技球の入賞個数(第2始動入賞口14への入賞個数)をカウントする普通電動役物入賞カウント処理を実行し、また、設定された開放パターンで普通電動役物の開放を行う(可変入賞球装置15の開閉動作を実行する)普通電動役物開放パターン処理を実行する。そして、普通図柄プロセスタイマがタイムアウトすると、普通図柄プロセスフラグの値を普通図柄通常処理(ステップS100)を示す値(具体的には「0」)に更新する。
図46は、普通図柄通常処理(ステップS100)を示すフローチャートである。普通図柄通常処理において、遊技制御用マイクロコンピュータ560は、ゲート通過記憶数カウンタのカウント値を確認することにより、ゲート通過記憶数が0であるか否かを確認する(ステップS121)。ゲート通過記憶数が0であれば(ステップS121のY)、そのまま処理を終了する。ゲート通過記憶数が0でなければ(ステップS121のN)、遊技制御用マイクロコンピュータ560は、ゲート通過記憶数=1に対応する保存領域に格納されている普通図柄当り判定用乱数値を読み出してRAM55の乱数バッファ領域に格納する(ステップS122)。そして、遊技制御用マイクロコンピュータ560は、ゲート通過記憶数カウンタの値を1減らし、かつ、各保存領域の内容をシフトする(ステップS123)。すなわち、ゲート通過記憶数=n(n=2,3,4)に対応する保存領域に格納されている普通図柄当り判定用乱数値を、ゲート通過記憶数=n−1に対応する保存領域に格納する。よって、各ゲート通過記憶数に対応するそれぞれの保存領域に格納されている普通図柄当り判定用乱数値が抽出された順番は、常に、ゲート通過記憶数=1,2,3,4の順番と一致するようになっている。
次いで、遊技制御用マイクロコンピュータ560は、乱数格納バッファから普通図柄当り判定用乱数を読み出し(ステップS124)、読み出した乱数値にもとづいて当りとするかはずれとするかを決定する(ステップS125)。具体的には、普通図柄当り判定用乱数の値が当り判定値と一致するか否かが判定され、一致する当り判定値があれば当りと決定される。例えば、時短フラグがセットされているとき、すなわち高ベース状態(時短状態、確変時短状態)のときには、当り判定値を1〜10のいずれかとし、低ベース状態のときには、当り判定値を3または7としている。普通図柄当り判定用乱数が0〜10の数値範囲で更新されるとすると、高ベース状態のときの当選確率は10/11となり、低ベース状態のときの当選確率は2/11となる。このように、高ベース状態のときは高確率で当りとなり、低ベース状態のときは低確率でしか当りとならない。
次いで、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマに普通図柄変動時間をセットし(ステップS126)、普通図柄表示器10における普通図柄の変動を開始させる(ステップS127)。なお、この実施の形態では、図37に示すように、低ベース時の普通図柄の変動時間は30.0秒とされ、高ベース時の普通図柄の変動時間は1.0秒とされている。そして、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値を普通図柄変動処理(ステップS101)を示す値(具体的には「1」)に更新する(ステップS128)。
図47は、普通図柄変動処理(ステップS101)を示すフローチャートである。普通図柄変動処理において、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値が0になったかどうか、すなわち、普通図柄プロセスタイマがタイムアップしたかどうかを確認する(ステップS131)。普通図柄プロセスタイマがタイムアップしていなければ(ステップS131のN)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値を−1する(ステップS135)。
普通図柄プロセスタイマがタイムアップしたとき、すなわち、普通図柄の変動時間が経過したときは(ステップS131のY)、遊技制御用マイクロコンピュータ560は、普通図柄表示器10における普通図柄の変動を停止させる(ステップS132)。そして、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマに普通図柄停止図柄表示時間をセットする(ステップS133)。そして、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値を普通図柄停止処理(ステップS102)を示す値(具体的には「2」)に更新する(ステップS134)。
図48は、普通図柄停止処理(ステップS102)を示すフローチャートである。普通図柄停止処理において、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値が0になったかどうか、すなわち、普通図柄プロセスタイマがタイムアップしたかどうかを確認する(ステップS141)。普通図柄プロセスタイマがタイムアップしていなければ(ステップS141のN)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値を−1する(ステップS142)。
普通図柄プロセスタイマがタイムアップしたとき、すなわち、普通図柄停止図柄表示時間が経過したときは(ステップS141のY)、遊技制御用マイクロコンピュータ560は、普通図柄の停止図柄が当り図柄であるかどうか(ステップS125にて当りと判定されたかどうか)を確認する(ステップS143)。なお、普通図柄の停止図柄が当り図柄かどうかは、例えば、ステップS125にて当りと判定されたときに普通図柄当り判定フラグをセットすることとして、そのフラグがセットされているかどうかによって確認することができる。
普通図柄の停止図柄が当り図柄であるときは(ステップS143のY)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマに普通電動役物作動時間をセットする(ステップS144)。普通電動役物作動時間は、普通電動役物(可変入賞球装置15)が動作可能な最大時間である。普通電動役物作動時間は、高ベース状態のときの方が低ベース状態のときよりも長い時間に設定されている。
次いで、遊技制御用マイクロコンピュータ560は、遊技状態が高ベース状態であるか低ベース状態であるかを確認する(ステップS145)。高ベース状態であるか低ベース状態であるかは、時短フラグがセットされているかどうかによって確認することができる。時短フラグがセットされているときは高ベース状態であると判断し、時短フラグがセットされていないときは低ベース状態であると判断することができる。なお、高ベース状態のときに、高ベース状態であることを示す高ベース状態フラグをセットし、そのフラグがセットされているかどうかによって、高ベース状態であるか低ベース状態であるかを判断するようにしてもよい。
高ベース状態であるときは(ステップS145のY)、遊技制御用マイクロコンピュータ560は、普通電動役物の開放パターンとして図49に示す高ベース時テーブルに設定されている開放パターンを選択する(ステップS146)。一方、低ベース状態であるときは(ステップS145のN)、遊技制御用マイクロコンピュータ560は、普通電動役物の開放パターンとして図49に示す低ベース時テーブルに設定されている開放パターンを選択する(ステップS147)。図49に示す例では、低ベース時テーブルには、開放時間が0.5秒で、開放回数が1回の開放パターンのデータが設定されている。また、高ベース時テーブルには、開放時間が2.5秒で、開放回数が2回の開放パターンのデータが設定されている。
そして、遊技制御用マイクロコンピュータ560は、ステップS146またはS147で選択した開放パターンを開放パターンバッファにセットする(ステップS148)。なお、開放パターンを開放パターンバッファにセットする際に、普通電動役物開放パターンタイマ(普通電動役物の開放時間および閉鎖時間を計測するタイマ)に開放パターン時間(ここでは可変入賞球装置15が最初に開放されるまでの閉鎖時間)をセットする処理も行われる。その後、普通図柄プロセスフラグの値を普通電動役物作動処理(ステップS103)を示す値(具体的には「3」)に更新する(ステップS149)。
ステップS143において、普通図柄の停止図柄が当り図柄でなく、はずれ図柄であると判定されたときは(ステップS143のN)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値を普通図柄通常処理(ステップS100)を示す値(具体的には「0」)に更新する(ステップS150)。
図50は、普通電動役物作動処理(ステップS103)を示すフローチャートである。普通電動役物作動処理において、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値が0になったかどうか、すなわち、普通図柄プロセスタイマがタイムアップしたかどうかを確認する(ステップS161)。普通図柄プロセスタイマがタイムアップしていなければ(ステップS161のN)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値を−1する(ステップS162)。
そして、遊技制御用マイクロコンピュータ560は、スイッチオンバッファをレジスタにロードする(ステップS163)。スイッチオンバッファは、スイッチのオンが検出された場合にそのスイッチの対応ビットにおいて1が設定され、スイッチのオフが検出された場合にそのスイッチの対応ビットにおいて0が設定されるバッファである。
遊技制御用マイクロコンピュータ560は、第2始動口スイッチ入力ビット(第2始動口スイッチ14aの対応ビット)において1がセットされているかどうかを確認する(ステップS164)。つまり、第2始動口スイッチ14aがオンになったかどうか(第2始動入賞口14に遊技球が入賞したかどうか)を確認する。第2始動口スイッチ入力ビットにおいて1がセットされていなければ(ステップS164のN)、ステップS168の処理に移行する。第2始動口スイッチ入力ビットにおいて1がセットされていれば(ステップS164のY)、第2始動口スイッチ14aがオンしたことになるので、遊技制御用マイクロコンピュータ560は、普通電動役物(可変入賞球装置15)に入賞した遊技球の個数をカウントする普通電動役物入賞個数カウンタを+1する(ステップS165)。そして、遊技制御用マイクロコンピュータ560は、普通電動役物入賞個数カウンタの値が8未満であるかどうかを確認する(ステップS166)。普通電動役物入賞個数カウンタの値が8未満でない場合(ステップS166のN)、つまり8以上である場合は、遊技制御用マイクロコンピュータ560は、普通図柄プロセスタイマの値をクリア(0に)する(ステップS167)。この処理によって、普通電動役物作動処理が終了することになる(ステップS161のY、S172参照)。このように、この実施の形態では、普通電動役物作動時間内において8個以上の遊技球が可変入賞球装置15に入賞したときは、普通電動役物作動処理を終了するようにしている。なお、遊技制御用マイクロコンピュータ560は、普通電動役物作動時間内において8個以上の遊技球が可変入賞球装置15に入賞したときには、普通図柄プロセスタイマをクリアし(ステップS167参照)、同じタイマ割込処理内で、ソレノイド16を非励磁状態とすることによって可変入賞球装置15を閉鎖する(ステップS171参照)とともに、普通図柄プロセスフラグの値を普通図柄通常処理(ステップS100)を示す値(具体的には「0」に更新する(ステップS172参照)ようにしてもよい。
次に、遊技制御用マイクロコンピュータ560は、普通電動役物開放パターンタイマの値を−1する(ステップS168)。そして、遊技制御用マイクロコンピュータ560は、普通電動役物開放パターンタイマの値が0であるかどうか、すなわち、普通電動役物開放パターンタイマがタイムアップしたかどうかを確認する(ステップS169)。タイムアウトしていなければ(ステップS169のN)、そのまま処理を終了する。タイムアウトしていれば(ステップS169のY)、遊技制御用マイクロコンピュータ560は、普通電動役物開放パターンタイマに開放パターン時間をセットする(ステップS170)。なお、遊技制御用マイクロコンピュータ560は、普通図柄停止処理で開放パターンバッファにセットした開放パターン(ステップS148参照)にもとづいて、開放パターン時間を普通電動役物開放パターンタイマにセットする。
そして、遊技制御用マイクロコンピュータ560は、ソレノイド16を駆動して普通電動役物(可変入賞球装置15)を開放または閉鎖する(ステップS171)。この場合、遊技制御用マイクロコンピュータ560は、ソレノイド16を励磁することによって、可変入賞球装置15を開放する。または、遊技制御用マイクロコンピュータ560は、ソレノイド16を非励磁状態とすることによって、可変入賞球装置15を閉鎖する。
具体的には、可変入賞球装置15が閉状態のときに普通電動役物開放パターンタイマがタイムアップすると、普通電動役物開放パターンタイマに開放パターン時間として開放時間をセットし、出力ポートバッファ(ソレノイドバッファ)の普通電動役物ソレノイド出力ビットを反転させて可変入賞球装置15を開放する。可変入賞球装置15が開状態のときに普通電動役物開放パターンタイマがタイムアップすると、普通電動役物開放パターンタイマに開放パターン時間として閉鎖時間をセットし、出力ポートバッファ(ソレノイドバッファ)の普通電動役物ソレノイド出力ビットを反転させて可変入賞球装置15を閉鎖する。
以上のステップS168〜S171の処理によって、低ベース状態のときの開放パターンと高ベース状態のときの開放パターンとが実現される。遊技状態が低ベース状態のときは、開放時間が0.5秒であり開放回数が1回となる開放パターンであるので、例えば、普通電動役物作動処理が開始されてから1.0秒の閉鎖時間が経過すると、可変入賞球装置15が開放されて開状態となり、その後に0.5秒の開放時間が経過したときに可変入賞球装置15が閉鎖されて閉状態となる。また、遊技状態が高ベース状態のときは、開放時間が2.5秒であり開放回数が2回となる開放パターンであるので、例えば、普通電動役物作動処理が開始されてから2.5秒の閉鎖時間が経過すると、可変入賞球装置15が開放されて開状態となり、その後に2.5秒の開放時間が経過したときに可変入賞球装置15が閉鎖されて閉状態となり、再び2.5秒の閉鎖時間が経過すると、可変入賞球装置15が開放されて開状態となり、さらに2.5秒の開放時間が経過したときに可変入賞球装置15が閉鎖されて閉状態となる。
ステップS161において、普通図柄プロセスタイマがタイムアップしたときは(ステップS161のY)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値を普通図柄通常処理(ステップS100)を示す値(具体的には「0」)に更新する(ステップS172)。
次に、主基板31と払出制御基板37との間で送受信される払出制御コマンド(払出制御信号)について説明する。図51は、遊技制御用マイクロコンピュータ560から払出制御用マイクロコンピュータ370に対して送信される払出指令信号等の内容の一例を示す説明図である。
賞球REQ信号は、賞球個数コマンドの送信時に出力状態(=オン状態)になる信号(すなわち賞球払出要求のトリガ信号)である。4ビットの賞球個数信号は、払出要求を行う遊技球の個数(0〜15個)を指定するために出力される信号(賞球個数コマンド)である。賞球カウント信号は、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に対して送信される払出制御信号であり、払出個数カウントスイッチ187の検出信号に相当する信号である。
図52は、図51に示す各制御信号の送受信に用いられる信号線等を示すブロック図である。図52には、払出に関する異常を示す信号(払出エラー信号、球切れ信号、満タン信号)およびその他の異常(ドア開放エラー)を示す信号(ドア開閉信号)も、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に対して送信されることが示されている。また、払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に対して、賞球払出時の払出個数カウントスイッチ301の検出信号の状態を示す賞球カウント信号も送信される。図52に示すように、賞球REQ信号および賞球個数信号は、遊技制御用マイクロコンピュータ560によって出力回路67を介して出力され、入力回路373Aを介して払出制御用マイクロコンピュータ370に入力される。払出制御用マイクロコンピュータ370から遊技制御用マイクロコンピュータ560に対する信号は、出力回路373Bを介して出力され、入力回路68を介して入力される。
図53は、払出指令信号の出力の仕方の一例を示すタイミング図である。図53に示すように、入賞検出スイッチ(第1始動口スイッチ13a、第2始動口スイッチ14a、カウントスイッチ23、入賞口スイッチ29a,30a,33a,39a)が遊技球の入賞を検出したことにもとづいて、遊技制御用マイクロコンピュータ560は、賞球REQ信号をオン状態にするとともに、賞球個数信号の出力状態を、入賞に応じて払い出される賞球数に応じた状態にする。なお、具体的には、遊技制御用マイクロコンピュータ560は、遊技球が遊技機に設けられている入賞領域に入賞したことが入賞検出スイッチの検出信号によって検知すると、あらかじめ決められた賞球数を総賞球数格納バッファの内容に加算する。そして、総賞球数格納バッファの内容が0でない値になったら、賞球REQ信号をオン状態にするとともに、賞球個数信号の出力状態を、入賞に応じて払い出される賞球数に応じた状態にする。
この実施の形態では、第1始動口スイッチ13aまたは第2始動口スイッチ14aで遊技球が検出されると4個の賞球払出を行い、カウントスイッチ23で遊技球が検出されると15個の賞球払出を行う。入賞口スイッチ29a,30a,33a,39aで遊技球が検出されると7個の賞球払出を行う。また、上述したように、賞球個数信号は4ビットで構成されているので、8ビットで表現されている00(H)〜0F(H)の賞球個数信号のうち、下位の4ビットが賞球個数信号によって主基板31から払出制御基板37に伝達される。以下、「00(H)〜0F(H)の賞球個数信号」のように表現することがあるが、実際には、賞球個数信号は、8ビットで表現されている00(H)〜0F(H)のうちの下位の4ビットに相当する。
なお、この実施の形態では、払出指令信号については、主基板31から払出制御基板37に向かう方にしか信号が伝達されない単方向通信によって賞球個数信号が送信されるが、双方向通信によって、主基板31から払出制御基板37に賞球個数信号が送信されるようにしてもよい。この場合、払出制御用マイクロコンピュータ370は、例えば、賞球REQ信号の受信に応じてACK信号(応答信号)を遊技制御用マイクロコンピュータ560に送信したり、賞球個数信号を受信したことを示すACK信号を遊技制御用マイクロコンピュータ560に送信するようにしてもよい。また、この場合、払出制御用マイクロコンピュータ370は、ACK信号を出力したときに、遊技球の払い出しを終了するまでACK信号のオン状態を継続するようにしてもよい。そして、遊技球の払い出しを終了すると、ACK信号をオフ状態とするようにしてもよい。そのようにすれば、ACK信号がオン状態になったあとオフ状態になったか否かを確認することによって、遊技制御用マイクロコンピュータ560側で遊技球の払い出しが終了したか否かを確認できる。その場合、遊技制御用マイクロコンピュータ560は、払い出しが終了した後に、まだ払い出されていない賞球があれば、再度賞球REQ信号および賞球個数信号を送信するようにすればよい。また、払出制御用マイクロコンピュータ370は、賞球REQ信号や賞球個数信号を受信したときに一瞬だけACK信号をオン状態にするようにしてもよい。その場合には、ACK信号がオン状態となってオフ状態となったことにもとづいて、まだ払い出されていない賞球があれば、再度賞球REQ信号および賞球個数信号を送信するようにすればよい。
なお、主基板31から払出制御基板37に向かう方にしか信号が伝達されない単方向通信によって賞球個数信号が送信されるようにする場合、払出制御用マイクロコンピュータ370は、賞球個数信号を受信すると、INT割込によって賞球個数信号で指定された数の遊技球が払い出されるように払出装置97を制御してもよい。そのように構成すれば、遊技制御用マイクロコンピュータ560は、遊技球の払い出しが完了しているか否かにかかわらず賞球個数信号を送信することができる。そのため、遊技制御用マイクロコンピュータ560は、1回の払い出しが完了するまで賞球個数をRAMなどに保存しておく必要をなくせるので、RAMなどの記憶容量の増大を防止することができる。
図54は、払出個数カウントスイッチ187の検出信号の状態と賞球カウント信号の出力状態との関係を示す説明図である。図54に示すように、払出個数カウントスイッチ187の検出信号の状態と賞球カウント信号の出力状態とは、ほぼ相似している。賞球カウント信号の出力状態の、払出個数カウントスイッチ187の検出信号の状態からの遅れ時間は、払出制御用マイクロコンピュータ370における処理時間に相当する。なお、この実施の形態では、カードユニット50からの球貸し要求にもとづく遊技球の払い出しが行われているときも払出個数カウントスイッチ187の検出信号はオン状態になるが、払出制御用マイクロコンピュータ370は、入賞にもとづく賞球払出が行われているときにのみ賞球カウント信号を送信する。
図55は、ステップS23A(図26参照)の入力ポートデータ確認処理を示すフローチャートである。入力ポートデータ確認処理において、CPU56は、入力ポート1(図15参照)のデータ(入力データ)を入力ポート1から読み込み(ステップS581)、入力ポート1の入力データと、RAMに形成されている入力ポート1バッファの内容との間でビット毎に排他的論理和をとる(ステップS582)。入力ポート1の入力データとRAMに形成されている入力ポート1バッファの内容との間で、論理(「1」または「0」の意味)が異なっているビットがあれば、8ビットの排他的論理和の演算結果は00(H)にはならない。なお、ステップS582における演算は、入力ポート1の入力データと、前回の処理で入力ポート1から入力したデータとの論理積をとるようにしてもよい。すなわち、何らかの演算により入力ポートの状態の変化を認識できるものであればよい。
そして、CPU56は、排他的論理和の演算結果が00(H)であるか否か判定する(ステップS583)。演算結果が00(H)であれば処理を終了する。演算結果が00(H)でなければ、入力ポート1の入力データをコマンドバッファの2バイト目に設定する(ステップS584)。また、コマンドバッファの1バイト目にFF(H)を設定する(ステップS585)。そして、演出制御コマンド送信要求フラグをセットする(ステップS586)。CPU56は、ステップS29の演出制御コマンド制御処理で、演出制御コマンド送信要求フラグがセットされていることを確認したら、コマンドバッファの内容を演出制御コマンドとして送信する。なお、演出制御コマンド制御処理で演出制御コマンドを送信するのではなく、演出制御コマンド送信要求フラグをセットすることに代えて、直ちに演出制御コマンドを送信するようにしてもよい。
CPU56は、演出制御コマンド送信要求フラグをセットした後、ステップS581で入力した入力ポート1の入力データを入力ポート1バッファに保存する(ステップS587)。
以上のような制御によって、入力ポート1の入力データが変化したことを条件に、入力ポート1の入力データが演出制御用マイクロコンピュータ100に伝達される。その際に、遊技制御用マイクロコンピュータ560は、入力ポート1の入力データを、そのまま演出制御コマンドとして送信する。よって、入力ポート1に入力される信号が示す情報が多数あっても、遊技制御手段の制御負担は軽い。ただし、CPU56が入力ポート1のデータを一旦取り込んで、取り込んだデータを、毎回、入力ポート1バッファに保存するようにしてもよい。
また、入力ポート1の入力データが変化したことを条件に入力ポート1の入力データに関する演出制御コマンドが主基板31から出力されるので、例えば、所定の制御期間(2ms間隔の期間)に常に1回演出制御コマンドを送信するように構成されている場合に比べて、演出制御コマンドの送信周期が把握されづらくなる。つまり、所定の制御期間の周期が把握されづらくなる。例えば、タイマ割込毎に大当り判定用乱数(この実施の形態ではランダムRに相当)をソフトウェア乱数として更新する場合に、所定の制御期間では、大当りに関わる乱数を生成するためのカウンタの値が1づつ更新されるので、所定の制御期間の周期が把握されやすいとカウンタの値が所定値になるタイミングが把握されやすくなる。所定のタイミングとは、大当り判定用乱数をソフトウェアで作成したり、大当り図柄決定用乱数にもとづいて確変大当りとするか否か決定するように構成されている場合における大当り判定用乱数の値が大当り判定値と一致するタイミングや大当り図柄決定用乱数の値が確変図柄に対応する値と一致するタイミングなどである。カウンタの値が所定値になるタイミングが把握されやすくなるということは、不正行為を受けやすくなるということであるが、この実施の形態では、不正行為を受けにくくすることができる。
なお、この実施の形態では、図10に示すように乱数回路503および監視回路504が遊技制御用マイクロコンピュータ560の外部に設けられ、乱数エラー信号は、外部から遊技制御用マイクロコンピュータ560に入力され、信号が変化したときに入力ポートデータ指定コマンドを送信するようにしたが、遊技制御用マイクロコンピュータ560が乱数エラーが生じたか否か判定するようにしてもよい。例えば、乱数回路503に供給されるクロック信号をWDTのリセットに用いて、WDTからの信号を遊技制御用マイクロコンピュータ560の入力ポートにも入力させ、遊技制御用マイクロコンピュータ560のCPU56は、WDTからの信号がエラー状態を示すことによりクロック信号が途絶えていると判定したときに乱数エラーが生じているとして入力ポートデータ指定コマンド(図31参照)の乱数エラー指定ビットをエラーに対応した値に設定する。また、監視回路504からの乱数エラー信号の信号線のレベル(ハイレベルまたはローレベル)を複数回チェックして、例えば1回でも乱数エラー信号の信号線のレベルが乱数エラーに対応したレベルになったら乱数エラーが生じたと判定するようにしてもよい。それらの場合、CPU56は、入力ポート1の入力データを、そのまま演出制御コマンドとして送信するのではなく、入力ポート1の入力データに対して、演出制御コマンドの2バイト目(EXTデータ)における乱数エラー指定ビットに対応するビットの値を乱数エラーに対応した値(この実施の形態では「0」)に設定した上で、演出制御コマンドとする。また、それらの場合、CPU56は、電力供給開始時に乱数エラーが生じたか否か判定するようにしてもよいが、電力供給開始後、常に判定するようにしてもよい。
また、この実施の形態では、CPU56は、入力ポート1の入力データをそのまま演出制御用マイクロコンピュータ100に演出制御コマンドとして送信するが、CPU56は、入力ポート1の入力データのうちの一部をそのまま送信し、一部を加工して送信するようにしてもよい。例えば、加工として論理反転して送信するようにしてもよい。なお、論理反転はハードウェアの反転回路で実現してもよい。また、加工として、例えば1バイト中のビット位置を変更するようにしてもよい。ビット位置の変更(シフトを含む)は、ハードウェアの配線で実現してもよい。
また、この実施の形態では、CPU56は、図55に示す入力ポートデータ確認処理をタイマ割込処理で実行するが、メイン処理(図25に示すステップS16とS19の処理の間)で実行するようにしてもよい。
図56は、遊技制御処理におけるステップS21のスイッチ処理の処理例を示すフローチャートである。スイッチ処理において、遊技制御用マイクロコンピュータ560は、前回ポートバッファの内容を、前回データに設定する(ステップS331)。また、前々回ポートバッファの内容と前回データとの排他的論理和をとる(ステップS332)。そして、排他的論理和演算の結果を前回データに設定する(ステップS333)。この段階で、前回データにおいて、前々回ポートバッファの8ビットと前回ポートバッファの8ビットとのうちで、値が異なるビットが「1」になっている。また、前回ポートバッファの内容を前々回ポートバッファに設定する(ステップS334)。
そして、入力ポート0のデータを入力し(ステップS335)、入力したデータを前回ポートバッファに設定する(ステップS336)。ステップS334,S336の処理は、次回(2ms後)にスイッチ処理が実行されるときの準備処理に相当する。
次いで、遊技制御用マイクロコンピュータ560は、入力ポート0から入力したデータと前回データの論理積をとる(ステップS337)。この段階で、前回データにおいて、前々回ポートバッファの8ビットと前回ポートバッファの8ビットとのうちで値が異なるビットが「1」になっている。つまり、7つのスイッチの検出信号のうちで、2ms前の状態が4ms前の状態から変化した(「0」から「1」に、または「1」から「0」に)検出信号に対応するビットが「1」になっている。よって、ステップS337で前回データと入力ポート0から入力したデータとの論理積をとると、入力ポート0から入力したデータのうちで「1」になっているビットであって、かつ、2ms前の状態が4ms前の状態から変化したビットが、「1」になる。すなわち、論理積演算の結果、現時点の状態がオン状態であって、かつ、前回(2ms前)のスイッチ処理時にオフ状態からオン状態に変化したことが検出された検出信号に対応したビットが「1」になる。換言すれば、オフ状態からオン状態に変化し、その後、2回連続してオン状態が検出された検出信号に対応するビットが「1」になっている。なお、「2回連続して」とは、「ある時点で実行されたスイッチ処理と、そのスイッチ処理の2ms後に実行されるスイッチ処理との双方で」という意味である。
遊技制御用マイクロコンピュータ560は、論理積演算の結果をスイッチオンバッファに格納する(ステップS338)。スイッチオンバッファにおいて、オフ状態からオン状態に変化した後、2回連続してオン状態が検出された検出信号に対応するビットが「1」になっている。よって、遊技制御用マイクロコンピュータ560は、スイッチオンバッファにおいて「1」になっているビットに対応するスイッチの検出信号が確実にオン状態になったと確認できる。なお、「確実に」とは、2回連続してオン状態が検出されたので、すなわち4ms間オン状態が継続していると見なせるので、検出信号のオン状態がノイズ等によるものではないと判断できるということである。
図57は、ステップS31の賞球処理の一例を示すフローチャートである。賞球処理において、遊技制御用マイクロコンピュータ560は、賞球個数加算処理(ステップS341)と賞球制御処理(ステップS342)とを実行する。
賞球個数加算処理では、図58に示す賞球個数テーブルが使用される。賞球個数テーブルは、ROM54に設定されている。賞球個数テーブルの先頭アドレスには処理数(この例では「7」)が設定され、その次のアドレスから、入賞により賞球を払い出すことになる入賞口の各スイッチについてのスイッチ入力ビット判定値、および賞球数が、入賞口の各スイッチのそれぞれに対応して順次設定されている。なお、スイッチ入力ビット判定値は、入力ポート0における各スイッチの検出信号が入力されるビットに対応した値である(図15参照)。
図59は、ステップS341の賞球個数加算処理を示すフローチャートである。賞球個数加算処理において、遊技制御用マイクロコンピュータ560は、賞球個数テーブルの先頭アドレスをポインタにセットする(ステップS351)。そして、ポインタが指すアドレスのデータ(この場合には処理数)をロードする(ステップS352)。次に、スイッチオンバッファをレジスタにロードする(ステップS353)。
そして、ポインタの値を1増やし(ステップS354)、スイッチオンバッファの内容と、ポインタが指す賞球個数テーブルのデータ(この場合にはスイッチ入力ビット判定値)との論理積をとる(ステップS355)。また、ポインタの値を1増やす(ステップS356)。
ステップS355における演算結果が0でなければ(ステップS361のN)、すなわち、検査対象のスイッチの検出信号がオン状態であれば、ステップS362Aに移行する。ステップS355における演算結果が0であれば(ステップS361のY)、すなわち、検査対象のスイッチの検出信号がオン状態でなければ、処理数を1減らし(ステップS359)、処理数が0であれば処理を終了し、処理数が0でなければステップS354に戻る(ステップS360)。
ステップS362Aでは、遊技制御用マイクロコンピュータ560は、ステップS355の処理で使用されたスイッチ入力ビット判定値がカウントスイッチ入力ビット判定値であったか否か確認する。すなわち、ステップS361でカウントスイッチ23がオンしたことが確認されたか否か(検査対象のスイッチがカウントスイッチ23であったか否か)確認する。
スイッチ入力ビット判定値がカウントスイッチ入力ビット判定値であった場合には(ステップS362AのY)、遊技制御用マイクロコンピュータ560は、特別図柄プロセスフラグの値が5以上であるか否か確認する(ステップS362B)。特別図柄プロセスフラグの値が5以上であるということは、特別図柄プロセス処理において、ステップS304の大入賞口開放前処理以後の処理が実行されていることを意味する。すなわち、大当り遊技中または小当り遊技中であることを意味する。なお、ここでは、大当り遊技中は、大当り表示が開始されてから大当り終了処理が終了するまでの期間とする。また、小当り遊技中は、小当り表示が開始されてから小当り終了処理が終了するまでの期間とする。つまり、特別図柄プロセスフラグの値が5以上であるということは、遊技制御が正常に実行されている場合において、大入賞口が開放される制御がなされる可能性がある状態であることを示す。
特別図柄プロセスフラグの値が5以上である場合には(ステップS362BのY)、遊技制御用マイクロコンピュータ560は、ポインタが指す賞球個数テーブルのデータ(この場合には賞球個数)を賞球加算値に設定し(ステップS364)、賞球加算値を、RAM55に形成されている16ビットの総賞球数格納バッファの内容に加算する(ステップS365)。加算の結果、桁上げが発生した場合には、総賞球数格納バッファの内容を65535(=FFFF(H))に設定する(ステップS357,S358)。そして、ステップS359の処理に移行する。
特別図柄プロセスフラグの値が5未満である状態は、大当り遊技および小当り遊技は実行されず、大入賞口を開放する制御は実行されない状態である。そのような状態においてカウントスイッチ23がオンしたことが検出されたということは、大入賞口に異常入賞が生じたこと、またはカウントスイッチ23からの検出信号に長期間(4msを越える)に亘るノイズが乗ったことを意味する。そこで、特別図柄プロセスフラグの値が5未満である状態でカウントスイッチ23がオンしたことが検出された場合には(ステップS362BのN)、総賞球数格納バッファに賞球加算値を加算する制御を実行しないようにする。すなわち、カウントスイッチ23がオンしたことにもとづく賞球払出を実行しないようにする(ステップS364,S365の処理をスキップする)。そして、ステップS359の処理に移行する。
スイッチ入力ビット判定値がカウントスイッチ入力ビット判定値でない場合は(ステップS362AのN)、遊技制御用マイクロコンピュータ560は、ステップS355の処理で使用されたスイッチ入力ビット判定値が第2始動口スイッチ入力ビット判定値であったか否か確認する(ステップS363A)。すなわち、ステップS361で第2始動口スイッチ14aがオンしたことが確認されたか否か(検査対象のスイッチが第2始動口スイッチ14aであったか否か)確認する。
スイッチ入力ビット判定値が第2始動口スイッチ入力ビット判定値であった場合には(ステップS363AのY)、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値が3であるか否か確認する(ステップS363B)。普通図柄プロセスフラグの値が3であるということは、普通図柄プロセス処理において、ステップS103の普通電動役物作動処理が実行されていることを意味する。すなわち、普通電動役物(可変入賞球装置15)の開閉動作中であることを意味する。
スイッチ入力ビット判定値が第2始動口スイッチ入力ビット判定値でなかった場合(ステップS363AのN)、および普通図柄プロセスフラグの値が3である場合(ステップS363BのY)には、遊技制御用マイクロコンピュータ560は、ポインタが指す賞球個数テーブルのデータ(この場合には賞球個数)を賞球加算値に設定し(ステップS364)、賞球加算値を、RAM55に形成されている16ビットの総賞球数格納バッファの内容に加算する(ステップS365)。加算の結果、桁上げが発生した場合には、総賞球数格納バッファの内容を65535(=FFFF(H))に設定する(ステップS357,S358)。そして、ステップS359の処理に移行する。
普通図柄プロセスフラグの値が3でない状態は、可変入賞球装置15が動作しておらず、可変入賞球装置15を開放する制御は実行されない状態である。そのような状態において第2始動口スイッチ14aがオンしたことが検出されたということは、第2始動入賞口14に異常入賞が生じたこと、または第2始動口スイッチ14aからの検出信号に長期間(4msを越える)に亘るノイズが乗ったことを意味する。そこで、普通図柄プロセスフラグの値が3でない状態で第2始動口スイッチ14aがオンしたことが検出された場合には(ステップS363BのN)、総賞球数格納バッファに賞球加算値を加算する制御を実行しないようにする。すなわち、第2始動口スイッチ14aがオンしたことにもとづく賞球払出を実行しないようにする(ステップS364,S365の処理をスキップする)。そして、ステップS359の処理に移行する。
なお、上記の処理では、遊技制御用マイクロコンピュータ560が、特別図柄プロセスフラグの値にもとづいて大入賞口への異常入賞が生じたか否か判定するようにしたが、実際に大入賞口を開放していないときにカウントスイッチ23がオンしたことが検出された場合に、カウントスイッチ23がオンしたことにもとづく賞球払出を実行しないようにしてもよい。例えば、ソレノイド21を駆動して大入賞口を開放したときに大入賞口開放フラグをセットし、大入賞口を閉鎖したときに大入賞口開放フラグをリセットするように制御し、大入賞口開放フラグがセットされていないときにカウントスイッチ23がオンしたことにもとづいて賞球払出を実行しないようにしてもよい。しかし、この実施の形態のように、特別図柄プロセスフラグの値にもとづいて異常入賞が生じたか否か判定するように構成する場合には、1つのデータにもとづいて異常入賞が生じたか否か判定できるので、判定処理が簡素化される。大入賞口は複数ラウンドに亘って開放されたり閉鎖されたりされるので、実際に大入賞口を開放する制御を行っているのかいないのか判断して異常入賞が生じたか否か判定すると、処理が複雑化する。なお、大入賞口への異常入賞が発生しても、賞球払出を禁止しないように制御してもよい。
また、大入賞口の入口からカウントスイッチ23の設置位置までの間にはある程度の距離があるので、実際に大入賞口を開放する制御を行っているのかいないのか判断して異常入賞が生じたか否か判定する場合には、大入賞口を閉鎖する制御を行ってから、閉鎖直前に大入賞口に入賞した可能性がある遊技球を考慮する必要がある。すなわち、大入賞口の入口からカウントスイッチ23の設置位置までの間を遊技球が流れる時間を考慮しなければならない。つまり、実際に大入賞口を閉鎖する制御を行ってからある程度の期間をおいてから、異常入賞が生じたか否かの判定を開始する必要がある。そのことからも、処理が複雑化する。
しかし、この実施の形態のように、大当り終了処理または小当り終了処理が終了してから、大入賞口への異常入賞が生じたか否か判定するように構成されている場合には、大入賞口の入口からカウントスイッチ23の設置位置までの間を遊技球が流れる時間を考慮する必要はない。大入賞口が閉鎖されてから、大当り終了処理または小当り終了処理の処理期間中に、閉鎖直前に大入賞口に入賞した遊技球はカウントスイッチ23の設置位置まで到達しているからである。なお、この実施の形態では、大当り終了処理または小当り終了処理の処理期間、すなわち可変表示装置9において大当り終了表示または小当り終了表示がなされている期間は、大入賞口に入賞した遊技球がカウントスイッチ23の設置位置に到達するまでの時間よりも長く設定されている。
また、遊技制御用マイクロコンピュータ560が、普通図柄プロセスフラグの値にもとづいて第2始動入賞口14への異常入賞が生じたか否か判定するようにしたが(ステップS363B参照)、実際に可変入賞球装置15を開放していないとき(すなわち、図50に示す普通電動役物作動処理において遊技状態に応じた開放パターンにもとづいて可変入賞球装置15が開閉動作を繰り返すときの可変入賞球装置15が閉鎖状態のとき)に第2始動口スイッチ14aがオンしたことが検出された場合に、第2始動口スイッチ14aがオンしたことにもとづく賞球払出を実行しないようにしてもよい。しかし、この実施の形態のように、普通図柄プロセスフラグの値にもとづいて異常入賞が生じたか否か判定するように構成する場合には、1つのデータにもとづいて異常入賞が生じたか否か判定できるので、判定処理が簡素化される。例えば、高ベース状態のときのように可変入賞球装置15が複数回(実施の形態では2回)に亘って開放されたり閉鎖されたりする場合には、実際に可変入賞球装置15を開放する制御を行っているのかいないのか判断して異常入賞が生じたか否か判定すると、処理が複雑化するが、普通図柄プロセスフラグにより判定することで処理を簡素化することができる。なお、第2始動入賞口14への異常入賞が発生しても、賞球払出を禁止しないように制御してもよい。
また、第2始動入賞口14の入口から第2始動口スイッチ14aの設置位置までの間にはある程度の距離があるので、実際に可変入賞球装置15を開放する制御を行っているのかいないのか判断して異常入賞が生じたか否か判定する場合には、可変入賞球装置15を閉鎖する制御を行ってから、閉鎖直前に第2始動入賞口14に入賞した可能性がある遊技球を考慮する必要がある。すなわち、第2始動入賞口14の入口から第2始動口スイッチ14aの設置位置までの間を遊技球が流れる時間を考慮しなければならない。そこで、この実施の形態では、異常入賞を判定するタイミングを可変入賞球装置15を閉鎖するタイミングよりも遅らせている。
具体的には、可変入賞球装置15が最後に閉鎖してから普通図柄プロセスタイマがタイムアウトするまで(つまりステップS171で可変入賞球装置15が閉鎖してからステップS161のYとなるまで)の時間を、第2始動入賞口14に入賞した遊技球が第2始動口スイッ14aの設置位置に到達するまでの時間よりも長く設定している。すなわち、ステップS170で普通電動役物開放パターンタイマに開放パターン時間として閉鎖時間(例えば5秒)をセットし、ステップS171で普通電動役物を最後に閉鎖させてから普通図柄プロセスタイマがタイムアウトするまでの時間を閉鎖時間(例えば5秒)よりも短い時間(例えば3秒)になるように普通電動役物作動時間をセットする(ステップS144)。普通電動役物を最後に閉鎖させてから普通図柄プロセスタイマがタイムアウトするまでの時間(例えば3秒)は、第2始動入賞口14に入賞した遊技球が第2始動口スイッ14aの設置位置に到達するまでの時間よりも十分長い時間である。このようにしておけば、可変入賞球装置15の閉鎖直前に遊技球が入賞したことによって、異常入賞が発生したと誤検出してしまうのを防止することができる。
異常入賞を判定するタイミングを可変入賞球装置15を閉鎖するタイミングよりも遅らせる方法として、上記の例では、普通図柄プロセスフラグの値が3から0に切り替わる所定時間前に可変入賞球装置15を閉鎖し、普通図柄プロセスフラグの値が3から0に切り替わった時点で異常入賞の判定を行うようにしていたが、可変入賞球装置15を閉鎖すると同時に普通図柄プロセスフラグの値が3から0に切り替え、普通図柄プロセスフラグの値が3から0に切り替わってから所定時間経過後に異常入賞の判定を行うようにしてもよい。具体的には、普通図柄プロセスフラグの値が3から0になった時点(例えば、図50のステップS172の直前あるいは直後)でカウントタイマに所定時間をセットし、そして、タイマ割込み毎(2ms毎)にカウントタイマをカウントダウンしていく。そして、賞球個数加算処理において普通図柄プロセスフラグの値が3でないと判定されたときに(ステップS363BのN)、カウントタイマが0かどうかを判定し、カウントタイマが0のときにステップS364,S365の処理をスキップしてステップS359の処理に移行するようにする。このような構成によっても、異常入賞を判定するタイミングを可変入賞球装置15を閉鎖するタイミングよりも遅らせることができる。
なお、大入賞口への異常入賞の判定においても、同様の方法により異常入賞を判定するタイミングを大入賞口(特別可変入賞球装置20)を閉鎖するタイミングよりも遅らせることができる。具体的には、特別図柄プロセスフラグの値が7から0に又は10から0になった時点でカウントタイマに所定時間をセットし、そして、タイマ割込み毎(2ms毎)にカウントタイマをカウントダウンしていく。そして、賞球個数加算処理において特別図柄プロセスフラグの値が4以上でないと判定されたときに(ステップS362BのN)、カウントタイマが0かどうかを判定し、カウントタイマが0のときにステップS364,S365の処理をスキップしてステップS359の処理に移行するようにする。
なお、ステップS362Bにおいて特別図柄プロセスフラグの値が4未満である場合(ステップS362BのN)やステップS363Bにおいて普通図柄プロセスフラグの値が3でない場合(ステップS363BのN)に、賞球払い出しを禁止する制御を行わないようにしてもよい。後述するように、異常入賞が発生したと判定された場合は、遊技制御用マイクロコンピュータ560が異常入賞報知指定コマンドを演出制御用マイクロコンピュータ100に送信し、演出制御用マイクロコンピュータ100が異常入賞の発生を報知するように構成されているので、異常入賞にもとづく賞球払い出しは最小限に食い止めることができると考えられるからである。
図60は、ステップS342の賞球制御処理を示すフローチャートである。賞球制御処理では、遊技制御用マイクロコンピュータ560は、総賞球数格納バッファの内容を確認する(ステップS371)。その値が0であれば処理を終了する。0でなければ、総賞球数格納バッファの内容が賞球コマンド最大値(この例では「15」)よりも小さいか否か確認する(ステップS372)。総賞球数格納バッファの内容が賞球コマンド最大値以上であれば、賞球コマンド最大値を賞球個数バッファに設定する(ステップS373)。また、総賞球数格納バッファの内容が賞球コマンド最大値よりも小さい場合には、総賞球数格納バッファの内容を賞球個数バッファに設定する(ステップS374)。そして、賞球個数バッファの内容を、賞球個数信号を出力するための出力ポートにセットする(ステップS375)。また、賞球REQ信号を出力するための出力ポートの賞球REQ信号のビットに「1」をセットする(ステップS376)。
ステップS376の処理によって、賞球REQ信号が出力される。すなわち、賞球REQ信号がオン状態になる(図53参照)。また、ステップS375の処理によって、賞球個数信号が出力される(図53参照)。なお、この実施の形態では、賞球コマンド最大値は「15」である。従って、最大で「15」の払出数を指定する賞球個数信号が払出制御基板37に送信される。なお、遊技制御用マイクロコンピュータ560は、払出個数毎または入賞口毎に入賞数を記憶しておき、賞球数の多いものから順に賞球個数信号を払出制御基板37に送信するようにしてもよい。また、逆に、遊技制御用マイクロコンピュータ560は、賞球数の少ないものから順に賞球個数信号を払出制御基板37に送信するようにしてもよい。
賞球個数信号を送信すると、遊技制御用マイクロコンピュータ560は、総賞球数格納バッファの内容から、賞球個数バッファの内容(払出制御手段に指令した賞球払出個数)を減算する(ステップS377)。
次いで、遊技制御用マイクロコンピュータ560は、賞球REQ信号のオン期間を設定する。具体的には、ウェイトカウンタに、初期値をセットする(ステップS378)。そして、ウェイトカウンタの値が0になるまでウェイトカウンタの値を1ずつ減算する(ステップS379,S380)。ウェイトカウンタの値が0になったら、オン期間を終了させる。
すなわち、賞球REQ信号を出力するための出力ポートの賞球REQ信号のビットに「0」をセットし(ステップS381)、賞球個数信号を出力するための出力ポートに00(H)をセットする(ステップS382)。
払出基板37に搭載されている払出制御用マイクロコンピュータは、賞球個数信号を受信すると、賞球個数信号で指定された数の遊技球が払い出されるように払出装置97を駆動する。
なお、この実施の形態では、払出指令信号については、主基板31から払出制御基板37に向かう方にしか信号が伝達されない単方向通信によって賞球個数信号が送信されるが、双方向通信によって、主基板31から払出制御基板37に賞球個数信号が送信されるようにしてもよい。この場合、払出制御用マイクロコンピュータ370は、例えば、賞球REQ信号の受信に応じてACK信号(応答信号)を遊技制御用マイクロコンピュータ560に送信したり、賞球個数信号を受信したことを示すACK信号を遊技制御用マイクロコンピュータ560に送信するようにしてもよい。また、この場合、払出制御用マイクロコンピュータ370は、ACK信号を出力したときに、遊技球の払い出しを終了するまでACK信号のオン状態を継続するようにしてもよい。そして、遊技球の払い出しを終了すると、ACK信号をオフ状態とするようにしてもよい。そのようにすれば、あCK信号がオン状態になったあとオフ状態になったか否かを確認することによって、遊技制御用マイクロコンピュータ560側で遊技球の払い出しが終了したか否かを確認できる。その場合、遊技制御用マイクロコンピュータ560は、払い出しが終了した後に、払い出しの賞球があれば、再度賞球個数信号を送信するようにすればよい。また、払出制御用マイクロコンピュータ370は、賞球REQ信号や賞球個数信号を受信したときに一瞬だけACK信号をオン状態にするようにしてもよい。その場合には、ACK信号がオン状態となってオフ状態となったことにもとづいて、まだ払い出されていない賞球があれば、再度賞球個数信号を送信するようにすればよい。
なお、前述したように、主基板31から払出制御基板37に向かう方にしか信号が伝達されない単方向通信によって賞球個数信号が送信されるようにする場合、払出制御用マイクロコンピュータ370は、賞球個数信号を受信すると、INT割込によって賞球個数信号で指定された数の遊技球が払い出されるように払出装置97を制御してもよい。そのように構成すれば、遊技制御用マイクロコンピュータ560は、遊技球の払い出しが完了しているか否かにかかわらず賞球個数信号を送信することができる。そのため、遊技制御用マイクロコンピュータ560は、1回の払い出しが完了するまで賞球個数をRAMなどに保存しておく必要をなくせるので、RAMなどの記憶容量の増大を防止することができる。
図61は、ステップS23の異常入賞報知処理を示すフローチャートである。異常入賞報知処理において、遊技制御用マイクロコンピュータ560は、異常報知禁止フラグがセットされているか否か確認する(ステップS1581)。異常報知禁止フラグは、遊技機への電力供給が開始されたときに実行されるメイン処理でセットされている(図24におけるステップS44参照)。異常報知禁止フラグがセットされていない場合には、ステップS1585に移行する。異常報知禁止フラグがセットされている場合には、ステップS45で設定された禁止期間タイマの値を−1する(ステップS1582)。そして、禁止期間タイマの値が0になったら、すなわち禁止期間タイマがタイムアウトしたら、異常報知禁止フラグをリセットする(ステップS1583,S1584)。
次いで、遊技制御用マイクロコンピュータ560は、特別図柄プロセスフラグの値が5(大入賞口開放前処理)以上であるか否か確認する(ステップS1585)。特別図柄プロセスフラグの値が5以上であるときは(ステップS1585のY)、大当り遊技中または小当り遊技中である状態である。そのような状態であれば、大入賞口に遊技球が入賞する可能性があるので、大入賞口への異常入賞の確認処理を行わずに、ステップS1590の処理に移行する。
特別図柄プロセスフラグの値が5未満である状態は、大当り遊技も小当り遊技も行われていない状態である。このような状態のときに大入賞口に遊技球の入賞があれば、その入賞は異常入賞であると判断することができる。従って、以下に示す大入賞口への異常入賞の確認処理を行う。
すなわち、特別図柄プロセスフラグの値が5未満であれば(ステップS1585のN)、遊技制御用マイクロコンピュータ560は、スイッチオンバッファの内容をレジスタにロードする(ステップS1586)。そして、遊技制御用マイクロコンピュータ560は、ロードしたスイッチオンバッファの内容とカウントスイッチ入力ビット判定値(01(H)、図58参照)との論理積をとる(ステップS1587)。スイッチオンバッファの内容が01(H)であったとき、すなわちカウントスイッチ23がオンしているときには、論理積の演算結果は01(H)になる。カウントスイッチ23がオンしていないときには、論理積の演算結果は、0(00(H))になる。
論理積の演算結果が0でない場合には(ステップS1588のN)、大入賞口への異常入賞が生じたと判定し、演出制御基板80に、異常入賞報知指定コマンドを送信する制御を行う(ステップS1589)。一方、論理積の演算結果が0である場合には(ステップS1589のY)、大入賞口への異常入賞が生じていないと判定し、ステップS1590の処理に移行する。
以上に示すステップS1585〜S1589までの処理が実行されることによって、遊技状態が特定遊技状態(確変大当り状態、通常大当り状態、突然確変大当り状態または小当り状態)でないときに、遊技球が大入賞口に入賞したことにもとづいて、異常入賞が検出され、異常入賞報知が実行されることになる。なお、この実施の形態では、大入賞口を閉鎖したときに、特別図柄プロセス処理処理における大当り終了処理において、大当り終了表示タイマに、表示時間として、大当りの終了後であっても大当り終了直前に大入賞口に入賞した遊技球をカウントスイッチ23で検出しうる時間であるカウントスイッチ検出時間よりも長い時間が設定される(ステップS153参照)。また、小当り終了処理において、小当り終了表示タイマに、表示時間として、小当りの終了後であっても小当り終了直前に大入賞口に入賞した遊技球をカウントスイッチ23で検出しうる時間であるカウントスイッチ検出時間よりも長い時間が設定される。そのため、特定遊技状態(小当り状態を含む)を終了した後であっても、大入賞口が閉鎖されてから所定の猶予期間を経過するまでは、遊技球の入賞を検出しても異常入賞とは判定しないように制御する。
なお、この実施の形態では、特定遊技状態に小当り状態を含むものとして説明したが、特定遊技状態に小当りを含めず、特定遊技状態として確変大当り状態、通常大当り状態または突然確変大当り状態のいずれかに制御されると考えてもよい。この場合も、上記に示したステップS1585〜S1589までの処理が実行されることによって、遊技状態が特定遊技状態または小当り状態のいずれでもないときに遊技球が大入賞口に入賞したことにもとづいて、異常入賞が検出され、異常入賞報知が実行されることになる。また、特定遊技状態または小当り状態を終了した後であっても、大入賞口が閉鎖されてから所定の猶予期間を経過するまでは、遊技球の入賞を検出しても異常入賞とは判定しないように制御する。
ステップS1590では、遊技制御用マイクロコンピュータ560は、普通図柄プロセスフラグの値が3(普通電動役物作動処理)であるか否か確認する(ステップS1590)。普通図柄プロセスフラグの値が3である状態は、普通電動役物(可変入賞球装置15)が開閉動作している状態である。そのような状態であれば(ステップS1590のY)、第2始動入賞口14に遊技球が入賞する可能性があるので、第2始動入賞口14への異常入賞の確認処理を行わずに異常入賞報知処理を終了する。
普通図柄プロセスフラグの値が3でない状態は(ステップS1590のN)、普通電動役物(可変入賞球装置15)が開閉動作していない状態である。このような状態のときに第2始動入賞口14に遊技球の入賞があれば、その入賞は異常入賞であると判断することができる。従って、以下に示す第2始動入賞口14への異常入賞の確認処理を行う。
すなわち、普通図柄プロセスフラグの値が3でなければ(ステップS1590のN)、遊技制御用マイクロコンピュータ560は、スイッチオンバッファの内容をレジスタにロードする(ステップS1591)。そして、遊技制御用マイクロコンピュータ560は、ロードしたスイッチオンバッファの内容と第2始動口スイッチ入力ビット判定値(80(H)、図58参照)との論理積をとる(ステップS1592)。スイッチオンバッファの内容が80(H)であったとき、すなわち第2始動口スイッチ14aがオンしているときには、論理積の演算結果は80(H)になる。第2始動口スイッチ14aがオンしていないときには、論理積の演算結果は、0(00(H))になる。
論理積の演算結果が0でない場合には(ステップS1593のN)、第2始動入賞口14への異常入賞が生じたと判定し、演出制御基板80に、異常入賞報知指定コマンドを送信する制御を行う(ステップS1594)。一方、論理積の演算結果が0である場合には(ステップS1593のY)、第2始動入賞口14への異常入賞が生じていないと判定し、異常入賞報知指定コマンドを送信する制御を行わずに異常入賞報知処理を終了する。
以上のような処理によって、大当り遊技も小当り遊技も行われていない状態においてカウントスイッチ23がオンした場合には、異常入賞報知指定コマンドが送信される。また、可変入賞球装置15が開閉動作していない状態において第2始動口スイッチ14aがオンした場合にも、異常入賞報知指定コマンドが送信される。
また、ステップS1581〜S1583の処理によって、演出制御用マイクロコンピュータ100が初期化報知を行っているときに、異常報知が開始されることが禁止される。なお、演出制御用マイクロコンピュータ100は、異常報知を開始してから禁止期間に相当する期間が経過するまで、初期化報知を継続して実行している。
なお、ステップS1585の処理では、遊技制御用マイクロコンピュータ560が、特別図柄プロセスフラグの値にもとづいて大入賞口への異常入賞が生じたか否か判定するようにしているので、ステップS362Bの処理と同様に、1つのデータにもとづいて異常入賞が生じたか否か判定できるので、判定処理を簡素化することができる。また、上述したように、特別可変入賞球装置20が閉鎖した後に大当り終了処理または小当り終了処理が所定時間実行されるので、特別可変入賞球装置20が閉鎖する直前に大入賞口に入賞した遊技球が、特別図柄プロセスフラグの値が0に戻った後にカウントスイッチ23で検出されてしまうということが防止され、正規の入賞であるにもかかわらずエラーが報知されてしまうようなことはない。
また、ステップS1590の処理では、遊技制御用マイクロコンピュータ560が、普通図柄プロセスフラグの値にもとづいて第2始動入賞口14への異常入賞が生じたか否か判定するようにしているので、ステップS363Bの処理と同様に、1つのデータにもとづいて異常入賞が生じたか否か判定できるので、判定処理を簡素化することができる。また、上述したように、異常入賞を判定するタイミングを可変入賞球装置15を閉鎖するタイミングよりも遅らせる方法として、普通図柄プロセスフラグの値が3から0に切り替わる所定時間前に可変入賞球装置15を閉鎖し、普通図柄プロセスフラグの値が3から0に切り替わった時点で異常入賞の判定を行うようにしているので、可変入賞球装置15が閉鎖する直前に第2始動入賞口14に入賞した遊技球が、普通図柄プロセスフラグの値が0に戻った後に第2始動口スイッチ14aで検出されてしまうということが防止され、正規の入賞であるにもかかわらずエラーが報知されてしまうようなことはない。
なお、上述したように、可変入賞球装置15を閉鎖すると同時に普通図柄プロセスフラグの値が3から0に切り替え、普通図柄プロセスフラグの値が3から0に切り替わってから所定時間経過後に異常入賞の判定を行うようにしてもよい。また、大入賞口への異常入賞の判定においても、同様の方法により異常入賞を判定するタイミングを大入賞口(特別可変入賞球装置20)を閉鎖するタイミングよりも遅らせるようにしてもよい。
また、この実施の形態では、大入賞口への異常入賞が発生した場合と第2始動入賞口14への異常入賞が発生した場合とで共通の異常入賞報知指定コマンドを送信(ステップS1589,S1594参照)する場合を説明するが、異なる異常入賞報知指定コマンドを送信するようにしてもよい。そして、演出制御用マイクロコンピュータ100は、受信した異常入賞報知指定コマンドに応じて、異なる演出態様で(例えば、異なる点灯パターンで上皿ランプの側面のLED82a,82b,82e,82fを点灯または点滅させて)異常入賞報知を実行してもよい。
また、ステップS1589またはステップS1594で異常入賞報知指定コマンドを送信した後に、例えば、無限ループに移行するように制御して処理を停止させてもよい。また、無限ループに移行する制御を行う場合、無限ループを所定期間繰り返し実行した後に、無限ループを抜けて通常の処理を再開するように制御してもよい。
図62は、ステップS29の演出制御コマンド制御処理における演出制御コマンド送信要求フラグにもとづく演出制御コマンドの送信処理を示すフローチャートである。演出制御コマンド制御処理において、CPU56は、演出制御コマンド送信要求フラグがセットされていたら、演出制御コマンド送信要求フラグをリセットし(ステップS591,S592)、コマンドバッファの内容を、演出制御コマンドとして送信するために、ヘッダデータやマークビット、エンドビットを付加した後、シリアル出力回路78に出力する(ステップS593)。
次に、払出制御用マイクロコンピュータ370による払出制御手段の動作を説明する。図63は、払出制御用マイクロコンピュータ370における出力ポートの割り当ての例を示す説明図である。図63に示すように、出力ポート0は、ステッピングモータによる払出モータ289に供給される各相の信号とを出力するための出力ポートである。また、出力ポート1は、遊技制御用マイクロコンピュータ560への払出エラー信号、球切れ信号、満タン信号および賞球カウント信号を出力するための出力ポートである。出力ポート2は、7セグメントLEDによるエラー表示LED374の各セグメント出力の出力ポートである。
なお、払出制御基板37には、図63には示されていないが、カードユニット50へのEXS信号およびPRDY信号を出力するための出力ポート3も設けられている。また、出力ポート0,1,2は、図11に示された出力ポート372a,372b,372cに相当する。
図64は、払出制御用マイクロコンピュータ370における入力ポートのビット割り当ての例を示す説明図である。図64に示すように、入力ポート0のビット0〜3には、4ビットの賞球個数信号が入力され、ビット4,6,7には、それぞれ、主基板31からの賞球REQ信号、球切れスイッチ187の検出信号、払出モータ位置センサ295の検出信号が入力される。また、入力ポート1のビット1〜3には、それぞれ、払出個数カウントスイッチ301の検出信号、エラー解除スイッチ375からの操作信号、満タンスイッチ48の検出信号が入力される。入力ポート1のビット4〜6には、それぞれ、カードユニット50からのVL信号、BRDY信号、BRQ信号が入力される。なお、入力ポート0,1は、図11に示された入力ポート372e,372fに相当する。
次に、払出制御用マイクロコンピュータ370(具体的には、払出制御用CPU371)の動作について説明する。図65は、払出制御手段が実行する払出制御処理を示すフローチャートである。払出制御処理は、例えば、2ms毎に発生するタイマ割込にもとづくタイマ割込処理で実行される。払出制御処理において、払出制御用CPU371は、まず、入力判定処理を行う(ステップS752)。入力判定処理は、入力ポート0および入力ポート1の状態を検出して検出結果をRAMの所定の2バイト(入力状態フラグという。)に反映する処理である。なお、払出制御処理において、入力ポート0および入力ポート1の状態にもとづいて制御を行う場合には、直接入力ポートの状態をチェックするのではなく、入力状態フラグの状態をチェックする。また、入力判定処理において、払出制御用CPU371は、入力ポート0,1の入力データを主基板31に送信する処理も行う。
次に、払出制御用CPU371は、払出モータ制御処理を実行する(ステップS753)。払出モータ制御処理では、払出モータ289を駆動すべきときには、払出モータφ1〜φ4のパターンを出力ポート0に出力するための処理を行う。
また、払出制御用CPU371は、カードユニット50と通信を行うプリペイドカードユニット制御処理を実行する(ステップS754)。次いで、払出制御用CPU371は、主基板31の遊技制御手段と通信を行う主制御通信処理を実行する(ステップS755)。さらに、カードユニット50からの球貸し要求に応じて貸し球を払い出す制御を行い、また、主基板からの賞球個数信号が示す個数の賞球を払い出す制御を行う賞球球貸し制御処理を実行する(ステップS756)。
そして、払出制御用CPU371は、各種のエラーを検出するエラー処理を実行する(ステップS757)。また、遊技機外部に出力される賞球情報信号や球貸し個数信号などを出力するための情報出力処理を実行する(ステップS758)。また、エラー処理の結果に応じてエラー表示LED374に所定の表示を行う表示制御処理を実行する(ステップS759)。
また、この実施の形態では、出力ポートの出力状態に対応したRAM領域(出力ポート0バッファ、出力ポート1バッファ、出力ポート2バッファ)が設けられているのであるが、払出制御用CPU371は、出力ポート0バッファ、出力ポート1バッファおよび出力ポート2バッファの内容を出力ポートに出力する(ステップS760:出力処理)。出力ポート0バッファ、出力ポート1バッファおよび出力ポート2バッファは、払出モータ制御処理(ステップS753)、プリペイドカードユニット制御処理(ステップS754)、主制御通信処理(ステップS755)、情報出力処理(ステップS758)および表示制御処理(ステップS759)で更新される。
図66は、ステップS756の賞球球貸し制御処理を示すフローチャートである。賞球球貸し制御処理において、払出制御用CPU371は、払出個数カウントスイッチ301の検出信号がオン状態になったことを確認したら(ステップS401)、球貸し中であれば球貸し未払出個数カウンタの値を1減らし(ステップS402,S404)、球貸し中でなければ賞球未払出個数カウンタの値を1減らす(ステップS402,S403)。次に、RAMに形成されている払出制御状態フラグの払出球検知ビットをセットする(ステップS405)。払出球検知ビットは、払出通過待ち処理において、1回の賞球払出処理(最大15個)または1回の球貸し処理において(25個の払出)、払出モータ289を駆動したにもかかわらず遊技球が1個も払出個数カウントスイッチ301を通過しなかったことを検知するために用いられる。その後、払出制御コードの値に応じてステップS410〜S412のいずれかの処理を実行する。
賞球球貸し制御処理において、払出個数カウントスイッチ301の検出信号の確認や未払出個数カウンタの減算処理を行うときには、エラービットのチェックは実行されない。従って、遊技球の払い出しに関わるエラー状態であっても、払出個数カウントスイッチ301によって遊技球の払い出しが検出される毎に、払い出された遊技球が貸し球であれば球貸し未払出個数カウンタの値を1減算し、賞球であれば賞球未払出個数カウンタの値を1減算する処理を実行する。よって、払い出しに関わるエラーが発生しても、未払出の遊技球数を正確に管理することができる。すなわち、払出制御用CPU371がエラーの発生を検出する前に球払出装置97から払い出された遊技球は、払い出された時点からやや遅れて払出個数カウントスイッチ301によって検出されるのであるが、払出制御用CPU371は、球払出装置97から遊技球が払い出された後、その遊技球が払出個数カウントスイッチ301によって検出される前にエラーの発生を検出したような場合に、エラーの発生を検出する前に球払出装置97から払い出された遊技球を、賞球未払出個数カウンタまたは球貸し未払出個数カウンタに反映できる。
図67は、払出制御コードが0の場合に実行される払出開始待ち処理(ステップS410)を示すフローチャートである。払出開始待ち処理において、払出制御用CPU371は、エラービット(エラーフラグにおける全てのエラービット(図72参照)のうちの1つ以上)がセットされていたら、以降の処理を実行しない(ステップS421)。なお、エラーフラグは、RAMに形成されている。
また、BRDY信号がオン状態でなければ、ステップS431以降の賞球払出のための処理を実行する。BRDY信号がオン状態であって、さらに、球貸し要求信号であるBRQ信号がオン状態になっていたら球貸し動作中フラグをセットする(ステップS423,S424)。そして、球貸し未払出個数カウンタに「25」をセットし(ステップS425)、払出モータ回転回数バッファに「25」をセットする(ステップS426)。
払出モータ回転回数バッファは、払出モータ制御処理(ステップS753)において参照される。すなわち、払出モータ制御処理では、払出モータ回転回数バッファにセットされた値に対応した回転数分だけ払出モータ289を回転させる制御が実行される。
その後、払出制御用CPU371は、払出モータ制御処理で実行される処理を選択するための払出モータ制御コードに、払出モータ起動準備処理(ステップS522)に応じた値(具体的は「1」)をセットし(ステップS427)、払出制御コードの値を1にして(ステップS428)、処理を終了する。
ステップS431では、払出制御用CPU371は、賞球未払出個数カウンタの値が0であるか否かを確認する(ステップS431)。0であれば処理を終了する。なお、賞球未払出個数カウンタには、主制御通信終了処理において、主基板31の遊技制御用マイクロコンピュータ560との間で払出指令信号に関わる通信が正常に完了したときに、0でない値(賞球個数信号が示す数)が加算される。賞球未払出個数カウンタの値が0でない場合には、15以上であるか否か確認する(ステップS432)。15未満であれば、払出モータ回転回数バッファに賞球未払出個数カウンタの値をセットし(ステップS433)、15以上であれば、払出モータ回転回数バッファに「15」をセットする。そして、賞球動作中フラグをセットし(ステップS435)、ステップS427に移行する。
図68は、払出制御コードが1の場合に実行される払出モータ停止待ち処理(ステップS411)を示すフローチャートである。払出モータ停止待ち処理において、払出制御用CPU371は、払出動作が終了したか否か確認する(ステップS441)。例えば、払出制御用CPU371は、払出動作を行う際の払出モータ289の回転数をセットし、セットした回転数分の払出制御モータ289の回転制御を終了したか否かを判断することにより、払出動作が終了したか否かを判定する。
払出動作が終了した場合には、払出制御用CPU371は、払出制御監視タイマに払出通過監視時間をセットする(ステップS442)。払出通過監視時間は、最後の払出球が払出モータ289によって払い出されてから払出個数カウントスイッチ301を通過するまでの時間に、余裕を持たせた時間である。そして、払出制御コードの値を2にして(ステップS443)、処理を終了する。
図69〜図71は、払出制御コードの値が2の場合に実行される払出通過待ち処理(ステップS412)を示すフローチャートである。払出通過待ち処理では、賞球払出が行われているときには、賞球未払出個数カウンタの値が0になっていれば正常に払出が完了したと判定される。賞球未払出個数カウンタの値が0になっていない場合には、エラー状態でなければ、1個の遊技球の再払出動作を、2回を上限として試みる。再払出動作において払出個数カウントスイッチ301によって遊技球が実際に払い出されたことが検出されたら正常に払出が完了したと判定される。なお、この実施の形態では、1回の賞球払出動作で払い出される遊技球数は最大15個であり、また、賞球払出中に賞球個数信号を受信したら賞球未払出個数カウンタの値が増加するので、正常に払出が完了した場合でも、賞球未払出個数カウンタの値が0になっていないことがある。
また、球貸し払出が行われているときには、球貸し未払出個数カウンタの値が0になっていれば正常に払出が完了したと判定される。球貸し未払出個数カウンタの値が0になっていない場合には、エラー状態でなければ、1個の遊技球または球貸し残数(球貸し未払出個数カウンタの値に相当)の再払出動作を試みる。なお、この実施の形態では、1回の球貸し払出動作で払い出される遊技球数は25個(固定値)であり、25個の遊技球が払い出されるように払出モータ289を回転させたのであるから、球貸し未払出個数カウンタの値が0になっていない場合には、正常に払出が完了していないことになる。
払出通過待ち処理において、払出制御用CPU371は、まず、払出制御タイマの値を確認し、その値が0になっていればステップS453に移行する(ステップS450)。払出制御タイマの値が0でなければ、払出制御タイマの値を−1する(ステップS451)。そして、払出制御タイマの値が0になっていなければ(ステップS452)、すなわち払出制御タイマがタイムアウトしていなければ処理を終了する。なお、ステップS450の処理は、後述する遊技球払出のリトライ動作が開始されたときのことを考慮した処理である。後述するステップS907の処理が実行された場合には、ステップS450からS453に移行するルートを経てリトライ動作が開始される。
払出制御タイマがタイムアウトしていれば(ステップS452)、球貸し払出処理(球貸し動作)を実行していたか否か確認する(ステップS453)。球貸し動作を実行していたか否かは、RAMに形成されている払出制御状態フラグにおける球貸し動作中ビットがセットされているか否か(ステップS423,S424参照)によって確認される。球貸し動作を実行していない場合、すなわち、賞球払出処理(賞球動作)を実行していた場合には、払出制御用CPU371は、賞球未払出個数カウンタの値を確認する(ステップS454)。賞球未払出個数カウンタの値が0になっている場合には、正常に賞球払出処理が完了したとして、払出制御状態フラグにおける払出球検知ビット、再払出動作中1ビット、再払出動作中2ビット、賞球動作中フラグおよび球貸し動作中ビットをリセットし(ステップS455)、払出制御コードを0にして(ステップS456)、処理を終了する、なお、払出球検知ビットは、払出個数カウントスイッチ301がオンしたときにセットされるビットであり、払出動作中に払出個数カウントスイッチ301が少なくとも1個の遊技球を検出したことを示すビットである。また、再払出動作中1ビットおよび再払出動作中2ビットは、2回の再払出動作からなる再払出処理を実行する際に用いられる制御ビットである。
払出制御用CPU371は、賞球未払出個数カウンタの値が0になっていない場合には、エラーフラグ(具体的には、払出スイッチ異常エラー1ビット、払出スイッチ異常エラー2ビットおよび払出ケースエラービットのうちのいずれか1ビットまたは複数ビット)がセットされていないことを条件として(ステップS459)、また、払出球検知ビットがセットされていないことを条件として(ステップS461)、再払出動作を実行する。なお、エラーフラグがセットされている場合には、再払出動作を実行しない。
上述したように、この実施の形態では、正常に払出が完了した場合でも、賞球未払出個数カウンタの値が0になっていないことがある。そこで、払出球検知ビットがセットされていれば、すなわち払出個数カウントスイッチ301が賞球払出処理中に少なくとも1個の遊技球の払出を検出していたら、正常に賞球払出処理が完了したとして、ステップS455に移行する。なお、例えば、1回の賞球払出処理で15個の遊技球を払い出すべきところ、実際には14個の遊技球しか払い出されなかった場合(払出個数カウントスイッチ301が14個の遊技球しか検出しなかった場合)にも、払出球検知ビットがセットされるので正常に賞球払出処理が完了したとみなされるが、その場合には、賞球未払出個数カウンタの値は14しか減算されていないはずであり、不足分は次回の賞球払出処理で払い出されるので、遊技者に不利益を与えることはない。
再払出処理を実行するために、払出制御用CPU371は、まず、再払出動作中2ビットがセットされているか否か確認する(ステップS462)。セットされていなければ、再払出動作中1ビットがセットされているか否か確認する(ステップS463)。再払出動作中1ビットもセットされていなければ、初回の再払出動作を実行するために、再払出動作個数として1をセットし(ステップS464)、再払出動作中1ビットをセットし(ステップS465)、払出モータ回転回数バッファに再払出動作個数または球貸し未払出数個数カウンタの値をセットする(ステップS466)。払出モータ回転回数バッファは、払出モータ制御処理(ステップS753)において参照される。すなわち、払出モータ制御処理では、払出モータ回転回数バッファにセットされた値に対応した回転数分だけ払出モータ289を回転させる制御が実行される。なお、ステップS466において、球貸し未払出数個数カウンタの値も取り扱われるのは、球貸し払出処理における再払出処理でもステップS466が用いられるからである。すなわち、払出制御用CPU371は、ステップS466において、賞球払出処理における再払出処理では再払出動作個数をセットし、球貸し払出処理における再払出処理では球貸し未払出数個数カウンタの値をセットする。その後、払出制御コードを1にして(ステップS467)、処理を終了する。
ステップS463において、再払出動作中1ビットがセットされていることを確認したら、払出制御用CPU371は、2回目の再払出を実行するために、再払出動作個数として1をセットし(ステップS468)、再払出動作中1ビットをリセットし(ステップS469)、再払出動作中2ビットをセットする(ステップS470)。そして、ステップS466に移行する。
ステップS462において、再払出動作中2ビットがセットされていることを確認したら、払出制御用CPU371は、2回の再払出処理を実行しても遊技球が払い出されなかった(払出個数カウントスイッチ301が遊技球を検出しなかった)として、エラーフラグにおける払出ケースエラービットをセットする(ステップS472)。その際に、再払出動作中2ビットをリセットしておく(ステップS471)。そして、処理を終了する。
以上のように、再払出処理(補正払出処理)において2回の再払出動作を行っても遊技球が1個も払い出されない場合には、遊技球の払出動作不良として、払出個数カウントスイッチ未通過エラービット(払出ケースエラービット)がセットされる。
従って、この実施の形態では、払出制御用CPU371は、払出検出手段としての払出個数カウントスイッチ301からの検出信号にもとづいて、遊技球の払い出しが行われなかったことを検出したときに、あらかじめ決められた所定回(この例では2回)を限度として、払出手段に1個の遊技球の払い出しを行わせるように制御を行う。なお、この実施の形態では、遊技球を払い出すためのリトライ動作を2回行っても遊技球の払い出しが行われなかった場合には、払出ケースエラービットをセットしてエラー発生中状態になるが(ステップS472)、遊技球の払い出しが行われなかったことを初めて検知したときに払出ケースエラービットをセットしてもよい。なお、「リトライ動作(あるいは「リトライ」、「リトライ動作処理」)」とは、所定数の遊技球の払い出しを行うための通常の払出処理を実行したのにもかかわらず、実際の払い出し数が少ない場合に実行させる動作であって、通常の払出処理とは別に、未払出の遊技球を払い出すために払出処理を再度実行させるための動作を意味する。
賞球球貸し制御処理において、払出動作(1回の賞球払出または1回の球貸し)を行うか否か判定するためにエラービットがチェックされるのは、図67に示された払出開始待ち処理においてのみである。図68に示された払出モータ停止待ち処理および図69等に示された払出通過待ち処理では、エラービットはチェックされない。なお、払出通過待ち処理におけるステップS459等でもエラービットがチェックされているが、そのチェックは再払出動作を行うか否かを判断するためであって、払出動作(1回の賞球払出または1回の球貸し)を開始するか否か判定するためではない。従って、ステップS426、S433またはステップS434の処理が行われて遊技球の払出処理が開始された後では、エラーが発生しても払出処理は中断されない。すなわち、エラーが発生すると、遊技球の払出処理は、切りのよい時点(1回の賞球払出または1回の球貸しが終了した時点)まで継続される。なお、ステップS421でチェックされるエラーフラグにおけるエラービットの中には、主基板31からの接続確認信号がオフ状態になったことを示すエラービットが含まれている。よって、接続確認信号がオフ状態になったときにも、遊技球の払出処理は、切りのよい時点で停止される。
ステップS453で球貸し払出処理(球貸し動作)を実行していたことを確認すると、払出制御用CPU371は、球貸し未払出個数カウンタの値が0になっているか否か確認する(ステップS457)。0になっていれば、正常に球貸し払出処理が完了したとしてステップS455に移行する。
ステップS457で、球貸し未払出個数カウンタの値が0になっていなければ、エラーフラグ(具体的には、払出スイッチ異常エラー1ビット、払出スイッチ異常エラー2ビットおよび払出ケースエラービットのうちのいずれか1ビットまたは複数ビット)がセットされていないことを条件として(ステップS475)、再払出処理を実行する。なお、エラーフラグがセットされている場合には、再払出処理を実行しない。
再払出処理を実行するために、払出制御用CPU371は、まず、再払出動作中2ビットがセットされているか否か確認する(ステップS476)。セットされていなければ、再払出動作中1ビットがセットされているか否か確認する(ステップS477)。再払出動作中1ビットもセットされていなければ、初回の再払出動作を実行するために、再払出動作個数として1をセットし(ステップS478)、再払出動作中1ビットをセットし(ステップS479)、さらに払出球検知ビットをリセットした後(ステップS480)、ステップS466に移行する。
ステップS477において、再払出動作中1ビットがセットされていることを確認したら、払出制御用CPU371は、再払出動作を再度実行するための処理を行う。具体的には、再払出動作中1ビットをリセットする(ステップS481)。そして、払出球検知ビットがセットされていたら、すなわち、最初の再払出動作で遊技球が払い出されていたら、ステップS483に移行する。払出球検知ビットがセットされていなかったら、2回目の再払出動作を実行するためにステップS484に移行する。
ステップS483では払出球検知ビットをリセットし、その後、ステップS466に移行する。従って、この場合には、再払出動作中1ビットがセットされたままになっているので、再度、初回(最初)の再払出動作が行われる。ステップS484では、再払出動作個数として1をセットし(ステップS484)、再払出動作中2ビットをセットし(ステップS485)、ステップS466に移行する。
ステップS476において、再払出動作中2ビットがセットされていることを確認したら、払出制御用CPU371は、再払出動作中2ビットをリセットし(ステップS486)、払出球検知ビットがセットされていたら、すなわち、再払出動作で遊技球が払い出されていたらステップS483に移行して残りの未払出分を解消することを試みる。払出球検知ビットがセットされていなかったら、2回の再払出処理を実行しても遊技球が払い出されなかった(払出個数カウントスイッチ301が遊技球を検出しなかった)として、エラーフラグにおける払出ケースエラービットをセットする(ステップS488)。そして、処理を終了する。
以上のように、球貸し処理に係る再払出処理(補正払出処理)において連続して2回の再払出動作を行っても遊技球が1個も払い出されない場合には、遊技球の払出動作不良として、払出個数カウントスイッチ未通過エラービット(払出ケースエラービット)がセットされる。なお、この実施の形態では、球貸し制御処理が賞球制御処理(ステップS431以降の処理)よりも優先して実行されるが(ステップS422参照)、賞球制御処理を球貸し制御処理よりも優先して実行するようにしてもよい。
次に、エラー処理について説明する。図72は、エラーの種類とエラー表示用LED374の表示との関係等を示す説明図である。なお、この実施の形態では、エラー表示用LED374に表示される数値と、エラーフラグの対応ビットとを同じにしている。例えば、「0」の表示は、エラーフラグのビット0に対応している。図72に示すように、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分における球詰まりが検出された場合には、払出スイッチ異常検知エラー1として、エラー表示用LED374に「0」を表示する制御を行う。なお、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分における球詰まりを検出したことは、払出個数カウントスイッチ301の検出信号がオフ状態にならなかったことによって判定される。
遊技球の払出動作中でないにも関わらず払出個数カウントスイッチ301の検出信号がオン状態になった場合には、払出スイッチ異常検知エラー2として、エラー表示用LED374に「1」を表示する制御を行う。払出モータ289の回転異常または遊技球が払い出されたにも関わらず払出個数カウントスイッチ301の検出信号がオン状態にならない場合には、払出ケースエラーとして、エラー表示用LED374に「2」を表示する制御を行う。不正なタイミングで賞球REQ信号がオン状態になった場合、または不正なタイミングで賞球REQ信号がオフ状態になった場合には、賞球REQ信号エラーとして、エラー表示用LED374に「3」を表示する制御を行う。なお、不正なタイミングで賞球REQ信号がオン状態またはオフ状態になったことは、主制御通信処理において検出される。
また、下皿満タン状態すなわち満タンスイッチ48がオン状態になった場合には、満タンエラーとして、エラー表示用LED374に「4」を表示する制御を行う。補給球の不足状態すなわち球切れスイッチ187がオン状態になった場合には、球切れエラーとして、エラー表示用LED374に「5」を表示する制御を行う。
さらに、カードユニット50からのVL信号がオフ状態になった場合には、プリペイドカードユニット未接続エラーとして、エラー表示用LED374に「6」を表示する制御を行う。不正なタイミングでカードユニット50と通信がなされた場合には、プリペイドカードユニット通信エラーとして、エラー表示用LED374に「7」を表示する制御を行う。なお、プリペイドカードユニット通信エラーは、プリペイドカードユニット制御処理(ステップS754)において検出される。
以上のエラーのうち、払出スイッチ異常検知エラー2、払出ケースエラーまたは賞球REQ信号エラーが発生した後、エラー解除スイッチ375が操作されエラー解除スイッチ375から操作信号が出力されたら(オン状態になったら)、払出制御手段は、エラーが発生する前の状態に復帰する。
図73および図74は、ステップS757のエラー処理を示すフローチャートである。エラー処理において、払出制御用CPU371は、エラーフラグをチェックし、そのうちのセットされているビットが、払出スイッチ異常検知エラー2、払出ケースエラーおよび賞球REQ信号エラーのみ(3つのうちのいずれかのビットのみ、もしくは3つのうちの2ビットのみ、またはそれら3ビットのみ)であるか否か確認する(ステップS9001)。セットされているビットがそれらのみである場合には、エラー解除スイッチ375から操作信号がオン状態になったか否か確認する(ステップS9002)。操作信号がオン状態になったら、エラー復帰時間をエラー復帰前タイマにセットする(ステップS9003)。エラー復帰時間は、エラー解除スイッチ375が操作されてから、実際にエラー状態から通常状態に復帰するまでの時間である。
エラー解除スイッチ375から操作信号がオン状態でない場合には、エラー復帰前タイマの値を確認する(ステップS9004)。エラー復帰前タイマの値が0であれば、すなわち、エラー復帰前タイマがセットされていなければ、ステップS9008に移行する。エラー復帰前タイマがセットされていれば、エラー復帰前タイマの値を−1し(ステップS9005)、エラー復帰前タイマの値が0になったら(ステップS9006)、エラーフラグのうちの、払出スイッチ異常検知エラー2、払出ケースエラーおよび賞球REQ信号エラーのビットをリセットし(ステップS9007)、ステップS9008に移行する。
なお、ステップS9007の処理が実行されるときに、払出スイッチ異常検知エラー2、払出ケースエラーおよび賞球REQ信号エラーのビットのうちには、セット状態ではないエラービットがある場合もあるが、セット状態にないエラービットをリセットしても何ら問題はない。以上のように、この実施の形態では、払出スイッチ異常検知エラー2、払出ケースエラーまたは賞球REQ信号エラーのビットをセットする原因になったエラー(図72参照)が発生した場合には、エラー解除スイッチ375が押下されることによってエラー解除される。
ステップS9007の処理が実行されて払出ケースエラービットがリセットされた場合には、払出制御コードが「2」(図69〜図71に示す払出通過待ち処理の実行に対応)であって、賞球未払出個数カウンタの値または球貸し未払出個数カウンタの値が0でないときには、遊技球払出のリトライ動作が開始される。つまり、次にステップS756の賞球球貸し制御処理が実行されるときにステップS412の払出通過待ち処理が実行されると、再び、再払出処理が行われる。例えば、賞球払出処理が行われていた場合には、賞球未払出個数カウンタの値が0でないときには、ステップS454からステップS459に移行し、ステップS459においてエラービットがリセット状態であることが確認されるので、ステップS462以降の再払出処理を開始するための処理が再度実行され、再払出処理が実行される。なお、エラー解除スイッチ375が押下されることによってリセットされた払出ケースエラービットに関して、そのビットがセットされたときには(ステップS472が実行されたとき)、払出制御タイマは既にタイムアップしている。従って、ステップS9007の処理が実行されて払出ケースエラービットがリセットされた場合には、次に払出通過待ち処理が実行されるときには、ステップS450の判断において払出制御タイマ=0と判定される。また、払出ケースエラービットがセットされたときには払出球検知ビットは0である(ステップS461の判断で払出球検知ビットは0でないとステップS472が実行されないので)。従って、ステップS459においてエラービットがリセット状態であることが確認されると、必ずステップS462が実行される。つまり、必ず、再払出処理が実行される。
以上のように、払出制御手段は、球払出装置97が遊技球の払い出しを行ったにもかかわらず払出個数カウントスイッチ301が1個も遊技球を検出しなかったときには遊技球を払い出すためのリトライ動作をあらかじめ決められた所定回(例えば2回)を限度として球払出装置97に実行させる補正払出制御を行った後、払出個数カウントスイッチ301が1個も遊技球を検出しなかったことが検出されたときには(図70のステップS461以降を参照)、払い出しに関わる制御状態をエラー状態に移行させ、エラー状態においてエラー解除スイッチ375からエラー解除信号が出力されたことを条件に再度補正払出制御を行わせる補正払出制御再起動処理を実行する。
さらに、エラー状態における再払出処理の実行中(具体的には払出ケースエラーをセットする前の再払出処理中およびエラー解除スイッチ375押下後の再払出処理中)でも、図66に示すステップS401〜S404の処理は実行されている。すなわち、払い出しに関わるエラーが生じているときでも、遊技球が払出個数カウントスイッチ301を通過すれば、賞球未払出個数カウンタや球貸し未払出個数カウンタの値が減算される。従って、エラー状態から復帰したときの賞球未払出個数カウンタや球貸し未払出個数カウンタの値は、実際に払い出された遊技球数を反映した値になっている。すなわち、払い出しに関わるエラーが発生しても、実際に払い出した遊技球数を正確に管理することができる。
また、図69〜図71に示された払出通過待ち処理において、再払出処理が実行された結果、遊技球が払い出されたことが確認されたときでも、払出ケースエラーのビットはリセットされない。払出ケースエラーのビットがリセットされるのは、あくまでも、エラー解除スイッチ375が操作されたとき(具体的は、操作後エラー復帰時間が経過したとき)である(ステップS9002,S9003,S9007)。すなわち、遊技球が払出個数カウントスイッチ301を通過したこと等にもとづいて自動的に払出ケースエラー(払出不足エラー)の状態が解除されるということはなく、人為的な操作を経ないと払出ケースエラーは解除されない。従って、遊技店員等は、確実に払出不足が発生したことを認識することができる。
ステップS9008では、払出制御用CPU371は、満タンスイッチ48の検出信号を確認する。満タンスイッチ48の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの満タンエラービットをセットする(ステップS9009)。満タンスイッチ48の検出信号がオフ状態であれば、満タンエラービットをリセットする(ステップS9010)。
また、払出制御用CPU371は、球切れスイッチ187の検出信号を確認する(ステップS9011)。球切れスイッチ187の検出信号が出力されていれば(オン状態であれば)、エラーフラグのうちの球切れエラービットをセットする(ステップS9012)。球切れスイッチ187の検出信号がオフ状態であれば、球切れエラービットをリセットする(ステップS9013)。
なお、後述する入力判定処理でも満タンスイッチ48の検出信号および球切れスイッチ187の検出信号の確認処理を行うが、図73および図74に示すエラー処理では、満タンスイッチ48の検出信号および球切れスイッチ187の検出信号を確認し、払出制御基板37が搭載する7セグメントLEDによるエラー表示用LED374にエラー表示を行うための制御を行う。具体的には、満タンスイッチ48の検出信号が出力されていれば、満タンエラービットをセットする(ステップS9009参照)ことによって、エラー表示用LED374にエラー信号が出力されエラー表示が行われることになる。また、球切れスイッチ187の検出信号が出力されていれば、球切れエラービットをセットする(ステップS9012参照)ことによって、エラー表示用LED374にエラー信号が出力されエラー表示が行われることになる。一方、後述する入力判定処理では、満タンスイッチ48の検出信号および球切れスイッチ187の検出信号を確認し、遊技制御用マイクロコンピュータ560への満タン信号や球切れ信号を出力するための制御を行う。具体的には、満タンスイッチ48の検出信号が出力されていれば、満タンスイッチ48の検出信号を、出力ポート1の満タン信号のビットに出力し(ステップS934参照)、遊技制御用マイクロコンピュータ560への満タン信号の出力が行われることになる。また、球切れスイッチ187の検出信号が出力されていれば、球切れスイッチ187の検出信号を、出力ポート1の球切れ信号のビットに出力し(ステップS932参照)、遊技制御用マイクロコンピュータ560への球切れ信号の出力が行われることになる。
なお、後述する入力判定処理において、満タンスイッチ48の検出信号が出力されていれば、満タンエラービットをセットする(ステップS9009参照)ことによって、エラー表示用LED374にエラー信号が出力されエラー表示が行われるように制御するとともに、満タンスイッチ48の検出信号を、出力ポート1の満タン信号のビットに出力し(ステップS934参照)、遊技制御用マイクロコンピュータ560への満タン信号の出力が行われるように制御してもよい。また、入力判定処理において、球切れスイッチ187の検出信号が出力されていれば、球切れエラービットをセットする(ステップS9012参照)ことによって、エラー表示用LED374にエラー信号が出力されエラー表示が行われるように制御するとともに、球切れスイッチ187の検出信号を、出力ポート1の球切れ信号のビットに出力し(ステップS932参照)、遊技制御用マイクロコンピュータ560への球切れ信号の出力が行われるように制御してもよい。
また、払出制御用CPU371は、払出個数カウントスイッチ301の検出信号の状態が設定されるスイッチタイマの値を確認し、その値がスイッチオン最大時間(例えば「240」)を越えていたら(ステップS9018)、エラーフラグのうち払出スイッチ異常検知エラー1のビットをセットする(ステップS9019)。
スイッチタイマとは、ステップS752の入力判定処理において更新されるカウンタである。スイッチタイマの値がスイッチオン最大時間以下であれば、払出スイッチ異常検知エラー1のビットをリセットする(ステップS9020)。なお、スイッチタイマの値は、ステップS752の入力判定処理において、払出個数カウントスイッチ301の検出信号を入力する入力ポートの状態がスイッチオン状態であれば+1され、オフ状態であれば0クリアされる。従って、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン最大時間を越えていたということは、スイッチオン最大時間を越えて払出個数カウントスイッチ301がオン状態になっていることを意味し、払出個数カウントスイッチ301の断線または払出個数カウントスイッチ301の部分で遊技球が詰まっていると判断される。
また、払出制御用CPU371は、払出個数カウントスイッチ301に対応したスイッチタイマの値がスイッチオン判定値(例えば「2」)になった場合に(ステップS9021)、球貸し動作中フラグおよび賞球動作中フラグがともにリセット状態であれば、払出動作中でないのに払出個数カウントスイッチ301を遊技球が通過したとして、エラーフラグのうち払出スイッチ異常検知エラー2のビットをセットする(ステップS9022,S9023)。また、球貸し動作中フラグまたは賞球動作中フラグがセットされていれば、払出スイッチ異常検知エラー2のビットをリセットする(ステップS9024)。
さらに、払出制御用CPU371は、カードユニット50からのVL信号の入力状態を確認し(ステップS9025)、VL信号が入力されていなければ(オフ状態であれば)、エラーフラグのうちプリペイドカードユニット未接続エラービットをセットする(ステップS9026)。また、VL信号が入力されていれば(オン状態であれば)、プリペイドカードユニット未接続エラービットをリセットする(ステップS9027)。
なお、この実施の形態では、払い出しに関わるエラーが発生したことを、遊技機裏面に設置されている払出制御基板37に搭載されているエラー表示LED374によって報知するようにしたが、さらに、遊技機の表側に設置されているランプによって報知される。
図75は、ステップS752の入力判定処理のうち、入力ポート0,1(図64参照)の入力データを主基板31に送信する部分の処理を示すフローチャートである。入力判定処理において、払出制御用CPU371は、入力ポート0の入力データを読み込む(ステップS931)。そして、入力データにおける球切れスイッチ187の検出信号を、出力ポート1(図63参照)の球切れ信号のビットに出力する(ステップS932)。また、入力ポート1の入力データを読み込む(ステップS933)。そして、入力データにおける満タンスイッチ48の検出信号を、出力ポート1の満タン信号のビットに出力する(ステップS934)。
さらに、賞球動作中フラグがセットされている場合には(ステップS935)、入力データにおける払出個数カウントスイッチ301の検出信号を、出力ポート1の賞球カウント信号のビットに出力する(ステップS936)。また、エラーフラグ(図72参照)のビット0,1,2,3,6,7のいずれかがセットされている場合には、出力ポート1の払出エラー信号のビットを「1」にする(ステップS937,S938)。エラーフラグのビット0,1,2,3,6,7のいずれもセットされていなければ、出力ポート1の払出エラー信号のビットを「0」にする(ステップS937,S939)。出力ポートは、一般にCPU側から異なるデータが出力されるまで、その出力を維持するので、ステップS938の処理が実行されてからステップS939の処理が実行されるまで払出エラー信号のビットの出力状態を「1」に維持し、ステップS939の処理が実行されてからステップS938の処理が実行されるまで払出エラー信号のビットの出力状態を「0」に維持する。
すなわち、払出エラー信号が出力される(オン状態になること)ということは、図72に示すエラーフラグのビット0,1,2,3,6,7に対応するエラーのいずれかが生じたことを意味する。
次に、演出制御手段の動作を説明する。
図76は、演出制御基板80に搭載されている演出制御用マイクロコンピュータ100(具体的には、演出制御用CPU101)が実行するメイン処理を示すフローチャートである。演出制御用CPU101は、電源が投入されると、メイン処理の実行を開始する。メイン処理では、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔(例えば、2ms)を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS701)。
そして、演出制御用CPU101は、タイマ割込フラグの監視(ステップS702)を行うループ処理に移行する。タイマ割込が発生すると、演出制御用CPU101は、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、演出制御用CPU101は、そのフラグをクリアし(ステップS703)、演出制御処理を実行する。
演出制御処理において、演出制御用CPU101は、まず、受信した演出制御コマンドを解析し、受信した演出制御コマンドに応じたフラグをセットする処理等を実行する(コマンド解析処理:ステップS704)。次いで、演出制御用CPU101は、演出制御プロセス処理を実行する(ステップS705)。演出制御プロセス処理では、制御状態に応じた各プロセスのうち、現在の制御状態(演出制御プロセスフラグ)に対応した処理を選択して可変表示装置9の表示制御を実行する。また、所定の乱数(例えば、停止図柄を決定するための乱数)を生成するためのカウンタのカウンタ値を更新する乱数更新処理を実行する(ステップS706)。また、可変表示装置9等の演出装置を用いて報知を行う報知制御プロセス処理を実行する(ステップS707)。さらに、コマンド解析処理や演出制御プロセス処理、報知制御プロセス処理でセットされたデータをシリアル出力回路353に出力したり、各入力IC620,621から受信したデータをシリアル入力回路354から読み込むシリアル入出力処理を実行する(ステップS708)。その後、ステップS702に移行する。
図77は、主基板31の遊技制御用マイクロコンピュータ560から受信した演出制御コマンドを格納するためのコマンド受信バッファの一構成例を示す説明図である。この例では、2バイト構成の演出制御コマンドを6個格納可能なリングバッファ形式のコマンド受信バッファが用いられる。従って、コマンド受信バッファは、受信コマンドバッファ1〜12の12バイトの領域で構成される。そして、受信したコマンドをどの領域に格納するのかを示すコマンド受信個数カウンタが用いられる。コマンド受信個数カウンタは、0〜11の値をとる。なお、必ずしもリングバッファ形式でなくてもよい。
なお、シリアル入力回路102は、例えば、自回路の段数分(ビット分)のシリアルデータを受信したら、受信完了信号を演出制御用CPU101に出力する。受信完了信号は、例えば演出制御用CPU101の割込端子に入力される。演出制御用CPU101は、受信完了信号が割込端子に入力されたことにもとづいて開始される割込処理で、入力ポート103を介してシリアル入力回路102からデータを入力する。そして、入力したデータを、コマンド受信バッファにおけるコマンド受信個数カウンタが指す受信コマンドバッファに格納するとともに、コマンド受信個数カウンタの値を+1する。コマンド解析処理では、コマンド受信バッファに保存されている演出制御コマンドがどのコマンド(図31参照)であるのか解析する。
図78〜図81は、コマンド解析処理(ステップS704)の具体例を示すフローチャートである。主基板31から受信された演出制御コマンドは受信コマンドバッファに格納されるが、コマンド解析処理では、演出制御用CPU101は、コマンド受信バッファに格納されているコマンドの内容を確認する。
コマンド解析処理において、演出制御用CPU101は、まず、コマンド受信バッファに受信コマンドが格納されているか否か確認する(ステップS601)。格納されているか否かは、コマンド受信個数カウンタの値と読出ポインタとを比較することによって判定される。両者が一致している場合が、受信コマンドが格納されていない場合である。コマンド受信バッファに受信コマンドが格納されている場合には、演出制御用CPU101は、コマンド受信バッファから受信コマンドを読み出す(ステップS602)。なお、読み出したら読出ポインタの値を+2しておく(ステップS603)。+2するのは2バイト(1コマンド)ずつ読み出すからである。
演出制御用CPU101は、乱数エラーチェック済みフラグがセットされていないことを条件に(ステップS610)、受信した演出制御コマンドが入力ポートデータ指定コマンドであり、かつ、そのEXTデータにおける乱数エラー指定ビットが「0」であるか否か確認し(ステップS611)、「0」である場合すなわち乱数エラーが検出されている場合(図15参照)には、乱数エラーフラグをセットする(ステップS612)。また、乱数エラーチェック済みフラグをセットする(ステップS613)。その後、ステップS614に移行する。ステップS610,S611,S613の処理によって、受信した演出制御コマンドが入力ポートデータ指定コマンドであり、かつ、そのEXTデータにおける乱数エラー指定ビットが「0」であるか否かの確認は、演出制御用マイクロコンピュータ100が動作を開始してから1回だけ実行されることになる。また、最初に遊技制御用マイクロコンピュータ560から受信した演出制御コマンドが入力ポートデータ指定コマンドであり、かつ、そのEXTデータにおける乱数エラー指定ビットが「0」である場合に限り、乱数エラーフラグがセットされる。
ステップS614では、受信した演出制御コマンドが変動パターンコマンドであれば、演出制御用CPU101は、その変動パターンコマンドを、RAMに形成されている変動パターンコマンド格納領域に格納する(ステップS615)。そして、変動パターンコマンド受信フラグをセットする(ステップS616)。
受信した演出制御コマンドが表示結果特定コマンドであれば(ステップS617)、演出制御用CPU101は、その表示結果特定コマンドを、RAMに形成されている表示結果特定コマンド格納領域に格納する(ステップS618)。そして、表示結果特定コマンド受信フラグをセットする(ステップS619)。
受信した演出制御コマンドが図柄確定指定コマンドであれば(ステップS621)、演出制御用CPU101は、確定コマンド受信フラグをセットする(ステップS622)。
受信した演出制御コマンドが大当り開始1〜4指定コマンドのいずれかであれば(ステップS623)、演出制御用CPU101は、大当り開始1〜4指定コマンド受信フラグをセットする(ステップS624)。
受信した演出制御コマンドが電源投入指定コマンド(初期化指定コマンド)であれば(ステップS631)、演出制御用CPU101は、初期化処理が実行されたことを示す初期画面を可変表示装置9に表示する制御を行う(ステップS632A)。初期画面には、あらかじめ決められている演出図柄の初期表示が含まれる。また、初期報知フラグをセットする(ステップS632B)とともに、RAMクリアフラグをセットする(ステップS632C)。
また、受信した演出制御コマンドが停電復旧指定コマンドであれば(ステップS633)、あらかじめ決められている停電復旧画面(遊技状態が継続していることを遊技者に報知する情報を表示する画面)を可変表示装置9に表示する制御を行う(ステップS634)とともに、初期報知フラグをセットする(ステップS635)。
受信した演出制御コマンドが大当り終了1指定コマンドであれば(ステップS641)、演出制御用CPU101は、大当り終了1指定コマンド受信フラグをセットする(ステップS642)。受信した演出制御コマンドが大当り終了2指定コマンドであれば(ステップS643)、演出制御用CPU101は、大当り終了2指定コマンド受信フラグをセットする(ステップS644)。
受信した演出制御コマンドが異常入賞報知指定コマンドであれば(ステップS645)、演出制御用CPU101は、異常入賞報知指定コマンド受信フラグをセットする(ステップS646)。
受信した演出制御コマンドのMODEデータがFF(H)であれば、すなわち入力ポートデータ指定コマンドを受信した場合には、ステップS651〜S665,S671〜S681の処理を行う(ステップS650)。
ステップS651では、内部フラグであるドア閉鎖状態フラグ(演出制御用CPU101が遊技枠11が閉鎖していると認識している状態であることを示すフラグ)がセットされていたらステップS655に移行する。ドア閉鎖状態フラグがセットされていない場合には、ドア開閉確認処理を実行した後(ステップS652)、ドア開閉確認処理でドア閉鎖状態フラグがセットされたら、ドア開放エラー報知の開始を要求するためにドア開放エラー報知フラグをセットする(ステップS653,S654)。
ドア閉鎖状態フラグがセットされていた場合には、ドア開閉確認処理を実行した後(ステップS655)、ドア開閉確認処理でドア閉鎖状態フラグがリセットされたら、ドア開放エラー報知中フラグをリセットし、エラー報知解除フラグをセットする(ステップS656,S657)。
図82は、ドア開閉確認処理を示すフローチャートである。ドア開閉確認処理において、演出制御用CPU101は、まず、ドア閉鎖状態フラグがセットされているか否か確認する(ステップS685)。ドア閉鎖状態フラグがセットされていない場合には、入力ポートデータ指定コマンドのEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)におけるドア開放エラー指定ビットが「1」(閉鎖に対応。図15参照)であるときには、ドア監視カウンタの値を+1する(ステップS686,S687)。ドア開放エラー指定ビットが「0」(開放に対応)であるときには、ドア監視カウンタの値を0にする(ステップS686,S688)。
ステップS687の処理を実行した場合には、ドア監視カウンタの値が所定値(この例では10)になったか否か確認する(ステップS689)。ドア監視カウンタの値が所定値になったら、ドア閉鎖状態フラグをセットし、ドア監視カウンタの値を0にする(ステップS690)。
ドア閉鎖状態フラグがセットされている場合には、入力ポートデータ指定コマンドのEXTデータにおけるドア開放エラー指定ビットが「0」(開放に対応)であるときには、ドア監視カウンタの値を+1する(ステップS691,S692)。ドア開放エラー指定ビットが「1」(閉鎖に対応)であるときには、ドア監視カウンタの値を0にする(ステップS691,S693)。
ステップS692の処理を実行した場合には、ドア監視カウンタの値が所定値(この例では10)になったか否か確認する(ステップS694)。ドア監視カウンタの値が所定値になったら、ドア閉鎖状態フラグをリセットし、ドア監視カウンタの値を0にする(ステップS695)。
以上の処理によって、ドア閉鎖状態フラグがセットされている場合に、所定時間継続してドア開放エラー信号が「0」である入力ポートデータ指定コマンドを受信し続けたら、ドア閉鎖状態フラグをリセットする。また、ドア閉鎖状態フラグがリセットされていない場合に、所定時間継続してドア開放エラー信号が「1」である入力ポートデータ指定コマンドを受信し続けたら、ドア閉鎖状態フラグをセットする。遊技枠11のドアが開閉される場合、ドア開放センサ155の検出信号はチャッタリングを引き起こすが、上記の処理によって、ドア開放センサ155の検出信号の状態が安定してから、ドア閉鎖状態フラグのセット/リセット状態が変更される。すなわち、ドア閉鎖状態フラグのセット/リセット状態の変化が一時的に繰り返されることは防止され、その結果、ドア開放エラー報知フラグのセット/リセット状態の変化が一時的に繰り返されることが防止される。
また、演出制御用CPU101は、入力ポートデータ指定コマンドのEXTデータにおける払出エラー指定ビットが「1」から「0」に変化したか否か確認し(ステップS658)、「1」から「0」に変化した場合すなわち払出エラーの解除が検出された場合(図15参照)には、払出エラー報知中フラグをリセットし、エラー報知解除フラグをセットして(ステップS659)、ステップS679に移行する。なお、演出制御用CPU101は、受信した入力ポートデータ指定コマンドのEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)とEXTデータ保存領域に保存されている入力ポートデータ指定コマンドのEXTデータ(前回受信した入力ポートデータ指定コマンドのEXTデータ)とを比較することによって、払出エラービットが変化したか否かを判定する。
さらに、入力ポートデータ指定コマンドのEXTデータにおける払出エラー指定ビットが「0」から「1」に変化したか否か確認し(ステップS660)、「0」から「1」に変化した場合すなわち払出エラーの検出された場合には、払出エラー報知の開始を要求するために払出エラー報知フラグをセットして(ステップS661)、ステップS679に移行する。
また、演出制御用CPU101は、入力ポートデータ指定コマンドのEXTデータにおける球切れエラー指定ビットが「1」から「0」に変化したか否か確認し(ステップS662)、「1」から「0」に変化した場合すなわち球切れエラーの解除が検出された場合(図15参照)には、球切れエラー報知中フラグをリセットし、エラー報知解除フラグをセットして(ステップS663)、ステップS679に移行する。なお、演出制御用CPU101は、受信した入力ポートデータ指定コマンドのEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)とEXTデータ保存領域に保存されている入力ポートデータ指定コマンドのEXTデータ(前回受信した入力ポートデータ指定コマンドのEXTデータ)とを比較することによって、球切れエラービットが変化したか否かを判定する。
さらに、入力ポートデータ指定コマンドのEXTデータにおける球切れエラー指定ビットが「0」から「1」に変化したか否か確認し(ステップS664)、「0」から「1」に変化した場合すなわち球切れエラーが検出された場合には、球切れエラー報知の開始を要求するために球切れエラー報知フラグをセットして(ステップS665)、ステップS679に移行する。
また、演出制御用CPU101は、入力ポートデータ指定コマンドのEXTデータにおける満タンエラー指定ビットが「1」から「0」に変化したか否か確認し(ステップS671)、「1」から「0」に変化した場合すなわち満タンエラーの解除が検出された場合(図15参照)には、満タンエラー報知中フラグをリセットし、エラー報知解除フラグをセットして(ステップS672)、ステップS679に移行する。なお、演出制御用CPU101は、受信した入力ポートデータ指定コマンドのEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)とEXTデータ保存領域に保存されている入力ポートデータ指定コマンドのEXTデータ(前回受信した入力ポートデータ指定コマンドのEXTデータ)とを比較することによって、満タンエラービットが変化したか否かを判定する。
さらに、入力ポートデータ指定コマンドのEXTデータにおける満タンエラー指定ビットが「0」から「1」に変化したか否か確認し(ステップS673)、「0」から「1」に変化した場合すなわち満タンエラーが検出された場合には、満タンエラー報知の開始を要求するために満タンエラー報知フラグをセットして(ステップS674)、ステップS679に移行する。
また、演出制御用CPU101は、賞球払出報知が実行されている状態であることを示す賞球払出報知フラグがセットされているか否か確認する(ステップS675)。賞球払出報知フラグがセットされていない場合には、入力ポートデータ指定コマンドのEXTデータにおける賞球カウント指定ビットが「0」から「1」に変化したか否か確認し(ステップS676)、「0」から「1」に変化した場合すなわち払出個数カウントスイッチ301がオン状態になった場合には、賞球払出報知の開始を要求するために賞球払出報知フラグをセットする(ステップS677)。そして、賞球カウント指定監視タイマに所定値(例えば、1秒に相当する値)をセットする(ステップS678)。賞球カウント指定監視タイマとは、賞球払出が終了したか否か確認するためのタイマであり、賞球カウント指定監視タイマがタイムアウトすると、賞球払出報知が終了される。なお、演出制御用CPU101は、受信した入力ポートデータ指定コマンドのEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)とEXTデータ保存領域に保存されている入力ポートデータ指定コマンドのEXTデータ(前回受信した入力ポートデータ指定コマンドのEXTデータ)とを比較することによって、賞球カウント指定ビットが変化したか否かを判定する。
賞球払出報知フラグがセットされている場合には、入力ポートデータ指定コマンドのEXTデータにおける賞球カウント指定ビットが「0」から「1」に変化したときには、賞球カウント指定監視タイマに所定値を再セットする(ステップS660,S661)。ステップS660,S661の処理によって、払出個数カウントスイッチ301がオンが連続する場合には、賞球カウント指定監視タイマはタイムアウトしない。
ステップS679では、受信した入力ポートデータ指定コマンド(FFYY(H))のEXTデータ(コマンド受信バッファに格納されているが、コマンド受信バッファからレジスタに転送した場合にはそのレジスタのデータ)を、次に入力ポートデータ指定コマンドを受信したときに、前回受信した入力ポートデータ指定コマンドのEXTデータとして使用するためにRAMのEXTデータ保存領域に保存する。なお、ステップS701の初期化処理において、EXTデータ保存領域の内容は20(H)に初期化されている。20(H)は、各エラー信号および賞球カウント信号がオフ状態である場合に相当する(図15における入力ポート0参照)。そして、ステップS661に移行する。また、ステップS645において演出制御コマンドのMODEデータがFF(H)でないことを確認した場合には、演出制御用CPU101は、受信した演出制御コマンドに応じたフラグをセットする(ステップS666)。そして、ステップS611に移行する。
図83は、図76に示されたメイン処理における演出制御プロセス処理(ステップS705)を示すフローチャートである。演出制御プロセス処理では、演出制御用CPU101は、演出制御プロセスフラグの値に応じてステップS800〜S806のうちのいずれかの処理を行う。各処理において、以下のような処理を実行する。
変動パターンコマンド受信待ち処理(ステップS800):遊技制御用マイクロコンピュータ560から変動パターンコマンドを受信しているか否か確認する。具体的には、コマンド解析処理でセットされる変動パターンコマンド受信フラグがセットされているか否か確認する。変動パターンコマンドを受信していれば、演出制御プロセスフラグの値を飾り図柄変動開始処理(ステップS801)に対応した値に変更する。
飾り図柄変動開始処理(ステップS801):飾り図柄の変動が開始されるように制御する。そして、演出制御プロセスフラグの値を飾り図柄変動中処理(ステップS802)に対応した値に更新する。
飾り図柄変動中処理(ステップS802):変動パターンを構成する各変動状態(変動速度)の切替タイミング等を制御するとともに、変動時間の終了を監視する。そして、変動時間が終了したら、演出制御プロセスフラグの値を飾り図柄変動停止処理(ステップS803)に対応した値に更新する。
飾り図柄変動停止処理(ステップS803):全図柄停止を指示する演出制御コマンド(図柄確定指定コマンド)を受信したことにもとづいて、飾り図柄の変動を停止し表示結果(停止図柄)を導出表示する制御を行う。そして、演出制御プロセスフラグの値を大当り表示処理(ステップS804)または変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
大当り表示処理(ステップS804):変動時間の終了後、可変表示装置9に大当りの発生を報知するための画面を表示する制御を行う。そして、演出制御プロセスフラグの値を大当り遊技中処理(ステップS805)に対応した値に更新する。
大当り遊技中処理(ステップS805):大当り遊技中の制御を行う。例えば、大入賞口開放中指定コマンドや大入賞口開放後指定コマンドを受信したら、可変表示装置9におけるラウンド数の表示制御等を行う。そして、演出制御プロセスフラグの値を大当り終了処理(ステップS806)に対応した値に更新する。
大当り終了処理(ステップS806):可変表示装置9において、大当り遊技状態が終了したことを遊技者に報知する表示制御を行う。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に対応した値に更新する。
図84は、図83に示された演出制御プロセス処理における変動パターンコマンド受信待ち処理(ステップS800)を示すフローチャートである。変動パターンコマンド受信待ち処理において、演出制御用CPU101は、変動パターンコマンド受信フラグがセットされているか否か確認する(ステップS811)。変動パターンコマンド受信フラグがセットされていれば、変動パターンコマンド受信フラグをリセットする(ステップS812)。そして、演出制御プロセスフラグの値を飾り図柄変動開始処理(ステップS801)に対応した値に更新する(ステップS813)。
図85は、図83に示された演出制御プロセス処理における飾り図柄変動開始処理(ステップS801)を示すフローチャートである。飾り図柄変動開始処理において、演出制御用CPU101は、変動パターンコマンド格納領域から変動パターンコマンドを示すデータを読み出す(ステップS816)。
次いで、表示結果特定コマンド受信フラグがセットされているか否か確認する(ステップS817)。表示結果特定コマンド受信フラグがセットされていなければ、ステップS830に移行する。表示結果特定コマンド受信フラグがセットされている場合には、表示結果特定コマンド格納領域に格納されているデータ(すなわち、受信した表示結果特定コマンド)に応じて飾り図柄の表示結果(停止図柄)を決定する(ステップS818)。
図86は、可変表示装置9における飾り図柄の停止図柄の一例を示す説明図である。図86に示す例では、受信した表示結果特定コマンドが通常大当りを示している場合には(受信した表示結果特定コマンドが表示結果2指定コマンドである場合)、演出制御用CPU101は、停止図柄として左中右図柄が偶数図柄(通常大当りの発生を想起させるような停止図柄)で揃った飾り図柄の組合せを決定する。受信した表示結果特定コマンドが確変大当りを示している場合には(受信した表示結果特定コマンドが表示結果4指定コマンドである場合)、演出制御用CPU101は、停止図柄として左中右図柄が奇数図柄(確変大当りの発生を想起させるような停止図柄)で揃った飾り図柄の組合せを決定する。受信した表示結果特定コマンドが小当りまたは突然確変大当りを示している場合には(受信した表示結果特定コマンドが表示結果3指定コマンドまたは表示結果5指定コマンドである場合)、演出制御用CPU101は、停止図柄としての左中右の飾り図柄として「135」(小当りまたは突然確変大当りの発生を想起させるような停止図柄)の組合せを決定する。そして、はずれの場合には(受信した表示結果特定コマンドが表示結果1指定コマンドである場合)、上記以外の飾り図柄の組み合わせを決定する。ただし、リーチ演出を伴う場合には、左右が揃った飾り図柄の組み合わせを決定する。なお、可変表示装置9に導出表示される左中右の飾り図柄の組合せが飾り図柄の「停止図柄」である。
演出制御用CPU101は、例えば、停止図柄を決定するための乱数を抽出し、飾り図柄の組合せを示すデータと数値とが対応付けられている停止図柄決定テーブルを用いて、飾り図柄の停止図柄を決定する。すなわち、抽出した乱数に一致する数値に対応する飾り図柄の組合せを示すデータを選択することによって停止図柄を決定する。
なお、飾り図柄についても、大当りを想起させるような停止図柄を大当り図柄という。また、確変大当りを想起させるような停止図柄を確変大当り図柄といい、通常大当りを想起させるような停止図柄を通常大当り図柄という。突然確変大当りを想起させるような停止図柄を突然確変大当り図柄といい、小当りを想起させるような停止図柄を小当り図柄という。そして、はずれを想起させるような停止図柄をはずれ図柄という。
また、演出制御用CPU101は、表示結果特定コマンド受信フラグをリセットする(ステップS819)。次いで、変動パターンに応じたプロセステーブルを選択する(ステップS833)。そして、選択したプロセステーブルのプロセスデータ1におけるプロセスタイマをスタートさせる(ステップS834)。
図87は、プロセステーブルの構成例を示す説明図である。プロセステーブルとは、演出制御用CPU101が演出装置の制御を実行する際に参照するプロセスデータが設定されたテーブルである。すなわち、演出制御用CPU101は、プロセステーブルに設定されているデータに従って可変表示装置9等の演出装置(演出用部品)の制御を行う。なお、この実施の形態では、図87に示す通常の遊技演出に用いられるプロセステーブルとは別に、各種エラー報知を行う際に用いられるエラー報知用のプロセステーブル(エラー用報知プロセステーブル)が用意されている。エラー報知用プロセステーブルの詳細については後述する。
プロセステーブルは、プロセスタイマ設定値と表示制御実行データ、ランプ制御実行データおよび音番号データの組み合わせが複数集まったデータで構成されている。表示制御実行データには、飾り図柄の可変表示の可変表示時間(変動時間)中の変動態様を構成する各変動の態様を示すデータ等が記載されている。具体的には、可変表示装置9の表示画面の変更に関わるデータが記載されている。また、プロセスタイマ設定値には、その変動の態様での変動時間が設定されている。演出制御用CPU101は、プロセステーブルを参照し、プロセスタイマ設定値に設定されている時間だけ表示制御実行データに設定されている変動の態様で飾り図柄を表示させる制御を行う。
図87に示すプロセステーブルは、演出制御基板80におけるROMに格納されている。また、プロセステーブルは、各変動パターンに応じて用意されている。
図88は、各演出制御コマンドを受信した場合にプロセスデータ(エラー報知用プロセスデータを含む)に応じて実行されるランプの制御内容の例を示す説明図である。図88に示すように、演出制御用CPU101は、例えば、大当り終了1指定コマンドを受信し、遊技状態を通常状態とする場合には、遊技盤6上のセンター飾り用ランプのLED125a〜125fおよびステージランプのLED126a〜126fのみを点灯させるように制御する。そして、遊技状態が通常状態である間、遊技盤6上のセンター飾り用ランプのLED125a〜125fおよびステージランプのLED126a〜126fのみを点灯させるような演出を行う。
また、演出制御用CPU101は、例えば、大当り終了2指定コマンドを受信し、遊技状態を確変状態とする場合には、遊技盤6上のセンター飾り用ランプのLED125a〜125fおよびステージランプのLED126a〜126fの点灯に加えて、遊技枠11側の各ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを所定時間間隔(例えば1秒)で点滅させるように制御する。そして、遊技状態が確変状態である間、遊技盤6上のセンター飾り用ランプのLED125a〜125fおよびステージランプのLED126a〜126fの点灯に加えて、遊技枠11側の各ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを所定時間間隔(例えば1秒)で点滅させるような演出を行う。
また、演出制御用CPU101は、例えば、大当り開始指定コマンドを受信し大当りとなった場合には、遊技盤6上のセンター飾り用ランプのLED125a〜125fおよびステージランプのLED126a〜126fを点滅させるとともに、遊技枠11側の各ランプのLED281a〜281l,282a〜282f,283a〜283fを確変状態よりも速い時間間隔(例えば0.5秒)で点滅させ、上皿ランプのLED82a〜82fおよび下皿ランプのLED84a〜84fを点灯させるような演出を行う。そのような演出を行うことによって、遊技状態が確変状態であるときと比較して、より多くのランプをより速い時間間隔で点滅表示させることによって、大当りの発生時に確変状態であるときと比較してより派手な印象を与える演出を行うことができる。
また、演出制御用CPU101は、例えば、初期化指定コマンドを受信し、初期化報知を行うとともにRAMクリア報知を行う場合には、遊技枠11側の各ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるような演出を行う。
また、演出制御用CPU101は、例えば、異常入賞報知指定コマンドを受信し、異常入賞報知を行う場合には、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fを点滅させるような演出を行う。
また、演出制御用CPU101は、例えば、入力ポートデータ指定コマンドを受信し、乱数回路エラーの報知を行う場合には、遊技枠11側の各ランプのLED281a〜281l,282a〜282f,283a〜283fおよび上皿ランプのLED82a〜82fを点灯させるような演出を行う。また、演出制御用CPU101は、例えば、入力ポートデータ指定コマンドを受信し、満タンエラー報知を行う場合には、下皿ランプのLED84a〜84fを点滅させるような演出を行う。また、演出制御用CPU101は、例えば、入力ポートデータ指定コマンドを受信し、ドア開放エラー報知を行う場合には、遊技枠11側の各ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させるような演出を行う。また、演出制御用CPU101は、例えば、入力ポートデータ指定コマンドを受信し、球切れエラー報知を行う場合には、遊技枠11側の天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプのLED82a〜82fを点灯させるような演出を行う。また、演出制御用CPU101は、例えば、入力ポートデータ指定コマンドを受信し、払出エラー報知を行う場合には、遊技枠11側の天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプのLED82a〜82fを点滅させるような演出を行う。
なお、この実施の形態では、異常入賞報知を行う場合に上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fを点滅させるような演出を行う場合を説明するが、ドア開放エラー報知を行う場合や払出エラー報知を行う場合にも、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fを点滅させるような演出を行ってもよい。
そして、演出制御用CPU101は、異常入賞の報知を行っていることを示す異常報知中フラグやその他のエラーフラグ(RAMクリア報知中フラグ、乱数回路エラー報知中フラグ、満タンエラー報知中フラグ、ドア開放エラー報知中フラグ、球切れエラー報知中フラグ、払出エラー報知中フラグ)がセットされていないことを条件に、プロセスデータ1の内容(表示制御実行データ1、音番号データ1)に従って演出装置(演出用部品としての可変表示装置9、および演出用部品としてのスピーカ27)の制御を実行する(ステップS835A,S835B)。例えば、可変表示装置9において変動パターンに応じた画像を表示させるために、VDP109に指令を出力する。また、スピーカ27からの音声出力を行わせるために、音声合成用IC173に対して制御信号(音番号データ)を出力する。
また、演出制御用CPU101は、ランプ制御実行データ1に従って、演出用部品としての各種ランプを制御するためにシリアル設定処理を実行する(ステップS835C)。例えば、演出制御用CPU101は、遊技状態が通常状態である場合には、センター装飾用ランプのLED125a〜125fおよびステージランプのLED126a〜126fのみを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。また、遊技状態が確変状態である場合には、センター装飾用ランプのLED125a〜125fおよびステージランプのLED126a〜126fを点灯させるとともに、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS835Cでセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して盤側IC基板601や各枠側IC基板602〜604に出力される。
なお、この実施の形態では、演出制御用CPU101は、変動パターンコマンドに1対1に対応する変動パターンによる飾り図柄の可変表示が行われるように制御するが、演出制御用CPU101は、変動パターンコマンドに対応する複数種類の変動パターンから、使用する変動パターンを選択するようにしてもよい。
異常報知中フラグまたはその他エラーフラグがセットされている場合には、ランプ制御実行データ1を除くプロセスデータ1の内容に従って演出装置の制御を実行する(ステップS835A,S835D)。つまり、異常報知中フラグまたはその他エラーフラグがセットされている場合には、飾り図柄の新たな可変表示が開始される場合に、その可変表示に応じたランプによる表示演出がそのまま実行されるのではなく、異常入賞の報知や各種エラー報知(RAMクリア報知、乱数回路エラー報知、満タンエラー報知、ドア開放エラー報知、球切れエラー報知、払出エラー報知)に応じたランプによる表示演出が継続される。
また、ステップS835Dの処理を行うときに、演出制御用CPU101は、単に表示制御実行データ1にもとづく指令をVDP109に出力するのではなく、「重畳表示」を行うための指令もVDP109に出力する。つまり、可変表示装置9におけるそのときの表示(例えば、乱数回路エラーの報知がなされている。)と、飾り図柄の可変表示の表示演出の画像とが、同時に可変表示装置9において表示されるように制御する。すなわち、各種エラーフラグがセットされている場合には、飾り図柄の新たな可変表示が開始される場合に、その可変表示に応じた表示演出のみが実行されるのではなく、各種エラー報知に応じた報知も継続される。
この実施の形態では、後述するように、例えば、異常報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、上皿ランプの側面側のLED82a,82b,82e,82fを点滅させる異常入賞報知を継続する。
また、例えば、RAMクリア報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、遊技枠11側の全ランプ(上皿ランプ、下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させ所定のエラー音を出力させるRAMクリア報知を継続する。
また、例えば、ドア開放エラー報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、遊技枠11側の全ランプ(上皿ランプ、下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させ、「扉が開いています」との音声と所定のエラー音とを出力させるドア開放エラー報知を継続する。
また、例えば、球切れエラー報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、遊技枠11側の天枠ランプのLED281a〜281lを点滅させ、上皿ランプのLED82a〜82fを点灯させる球切れエラー報知を継続する。
また、例えば、満タンエラー報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、下皿ランプのLED84a〜84fを点灯させる満タンエラー報知を継続する。
また、例えば、払出エラー報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、遊技枠11側の天枠ランプのLED281a〜281lを点滅させ、上皿ランプのLED82a〜82fを点滅させる払出エラー報知を継続する。
また、例えば、乱数回路エラー報知中フラグがセットされている場合には、ステップS835Dにおいて、演出制御用CPU101は、飾り図柄の新たな可変表示を開始するとともに、遊技枠11側の全ランプおよび上皿ランプのLED281a〜281l,282a〜282f,283a〜283fを点灯させ、所定のエラー音を出力し可変表示装置9に「エラー」を表示させる乱数回路エラー報知を継続する。
そして、変動時間タイマに、変動パターンコマンドで特定される変動時間に相当する値を設定し(ステップS836)、演出制御プロセスフラグの値を飾り図柄変動中処理(ステップS802)に対応した値にする(ステップS837)。
ステップS830では、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドを受信したか否か確認する。この実施の形態では、図29に示すように、「リーチC・短縮」、「リーチC」および「スーパーリーチA」の変動パターンコマンドが、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドである。よって、演出制御用CPU101は、それらの変動パターンコマンドを示すデータが変動パターンコマンド格納領域に格納されていた場合に、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドを受信したと判定する。演出制御用CPU101は、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドを受信したと判定した場合には、停止図柄を通常大当り図柄に決定する(ステップS832)。また、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンド以外の変動パターンコマンドを受信したと判定した場合には、停止図柄を、受信した変動パターンに応じた飾り図柄の組合せに決定する(ステップS831)。なお、この実施の形態では、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンド以外の変動パターンコマンドは、はずれ時に使用されるか、大当りの種類に応じて使用される(図29参照)。よって、演出制御用CPU101は、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンド以外の変動パターンコマンドを受信した場合には、受信した変動パターンコマンドにもとづいて、はずれに決定されているのか大当り(小当りを含む。)に決定されているのか特定でき、かつ、大当りとすることに決定されている場合には、大当りの種類を特定できる。
このように、演出制御用マイクロコンピュータ100は、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドを受信した場合に、表示結果特定コマンドを受信できなかったときには、飾り図柄の表示結果(停止図柄)を通常大当り図柄に決定するように構成されているので、表示結果特定コマンドを受信できなくても特定遊技状態が発生するか否かを遊技者に認識させることができる。また、変動パターンコマンドに飾り図柄の表示結果を特定可能な情報を含めることによって、変動パターンコマンドおよび表示結果特定コマンド以外のコマンドを用いることなく、演出制御用マイクロコンピュータ100は、表示結果特定コマンドを受信できなくても飾り図柄の表示結果を決定できるので、遊技制御用マイクロコンピュータ560が送信するコマンドの種類は増えず、その結果、遊技制御用マイクロコンピュータ560の制御負担は増大しない。
図89は、演出制御プロセス処理における飾り図柄変動中処理(ステップS802)を示すフローチャートである。飾り図柄変動中処理において、演出制御用CPU101は、プロセスタイマの値を1減算するとともに(ステップS841)、変動時間タイマの値を1減算する(ステップS842)。プロセスタイマがタイムアウトしたら(ステップS843)、プロセスデータの切替を行う。すなわち、プロセステーブルにおける次に設定されているプロセスタイマ設定値をプロセスタイマに設定する(ステップS844)。
また、異常報知中フラグやその他のエラーフラグ(RAMクリア報知中フラグ、乱数回路エラー報知中フラグ、満タンエラー報知中フラグ、ドア開放エラー報知中フラグ、球切れエラー報知中フラグ、払出エラー報知中フラグ)がセットされていないことを条件に、その次に設定されている表示制御実行データおよび音番号データにもとづいて演出装置に対する制御状態を変更する(ステップS845A,S845B)。
ステップS845Bにおいて、演出制御用CPU101は、例えば、可変表示装置9において変動パターンに応じた画像を表示させるために、VDP109に指令を出力する。また、スピーカ27からの音声出力を行わせるために、音声合成用IC173に対して制御信号(音番号データ)を出力する。
また、演出制御用CPU101は、ランプ制御実行データに従って、演出用部品としての各種ランプを制御するためにシリアル設定処理を実行する(ステップS845C)。例えば、演出制御用CPU101は、遊技状態が通常状態である場合には、センター装飾用ランプのLED125a〜125fおよびステージランプのLED126a〜126fのみを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。また、遊技状態が確変状態である場合には、センター装飾用ランプのLED125a〜125fおよびステージランプのLED126a〜126fを点灯させるとともに、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS845Cでセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して盤側IC基板601や各枠側IC基板602〜604に出力される。
異常報知中フラグまたはその他エラーフラグがセットされている場合には、プロセスデータi(iは2〜nのいずれか)の内容(ただし、ランプ制御実行データiを除く。)に従って演出装置の制御を実行する(ステップS845A,S845D)。よって、異常報知中フラグまたはその他エラーフラグがセットされている場合には、飾り図柄の可変表示に応じたランプによる表示演出がそのまま実行されるのではなく、異常入賞の報知や各種エラー報知(RAMクリア報知、乱数回路エラー報知、満タンエラー報知、ドア開放エラー報知、球切れエラー報知、払出エラー報知)に応じたランプによる表示演出が継続される。
また、ステップS845Dの処理が行われるときに、演出制御用CPU101は、単に表示制御実行データiにもとづく指令をVDP109に出力するのではなく、「重畳表示」を行うための指令もVDP109に出力する。よって、各種エラーフラグがセットされている場合には、飾り図柄の可変表示に応じた表示演出のみが実行されるのではなく、各種エラー報知に応じた報知も継続される。
また、変動時間タイマがタイムアウトしていれば(ステップS846)、演出制御プロセスフラグの値を飾り図柄変動停止処理(ステップS803)に応じた値に更新する(ステップS848)。変動時間タイマがタイムアウトしていなくても、図柄確定指定コマンドを受信したことを示す確定コマンド受信フラグがセットされていたら(ステップS847)、ステップS848に移行する。変動時間タイマがタイムアウトしていなくても図柄確定指定コマンドを受信したら変動を停止させる制御に移行するので、例えば、基板間でのノイズ等に起因して長い変動時間を示す変動パターンコマンドを受信したような場合でも、正規の変動時間経過時(特別図柄の変動終了時)に、飾り図柄の変動を終了させることができる。
図90は、演出制御プロセス処理における飾り図柄変動停止処理(ステップS803)を示すフローチャートである。飾り図柄変動停止処理において、演出制御用CPU101は、確定コマンド受信フラグがセットされているか否か確認する(ステップS851)、確定コマンド受信フラグがセットされている場合には、確定コマンド受信フラグをリセットし(ステップS852)、決定されている停止図柄を導出表示する制御を行う(ステップS853)。そして、演出制御用CPU101は、大当りとすることに決定されているか否か確認する(ステップS854)。大当りとすることに決定されているか否かは、例えば、表示結果特定コマンド格納領域に格納されている表示結果特定コマンドによって確認される。なお、この実施の形態では、決定されている停止図柄によって、大当りとすることに決定されているか否か確認することもできる。
大当りとすることに決定されている場合には、演出制御プロセスフラグの値を大当り表示処理(ステップS804)に応じた値に更新する(ステップS855)。
大当りとしないことに決定されている場合には、演出制御用CPU101は、時短状態フラグがセットされているか否か確認する(ステップS856)。時短状態フラグは、遊技状態が時短状態である場合にセットされている(後述するステップS886参照)。この実施の形態では、遊技状態が時短状態に移行された場合には、大当りが発生したときに時短状態を終了させるか、特別図柄および飾り図柄の変動表示を所定回数(例えば、100回)実行しても大当りは発生しなかったときに時短状態を終了させるように制御する。そのため、演出制御用CPU101は、まず、時短状態フラグがセットされている場合には、時短変動回数カウンタの値を+1する(ステップS857)。
そして、演出制御用CPU101は、時短変動回数カウンタの値が100になっているか否か確認する(ステップS858)。時短変動回数カウンタの値が100になっている場合には、時短状態フラグをリセットする(ステップS859)。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に応じた値に更新する(ステップS860)。
なお、この実施の形態では、演出制御用マイクロコンピュータ100は、図柄確定指定コマンドを受信したことを条件に、飾り図柄の変動(可変表示)を終了させる(ステップS851,S853参照)。しかし、受信した変動パターンコマンドにもとづく変動時間タイマがタイムアウトしたら、図柄確定指定コマンドを受信しなくても、飾り図柄の変動を終了させるように制御してもよい。その場合、遊技制御用マイクロコンピュータ560は、可変表示の終了を指定する図柄確定指定コマンドを送信しないようにしてもよい。
図91は、演出制御プロセス処理における大当り表示処理(ステップS804)を示すフローチャートである。大当り表示処理において、演出制御用CPU101は、大当り開始1〜4指定コマンドのいずれかを受信したことを示す大当り開始1〜4指定コマンド受信フラグがセットされているか否か確認する(ステップS871)。大当り開始1〜4指定コマンド受信フラグのいずれかがセットされていた場合には、セットされているフラグに応じた遊技開始画面を可変表示装置9に表示する制御を行う(ステップS872)。また、セットされているフラグ(大当り開始1〜4指定コマンド受信フラグのいずれか)をリセットする(ステップS873)。そして、演出制御プロセスフラグの値を大当り遊技中処理(ステップS805)に応じた値に更新する(ステップS874)。
ステップS872では、演出制御用CPU101は、大当り開始2指定コマンドを受信している場合には、小当り遊技の開始を報知する画面を可変表示装置9に表示する制御を行う。また、大当り開始4指定コマンドを受信している場合には、突然確変大当り遊技の開始を報知する画面を可変表示装置9に表示する制御を行う。そして、大当り開始1指定コマンドまたは大当り開始3指定コマンドを受信している場合には、大当り遊技の開始を報知する画面(小当り遊技の開始を報知する画面および突然確変大当り遊技の開始を報知する画面とは異なる。)を可変表示装置9に表示する制御を行う。
図92は、演出制御プロセス処理における大当り終了処理(ステップS806)を示すフローチャートである。大当り終了処理において、演出制御用CPU101は、大当り終了演出タイマが設定されているか否か確認する(ステップS880)。大当り終了演出タイマが設定されている場合には、ステップS885に移行する。大当り終了演出タイマが設定されていない場合には、大当り終了指定コマンドを受信したことを示す大当り終了指定コマンド受信フラグ(大当り終了1指定コマンド受信フラグまたは大当り終了2指定コマンド受信フラグ)がセットされているか否か確認する(ステップS881)。大当り終了指定コマンド受信フラグがセットされている場合には、大当り終了指定コマンド受信フラグをリセットし(ステップS882)、大当り終了演出タイマに大当り終了表示時間に相当する値を設定して(ステップS883)、可変表示装置9に、大当り終了画面(大当り遊技の終了を報知する画面)を表示する制御を行う(ステップS884)。具体的には、VDP109に、大当り終了画面を表示させるための指示を与える。
なお、この実施の形態では、大当りの種類が異なっても、同じ大当り終了画面が可変表示装置9に表示される。例えば、大当り終了表示と小当り終了表示とは同じである。しかし、大当り終了表示(小当り終了表示を含む。)を、大当りの種類に応じて分けるようにしてもよい。
ステップS885では、大当り終了演出タイマの値を1減算する。そして、演出制御用CPU101は、大当り終了演出タイマの値が0になっているか否か、すなわち大当り終了演出時間が経過したか否か確認する(ステップS886)。経過していなければ処理を終了する。経過していれば、時短状態フラグをセットし(ステップS887)、時短回数カウンタに0を設定する(ステップS888)。また、大当り終了1指定コマンドを受信している場合には、確変状態フラグをリセットする(ステップS889,S891)。大当り終了1指定コマンドを受信していない場合(大当り終了2指定コマンドを受信している場合)には、確変状態フラグをセットする(ステップS889,S890)。そして、演出制御プロセスフラグの値を変動パターンコマンド受信待ち処理(ステップS800)に応じた値に更新する(ステップS892)。
確変状態フラグおよび時短状態フラグは、例えば、演出制御用CPU101が、確変状態および時短状態を、可変表示装置9における背景や装飾発光体(ランプ・LED)によって報知する場合に使用される。
図93は、可変表示装置9に表示される報知画面の例を示す説明図である。図93(A)には、演出制御用CPU101が、初期化指定コマンドの受信に応じて可変表示装置9に表示する初期画面の例が示されている。図93(B)には、演出制御用CPU101が、停電復旧指定コマンドの受信に応じて可変表示装置9に表示する停電復旧画面の例が示されている。
次に、ステップS707の報知制御プロセス処理について説明する。まず、報知制御プロセス処理において実行される各種エラー報知の態様について説明する。図94は、報知制御プロセス処理において実行される各種エラー報知の態様の例を示す説明図である。図94に示すように、RAMクリア報知は、遊技機の電源投入から所定期間(例えば31秒間)実行される。演出制御用CPU101は、RAMクリア報知を行う場合、遊技枠11側の全ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるとともに、スピーカ27に所定のエラー音(例えばビープ音)を出力させる制御を行う。
また、ドア開放エラー報知は、遊技枠11が開放されている間(例えば、ドア開放センサ155の検出信号が入力されている間)実行される。演出制御用CPU101は、ドア開放エラー報知を行う場合、遊技枠11側の全ランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させる制御を行う。また、スピーカ27に「扉が開いています」という音声とともに所定のエラー音(例えばビープ音)を出力させる制御を行う。
また、球切れエラー報知は、球切れ発生から球切れ状態が解除されるまで(例えば、球切れスイッチの検出信号が入力されている間)実行される。演出制御用CPU101は、球切れエラー報知を行う場合、遊技枠11側の天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプ82a〜82fを点灯させる制御を行う。また、満タンエラー報知は、下皿の満タン状態の発生から満タン状態が解除されるまで(例えば、満タンスイッチの検出信号が入力されている間)実行される。演出制御用CPU101は、満タンエラー報知を行う場合、下皿ランプのLED84a〜84fを点滅させる制御を行う。
また、払出エラー報知は、賞球異常発生から賞球異常状態が解除されるまで実行される。演出制御用CPU101は、払出エラー報知を行う場合、遊技枠11側の天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプのLED82a〜82fを点滅させる制御を行う。また、乱数回路エラー報知は、遊技機の電源投入の際に乱数回路エラーを検出してから電源がオフされるまで実行される。演出制御用CPU101は、乱数回路エラー報知を行う場合、遊技枠11側の全ランプおよび上皿ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82fを点灯させるとともに、所定のエラー音(例えばビープ音)を出力させる制御を行う。また、可変表示装置9に「エラー」と表示させる制御を行う。この場合、可変表示装置9において遊技演出による表示(例えば、飾り図柄の可変表示)が行われている場合には、可変表示装置9に「エラー」という文字列を重畳表示させる。
また、異常入賞エラー報知は、異常入賞の発生から所定期間(例えば30秒間)実行される。演出制御用CPU101は、異常入賞報知を行う場合、上皿ランプの側面側のみのLED82a,82b,82e,82fを点滅させる制御を行う。
図95は、図76に示されたメイン処理における報知制御プロセス処理(ステップS707)を示すフローチャートである。報知制御プロセス処理では、演出制御用CPU101は、報知制御プロセスフラグの値に応じてステップS1900,S1901のうちのいずれかの処理を行う。各処理において、以下のような処理を実行する。
報知開始処理(ステップS1900)は、コマンド解析処理でセットされる各エラーフラグ(初期報知フラグ、乱数回路エラーフラグ、異常入賞報知指定コマンド受信フラグ、RAMクリアフラグ、満タンエラー報知フラグ、払出エラー報知フラグ、球切れエラー報知フラグ)にもとづいて、エラーの報知を開始する処理である。エラーの報知を開始すると、報知制御プロセスフラグの値を報知中処理(ステップS1901)に対応した値に変更する。
報知中処理(ステップS1901)は、各エラーフラグ(初期報知中フラグ、乱数回路エラー報知中フラグ、異常報知中フラグ、RAMクリア報知中フラグ、満タンエラー報知中フラグ、払出エラー報知中フラグ、球切れエラー報知中フラグ)にもとづいて、エラーの報知を継続する処理である。また、エラーの報知期間(初期報知期間、RAMクリア報知期間)を経過したこと、またはコマンド解析処理でセットされるエラー報知解除フラグにもとづいて、エラーの報知を終了する。エラーの報知を終了すると、報知制御プロセスフラグの値を報知開始処理(ステップS1901)に対応した値に変更する。
図96および図97は、図95に示された報知制御プロセス処理における報知開始処理(ステップS1900)を示すフローチャートである。報知開始処理において、演出制御用CPU101は、まず、初期報知フラグがセットされているか否かを確認する(ステップS1911)。セットされていれば、演出制御用CPU101は、期間タイマ1に、初期報知期間値に相当する値を設定する(ステップS1912)。初期報知期間は、初期化指定コマンドの受信に応じて初期化報知を行っている期間である。演出制御用CPU101は、初期報知期間が経過すると、初期化報知を終了させる。なお、初期報知期間は、遊技制御用マイクロコンピュータ560がステップS45の処理で設定する禁止期間と同じである。よって、初期化報知が行われているときに、異常報知指定コマンドを受信することはない。
次いで、演出制御用CPU101は、初期報知フラグをリセットするとともに、初期報知を行っていることを示す初期報知中フラグをセットする(ステップS1912A)。そして、ステップS1950に移行する。
初期報知フラグがセットされていなければ、演出制御用CPU101は、ドア開放エラー報知フラグがセットされているか否かを確認する(ステップS1913)。セットされていれば、演出制御用CPU101は、ドア開放エラーに応じたエラー用プロセスデータを選択する(ステップS1914)。この実施の形態では、各種エラー報知を行う際にスピーカ27および各ランプ281a〜281l,282a〜282f,283a〜283f,82a〜82dを制御するためのエラー用のプロセスデータ(エラー用プロセスデータ)があらかじめ用意されている。なお、エラー用プロセスデータの詳細については後述する。
次いで、演出制御用CPU101は、エラー用プロセスタイマをスタートさせる(ステップS1915)とともに、エラー用プロセスデータ1の内容に従ってスピーカ27を制御する(ステップS1916)。例えば、演出制御用CPU101は、「扉が開いています」などの音声とともに所定のエラー音(例えばビープ音)を出力するようにスピーカ27を制御する。
次いで、演出制御用CPU101は、各ランプ281a〜281l,282a〜282f,283a〜283f,82a〜82dを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理(図105参照)を実行する(ステップS1917)。例えば、演出制御用CPU101は、遊技枠11に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1917でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602〜604に出力される。
次いで、演出制御用CPU101は、ドア開放エラー報知フラグをリセットするとともに、ドア開放エラー報知を行っていることを示すドア開放エラー報知中フラグをセットする(ステップS1917A)。そして、ステップS1950に移行する。
なお、この実施の形態では、後述するように、上皿ランプの側面側のみのLED82a,82b,82e,82fを点滅させることによって、不正行為者に気付かれることなく異常入賞報知を行う場合を説明するが、ドア開放エラー報知演出を上皿ランプの側面側のみのLED82a,82b,82e,82fを点灯または点滅させることによって行ってもよい。そのようにすれば、遊技機1のドアを開放して内部に何らかの細工を施すなどの不整行為が行われた場合にも、不正行為者に気付かれることなく不正を報知することができる。
ドア開放エラー報知フラグもセットされていなければ、演出制御用CPU101は、乱数回路エラーフラグがセットされているか否かを確認する(ステップS1918)。セットされていれば、演出制御用CPU101は、乱数回路エラーであることを示す乱数回路エラー表示画面を可変表示装置9に表示する制御を行う(ステップS1919)。次いで、演出制御用CPU101は、乱数回路エラーに応じたエラー用プロセスデータを選択する(ステップS1920)。次いで、演出制御用CPU101は、エラー用プロセスタイマをスタートさせる(ステップS1921)とともに、エラー用プロセスデータ1の内容に従ってスピーカ27を制御する(ステップS1922)。例えば、演出制御用CPU101は、所定のエラー音(例えばビープ音)を出力するようにスピーカ27を制御する。
次いで、演出制御用CPU101は、各ランプ281a〜281l,282a〜282f,283a〜283f,82a〜82dを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1923)。例えば、演出制御用CPU101は、遊技枠11に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1923でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602〜604に出力される。
次いで、演出制御用CPU101は、乱数回路エラーフラグをリセットするとともに、乱数回路エラー報知を行っていることを示す乱数回路エラー報知中フラグをセットする(ステップS1923A)。そして、ステップS1950に移行する。
乱数回路エラーフラグもセットされていなければ、演出制御用CPU101は、異常入賞報知指定コマンド受信フラグがセットされているか否かを確認する(ステップS1924)。セットされていれば、演出制御用CPU101は、異常入賞報知に応じたランプ制御を行うためのエラー用プロセスデータを選択する(ステップS1925)。次いで、演出制御用CPU101は、エラー用プロセスタイマをスタートさせる(ステップS1926)。
次いで、演出制御用CPU101は、上皿ランプの側面側のLED82a,82b,82e,82fを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1928)。例えば、演出制御用CPU101は、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1928でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して打球供給皿(上皿)3の背面側に配置された枠側IC基板605Aに出力される。
なお、異常入賞報知を行う際に何らかの遊技演出(例えば、大当り演出や飾り図柄の変動表示)が行われている場合には、ステップS1928において、演出制御用CPU101は、上皿ランプの側面側のLED82a,82b,82e,82fを制御するためのランプ制御信号とともに、現在実行中の遊技演出に対応したランプのLEDを制御するためのランプ制御信号を、所定のデータ格納領域にセットする。したがって、例えば、遊技演出において、天枠ランプ,左枠ランプおよび右枠ランプのLED281a〜281l,282a〜282f,283a〜283fの点滅表示が行われている場合には、天枠ランプ,左枠ランプおよび右枠ランプのLED281a〜281l,282a〜282f,283a〜283fの点滅表示が継続されるとともに、上皿ランプの側面側のLED82a,82b,82e,82fが点滅表示される。そのようにすることによって、遊技機1の正面側からは異常入賞報知の開始前と開始後とで全く同様の態様で遊技演出が継続されるとともに、遊技機1側面側からは上皿ランプの側面側のLED82a,82b,82e,82fの点滅状態を確認することによって、異常入賞の発生の有無を確認することができる。よって、遊技機1の正面側にいる不正行為者に気付かれることなく、遊技機1の側面側にいる遊技店員などに異常入賞の発生を報知することができ不正行為が行われたことを知らせることができる。
そして、以後、異常入賞の報知に応じた音出力(異常報知音の出力)およびランプの表示(異常報知の点滅)が行われる。そして、演出制御用CPU101は、異常入賞報知指定コマンド受信フラグをリセットするとともに、異常報知を行っていることを示す異常報知中フラグをセットする(ステップS1929)。そして、ステップS1950に移行する。
なお、異常入賞報知指定コマンド受信フラグがセットされているか否かの確認を、乱数回路エラーフラグがセットされているか否かを確認するよりも前に確認するようにし、ステップS1924〜S1928の異常入賞報知の開始処理を、ステップS1918〜S1923Aの乱数回路エラー報知の開始処理に優先して実行するようにしてもよい。そのようにすれば、異常入賞の発生を乱数回路エラーの発生に優先して報知することができる。したがって、不正行為による異常入賞の発生を優先して報知して遊技店員などに知らせることができ、より効果的に不正行為の発生を報知することができる。
異常入賞報知指定コマンド受信フラグもセットされていなければ、演出制御用CPU101は、RAMクリアフラグがセットされているか否かを確認する(ステップS1930)。セットされていれば、演出制御用CPU101は、RAMクリア報知に応じたエラー用プロセスデータを選択する(ステップS1931)。RAMクリア報知とは、初期化処理が実行されRAMがクリアされたことを報知する処理である。
次いで、演出制御用CPU101は、エラー用プロセスタイマをスタートさせる(ステップS1932)とともに、エラー用プロセスデータ1の内容に従ってスピーカ27を制御する(ステップS1933)。例えば、演出制御用CPU101は、所定のエラー音(例えばビープ音)を出力するようにスピーカ27を制御する。次いで、演出制御用CPU101は、各ランプ281a〜281l,282a〜282f,283a〜283fを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1934)。例えば、演出制御用CPU101は、遊技枠11に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1934でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602〜604に出力される。そして、ステップS1950に移行する。
次いで、演出制御用CPU101は、期間タイマ2に、RAMクリア報知期間値に相当する値を設定する(ステップS1935)。RAMクリア報知期間は、RAMクリア報知の報知を行っている期間である。演出制御用CPU101は、RAMクリア報知期間が経過すると、RAMクリア報知を終了させる。なお、初期報知期間とRAMクリア報知期間とは同じ期間であってもよい。
次いで、演出制御用CPU101は、RAMクリアフラグをリセットするとともに、RAMクリア報知を行っていることを示すRAMクリア報知中フラグをセットする(ステップS1935A)。そして、ステップS1950に移行する。
RAMクリアフラグもセットされていなければ、演出制御用CPU101は、満タンエラー報知フラグがセットされているか否かを確認する(ステップS1936)。セットされていれば、演出制御用CPU101は、満タンエラーに応じたランプ制御を行うためのエラー用プロセスデータを選択する(ステップS1938)。次いで、演出制御用CPU101は、エラー用プロセスタイマをスタートさせる(ステップS1939)。
次いで、演出制御用CPU101は、下皿ランプ84a〜84fを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1941)。例えば、演出制御用CPU101は、遊技枠11に設けられた下皿ランプのLED84a〜84fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1941でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して枠側IC基板605Bに出力される。
次いで、演出制御用CPU101は、満タンエラー報知フラグをリセットするとともに、満タンエラー報知を行っていることを示す満タンエラー報知中フラグをセットする(ステップS1941A)。そして、ステップS1950に移行する。
満タンエラー報知フラグもセットされていなければ、演出制御用CPU101は、払出エラー報知フラグがセットされているか否かを確認する(ステップS1942)。セットされていれば、演出制御用CPU101は、払出エラーに応じたエラー用プロセスデータを選択する(ステップS1943)とともに、エラー用プロセスタイマをスタートさせる(ステップS1944)。
次いで、演出制御用CPU101は、各ランプ281a〜281l,82a〜82fを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1945)。例えば、演出制御用CPU101は、遊技枠11に設けられた天枠ランプおよび上皿ランプのLED281a〜281l,82a〜82fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1945でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602,605Aに出力される。
次いで、演出制御用CPU101は、払出エラー報知フラグをリセットするとともに、払出エラー報知を行っていることを示す払出エラー報知中フラグをセットする(ステップS1945A)。そして、ステップS1950に移行する。
なお、この実施の形態では、払出エラーを報知する場合にランプを用いた報知処理のみを行いスピーカ27を用いた音による報知処理を行わない場合を説明するが、ランプに加えてスピーカ27を用いた報知を行うようにしてもよい。
払出エラー報知フラグもセットされていなければ、演出制御用CPU101は、球切れエラー報知フラグがセットされているか否かを確認する(ステップS1946)。セットされていれば、演出制御用CPU101は、球切れエラーに応じたエラー用プロセスデータを選択する(ステップS1947)とともに、エラー用プロセスタイマをスタートさせる(ステップS1948)。
次いで、演出制御用CPU101は、各ランプ281a〜281l,82a〜82fを制御するために、ランプ制御信号を所定のデータ格納領域にセットするシリアル設定処理を実行する(ステップS1949)。例えば、演出制御用CPU101は、遊技枠11に設けられた天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプのLED82a〜82fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1949でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602,605Aに出力される。
次いで、演出制御用CPU101は、球切れエラー報知フラグをリセットするとともに、球切れエラー報知を行っていることを示す球切れエラー報知中フラグをセットする(ステップS1949A)。そして、ステップS1950に移行する。
なお、この実施の形態では、球切れエラーを報知する場合にランプを用いた報知処理のみを行いスピーカ27を用いた音による報知処理を行わない場合を説明するが、ランプに加えてスピーカ27を用いた報知を行うようにしてもよい。
ステップS1950では、演出制御用CPU101は、報知制御プロセスフラグの値を報知中処理(ステップS1901)に対応した値に変更し、処理を終了する。
図98〜図100は、図95に示された報知制御プロセス処理における報知中処理(ステップS1901)を示すフローチャートである。報知中処理において、演出制御用CPU101は、まず、初期報知中フラグがセットされているか否か確認する(ステップS1960)。初期報知中フラグがセットされていない場合には、ステップS1965に移行する。初期報知中フラグがセットされている場合には、ステップS1912で設定された期間タイマ1の値を−1する(ステップS1961)。そして、期間タイマ1の値が0になったら、すなわち初期報知期間が経過したら、初期報知中フラグをリセットする(ステップS1962,S1963)。なお、期間タイマ1の値が0でなければ、そのまま処理を終了する。
さらに、演出制御用CPU101は、可変表示装置9において初期画面または停電復旧画面を消去させるための指令をVDP109に出力する(ステップS1964)。VDP109は、指令に応じて、可変表示装置9から初期画面または停電復旧画面を消去する。そして、ステップS2010に移行する。
初期報知中フラグがセットされていなければ、演出制御用CPU101は、ドア開放エラー報知中フラグがセットされているか否か確認する(ステップS1965)。セットされていなければ、ステップS1971に移行する。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS1966)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS1967)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS1968)。
図101は、エラー報知用プロセステーブルの構成例を示す説明図である。エラー報知用プロセステーブルとは、演出制御用CPU101が演出装置の制御を実行して各種エラー報知を行う際に参照するプロセスデータが設定されたテーブルである。すなわち、演出制御用CPU101は、エラー報知用プロセステーブルに設定されているデータに従ってスピーカ27および各ランプの制御を行ってエラー報知を行う。エラー報知用プロセステーブルは、プロセスタイマ設定値と、エラー用ランプ制御実行データおよびエラー用音番号データの組み合わせが複数集まったデータで構成されている。プロセスタイマ設定値には、その音出力状態およびランプの表示状態での継続時間が設定されている。演出制御用CPU101は、エラー報知用プロセステーブルを参照し、プロセスタイマ設定値に設定されている時間だけランプ表示制御実行データに設定されている態様で各ランプの点灯、非点灯状態を制御するとともに、スピーカ27を用いた音出力を制御する。
図101に示すエラー報知用プロセステーブルは、演出制御基板80におけるROMに格納されている。また、エラー報知用プロセステーブルは、エラー種類(RAMクリア報知、乱数回路エラー、満タンエラー、ドア開放エラー、球切れエラー、払出エラー)に応じて用意されている。また、この実施の形態では、エラー用プロセスタイマがタイムアウトする毎に、パターンAの点灯とパターンBの点灯とを切り替えて、点灯または点滅するように制御される。この実施の形態では、演出制御用CPU101は、各ランプの表示状態を制御するとともにスピーカ27から所定のエラー音などを出力することによってエラー報知を行う場合(本例では、RAMクリア報知、ドア開放エラー報知、乱数回路エラー報知を行う場合)には、エラー用ランプ制御実行データに加えてエラー用音番号データを含むエラー報知用プロセステーブル(図101(A)参照)を用いてエラー報知を行う。また、演出制御用CPU101は、各ランプの表示状態のみを制御することによってエラー報知を行う場合(本例では、異常入賞エラー報知、球切れエラー報知、満タンエラー報知、払出エラー報知)には、エラー用ランプ制御実行データのみを含むエラー報知用プロセステーブル(図101(B)参照)を用いてエラー報知を行う。
次いで、演出制御用CPU101は、エラー用音番号データにもとづいてスピーカ27を制御する(ステップS1969)。ステップS1969において、演出制御用CPU101は、対応するエラー報知に応じた音出力を示す音データを音声合成用IC173に出力する。音声合成用IC173は、入力された音データに対応したデータを音声データROM174から読み出し、読み出したデータに従って音声信号をスピーカ27側に出力する。例えば、演出制御用CPU101は、スピーカ27に「扉が開いています」との音声と所定のエラー音(例えばビープ音)とを出力させる。
また、演出制御用CPU101は、エラー用ランプ制御実行データに従って、対応するエラー報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS1970)。例えば、ステップS1970において、演出制御用CPU101は、遊技枠11側に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1970でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して盤側IC基板601および各枠側IC基板602〜604に出力される。
ドア開放エラー報知中フラグもセットされていなければ、演出制御用CPU101は、乱数回路エラー報知中フラグがセットされているか否かを確認する(ステップS1971)。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS1972)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS1973)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているプロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS1974)。
次いで、演出制御用CPU101は、エラー用音番号データにもとづいてスピーカ27を制御する(ステップS1975)。ステップS1975において、演出制御用CPU101は、対応するエラー報知に応じた音出力を示す音データを音声合成用IC173に出力する。音声合成用IC173は、入力された音データに対応したデータを音声データROM174から読み出し、読み出したデータに従って音声信号をスピーカ27側に出力する。例えば、演出制御用CPU101は、スピーカ27に所定のエラー音(例えばビープ音)を出力させる。
また、演出制御用CPU101は、エラー用ランプ制御実行データに従って、対応するエラー報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS1976)。例えば、ステップS1976において、演出制御用CPU101は、遊技枠11側に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1976でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して盤側IC基板601および各枠側IC基板602〜604に出力される。
乱数回路エラー報知中フラグもセットされていなければ、演出制御用CPU101は、異常報知中フラグがセットされているか否かを確認する(ステップS1977)。セットされていなければ、ステップS1984に移行する。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS1979)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS1980)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS1981)。
次いで、演出制御用CPU101は、エラー用ランプ制御実行データに従って、異常入賞の報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS1983)。ステップS1983において、演出制御用CPU101は、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1983でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、打球供給皿(上皿)3の背面側に配置された各枠側IC基板605Aに出力される。
異常報知中フラグもセットされていなければ、演出制御用CPU101は、RAMクリア報知中フラグがセットされているか否か確認する(ステップS1984)。RAMクリア報知中フラグがセットされていない場合には、ステップS1993に移行する。RAMクリア報知中フラグがセットされている場合には、プロセスタイマを−1する(ステップS1985)とともに、ステップS1935で設定された期間タイマ2の値を−1する(ステップS1986)。プロセスタイマがタイムアウトしたら(ステップS1987)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をプロセスタイマに設定する(ステップS1988)。
次いで、演出制御用CPU101は、エラー用音番号データにもとづいてスピーカ27を制御する(ステップS1989)。ステップS1989において、演出制御用CPU101は、スピーカ27からの音声出力を行わせるために、音声合成用IC173に対して制御信号(音番号データ)を出力する。例えば、演出制御用CPU101は、スピーカ27に所定のエラー音(例えばビープ音)を出力させる。
また、演出制御用CPU101は、エラー用ランプ制御実行データに従って、演出用部品としての各種ランプを制御するためにシリアル設定処理を実行する(ステップS1990)。ステップS1990において、演出制御用CPU101は、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1990でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602〜604に出力される。
次いで、演出制御用CPU101は、期間タイマ2の値が0になったか否かを確認する(ステップS1991)。そして、期間タイマ2の値が0になったら、すなわち、RAMクリア報知期間が経過したら、RAMクリア報知中フラグをリセットし(ステップS1992)、ステップS2010に移行する。なお、期間タイマ2の値がタイムアウトしていなければ、そのまま処理を終了する。
RAMクリア報知中フラグもセットされていなければ、演出制御用CPU101は、満タンエラー報知中フラグがセットされているか否かを確認する(ステップS1993)。セットされていなければ、ステップS1999に移行する。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS1994)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS1995)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS1996)。
次いで、演出制御用CPU101は、エラー用ランプ制御実行データに従って、対応するエラー報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS1998)。例えば、ステップS1998において、演出制御用CPU101は、下皿ランプのLED84a〜84fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS1998でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して枠側IC基板605Bに出力される。
満タンエラー報知中フラグもセットされていなければ、演出制御用CPU101は、払出エラー報知中フラグがセットされているか否かを確認する(ステップS1999)。セットされていなければ、ステップS2005に移行する。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS2000)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS2001)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS2002)。
また、演出制御用CPU101は、エラー用ランプ制御実行データに従って、対応するエラー報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS2003)。例えば、ステップS2003において、演出制御用CPU101は、遊技枠11側に設けられた天枠ランプおよび上皿ランプLED281a〜281l,82a〜82fを点滅させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS2003でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して各枠側IC基板602,605Aに出力される。
払出エラー報知中フラグもセットされていなければ、演出制御用CPU101は、球切れエラー報知中フラグがセットされているか否かを確認する(ステップS2004)。セットされていなければ、ステップS2010に移行する。セットされていれば、演出制御用CPU101は、エラー用プロセスタイマを−1する(ステップS2005)とともに、エラー用プロセスタイマがタイムアウトしたら(ステップS2006)、エラー報知用プロセスデータの切替を行う。すなわち、エラー用プロセステーブルにおける次に設定されているエラー報知用プロセスデータをセットするとともに、プロセスタイマ設定値をエラー用プロセスタイマに設定する(ステップS2007)。
また、演出制御用CPU101は、エラー用ランプ制御実行データに従って、対応するエラー報知に応じた各ランプを制御するためにシリアル設定処理を実行する(ステップS2008)。例えば、ステップS2008において、演出制御用CPU101は、遊技枠11側に設けられた天枠ランプのLED281a〜281lを点滅させるとともに、上皿ランプのLED82a〜82fを点灯させるためのランプ制御信号を所定のデータ格納領域にセットする。なお、ステップS2008でセットされたランプ制御信号は、メイン処理におけるシリアル入出力処理(ステップS708)でシリアル出力回路353に出力され、シリアル出力回路353によってシリアルデータに変換されて、中継基板606,607を介して盤側IC基板601および各枠側IC基板602,605Aに出力される。
なお、この実施の形態では、図100に示すように、球切れエラーまたは払出エラーを報知する場合には、スピーカ27からの音出力を行わないが、球切れエラーや払出エラーを報知する場合にも、スピーカ27を用いた音出力制御を行うようにしてもよい。
ステップS2009では、演出制御用CPU101は、エラー報知解除フラグがセットされているか否かを確認する。セットされていれば、ステップS2010に移行する。セットされていなければ、そのまま処理を終了する。ステップS2010では、演出制御用CPU101は、報知制御プロセスフラグの値を報知開始処理(ステップS1900)に対応した値に変更し、処理を終了する。
以上のような処理が実行されることによって、各種エラーの報知が実行される。また、初期報知、ドア開放エラー報知、乱数回路エラー報知、異常入賞報知、RAMクリア報知、満タンエラー報知、払出エラー報知および球切れエラー報知の順に優先してエラーの報知が実行される。
なお、演出制御用CPU101は、ステップS1960,S1965,S1971,S1977,S1984,S1993,S1999,S2004でYと判定した後に、初期報知中フラグ、ドア開放エラー報知中フラグ、乱数回路エラー報知中フラグ、異常報知中フラグ、RAMクリア報知中フラグ、満タンエラー報知中フラグ、払出エラー報知中フラグ、球切れエラー報知中フラグのいずれか1つまたは複数がセットされているか否かを判定するようにしてもよい。そして、セットされている場合には、報知制御プロセスフラグの値を報知開始処理(ステップS1900)に対応した値に変更し、報知開始処理からやりなおすようにしてもよい。
次に、エラー用ランプ制御実行データに従って所定のデータ格納領域にセットされるランプ制御信号について説明する。図102は、報知制御プロセス処理においてシリアルデータ方式として出力されるランプ制御信号の例を示す説明図である。図102に示すように、この実施の形態では、エラー種類ごとに2パターン(パターンAとパターンB)のエラー用ランプ制御実行データが用いられる。この実施の形態では、パターンAとパターンBのエラー用ランプ制御実行データを切り替えて用いることにより、ランプの点滅表示が制御される。また、演出制御用マイクロコンピュータ100は、図102に示すランプ制御信号を、エラー用ランプ制御実行データに対応付けて、あらかじめROMに設けられた所定のランプ制御信号格納領域に記憶している。そして、演出制御用CPU101は、エラー用ランプ制御実行データにもとづいて、所定のランプ制御信号格納領域からランプ制御信号を抽出し、シリアル出力回路353に出力する。
また、各ランプ制御信号は、図102に示すように、出力先のシリアル−パラレル変換IC610〜615のアドレスが付加された状態で所定のランプ制御信号格納領域に記憶されている。例えば、天枠ランプのうちの一部のLED281a〜281fに制御信号を供給するシリアル−パラレル変換IC610のアドレスは「00」であるので、ランプを制御するための8桁のデータ本体にアドレス「0000」が付加された状態で格納されている。また、天枠ランプのうちの他の一部のLED281g〜281lに制御信号を供給するシリアル−パラレル変換IC611のアドレスは「01」であるので、ランプを制御するための8桁のデータ本体にアドレス「0001」が付加された状態で格納されている。また、右枠ランプのLED283a〜283fに制御信号を供給するシリアル−パラレル変換IC612のアドレスは「02」であるので、ランプを制御するための8桁のデータ本体にアドレス「0010」が付加された状態で格納されている。また、左枠ランプのLED282a〜282fに制御信号を供給するシリアル−パラレル変換IC613のアドレスは「03」であるので、ランプを制御するための8桁のデータ本体にアドレス「0011」が付加された状態で格納されている。
RAMクリア報知する場合には、図102に示すように、アドレスが「00」から「03」までの各シリアル−パラレル変換IC610〜613に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが点灯される。また、RAMクリア報知する場合、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが継続して点灯される状態となる。
なお、シリアル−パラレル変換IC610に出力されるランプ制御信号において、1ビット目はLED281aへの入力信号、2ビット目はLED281bへの入力信号、3ビット目はLED281cへの入力信号、4ビット目はLED281dへの入力信号、5ビット目はLED281eへの入力信号、6ビット目はLED281fへの入力信号に対応している。また、シリアル−パラレル変換IC611に出力されるランプ制御信号において、1ビット目はLED281gへの入力信号、2ビット目はLED281hへの入力信号、3ビット目はLED281iへの入力信号、4ビット目はLED281jへの入力信号、5ビット目はLED281kへの入力信号、6ビット目はLED281lへの入力信号に対応している。また、シリアル−パラレル変換IC612に出力されるランプ制御信号において、1ビット目はLED283aへの入力信号、2ビット目はLED283bへの入力信号、3ビット目はLED283cへの入力信号、4ビット目はLED283dへの入力信号、5ビット目はLED283eへの入力信号、6ビット目はLED283fへの入力信号に対応している。また、シリアル−パラレル変換IC613に出力されるランプ制御信号において、1ビット目はLED282aへの入力信号、2ビット目はLED282bへの入力信号、3ビット目はLED282cへの入力信号、4ビット目はLED282dへの入力信号、5ビット目はLED282eへの入力信号、6ビット目はLED282fへの入力信号に対応している。
ドア開放エラーを報知する場合には、図102に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「00」から「03」までの各シリアル−パラレル変換IC610〜613に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「00」から「03」までの各シリアル−パラレル変換IC610〜613に、制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプのLED281a〜281l,282a〜282f,283a〜283fが消灯される。そのような制御が繰り返し行われることによって、ドア開放エラーを報知する場合、遊技枠11側に設けられた全てのランプのLED281a〜281l,282a〜282f,283a〜283fを所定時間間隔で点滅させるような制御が行われる。
球切れエラーを報知する場合には、図102に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「00」、「01」の各シリアル−パラレル変換IC610,611に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、天枠ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプのLED281a〜281lが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「00」、「01」の各シリアル−パラレル変換IC610,611に、制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、天枠ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプのLED281a〜281lが消灯される。そのような制御が繰り返し行われることによって、球切れエラーを報知する場合、遊技枠11側に設けられた天枠ランプのLED281a〜281lを所定時間間隔で点滅させるような制御が行われる。
また、球切れエラーを報知する場合には、図102に示すように、アドレスが「04」のシリアル−パラレル変換IC614に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、上皿ランプのLED82a〜82fに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプのLED82a〜82fが点灯される。また、球切れエラーを報知する場合、シリアル−パラレル変換IC614に、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、上皿ランプのLED82a〜82fが継続して点灯される状態となる。
なお、シリアル−パラレル変換IC614に出力されるランプ制御信号において、1ビット目は上皿ランプ左側面のLED82aへの入力信号、2ビット目は上皿ランプ左側面のLED82bへの入力信号、3ビット目は上皿ランプ正面のLED82cへの入力信号、4ビット目は上皿ランプ正面のLED82dへの入力信号、5ビット目は上皿ランプ右側面の82eへの入力信号、6ビット目は上皿ランプ右側面の82fへの入力信号、7ビット目は操作ボタンランプのLED83への入力信号に対応している。
満タンエラーを報知する場合には、図102に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「05」のシリアル−パラレル変換IC615に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、下皿ランプのLED84a〜84fに対応するビットの論理値が全て1であるランプ制御信号が出力され、皿ランプのLED82a〜82dが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「05」のシリアル−パラレル変換IC615に、制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、下皿ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、下皿ランプのLED84a〜84fが消灯される。そのような制御が繰り返し行われることによって、満タンエラーを報知する場合、下皿ランプのLED84a〜84fのみを所定時間間隔で点滅させるような制御が行われる。
なお、シリアル−パラレル変換IC615に出力されるランプ制御信号において、1ビット目は下皿ランプのLED84aへの入力信号、2ビット目は下皿ランプのLED84bへの入力信号、3ビット目は下皿ランプのLED84cへの入力信号、4ビット目は下皿ランプのLED84dへの入力信号、5ビット目は下皿ランプのLED84eへの入力信号、6ビット目は下皿ランプのLED84fへの入力信号に対応している。
払出エラーを報知する場合には、図102に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「00」、「04」のシリアル−パラレル変換IC610,614に制御データ本体が「00111111」であるランプ制御信号が送信され、アドレスが「01」のシリアル−パラレル変換IC611に制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、天枠ランプの一部のLEDおよび上皿ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプの一部のLED281a〜281fと上皿ランプのLED82a〜82fが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「00」、「04」のシリアル−パラレル変換IC610,614に制御データ本体が「00000000」であるランプ制御信号が送信され、アドレスが「01」のシリアル−パラレル変換IC611に制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、天枠ランプの他の一部のLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプの他の一部のLED281g〜281lのみが点灯される。そのような制御が繰り返し行われることによって、払出エラーを報知する場合、遊技枠11側に設けられた天枠ランプのLED281a〜281fとLED281g〜281lを交互に所定時間間隔で点滅させるとともに、上皿ランプ82a〜82fを所定時間間隔で点滅させるような制御が行われる。
乱数回路エラーを報知する場合には、図102に示すように、アドレスが「00」から「04」までの各シリアル−パラレル変換IC610〜614に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプ、左枠ランプ、右枠ランプおよび上皿ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82fが点灯される。また、乱数回路エラーを報知する場合、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、遊技枠11側に設けられた天枠ランプ、左枠ランプ、右枠ランプおよび上皿ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82fが継続して点灯される状態となる。
異常入賞エラーを報知する場合には、図102に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に制御データ本体が「00110011」であるランプ制御信号が送信される。すなわち、上皿ランプの左側面および右側面のLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fが点灯される。なお、前述したように、シリアル−パラレル変換IC614に出力される制御信号において、1ビット目の1が左側面のLED82aへの入力信号、2ビット目の1が左側面のLED82bへの入力信号、5ビット目の1が右側面のLED82eへの入力信号、6ビット目の1が右側面のLED82fへの入力信号に対応している。
また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、上皿ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、上皿ランプの全てのLED82a〜82fが消灯される。
上記のような制御が繰り返し行われることによって、異常入賞エラーを報知する場合、上皿ランプの側面に設けられたLED82a,82b,82e,82fを所定時間間隔で点滅させるような制御が行われる。
なお、異常入賞報知を行う際に何らかの遊技演出(例えば、大当り演出や飾り図柄の変動表示)が行われている場合には、上皿ランプの側面に設けられたLED82a,82b,82e,82fの表示制御が行なわれるとともに、遊技演出に応じて天枠ランプ、左枠ランプ、右枠ランプおよび下皿ランプの表示制御が行われていることになる。この場合、シリアル−パラレル変換IC614に図102に示す異常入賞報知に応じたランプ制御信号が送信されると同時に、他の各シリアル−パラレル変換IC610〜613,615にも、遊技演出に応じたランプ制御信号が送信されることになる。
なお、異常入賞報知に限らず満タンエラー報知を行う際にも、何らかの遊技演出(例えば、大当り演出や飾り図柄の変動表示)が行われている場合には、下皿ランプのLED84a〜84fの表示制御が行なわれるとともに、遊技演出に応じて天枠ランプ、左枠ランプ、右枠ランプおよび上皿ランプの表示制御が行われるようにしてもよい。この場合、シリアル−パラレル変換IC615に図102に示す満タンエラー報知に応じたランプ制御信号が送信されると同時に、他の各シリアル−パラレル変換IC610〜614にも、遊技演出に応じたランプ制御信号が送信されるようにしてもよい。また、異常入賞報知や満タンエラー報知に限らず、他のエラー報知(RAMクリア報知やドア開放エラー報知、球切れエラー報知、払出エラー報知、乱数回路エラー報知)を行う際にも、何らかの遊技演出(例えば、大当り演出や飾り図柄の変動表示)が行われている場合には、遊技演出に応じて天枠ランプ、左枠ランプ、右枠ランプ、上皿ランプおよび下皿ランプの表示制御が行われるようにしてもよい。
なお、図102に示す例では、エラー報知を行う際に、表示制御対象となっていないランプのシリアル−パラレル変換IC610〜615にもランプ制御信号が供給される。例えば、RAMクリア報知する場合には、上皿ランプおよび下皿ランプの点灯または点滅制御を行う必要はないが、図102に示す例では、アドレスが「04」、「05」であるシリアル−パラレル変換IC614,615に対しても、対応するビットの論理値が全て0であるランプ制御信号が出力される。そのようにすることによって、エラー報知の際の制御対象ではないLEDを確実に消灯させた状態にすることができる。
なお、エラー報知を行う際に、表示制御対象となっていないランプのシリアル−パラレル変換IC610〜615にはランプ制御信号を出力(送信)しないようにしてもよい。図103は、報知制御プロセス処理においてシリアルデータ方式として出力されるランプ制御信号の他の例を示す説明図である。
RAMクリア報知やドア開放エラー報知を行う場合には、上皿ランプおよび下皿ランプは表示制御対象となっていないので、図103に示すように、アドレスが「04」、「05」であるシリアル−パラレル変換IC614,615にランプ制御信号を出力しないようにする。また、乱数回路エラー報知を行う場合には、下皿ランプは表示制御対象となっていないので、図103に示すように、アドレスが「05」であるシリアル−パラレル変換IC615にランプ制御信号を出力しないようにする。また、球切れエラー報知や払出エラー報知を行う場合には、下皿ランプに加えて左枠ランプおよび右枠ランプも表示制御対象となっていないので、図103に示すように、アドレスが「02」、「03」、「05」であるシリアル−パラレル変換IC612,613,615にはランプ制御信号を出力しないようにする。また、満タンエラー報知を行う場合には、下皿ランプのみが表示制御対象となっているので、図103に示すように、アドレスが「00」〜「04」であるシリアル−パラレル変換IC610〜614にはランプ制御信号を出力しないようにする。そのようにすることによって、演出制御用マイクロコンピュータ100から各枠側IC基板602,603,604,605A,605Bに出力するランプ制御信号を低減することができる。
なお、図102および図103に示す例では、遊技枠11側に設けられたランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,84a〜84fのみを用いて各種エラー報知を行う場合を説明したが、これらに加えて遊技盤6側に設けられたセンター飾り用ランプやステージランプのLED125a〜125f,126a〜126fを用いて各種エラー報知を行うようにしてもよい。
次に、遊技演出において可動部材151,152を動作させるときに出力されるモータ制御信号について説明する。図104は、遊技演出においてシリアルデータ方式として出力されるモータ制御信号の例を示す説明図である。図104に示すモータ制御信号は、例えば、図89に示す飾り図柄変動中処理において、可動部材151,152を用いた予告演出を含む可変表示が実行される際に、ステップS845Cのシリアル設定処理において所定のデータ格納領域にセットされる。また、演出制御用マイクロコンピュータ100は、図104に示すモータ制御信号を、例えば、表示制御実行データに対応付けて、あらかじめROMに設けられた所定のモータ制御信号格納領域に記憶している。そして、演出制御用CPU101は、表示制御実行データにもとづいて、所定のモータ制御信号格納領域からモータ制御信号を抽出し、シリアル出力回路353に出力する。
また、各モータ制御信号は、図104に示すように、出力先のシリアル−パラレル変換IC616のアドレスが付加された状態で所定のランプ制御信号格納領域に記憶されている。この実施の形態では、各モータ151a,152aに制御信号を供給するシリアル−パラレル変換IC616のアドレスは「06」であるので、モータを制御するための8桁のデータ本体にアドレス「0110」が付加された状態で格納されている。
可動部材としてトロッコ151を正方向に動作させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000001」であるモータ制御信号が送信される。すなわち、トロッコ151を駆動するためのモータ151aの正方向動作に対応するビット(制御データの1ビット目)の論理値が1であるモータ制御信号が出力され、モータ151aが駆動することによってトロッコ151が動作される。また、トロッコ151の動作を停止させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000000」であるモータ制御信号が送信される。すなわち、モータ151aの正方向動作に対応するビット(制御データの1ビット目)の論理値が0であるモータ制御信号が出力され、モータ151aの駆動が停止されることによってトロッコ151の動作が停止される。なお、この実施の形態では、トロッコ151を正方向に動作させた場合、位置センサ151bでトロッコ151が検出されるとともに、所定時間(例えば1秒)モータ151aの駆動時間を経過したことを条件として、モータ151aの駆動が停止される。
可動部材としてトロッコ151を逆方向に動作させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000010」であるモータ制御信号が送信される。すなわち、トロッコ151を駆動するためのモータ151aの逆方向動作に対応するビット(制御データの2ビット目)の論理値が1であるモータ制御信号が出力され、モータ151aが駆動することによってトロッコ151が動作される。また、トロッコ151の動作を停止させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000000」であるモータ制御信号が送信される。すなわち、モータ151aの逆方向動作に対応するビット(制御データの2ビット目)の論理値が0であるモータ制御信号が出力され、モータ151aの駆動が停止されることによってトロッコ151の動作が停止される。なお、この実施の形態では、トロッコ151を逆方向に動作させた場合、位置センサ151bでトロッコ151が検出されるなくなるとともに、所定時間(例えば1秒)モータ151aの駆動時間を経過したことを条件として、モータ151aの駆動が停止される。
可動部材として梁152を正方向に動作させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000100」であるモータ制御信号が送信される。すなわち、梁152を駆動するためのモータ152aの正方向動作に対応するビット(制御データの3ビット目)の論理値が1であるモータ制御信号が出力され、モータ152aが駆動することによって梁152が動作される。また、梁152の動作を停止させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000000」であるモータ制御信号が送信される。すなわち、モータ152aの正方向動作に対応するビット(制御データの3ビット目)の論理値が0であるモータ制御信号が出力され、モータ152aの駆動が停止されることによって梁152の動作が停止される。なお、この実施の形態では、梁152を正方向に動作させた場合、位置センサ152bで梁152が検出されるとともに、所定時間(例えば1秒)モータ152aの駆動時間を経過したことを条件として、モータ152aの駆動が停止される。
可動部材として梁152を逆方向に動作させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00001000」であるモータ制御信号が送信される。すなわち、梁152を駆動するためのモータ152aの逆方向動作に対応するビット(制御データの4ビット目)の論理値が1であるモータ制御信号が出力され、モータ152aが駆動することによって梁152が動作される。また、梁152の動作を停止させる場合には、アドレスが「06」であるシリアル−パラレル変換IC616に、制御データ本体が「00000000」であるモータ制御信号が送信される。すなわち、モータ152aの逆方向動作に対応するビット(制御データの4ビット目)の論理値が0であるモータ制御信号が出力され、モータ152aの駆動が停止されることによって梁152の動作が停止される。なお、この実施の形態では、梁152を逆方向に動作させた場合、位置センサ152bで梁152が検出されるなくなるとともに、所定時間(例えば1秒)モータ152aの駆動時間を経過したことを条件として、モータ152aの駆動が停止される。
次に、シリアル設定処理について説明する。図105は、シリアル設定処理の一例を示すフローチャートである。シリアル設定処理は、例えば、演出制御プロセス処理において飾り図柄の可変表示を行うとき(ステップS835C,845C参照)や、各種エラー報知を行うとき(ステップS1970,S1976,S1983,S1990,S1998,S2003,S2008)に実行される。
シリアル設定処理において、演出制御用CPU101は、まず、ROMからランプ制御実行データ(変動パターンに伴うランプの点灯パターンのデータや、モータ制御用データ(ステップS835Cのみ)など)を読み出す(ステップS950)。この場合、演出制御用CPU101は、例えば、飾り図柄の可変表示の実行中にシリアル設定処理を行う場合には、図87に示したプロセステーブルのランプ制御実行データを読み出すことになる。また、報知制御プロセス処理においてシリアル設定処理を行う場合には、図101に示したエラー報知用プロセステーブルのエラー用ランプ制御実行データを読み出すことになる。
次いで、演出制御用CPU101は、読み出したランプ制御実行データにもとづいて、各ランプの表示状態に変更があるか否かを確認する(ステップS951)。各ランプの表示状態に変更があれば、演出制御用CPU101は、表示制御対象のランプのシリアル−パラレル変換ICのアドレスが付加されたランプ制御信号を、所定のランプ制御信号格納領域から抽出する(ステップS952)。次いで、抽出したランプ制御信号に、図21に示すヘッダデータ(1FFh)やマークビット、エンドビットを付加して、RAMに設けられた所定のデータ格納領域に設定する(ステップS953)。そして、ランプ制御信号出力要求フラグをセットする(ステップS954)。
例えば、報知制御プロセス処理におけるステップS907,S922,S929でシリアル設定処理が実行された場合には、ステップS952で図102に示すいずれかのアドレス付きのランプ制御信号が読み出され、ステップS953でデータ格納領域に設定されることになる。
次いで、演出制御用CPU101は、ROMから表示制御実行データを読み出す(ステップS955)。この場合、演出制御用CPU101は、例えば、飾り図柄の可変表示の実行中にシリアル設定処理を行う場合には、図87に示したプロセステーブルの表示制御実行データを読み出すことになる。一方、報知制御プロセス処理においてシリアル設定処理を行う場合には、図101に示したエラー報知用プロセステーブルには表示制御実行データは含まれないので、次のステップS956でそのままNと判定されることになる。
次いで、演出制御用CPU101は、読み出した表示制御実行データにもとづいて、いずれかの可動部材151,152の可動が遊技演出に含まれるか否かを確認する(ステップS956)。可動部材151,152の可動がある場合には、演出制御用CPU101は、可動対象の可動部材151,152のシリアル−パラレル変換ICのアドレス(本例では「06」)が付加されたモータ制御信号を、所定のモータ制御信号格納領域から抽出する(ステップS957)。次いで、抽出したモータ制御信号に、図21に示すヘッダデータ(1FFh)やマークビット、エンドビットを付加して、RAMに設けられた所定のデータ格納領域に設定する(ステップS958)。そして、モータ制御信号出力要求フラグをセットする(ステップS959)。
例えば、飾り図柄の可変表示に予告演出などが含まれ、いずれかの可動部材151,152が可動される場合には、ステップS835C,S845Cでシリアル設定処理が実行されるときに、ステップS952で図104に示すいずれかのアドレス付きのモータ制御信号が読み出され、ステップS953でデータ格納領域に設定されることになる。
図106は、出力対象のランプ制御信号やモータ制御信号が設定されるデータ格納領域の一構成例を示す説明図である。この例では、ランプ制御信号またはモータ制御信号を格納するデータ格納領域が9個用意されており、盤側IC基板601や各枠側IC基板602,603,604,605A,605Bに出力される順に、ランプ制御信号やモータ制御信号がステップS953で順次格納される。
図107は、シリアル入出力処理(ステップS708)の具体例を示すフローチャートである。シリアル入出力処理において、演出制御用CPU101は、まず、ランプ制御信号出力要求フラグまたはモータ制御信号出力要求フラグがセットされているか否かを確認する(ステップS970)。セットされていれば、それらのランプ制御信号出力要求フラグまたはモータ制御信号出力要求フラグをリセットし(ステップS971)、データ格納領域に格納されているランプ制御信号やモータ制御信号をシリアル出力回路353に出力する(ステップS972)。この場合、演出制御用CPU101は、複数のランプ制御信号がデータ格納領域にセットされている場合には、ステップS972において各ランプ制御信号を順に読み出し、シリアル出力回路353に出力する。そして、出力されたランプ制御信号やモータ制御信号は、シリアル出力回路353によってシリアルデータに変換され、中継基板606,607を介して、盤側IC基板601や各枠側IC基板602,603,604,605A,605Bにシリアルデータ方式として出力されることになる。
次いで、演出制御用CPU101は、入力取込信号出力部357に、盤側IC基板601に対して中継基板606,607を介して入力取込信号(ラッチ信号)を出力させる(ステップS973)。盤側IC基板601に搭載された入力IC621は、入力取込信号が入力されたことにもとづいて、各位置センサ151b,152bの検出信号をラッチし、シリアルデータ方式として中継基板606,607を介して演出制御基板80に出力することになる。そして、演出制御用CPU101は、シリアル入力回路354から入力データを読み込んでRAMの所定の格納領域に格納する(ステップS974)。なお、ステップS974では、演出制御用CPU101は、シリアル入力回路354が入力IC621から入力データを受信する時間分遅延させてからシリアル入力回路354から入力データを読み込むように制御する。
次いで、演出制御用CPU101は、入力取込信号出力部357に、枠側IC基板605に対して中継基板607を介して入力取込信号(ラッチ信号)を出力させる(ステップS975)。枠側IC基板605Aに搭載された入力IC620は、入力取込信号が入力されたことにもとづいて、各操作ボタン81a〜81eの検出信号をラッチし、シリアルデータ方式として中継基板607を介して演出制御基板80に出力することになる。そして、演出制御用CPU101は、シリアル入力回路354から入力データを読み込んでRAMの所定の格納領域に格納する(ステップS976)。なお、ステップS976では、演出制御用CPU101は、シリアル入力回路354が入力IC620から入力データを受信する時間分遅延させてからシリアル入力回路354から入力データを読み込むように制御する。
図108および図109は、可変表示装置9における表示演出、スピーカ27による音演出および各ランプによる表示演出の状況の例を示す説明図である。図108(A)には、可変表示装置9において飾り図柄の可変表示が行われているときの例が示されている。
図108(B)には、可変表示装置9において初期化報知が行われている場合の例が示されている。図108(B)に示すように、初期化指定コマンドを受信して可変表示装置9において初期化報知が行われる場合には、初期化指定コマンドを受信してから所定期間(例えば31秒間)、遊技枠11に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fを点灯させるとともに、スピーカ27から所定のエラー音を出力させ、RAMクリアが行われたことを報知する。
図108(C)には、可変表示装置9において異常入賞報知が行われ、上皿ランプの側面側のLED82a,82b,82e,82fによって異常報知表示(例えば点滅表示)がなされている場合の例が示されている。演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から異常入賞報知指定コマンドを受信すると、上皿ランプの側面側のLED82a,82b,82e,82fに異常報知表示させる制御を行う。また、変動パターンコマンドの受信に応じて飾り図柄の可変表示が開始されても、上皿ランプの側面側のLED82a,82b,82e,82fの異常報知表示を継続させる。また、飾り図柄の可変表示が終了しても、上皿ランプの側面側のLED82a,82b,82e,82fの異常報知表示を継続させる。
なお、演出制御用マイクロコンピュータ100は異常報知表示を停止する制御を実行しないので、上皿ランプの側面側のLED82a,82b,82e,82fの異常報知表示は、遊技機に対する電力供給が停止するまで継続する。ただし、演出制御用マイクロコンピュータ100は、異常報知表示が開始されてから所定時間(例えば、30秒)が経過すると、異常報知表示を停止するように制御してもよい。また、演出制御用マイクロコンピュータ100は、ポートの状態が変化したときに送信される入力ポートデータ指定コマンドがエラー状態を示すものではなくなったことにもとづいて異常報知表示を停止するようにしてもよい。
また、この実施の形態では、遊技制御用マイクロコンピュータ560は、遊技機に対する電力供給が開始されてから所定期間(初期化報知が実行されている期間)、異常入賞の検出を行わず、遊技制御用マイクロコンピュータ560から異常入賞報知指定コマンドが送信されることはない。しかし、遊技制御用マイクロコンピュータ560は、特別図柄プロセスフラグの値が所定値(この実施の形態では5)未満のときには常時異常入賞の検出を行うようにして、演出制御用マイクロコンピュータ100が、遊技機に対する電力供給が開始されてから所定期間の間に異常入賞報知指定コマンドを受信した場合には、異常入賞の報知を行わないようにしてもよい。
また、この実施の形態では、遊技制御用マイクロコンピュータ560は、大当り遊技状態でないときに1個の遊技球が大入賞口に入賞したことを検出すると、異常入賞報知指定コマンドを演出制御用マイクロコンピュータ100に送信したが、大当り遊技状態でないときに大入賞口に所定個(複数(例えば5個))の遊技球が入賞したことを検出すると、異常入賞報知指定コマンドを送信するように制御してもよい。さらに、大当り遊技状態でないときに、所定の時間内に、所定個(複数)の遊技球が入賞したことを検出すると、異常入賞報知指定コマンドを送信するように制御してもよい。なお、演出制御用マイクロコンピュータ100は、異常入賞報知指定コマンドを受信すると、上述したように、異常報知表示を行う。
また、この実施の形態では、遊技制御用マイクロコンピュータ560が異常入賞の発生を検出したときに異常入賞報知指定コマンドを送信する場合を示したが、異常入賞報知を指定する専用のコマンドを送信するのではなく、異常入賞報知を指定する旨を入力ポートデータ指定コマンド(図31参照)に付加して送信するようにしてもよい。この場合、例えば、図33に示した入力ポートデータ指定コマンドのEXTデータのビット6(D6)に異常入賞報知を指定する異常入賞報知指定ビットを割り当てる。そして、遊技制御用マイクロコンピュータ560は、異常入賞を検出すると、EXTデータのビット6(D6)を1とする入力ポートデータ指定コマンドを送信するようにしてもよい。
図109には、下皿ランプのLED84a〜84fによって満タンエラー報知の表示(例えば点滅表示)がなされている場合の例が示されている。演出制御用マイクロコンピュータ100は、入力ポートデータ指定コマンドにもとづいて満タンエラーを検出すると、下皿ランプのLED84a〜84fに満タンエラー報知を表示させる制御を行う。
以上に説明したように、この実施の形態によれば、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられ、遊技状態に応じて打球供給皿(上皿)3に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御する。そのため、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fを発光させることによって、遊技演出における演出態様を多様化することができ、遊技者に対する演出効果を向上させることができる。また、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられるように構成されているので、例えば、遊技店内の一区画に遊技機が複数台設置されている場合に、その遊技機で遊技をしている遊技者以外の者(隣の遊技機で遊技をしている遊技者や遊技店内でまだ遊技を行っていない遊技者)であっても、その遊技機の上皿ランプのLED82a,82b,82e,82fの発光状態が見えるようにすることができる。そのため、その遊技機で遊技をしている遊技者以外の者に対しても、注意を引く演出を実行することができ、演出効果を与えることができる。
なお、この実施の形態では、上皿ランプの側面側のLED82a,82b,82e,82fを点滅させることによって報知を行う場合を示したが、報知態様はこの実施の形態で示したものに限られない。例えば、上皿ランプのLEDとしてマルチカラーLEDを用いる場合、通常の演出とは異なる色でマルチカラーLEDを発光させることによって報知してもよい。また、例えば、通常の演出におけるLEDの点滅速度とは異なる点滅速度で裏皿ランプの側面側のLED82a,82b,82e,82fを点滅させるようにしてもよい。また、このような報知態様は、異常入賞報知を行う場合に限らず、満タンエラー報知やその他のエラー報知(RAMクリア報知やドア開放エラー報知、球切れエラー報知、払出エラー報知、乱数回路エラー報知)に行ってもよい。
また、この実施の形態によれば、演出制御用マイクロコンピュータ100は、所定の異常状態(例えば、異常入賞状態)が検出されたときに異常報知を実行する。また、演出制御用マイクロコンピュータ100は、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御することによって異常報知を実行する。そのため、打球供給皿(上皿)3の外側側面の上皿ランプのLED82a,82b,82e,82fを用いることによって、不正行為者に気付かれにくい態様で異常報知を行えるようにすることができる。また、遊技店内の遊技店員からは打球供給皿(上皿)3の外側側面の上皿ランプのLED82a,82b,82e,82fが見えるので、各種エラーや不正などの異常状態を遊技店員に容易に認識させることができる。また、通常の遊技演出に用いる打球供給皿(上皿)3の上皿ランプのLED82a,82b,82e,82fを兼用して異常報知を行えるので、異常報知を行うための特別な装置を設ける必要がなくなり、異常報知を行うためのコスト増加を防止することができる。
図110は、遊技店内に遊技機が複数設置されている状態を示す説明図である。図110に示すように、遊技店内において、各遊技機は、遊技機設置島500に互いに横に並べられた状態で設置される。なお、図110は、各遊技機設置島500に対して直交する側の通路から遊技店内を見た図に相当する。
不正行為者は、一般には、遊技機の前に座って遊技を行いながら不正に遊技球の入賞状態をつくり出すような操作を行うのであるが、遊技機の前に座る不正行為者から見ると遊技機の正面側しか見えない。そのため、不正行為者から見ると、図110に示すように、遊技機の打球供給皿(上皿)3に設けられた上皿ランプのうち側面側に設けられたLED82a,82b,82e,82fは見えにくい。したがって、異常入賞を検出した場合に、上皿ランプの側面側のLED82a,82b,82e,82fのみを用いて異常入賞報知を行うようにすることによって、不正行為者に気付かれにくい態様で異常報知を行えるようにすることができる。
また、遊技店員などは、通常、図110に示すような視点で、各遊技機設置島500に対して直交する側の通路から遊技店内を見渡していることが多い。そのため、遊技店員などから見ると、図110に示すように、遊技機の打球供給皿(上皿)3に設けられた上皿ランプの側面側のLED82a,82b,82e,82fがよく見える。したがって、異常入賞を検出した場合に、上皿ランプの側面側のLED82a,82b,82e,82fのみを用いて異常入賞報知を行うようにすることによって、異常入賞などの異常状態を遊技店員に容易に認識させることができる。
例えば、従来の遊技機では、遊技機の遊技枠の上部に設けられたランプを用いて遊技演出やエラー報知を行うように構成されたものがある(例えば、特開2001−96042参照)。そのように構成すれば、遊技者にとって見にくい遊技枠の上部に設けられたランプを用いて異常入賞報知を行えるので、不正行為者(遊技機の前に座っている行為者)にある程度認識されにくい態様で異常報知を行うことができる。しかし、遊技店員などは各遊技機設置島500に対して直交する側の通路から遊技店内を見渡していることが多いので、遊技店員などから見ても遊技枠の上部に設けられたランプは見にくく、異常入賞などの異常状態を遊技店員に容易に認識させることはできない。
また、例えば、従来の遊技機では、遊技機がエラーを検出したときに超音波信号を送信し、遊技店が備える超音波受信装置で受信してエラーを認識させることが行われている(例えば、特開2005−261647参照)。そのように構成すれば、異常入賞を検出したときに、不正行為者に気付かれることなく、遊技店員だけが異常入賞などのエラーの発生を認識できるようにすることができる。しかし、遊技機に超音波発生装置を備えたり、遊技店に超音波受信装置を備えたりしなければならず、異常報知のためのコストが大きい。
これに対し、この実施の形態によれば、打球供給皿(上皿)3の側面側に設けられた上皿ランプの側面側のLED82a,82b,82e,82fを用いて異常入賞報知を行うように構成されているので、異常報知のための特別のコストをかけることなく、不正行為者に気付かれずに、遊技店員だけが異常入賞などのエラーの発生を認識できるようにすることができる。
また、この実施の形態によれば、異常入賞を検出したときに加えて、乱数回路エラーや球切れエラー、払出エラーを検出した場合にも上皿ランプの各LED82a〜82fを点灯または点滅させるので、上皿ランプの側面側のLED82a,82b,82e,82fの点灯または点滅状態を確認することによって、遊技店員などがエラーの発生を容易に認識することができる。また、ファンファーレ演出を実行するときにも上皿ランプの各LED82a〜82fを点灯させるので、上皿ランプの側面側のLED82a,82b,82e,82fの点灯状態を確認することによって、遊技店員などが各遊技機の遊技状態を容易に認識することができる。
なお、遊技演出における上皿ランプの点灯または点滅制御や、各エラー報知時における上皿ランプの点灯または点滅制御は、本実施の形態で示したものに限られない。例えば、演出制御用マイクロコンピュータ100は、遊技状態が確変状態であるか否かに応じて、上皿ランプの各LED82a〜82fの点灯または点滅状態を制御してもよい。また、例えば、演出制御用マイクロコンピュータ100は、大当り中の遊技演出(例えば、ラウンド中演出やインターバル演出、エンディング演出)に応じて、上皿ランプの各LED82a〜82fの点灯または点滅状態を制御してもよい。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、大当り遊技状態以外の遊技状態においてカウントスイッチ23からの検出信号を入力したことにもとづいて、異常入賞が発生したと判定する。また、演出制御用マイクロコンピュータ100は、異常入賞が発生したと判定されたことにもとづいて、異常入賞報知を実行する。また、演出制御用マイクロコンピュータ100は、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御することによって異常入賞報知を実行する。そのため、大当り遊技状態以外の遊技状態において本来開放状態でない筈の大入賞口に遊技球を入賞させることによって賞球を払い出させる不正行為を遊技店員に認識させることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、異常入賞が発生したと判定したときには、賞球個数コマンドの送信を禁止することによって、遊技球を払い出す制御の実行を禁止する。そのため、不正行為によってカウントスイッチ23から検出信号を入力した可能性がある場合に、入賞にもとづく賞球払出をしないようにすることができ、不正行為者に不正行為によって利益を与えてしまう事態を防止できる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、第2始動口スイッチ14aからの検出信号を入力したか否かを判定し、第2始動口14が閉状態であるときに第2始動口スイッチ14aからの始動検出信号を入力したことにもとづいて、異常始動入賞が発生したと判定する。また、演出制御用マイクロコンピュータ100は、異常始動入賞が発生したと判定されたことにもとづいて、異常始動入賞報知を実行する。また、演出制御用マイクロコンピュータ100は、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御することによって異常始動入賞報知を実行する。そのため、本来開放状態にない筈の第2始動口14に遊技媒体を入賞させることによって賞球を払い出させる不正行為を遊技店員に認識させることができる。
なお、この実施の形態では、大入賞口への異常入賞を検出した場合と第2始動入賞口14aへの異常入賞を検出した場合とで同じ報知態様で異常入賞報知を行う場合を説明したが、異なる報知態様で異常入賞報知を行うようにしてもよい。例えば、大入賞口への異常入賞を検出した場合と第2始動入賞口14aへの異常入賞を検出した場合とで、異なる点灯または点滅パターンで、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fを点灯または点滅させてもよい。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560の送信する演出制御コマンドは、余剰球受皿(下皿)4に所定量以上の遊技球が貯留された状態である満タン状態となったことにもとづいて、余剰球受皿(下皿)4が満タン状態であることを示すコマンド(入力ポートデータ指定コマンド)が含まれる。また、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から余剰球受皿(下皿)4が満タン状態であることを示すコマンドが送信されたことにもとづいて、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって、余剰球受皿(下皿)4の満タン状態を報知するための制御を実行する。よって、演出制御用マイクロコンピュータ100は、可変表示装置9やスピーカ27など遊技演出用の演出装置とは別に余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって満タン状態を報知する。そのため、遊技演出(例えば、大当り中の演出)途中で中断することなく、満タン状態を報知することができる。また、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態の制御を演出制御用マイクロコンピュータ100が行うので、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。また、通常の遊技演出に用いる余剰球受皿(下皿)4の下皿ランプのLED84a〜84fを兼用して満タンエラー報知を行えるので、満タンエラー報知を行うための特別な装置を設ける必要がなくなり、満タンエラー報知を行うためのコスト増加を防止することができる。
また、この実施の形態によれば、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から受信した演出制御コマンドにもとづいて各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するための制御信号をシリアル信号方式で出力する。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とが、1系統の配線を介して接続されるとともに、あらかじめ相互に異なるアドレス情報が割り当てられ、自己のアドレス情報が付加された制御信号のみをパラレル信号方式に変換して出力する。また、演出制御用マイクロコンピュータ100は、遊技盤6に設けられたシリアル−パラレル変換IC616〜618を制御するための制御信号を出力するときには、シリアル−パラレル変換IC616〜618を特定可能なアドレス情報を付加した制御信号をシリアル信号方式で出力する。また、演出制御用マイクロコンピュータ100は、遊技枠11に設けられたシリアル−パラレル変換IC610〜615を制御するための制御信号を出力するときには、シリアル−パラレル変換IC610〜615を特定可能なアドレス情報を付加した制御信号をシリアル信号方式で出力する。そのため、遊技盤6と遊技枠11との間の配線数を低減することができる。従って、遊技枠11と遊技盤6とが着脱自在に構成された遊技機において、遊技枠11と遊技盤6との着脱作業を容易に行えるようにすることができる。
また、この実施の形態によれば、中継基板606,607によって、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、各枠側IC基板602〜604に搭載されたシリアル−パラレル変換IC610〜615との接続が中継される。また、中継基板607によって、各枠側IC基板602〜604に搭載されたシリアル−パラレル変換IC610〜615と演出制御用マイクロコンピュータ100との接続が中継される。そのため、中継基板606,607への接続作業や取り外し作業を行うだけで遊技枠11と遊技盤6との脱着作業を容易に行うことができる。
また、この実施の形態によれば、遊技枠11側に2つのシリアル−パラレル変換610,611を搭載した集合基板としての枠側IC基板602が設けられている。また、遊技盤6側に4つのシリアル−パラレル変換IC616〜618を搭載した集合基板としての盤側IC基板601が設けられている。そのため、シリアル−パラレル変換ICを搭載する基板を集約することができ、遊技機における部品点数を低減することができる。
また、この実施の形態によれば、余剰球受皿(下皿)4に設けられた下皿ランプ84a〜84fは、余剰球受皿(下皿)4の周縁部に設けられている。そのため、余剰球受皿(下皿)4を囲むような態様で設けられた下皿ランプのLED84a〜84fを発光させることによって、満タン報知などの報知状態を遊技者に認識させやすくすることができる。
また、この実施の形態によれば、演出制御用マイクロコンピュータ100は、遊技状態に応じて余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fを含む遊技機に設けられた各ランプのLEDの発光状態を制御する。また、遊技制御用マイクロコンピュータ100は、遊技中に余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態が制御されるときとは異なる発光態様で、余剰球受皿(下皿)4の周辺部に設けられた下皿ランプのLED84a〜84fの発光状態を制御して満タン報知を実行する。そのため、満タン状態を報知するためだけに特別な発光体を設ける必要をなくすことができ、満タン報知のためのコストを低減することができる。
また、この実施の形態によれば、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とが、コネクタを用いて1系統の配線を介して接続されている。そのため、コネクタの着脱を行うだけで遊技枠11と遊技盤6との配線作業を行うことができ、遊技枠11と遊技盤6との着脱作業をさらに容易に行えるようにすることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560は、演出制御コマンドを、シリアル出力回路78を用いて、シリアル信号方式で演出制御用マイクロコンピュータ100に送信する。そのため、遊技制御用マイクロコンピュータ560と演出制御用マイクロコンピュータ100との間の配線数も低減することができる。
また、この実施の形態によれば、演出制御用マイクロコンピュータ100は、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615、および入力IC620,621に共通に用いるクロック信号を出力する。そのため、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615、および入力IC620,621とを容易に同期させることができ、クロック信号用の配線数も低減することができる。
また、この実施の形態において、演出制御用マイクロコンピュータ100は、シリアル−パラレル変換IC610〜618のデバイスIDをアドレスとしてあらかじめRAMの所定のアドレス記憶領域に記憶するようにしてもよい。そのように構成すれば、シリアル−パラレル変換IC610〜618に固有のID情報をアドレス情報として利用して各ランプ125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御することができる。
また、この実施の形態では、初期化報知が異常報知に対して優先されるので、初期化報知が認識しにくくなるような事態が生ずることが防止される。すなわち、目立つように初期化報知が行われる。遊技制御用マイクロコンピュータ560は、遊技機に対する電力供給が開始されたとき以外でも、プログラムを先頭番地(例えば、0000番地)から実行開始させるユーザリセットが発生したときには、初期化指定コマンドを送信する。ユーザリセットが発生する原因として、例えば、ウォッチドッグタイマを使用するように構成されている場合において、プログラムの円滑な進行を妨げるような不正行為によってウォッチドッグタイマがタイムアウトしたような場合がある。そのような不正行為は、特に、大当り図柄決定用乱数にもとづいて所定の大当り図柄(あらかじめ決められている確変大当り図柄や突然確変大当り図柄)が決定されたときに確変状態に制御するように構成されている場合に生じやすい。つまり、遊技制御用マイクロコンピュータ560を初期化して大当り図柄決定用乱数を生成するためのカウンタを初期化させ、そのカウンタのカウント値を把握しやすくするような不正行為を受けやすい。この実施の形態のように、初期化報知を目立つようにすることによって、遊技制御用マイクロコンピュータ560が初期化されたことを遊技機の外部から容易に把握できるので、不正行為がなされた可能性があることが容易に認識される。
また、この実施の形態によれば、遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号が、主基板31において一時にアクセス可能な入力ポート部に入力される。また、遊技制御用マイクロコンピュータ560は、入力ポート部に入力される複数の状態検出信号のうちのいずれか1つ以上の状態が変化したか否かを判定し、複数の状態検出信号のうちのいずれか1つ以上の状態が変化したと判定したときに、入力ポート部に入力されている複数の状態検出信号の状態を一括してコマンド(入力ポートデータ指定コマンド)として送信する。また、演出制御用マイクロコンピュータ100は、入力ポートデータ指定コマンドにもとづいて遊技機の状態に関する複数種類の情報のいずれの状態が変化したかを判定し、判定した遊技機の状態に関する情報に対応する報知を電気部品(本例では、各ランプ281a〜281l,282a〜282f,283a〜283f,82a〜82f,84a〜84f)に行わせる。そのため、遊技機の状態に関する複数種類の情報のそれぞれを区別して報知できるようになるとともに、そのようにした場合に遊技制御用マイクロコンピュータ560の情報判定の制御負担を増大させないようにすることができる。また、入力ポート部に入力される複数の状態検出信号のうちのいずれか1つ以上の状態が変化したことを条件に、主基板31から複数の状態検出信号が送信されるので、主基板31から送信される信号にもとづいて遊技制御用マイクロコンピュータ560の制御状態を把握することは困難であり、結果として、不正行為を防止できる可能性が高くなる。
なお、この実施の形態では、演出制御基板80、盤側IC基板601、各枠側IC基板602,603,604,605A,605Bおよび各中継基板606,607の接続形態として、演出制御基板80、中継基板606および中継基板607がバス型に1系統の配線ルートで接続され、盤側IC基板601および各枠側IC基板602〜604に搭載されたシリアル−パラレル変換IC610〜618がバス型に1系統の配線ルートで接続される場合を説明したが、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618を直列接続(以下、デイジーチェーン型の接続ともいう)したり、各枠側IC基板602〜604に搭載された各シリアル−パラレル変換IC610〜613を直列接続(デイジーチェーン型の接続)することによって、配線数を低減してもよい。
図111は、演出制御基板80、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの他の構成例を示すブロック図である。図111に示す例では、演出制御基板80の演出制御用マイクロコンピュータ100は、制御信号としてのシリアルデータとともに、クロック信号を中継基板606に出力する。中継基板606は、演出制御用マイクロコンピュータ100から入力したシリアルデータおよびクロック信号を、さらに中継基板607を介して枠側IC基板604,605A,605Bに供給する。
盤側IC基板601に入力されたシリアルデータは、まず、シリアル−パラレル変換IC616に入力される。図111に示すように、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC616から、盤側IC基板601に搭載される他のシリアル−パラレル変換IC618,617に順に転送される。例えば、図20に示すシフトレジスタ652の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部651に入力するように構成することによって、シリアルデータを各シリアル−パラレル変換IC616〜618に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC616〜618は、入力したシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLEDに供給する。また、盤側IC基板601に入力されたクロック信号は、盤側IC基板601上で分岐され、各シリアル−パラレル変換IC616〜618および入力IC621に入力される。
中継基板607は、中継基板606を介して演出制御用マイクロコンピュータ100から入力したシリアルデータおよびクロック信号を枠側IC基板604、枠側IC基板605Aおよび枠側IC基板605Bに供給する。枠側IC基板604に入力されたシリアルデータは、まず、シリアル−パラレル変換IC613に入力される。図111に示すように、各枠側IC基板602〜604に搭載される各シリアル−パラレル変換IC610〜613は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC613から、各枠側IC基板602,603に搭載される他のシリアル−パラレル変換IC610〜612に順に転送される。例えば、図20に示すシフトレジスタ652の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部651に入力するように構成することによって、シリアルデータを各シリアル−パラレル変換IC610〜613に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC610〜613は、入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLEDに供給する。
また、枠側IC基板602に入力されたクロック信号は、枠側IC基板604上で分岐され、シリアル−パラレル変換IC613に入力されるとともに、枠側IC基板602に入力される。枠側IC基板602に入力されたクロック信号は、枠側IC基板602上で分岐され、各シリアル−パラレル変換IC610,611に入力されるとともに、枠側IC基板603に入力される。枠側IC基板603に入力されたクロック信号は、枠側IC基板603上で分岐され、シリアル−パラレル変換IC612に入力される。枠側IC基板605Aに入力されたクロック信号は、枠側IC基板605A上で分岐され、シリアル−パラレル変換IC614および入力IC620に入力される。枠側IC基板605Bに入力されたクロック信号は、シリアル−パラレル変換IC615に入力される。
また、遊技枠11や遊技盤6に設けるランプのLEDとして、諧調制御を行うLED(例えば、マルチカラーLED)を用いるようにし、明るさを制御できるようにしてもよい。図112は、LEDの諧調制御を行う場合にLEDに供給されるパルス列の例を示す説明図である。なお、図112は、LEDを8段階で諧調制御する場合のパルス列を示す。すなわち、演出制御用マイクロコンピュータ100は、図112に示すように、輝度に応じてパルス数を変化させた信号を出力することによって、LEDの諧調制御を行う。この場合、例えば、クロック信号の周期を1時間要素とするとともに、7個の時間要素で1制御単位時間を構成する。そして、1制御単位時間中のパルス電流を流す時間要素がいくつ含まれるかによってLEDの明るさを制御してもよい。例えば、図112(a)に示すように、1制御単位時間中の7個の時間要素のうち、全ての時間要素でLEDにパルス電流を流す場合が、LEDの明るさが最も明るくなる。また、図112(g)に示すように、1制御時間中の7個の時間要素のうち、1個の時間要素だけLEDにパルス電流を流す場合が、LEDの明るさが最も暗くなる。また、LEDにパルス電流を流す時間要素の数が6個、5個、4個、3個、2個と少なくなるに従って、LEDの明るさも次第に暗くなる(図112(b)〜(f))。なお、図112(h)に示すように、1制御単位時間に含まれる7個の時間要素全てでLEDにパルス電流を流さないようにする場合には、LEDは消灯状態となる。
なお、LEDの諧調制御を行う場合には、演出制御用マイクロコンピュータ100は、輝度に応じたパルス数の情報(例えば、論理値0または1)を含む制御信号を、シリアル出力回路353を用いてシリアルデータ方式として出力する。なお、なお、演出制御用マイクロコンピュータ100は、パルス数に限らず、輝度に応じたパルス幅の情報を含む制御信号を、シリアル出力回路353を用いてシリアルデータ方式として出力するようにしてもよい。
また、諧調制御を行うランプのLEDを用いて明るさを制御する場合、輝度を調整するランプのLEDに制御信号を出力するシリアル−パラレル変換ICと、輝度を調整しないランプのLEDに制御信号を出力するシリアル−パラレル変換ICとを異ならせるようにしてもよい。図113は、諧調制御を行うランプのLEDを用いて明るさを制御する場合における演出制御基板80、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの構成例を示すブロック図である。
図113に示す例では、輝度を調整しないランプのLEDに制御信号を出力するシリアル−パラレル変換IC610a,611a,612a,613aと、輝度を調整するランプのLEDに制御信号を出力するシリアル−パラレル変換IC610b,611b,612b,613bとが、各枠側IC基板602,603,604に別々に搭載されている。そして、各シリアル−パラレル変換IC610a,611a,612a,613aは、演出制御用マイクロコンピュータ100から中継基板606,607を介して入力したシリアルデータをパラレルデータに変換して、輝度調整を行わない各ランプのLEDに供給する。また、各シリアル−パラレル変換IC610b,611b,612b,613bは、演出制御用マイクロコンピュータ100から中継基板606,607を介して入力したシリアルデータをパラレルデータに変換して、輝度調整を行う各ランプのLEDに供給する。
なお、図113に示す例では、遊技枠11側に搭載された各ランプのLED281a〜281l,282a〜282f,283a〜283fで諧調制御を行う場合を示したが、遊技盤6側に搭載された各ランプのLED125a〜125f,126a〜126fで諧調制御を行うようにしてもよい。この場合、盤側IC基板601にも、輝度を調整しないランプのLEDに制御信号を出力するシリアル−パラレル変換ICと、輝度を調整するランプのLEDに制御信号を出力するシリアル−パラレル変換ICとが、別々に搭載されることになる。
また、図112および図113に示す例では、各ランプのLEDの諧調制御を行う場合を説明したが、例えば、各ランプのLEDとして、マルチカラーLEDを搭載するようにし、各ランプのLEDの点灯色または点滅色を制御するようにしてもよい。
以上のように、図112および図113に示す例では、演出制御用マイクロコンピュータ100は、ランプのLEDの発光状態を制御する制御信号として、ランプのLEDを発光させるときの輝度に応じて、パルス数を変化させた信号を出力する。そのため、ランプのLEDの輝度を調整する諧調制御を行えるようにすることができる。なお、この実施の形態では、パルス数を変化させた信号を出力することによって諧調制御を行う場合を示したが、パルス量を変化させた信号を出力するものであれば、他の方法を用いて諧調制御を行うようにしてもよい。例えば、演出制御用マイクロコンピュータ100は、パルス幅を変化させた信号を出力することによって、ランプのLEDの諧調制御を行うようにしてもよい。
輝度を調整しないランプのLEDは1制御単位時間中はオンかオフかいずれの状態しかないのであるから、図113に示す例では、輝度を調整するランプのLEDに制御信号を出力するシリアル−パラレル変換ICと、輝度を調整しないランプのLEDに制御信号を出力するシリアル−パラレル変換ICとを異ならせることによって、輝度を調整しないランプのLEDに対するデータ転送回数を低減することができる。
また、上記の実施の形態では、演出制御用マイクロコンピュータ100は、所定期間が経過すると初期化報知を終了させたが(ステップS901〜S905参照)、他のタイミングで初期化報知を終了させるようにしてもよい。例えば、初期化報知が開始されてから最初に飾り図柄の可変表示が開始されるときに初期化報知を終了させたり、飾り図柄の可変表示が開始される前に異常入賞報知指定コマンドを受信したときに初期化報知を終了させたりしてもよい。また、客待ちデモ指定コマンドを受信したり、初期化報知が開始されてから客待ちデモ指定コマンド以外の最初の演出制御コマンドを受信したときに初期化報知を終了させてもよい。つまり、遊技店員等が、初期化報知を認識することができるのに十分な期間だけ、初期化報知が継続されることが好ましい。
また、この実施の形態では、演出制御手段は、変動パターンコマンドを受信したが表示結果特定コマンドを受信できなかった場合に、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンドを受信したと判定した場合には、停止図柄を通常大当り図柄に決定し、通常大当りのときにも確変大当りのときにも使用されうる変動パターンコマンド以外の変動パターンコマンドを受信したと判定したときには、停止図柄を、受信した変動パターンに応じた飾り図柄の組合せに決定するので、ノイズ等によって表示結果特定コマンドを受信できなくても、大当りが発生することを可変表示装置9によって報知できる。さらに、変動パターンコマンドを受信した直後に、表示結果特定コマンド以外の演出制御コマンドを受信したと判定したときに、受信した変動パターンコマンドにもとづく上記の制御を行うようにしてもよい。つまり、演出制御手段は、正規コマンドを受信できなかったと判定したり(例えば、表示結果特定コマンドを受信できない。)、非正規コマンドを受信したと判定した(例えば、変動パターンコマンドに続いて表示結果特定コマンド以外の演出制御コマンドを受信した。)場合に、受信された正規コマンドにもとづいて演出制御(例えば、飾り図柄の停止図柄を決定する。)を実行することが好ましい。そのように構成すれば、正規コマンドの非受信や非正規コマンドの受信によって遊技者に不利益が与えられることが防止される。
また、他の演出制御コマンドについても、同様の制御を行うようにしてもよい。例えば、特定遊技状態の開始を特定可能な大当り開始指定コマンドを受信した場合に、既に受信している表示結果特定コマンドと整合しない場合(例えば、通常大当りを示す表示結果2指定コマンドが表示結果特定コマンド格納領域に格納されているときに、確変大当りを示す大当り開始3指定コマンドを受信したような場合)に、大当り開始指定コマンドにもとづく演出制御(例えば、確変大当りであることを演出装置で報知)を実行したり、特定遊技状態の終了を特定可能な大当り終了指定コマンドを受信した場合に、既に受信している大当り開始指定コマンドと整合しない場合(例えば、通常大当りを示す大当り開始1指定コマンドを受信した後、確変大当りを示す大当り終了指定2コマンドを受信した場合)に、大当り終了指定コマンドにもとづく演出制御(例えば、可変表示装置9の背景を確変状態に対応した背景にする)を実行する。そのように構成されている場合には、演出制御手段の制御が、遊技制御手段の制御とできるだけ食い違わないようにすることができる。
実施の形態2.
第1の実施の形態では、アドレス付きのランプ制御信号をシリアル−パラレル変換IC610〜618に出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する場合を説明したが、複数のシリアル−パラレル変換ICを同一系統の配線で直列に接続し、その同一系統の配線で接続された全てのランプを制御するためのランプ制御信号を含む固定長さのデータを出力するようにしてもよい。以下、同一系統の配線で接続された全てのランプを制御するためのランプ制御信号を含む固定長さのデータを出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する第2の実施の形態を説明する。
なお、本実施の形態において、第1の実施の形態と同様の構成および処理をなす部分についてはその詳細な説明を省略し、主として第1の実施の形態と異なる部分について説明する。
図114は、第2の実施の形態における中継基板77および演出制御基板80の回路構成例を示すブロック図である。なお、図114に示す例では、演出制御に関して演出制御基板80のみを設ける場合を示すが、ランプドライバ基板および音声出力基板を設けてもよい。この場合、ランプドライバ基板および音声出力基板には、マイクロコンピュータは搭載されていないが、マイクロコンピュータを搭載してもよい。
演出制御基板80は、演出制御用CPU101、RAM(図示せず)、シリアル出力回路353、シリアル入力回路354、ラッチ信号出力部355、クロック信号出力部356および入力取込信号出力部357を含む演出制御用マイクロコンピュータ100を搭載している。なお、RAMは外付けであってもよい。演出制御基板80において、演出制御用CPU101は、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作し、シリアル入力回路102および入力ポート103を介して演出制御コマンドを受信する。この場合、シリアル入力回路102は、シリアルデータ方式として受信した演出制御コマンドをパラレルデータに変換し出力する。また、演出制御用CPU101は、演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に可変表示装置9の表示制御を行わせる。
演出制御用CPU101は、シリアル出力回路353を介してランプを駆動する信号を出力する。シリアル出力回路は、入力したランプのLEDを駆動する信号(パラレルデータ)をシリアルデータに変換して中継基板606に出力する。
この実施の形態では、後述するように、遊技枠11側に設けられたシリアル−パラレル変換IC610〜613のうち4つのIC610〜613が同一系統の配線で直列に接続されている。天枠ランプや左枠ランプ、右枠ランプを制御する場合には、演出制御用CPU101は、その同一系統の配線で接続された全てのシリアル−パラレル変換IC610〜613用のランプ制御信号を含む固定長さのデータ(制御信号列)を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、演出制御用CPU101は、固定長さの制御信号列を出力し終えると、各シリアル−パラレル変換IC610〜613にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
また、この実施の形態では、後述するように、遊技盤6側に設けられたシリアル−パラレル変換IC616〜618が同一系統の配線で直列に接続されている。センター飾り用ランプやステージランプを制御する場合には、演出制御用CPU101は、その同一系統の配線で接続された全てのシリアル−パラレル変換IC616〜618用のランプ制御信号を含む固定長さのデータ(制御信号列)を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、演出制御用CPU101は、固定長さの制御信号列を出力し終えると、各シリアル−パラレル変換IC616〜618にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
なお、遊技枠11側に設けられたシリアル−パラレル変換IC610〜615のうちIC614およびIC615については単独の配線で接続されている。上皿ランプや操作ボタンランプを制御する場合には、演出制御用CPU101は、その単独の配線で接続されたシリアル−パラレル変換IC614用のランプ制御信号を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、演出制御用CPU101は、ランプ制御信号を出力し終えると、シリアル−パラレル変換IC614にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。また、下皿ランプを制御する場合には、演出制御用CPU101は、その単独の配線で接続されたシリアル−パラレル変換IC615用のランプ制御信号を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、演出制御用CPU101は、ランプ制御信号を出力し終えると、シリアル−パラレル変換IC615にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
図115は、第2の実施の形態における演出制御基板80、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの構成例を示すブロック図である。演出制御基板80の演出制御用マイクロコンピュータ100は、制御信号としてのシリアルデータとともに、クロック信号を中継基板606に出力する。また、演出制御用マイクロコンピュータ100は、シリアルデータを出力し終えたタイミングで、ラッチ信号を中継基板606に出力する。中継基板606は、演出制御用マイクロコンピュータ100から入力したシリアルデータ、クロック信号およびラッチ信号を盤側IC基板601に供給する。また、中継基板606は、シリアルデータ、クロック信号およびラッチ信号を、さらに中継基板607を介して各枠側IC基板602,603,604,605A,605Bに供給する。
盤側IC基板601に入力されたシリアルデータは、まず、シリアル−パラレル変換IC616に入力される。図115に示すように、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618は、同一系統の配線で直列に接続されている。同一系統の配線で接続とは、複数のシリアル−パラレル変換ICがいわゆる数珠つなぎ配線で直列に接続されていることである。例えば、各シリアル−パラレル変換IC616〜618は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC616から、盤側IC基板601に搭載される他のシリアル−パラレル変換IC618,617に順に転送される。この実施の形態では、後述するように、各シリアル−パラレル変換ICが搭載するシフトレジスタ682の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部681に入力するように構成する(図116参照)ことによって、シリアルデータを各シリアル−パラレル変換IC616〜618に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC616〜618は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチしたシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLEDに供給する。また、盤側IC基板601に入力されたクロック信号は、盤側IC基板601上で分岐され、各シリアル−パラレル変換IC616〜618および入力IC621に入力される。
中継基板607は、中継基板606を介して演出制御用マイクロコンピュータ100から入力したシリアルデータ、クロック信号およびラッチ信号を枠側IC基板604、枠側IC基板605Aおよび枠側IC基板605Bに供給する。枠側IC基板604に入力されたシリアルデータは、まず、シリアル−パラレル変換IC613に入力される。図115に示すように、各枠側IC基板602〜604に搭載される各シリアル−パラレル変換IC610〜613は、同一系統の配線で直列に接続されている。例えば、各シリアル−パラレル変換IC610〜613は、シリアルデータ用の信号線がデイジーチェーン型に接続されている(いわゆる数珠つなぎ配線で接続されている)。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC613から、各枠側IC基板602,603に搭載される他のシリアル−パラレル変換IC610〜612に順に転送される。この実施の形態では、後述するように、各シリアル−パラレル変換ICが搭載するシフトレジスタ682の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部681に入力するように構成する(図116参照)ことによって、シリアルデータを各シリアル−パラレル変換IC610〜613に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC610〜613は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチした入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLEDに供給する。
また、枠側IC基板602に入力されたクロック信号は、枠側IC基板604上で分岐され、シリアル−パラレル変換IC613に入力されるとともに、枠側IC基板602に入力される。枠側IC基板602に入力されたクロック信号は、枠側IC基板602上で分岐され、各シリアル−パラレル変換IC610,611に入力されるとともに、枠側IC基板603に入力される。枠側IC基板603に入力されたクロック信号は、枠側IC基板603上で分岐され、シリアル−パラレル変換IC612に入力される。
枠側IC基板605Aに入力されたシリアルデータは、シリアル−パラレル変換IC614に入力される。そして、各シリアル−パラレル変換IC614は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチした入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた上皿ランプおよび操作ボタンランプのLED82a〜82f,83に供給する。また、枠側IC基板605Aに入力されたクロック信号は、枠側IC基板605A上で分岐され、シリアル−パラレル変換IC614および入力IC620に入力される。
枠側IC基板605Bに入力されたシリアルデータは、シリアル−パラレル変換IC615に入力される。そして、各シリアル−パラレル変換IC615は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチした入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた下皿ランプのLED84a〜84fに供給する。また、枠側IC基板605Bに入力されたクロック信号は、シリアル−パラレル変換IC615に入力される。
次に、この実施の形態におけるシリアル−パラレル変換ICの構成について説明する。図116は、第2の実施の形態における各シリアル−パラレル変換ICの構成を示すブロック図である。なお、図116では、一例として、遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613の構成を示しているが、遊技盤6側に設けられた各シリアル−パラレル変換IC616〜618、および遊技枠11側に設けられたもう1つのシリアル−パラレル変換IC5615の構成も同様である。
図116に示すように、各シリアル−パラレル変換IC610〜613は、データラッチ部681、シフトレジスタ682およびデータバッファ683を含む。また、図116に示すように、各シリアル−パラレル変換IC610〜613は、IC613、IC610、IC611およびIC612の順に同一系統の配線で直列に接続されている。
データラッチ部681は、例えばラッチ回路によって構成され、シリアルデータが入力されると、所定周期、例えばクロック信号のパルスの立ち上がりのタイミングで入力データを1ビット毎にラッチし、シフトレジスタ682に出力する。シフトレジスタ682は、単位データ、例えばデータラッチ部681から1ビットずつ入力されたデータを順に格納する。また、シフトレジスタ682は、クロック信号のパルスの立ち上がりのタイミングで、格納データを1ビットずつシフトする。そのように繰り返し格納データを1ビットずつシフトしていくことによって、シフトレジスタ682は8ビット全てにデータが格納された状態になる。そして、さらに、入力データおよびクロック信号が入力されると、シフトレジスタ682の最終ビットのデータが、そのシリアル−パラレル変換ICの後段(以下、下位側(シリアル−パラレル変換ICの入力側を上位とした場合の下位側)ともいう)に接続されているシリアル−パラレル変換ICのデータラッチ部681に入力される。例えば、図116に示す例では、IC613のシフトレジスタ682の最終ビットのデータが、下位側のIC610のデータラッチ部681に入力され、IC610のシフトレジスタ682の最終ビットのデータが、下位側のIC611のデータラッチ部681に入力され、IC611のシフトレジスタ682の最終ビットのデータが、下位側のIC612のデータラッチ部681に入力される。そのようにすることによって、演出制御用マイクロコンピュータ100から出力されたシリアルデータが、IC613、IC610、IC611およびIC612の順に転送されることになる。
この実施の形態では、演出制御用マイクロコンピュータ100は、4つのシリアル−パラレルIC610〜613用の全てのランプ制御信号を含む制御信号列をシリアルデータ方式として出力する。この場合、演出制御用マイクロコンピュータ100は、下位側のIC用のランプ制御信号から順に(すなわち、IC613用のランプ制御信号、IC611用のランプ制御信号、IC610用のランプ制御信号およびIC613用のランプ制御信号の順に)含む制御信号列を出力する。そして、上記のように、IC613、IC610、IC611およびIC612の順にデータが転送されることによって、演出制御用マイクロコンピュータ100によって一連の制御信号列の出力が完了された状態となると、IC612のシフトレジスタ682にIC612用のランプ制御信号が格納され、IC611のシフトレジスタ682にIC611用のランプ制御信号が格納され、IC610のシフトレジスタ682にIC610用のランプ制御信号が格納され、IC613のシフトレジスタ682にIC613用のランプ制御信号が格納された状態となる。そして、演出制御用マイクロコンピュータ100によってラッチ信号が出力されるタイミングで、各シリアル−パラレル変換IC610〜613によってデータが取り込まれる。
データバッファ683は、例えば、ラッチレジスタによって構成され、演出制御用マイクロコンピュータ100からのラッチ信号を入力すると、シフトレジスタ682が格納するデータを取り込んでラッチする。そして、データバッファ683は、取り込んだデータをパラレルデータ(Q0〜Q7)として各ランプのLEDに供給することになる。なお、ラッチ信号を入力するタイミング(所定のタイミング)は、下位側のICまでデータを送るのにかかる時間よりも長いスパンでおとずれるタイミングとする。
次に、エラー用ランプ制御実行データに従って所定のデータ格納領域にセットされるランプ制御信号を含む制御信号列について説明する。図117は、第2の実施の形態における報知制御処理においてシリアルデータ方式として出力されるランプ制御信号を含む制御信号列の例を示す説明図である。図117に示すように、この実施の形態では、エラー種類ごとに2パターン(パターンAとパターンB)のエラー用ランプ制御実行データが用いられる。この実施の形態では、パターンAとパターンBのエラー用ランプ制御実行データを切り替えて用いることにより、ランプの点滅表示が制御される。また、演出制御用マイクロコンピュータ100は、図117に示すランプ制御信号を含む制御信号列(またはランプ制御信号)を、エラー用ランプ制御実行データに対応付けて、あらかじめROMに設けられた所定のランプ制御信号格納領域に記憶している。そして、演出制御用CPU101は、エラー用ランプ制御実行データにもとづいて、所定のランプ制御信号格納領域からランプ制御信号を含む制御信号列(またはランプ制御信号)を抽出し、シリアル出力回路353に出力する。
RAMクリア報知する場合には、図117に示すように、遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが点灯される。また、RAMクリア報知する場合、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号を含む制御信号列が出力されるので、エラー報知の実行中、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが継続して点灯される状態となる。
ドア開放エラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613に対応する制御データ本体が「00000000」であるランプ制御信号を含む制御信号列が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプのLED281a〜281l,282a〜282f,283a〜283fが消灯される。そのような制御が繰り返し行われることによって、ドア開放エラーを報知する場合、遊技枠11側に設けられた全てのランプのLED281a〜281l,282a〜282f,283a〜283fを所定時間間隔で点滅させるような制御が行われる。
球切れエラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、各シリアル−パラレル変換IC610,611に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、天枠ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプのLED281a〜281lが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、各シリアル−パラレル変換IC610,611に対応する制御データ本体が「00000000」であるランプ制御信号を含む制御信号列が送信される。すなわち、天枠ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプのLED281a〜281lが消灯される。そのような制御が繰り返し行われることによって、球切れエラーを報知する場合、遊技枠11側に設けられた天枠ランプのLED281a〜281lのみを所定時間間隔で点滅させるような制御が行われる。
また、球切れエラーを報知する場合には、図117に示すように、アドレスが「04」のシリアル−パラレル変換IC614に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、上皿ランプのLED82a〜82fに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプのLED82a〜82fが点灯される。また、球切れエラーを報知する場合、シリアル−パラレル変換IC614に、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、上皿ランプのLED82a〜82fが継続して点灯される状態となる。
満タンエラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、シリアル−パラレル変換IC615に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、下皿ランプのLED84a〜84fに対応するビットの論理値が全て1であるランプ制御信号が出力され、下皿ランプのLED84a〜84fが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、シリアル−パラレル変換IC615に、制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、下皿ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、下皿ランプのLED84a〜84fが消灯される。そのような制御が繰り返し行われることによって、満タンエラーを報知する場合、下皿ランプのLED84a〜84fのみを所定時間間隔で点滅させるような制御が行われる。
払出エラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、シリアル−パラレル変換IC610に対応する制御データ本体が「00111111」であり、シリアル−パラレル変換IC611に対応する制御データ本体が「00000000」であるランプ制御信号を含む制御信号列が送信される。すなわち、天枠ランプの一部のLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプの一部のLED281a〜281fのみが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、シリアル−パラレル変換IC610に対応する制御データ本体が「00000000」であり、シリアル−パラレル変換IC611に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、天枠ランプの他の一部のLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた天枠ランプの他の一部のLED281g〜281lのみが点灯される。そのような制御が繰り返し行われることによって、払出エラーを報知する場合、遊技枠11側に設けられた天枠ランプのLED281a〜281fとLED281g〜281lが交互に所定時間間隔で点滅させるような制御が行われる。
また、払出エラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に、制御データ本体が「00111111」であるランプ制御信号が送信される。すなわち、上皿ランプのLED82a〜82fに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプのLED82a〜82fが点灯される。また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に、制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、上皿ランプのLED82a〜82fに対応するビットの論理値が全て0であるランプ制御信号が出力され、上皿ランプのLED82a〜82fが消灯される。そのような制御が繰り返し行われることによって、払出エラーを報知する場合、上皿ランプのLED82a〜82fを所定時間間隔で点滅させるような制御が行われる。
乱数回路エラーを報知する場合には、図117に示すように、遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、遊技枠11側に設けられた全てのランプ(上皿ランプおよび下皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが点灯される。また、乱数回路エラーを報知する場合、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、遊技枠11側に設けられた全てのランプ(皿ランプを除く)のLED281a〜281l,282a〜282f,283a〜283fが継続して点灯される状態となる。
乱数回路エラーを報知する場合には、図117に示すように、遊技枠11側に設けられた各シリアル−パラレル変換IC614に対応する制御データ本体が「00111111」であるランプ制御信号を含む制御信号列が送信される。すなわち、各ランプのLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプのLED82a〜82fが点灯される。また、乱数回路エラーを報知する場合、エラー用ランプ制御実行データがパターンAである場合とパターンBである場合とで同じ内容のランプ制御信号が出力されるので、エラー報知の実行中、上皿ランプのLED82a〜82fが継続して点灯される状態となる。
異常入賞エラーを報知する場合には、図117に示すように、まず、パターンAのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に制御データ本体が「00110011」であるランプ制御信号が送信される。すなわち、上皿ランプの左側面および右側面のLEDに対応するビットの論理値が全て1であるランプ制御信号が出力され、上皿ランプの左側面のLED82a,82bおよび右側面のLED82e,82fが点灯される。なお、前述したように、シリアル−パラレル変換IC614に出力される制御信号において、1ビット目の1が左側面のLED82aへの入力信号、2ビット目の1が左側面のLED82bへの入力信号、5ビット目の1が右側面のLED82eへの入力信号、6ビット目の1が右側面のLED82fへの入力信号に対応している。
また、プロセスデータ切替時に、パターンBのエラー用ランプ制御実行データにもとづいて、アドレスが「04」のシリアル−パラレル変換IC614に制御データ本体が「00000000」であるランプ制御信号が送信される。すなわち、上皿ランプのLEDに対応するビットの論理値が全て0であるランプ制御信号が出力され、上皿ランプの全てのLED82a〜82fが消灯される。
上記のような制御が繰り返し行われることによって、異常入賞エラーを報知する場合、上皿ランプの側面に設けられたLED82a,82b,82e,82fを所定時間間隔で点滅させるような制御が行われる。
なお、異常入賞報知を行う際に何らかの遊技演出(例えば、大当り演出や飾り図柄の変動表示)が行われている場合には、遊技演出に応じて天枠ランプ、左枠ランプ、右枠ランプおよび下皿ランプの表示制御が行われていることになる。この場合、シリアル−パラレル変換IC614に図117に示す異常入賞報知に応じたランプ制御信号が送信されると同時に、他の各シリアル−パラレル変換IC610〜613,615にも、遊技演出に応じたランプ制御信号が送信されることになる。
次に、遊技演出において可動部材151,152を動作させるときに出力されるモータ制御信号を含む制御信号列について説明する。図118は、第2の実施の形態における遊技演出においてシリアルデータ方式として出力されるモータ制御信号を含む制御信号列の例を示す説明図である。図118に示すモータ制御信号を含む制御信号列は、例えば、図89に示す飾り図柄変動中処理において、可動部材151,152を用いた予告演出を含む可変表示が実行される際に、ステップS845Cのシリアル設定処理において所定のデータ格納領域にセットされる。また、演出制御用マイクロコンピュータ100は、図118に示すモータ制御信号を含む制御信号列を、例えば、表示制御実行データに対応付けて、あらかじめROMに設けられた所定の制御信号格納領域に記憶している。そして、演出制御用CPU101は、表示制御実行データにもとづいて、所定のモータ制御信号格納領域からモータ制御信号を含む制御信号列を抽出し、シリアル出力回路353に出力する。
なお、図118に示すように、モータ制御信号を含む制御信号列には、遊技演出に応じてセンター飾り用ランプやステージランプを制御するための各ランプ制御信号も含む。
可動部材としてトロッコ151を正方向に動作させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000001」であるモータ制御信号を含む制御信号列が送信される。すなわち、トロッコ151を駆動するためのモータ151aの正方向動作に対応するビットの論理値が1であるモータ制御信号が出力され、モータ151aが駆動することによってトロッコ151が動作される。また、トロッコ151の動作を停止させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000000」であるモータ制御信号を含む制御信号列が送信される。すなわち、モータ151aの正方向動作に対応するビットの論理値が0であるモータ制御信号が出力され、モータ151aの駆動が停止されることによってトロッコ151の動作が停止される。
可動部材としてトロッコ151を逆方向に動作させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000010」であるモータ制御信号を含む制御信号列が送信される。すなわち、トロッコ151を駆動するためのモータ151aの逆方向動作に対応するビットの論理値が1であるモータ制御信号が出力され、モータ151aが駆動することによってトロッコ151が動作される。また、トロッコ151の動作を停止させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000000」であるモータ制御信号を含む制御信号列が送信される。すなわち、モータ151aの逆方向動作に対応するビットの論理値が0であるモータ制御信号が出力され、モータ151aの駆動が停止されることによってトロッコ151の動作が停止される。
可動部材として梁152を正方向に動作させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000100」であるモータ制御信号を含む制御信号列が送信される。すなわち、梁152を駆動するためのモータ152aの正方向動作に対応するビットの論理値が1であるモータ制御信号が出力され、モータ152aが駆動することによって梁152が動作される。また、梁152の動作を停止させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000000」であるモータ制御信号を含む制御信号列が送信される。すなわち、モータ152aの正方向動作に対応するビットの論理値が0であるモータ制御信号が出力され、モータ152aの駆動が停止されることによって梁152の動作が停止される。
可動部材として梁152を逆方向に動作させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00001000」であるモータ制御信号を含む制御信号列が送信される。すなわち、梁152を駆動するためのモータ152aの逆方向動作に対応するビットの論理値が1であるモータ制御信号が出力され、モータ152aが駆動することによって梁152が動作される。また、梁152の動作を停止させる場合には、シリアル−パラレル変換IC616に対応する制御データ本体が「00000000」であるモータ制御信号を含む制御信号列が送信される。すなわち、モータ152aの逆方向動作に対応するビットの論理値が0であるモータ制御信号が出力され、モータ152aの駆動が停止されることによって梁152の動作が停止される。
次に、シリアル設定処理について説明する。図119は、第2の実施の形態におけるシリアル設定処理の例を示すフローチャートである。シリアル設定処理は、例えば、演出制御プロセス処理において飾り図柄の可変表示を行うとき(ステップS835C,845C参照)や、各種エラー報知を行うとき(ステップS632G,S645E,S647E,651E,655E,S659E,S663E,S907、S922,S929)に実行される。
図119において、ステップS950,S951の処理は、第1の実施の形態で示したそれらの処理と同様である。ステップS951で各ランプの表示状態に変更があれば、演出制御用CPU101は、表示制御対象のランプのシリアル−パラレル変換IC用のランプ制御信号を含む制御信号列を、所定のランプ制御信号格納領域から抽出する(ステップS952A)。次いで、演出制御用CPU101は、抽出したランプ制御信号を含む制御信号列を、RAMに設けられた所定のデータ格納領域に設定する(ステップS953A)。そして、ランプ制御信号出力要求フラグをセットする(ステップS954)。
図119において、ステップS955,S956の処理は、第1の実施の形態で示したそれらの処理と同様である。ステップS956で可動部材151,152の可動がある場合には、演出制御用CPU101は、可動対象の可動部材151,152のシリアル−パラレル変換IC用のモータ制御信号を含む制御信号列を、所定の制御信号格納領域から抽出する(ステップS957A)。次いで、演出制御用CPU101は、抽出したモータ制御信号を含む制御信号列を、RAMに設けられた所定のデータ格納領域に設定する(ステップS958A)。そして、モータ制御信号出力要求フラグをセットする(ステップS959)。
図120は、第2の実施の形態における出力対象のランプ制御信号やモータ制御信号を含む制御信号列が設定されるデータ格納領域の一構成例を示す説明図である。この実施の形態では、ランプ制御信号やモータ制御信号を含む制御信号列を格納するデータ格納領域が個別に4個用意されている。すなわち、同一系統の配線で接続された遊技盤6側に設けられた各シリアル−パラレル変換IC616〜618に出力される制御信号列を格納する盤側出力データ格納領域と、同一系統の配線で接続された遊技枠11側に設けられた各シリアル−パラレル変換IC610〜613に出力される制御信号列を格納する枠側出力データ格納領域と、遊技枠11側に設けられたシリアル−パラレル変換IC614に出力される制御信号列を格納する上皿側出力データ格納領域と、遊技枠11側に設けられたシリアル−パラレル変換IC615に出力される制御信号列を格納する下皿側出力データ格納領域とが設けられている。
例えば、演出制御用CPU101は、RAMクリア報知またはドア開放エラーを報知する場合に、シリアル設定処理のステップS952Aにおいて、図117に示すRAMクリア報知またはドア開放エラーに対応するランプ制御信号を含む制御信号列を抽出し、図120に示す枠側出力データ格納領域に格納する。また、例えば、演出制御用CPU101は、球切れエラー、払出エラーまたは乱数回路エラーを報知する場合に、シリアル設定処理のステップS952Aにおいて、図117に示すRAMクリア報知またはドア開放エラーに対応するランプ制御信号を含む制御信号列を抽出し、図120に示す枠側出力データ格納領域に格納するとともに、図117に示すシリアル−パラレル変換IC614に対応するランプ制御信号を抽出し、図120に示す上皿側出力データ格納領域に格納する。また、例えば、演出制御用CPU101は、満タンエラーを報知する場合に、シリアル設定処理のステップS952Aにおいて、図117に示す満タンエラーに対応するランプ制御信号を抽出し、図120に示す下皿側出力データ格納領域に格納する。また、例えば、演出制御用CPU101は、異常入賞エラーを報知する場合に、シリアル設定処理のステップS952Aにおいて、図117に示す異常入賞エラーに対応するランプ制御信号を抽出し、図120に示す上皿側出力データ格納領域に格納する。また、例えば、演出制御用CPU101は、遊技演出において可動部材151,152を可動する場合に、シリアル設定処理のステップS957Aにおいて、図118に示すいずれかのモータ制御信号を含む制御信号列を抽出し、図120に示す盤側出力データ格納領域に格納する。
図121は、第2の実施の形態におけるシリアル入出力処理(ステップS708)の具体例を示すフローチャートである。図121において、ステップS970,S971の処理は、第1の実施の形態で示したそれらの処理と同様である。ランプ制御信号出力要求フラグまたはモータ制御信号出力要求フラグをリセットすると、演出制御用CPU101は、データ格納領域に格納されているランプ制御信号やモータ制御信号を含む制御信号列をシリアル出力回路353に出力する(ステップS972A)。すると、出力されたランプ制御信号やモータ制御信号を含む制御信号列は、シリアル出力回路353によってシリアルデータに変換され、中継基板606,607を介して、盤側IC基板601や各枠側IC基板602,603,604,605A,605Bにシリアルデータ方式として出力されることになる。次いで、演出制御用CPU101は、所定時間(制御信号列がシリアル出力回路353に出力されてから、盤側IC基板601や各枠側IC基板602,603,604,605A,605Bにシリアルデータ方式として出力され終わるまでに要する時間)経過後に、ラッチ信号出力部355に、各枠側IC基板602,603,604,605A,605Bに対してラッチ信号を出力させる(ステップS972B)。
なお、図120に示す4つのデータ格納領域のいずれか複数の領域に制御信号列が格納されている場合には、演出制御用CPU101は、ステップS972A,S972Bの処理を複数回繰り返し実行する。例えば、図120に示す4つのデータ格納領域の全てに制御信号列が格納されている場合には、演出制御用CPU101は、まず、盤側出力データ格納領域から制御信号列を抽出し、シリアル出力回路353に出力する(ステップS972A参照)。そして、所定時間経過後に、ラッチ信号出力部355に、盤側IC基板601に対してラッチ信号を出力させる(ステップS972B参照)。次いで、演出制御用CPU101は、枠側出力データ格納領域から制御信号列を抽出し、シリアル出力回路353に出力する(ステップS972A参照)。そして、所定時間経過後に、ラッチ信号出力部355に、枠側IC基板602〜604に対してラッチ信号を出力させる(ステップS972B参照)。次いで、演出制御用CPU101は、上皿側出力データ格納領域からランプ制御信号を抽出し、シリアル出力回路353に出力する(ステップS972A参照)。そして、所定時間経過後に、ラッチ信号出力部355に、枠側IC基板605Aに対してラッチ信号を出力させる(ステップS972B参照)。次いで、演出制御用CPU101は、下皿側出力データ格納領域からランプ制御信号を抽出し、シリアル出力回路353に出力する(ステップS972A参照)。そして、所定時間経過後に、ラッチ信号出力部355に、枠側IC基板605Bに対してラッチ信号を出力させる(ステップS972B参照)。
なお、ステップS973〜S976の処理は、第1の実施の形態で示したそれらの処理と同様である。
以上のように、この実施の形態によれば、第1の実施の形態と同様に、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられ、遊技状態に応じて打球供給皿(上皿)3に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御する。そのため、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fを発光させることによって、遊技演出における演出態様を多様化することができ、遊技者に対する演出効果を向上させることができる。また、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられるように構成されているので、例えば、遊技店内の一区画に遊技機が複数台設置されている場合に、その遊技機で遊技をしている遊技者以外の者(隣の遊技機で遊技をしている遊技者や遊技店内でまだ遊技を行っていない遊技者)であっても、その遊技機の上皿ランプのLED82a,82b,82e,82fの発光状態が見えるようにすることができる。そのため、その遊技機で遊技をしている遊技者以外の者に対しても、注意を引く演出を実行することができ、演出効果を与えることができる。
また、この実施の形態によれば、第1の実施の形態と同様に、遊技制御用マイクロコンピュータ560の送信する演出制御コマンドは、余剰球受皿(下皿)4に所定量以上の遊技球が貯留された状態である満タン状態となったことにもとづいて、余剰球受皿(下皿)4が満タン状態であることを示すコマンド(入力ポートデータ指定コマンド)が含まれる。また、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から余剰球受皿(下皿)4が満タン状態であることを示すコマンドが送信されたことにもとづいて、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって、余剰球受皿(下皿)4の満タン状態を報知するための制御を実行する。よって、演出制御用マイクロコンピュータ100は、可変表示装置9やスピーカ27など遊技演出用の演出装置とは別に余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって満タン状態を報知する。そのため、遊技演出(例えば、大当り中の演出)途中で中断することなく、満タン状態を報知することができる。また、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態の制御を演出制御用マイクロコンピュータ100が行うので、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。
また、この実施の形態によれば、第1の実施の形態と同様に、演出制御用マイクロコンピュータ100は、遊技制御用マイクロコンピュータ560から受信した演出制御コマンドにもとづいて各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するための制御信号をシリアル信号方式で出力する。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とが、1系統の配線を介して接続される。そのため、遊技盤6と遊技枠11との間の配線数を低減することができる。従って、遊技枠11と遊技盤6とが着脱自在に構成された遊技機において、遊技枠11と遊技盤6との着脱作業を容易に行えるようにすることができる。
また、この実施の形態によれば、演出制御用マイクロコンピュータ100は、同一の系統の配線に直列に接続された全ての演出用の電気部品(ランプやモータ)の制御信号の情報を含む固定長さのデータを単位データづつ所定周期ごとにシリアル信号方式で出力する。そのため、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とにあらかじめ相互に異なるアドレスを割り当てる必要をなくすことができる。
なお、この実施の形態では、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618が同一系統の配線で接続されるとともに、枠側IC基板602〜604に搭載される各シリアル−パラレル変換IC610〜613が同一系統の配線で接続される場合を説明したが、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618および各枠側IC基板602,603,604,605A,605Bに搭載される各シリアル−パラレル変換IC610〜615の全てが同一系統の配線で接続されるようにしてもよい。
図122は、第2の実施の形態における演出制御基板80、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの他の構成例を示すブロック図である。図122では、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618および各枠側IC基板602,603,604,605A,605Bに搭載される各シリアル−パラレル変換IC610〜615の全てが同一系統の配線で接続される。
図122に示す例では、演出制御用マイクロコンピュータ100が出力するシリアルデータは、中継基板606を介して、まず盤側IC基板601に搭載されたシリアル−パラレル変換IC616に入力される。そして、入力されたシリアルデータは、シリアル−パラレル変換IC616から、盤側IC基板601に搭載される他のシリアル−パラレル変換IC618,617に順に転送される。
また、盤側IC基板601が搭載する最も下位側のシリアル−パラレル変換IC617は、シリアルデータをさらに中継基板606に出力する。そして、シリアルデータは、中継基板606からさらに中継基板607を介して、枠側IC基板604に搭載されたシリアル−パラレル変換IC613に入力される。そして、入力されたシリアルデータは、シリアル−パラレル変換IC613から、各枠側IC基板602,603,604,605A,605Bに搭載される他のシリアル−パラレル変換IC610,611,612,614,615に順に転送される。
実施の形態3.
第1の実施の形態では、演出制御基板80を用いて全ての演出手段(可変表示装置9、音出力装置(スピーカ)27および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)を制御する場合を説明したが、別々の制御基板を用いて各演出手段を制御してもよい。以下、音出力装置27および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する音/ランプ制御基板と、可変表示装置9を制御する図柄制御基板とを備えた第3の実施の形態を説明する。
なお、本実施の形態において、第1の実施の形態と同様の構成および処理をなす部分についてはその詳細な説明を省略し、主として第1の実施の形態と異なる部分について説明する。
図123は、第3の実施の形態における中継基板77、音/ランプ制御基板80bおよび図柄制御基板80aの回路構成例を示すブロック図である。この実施の形態では、音/ランプ制御基板80bは、音出力装置27の音出力制御、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fの表示制御を行う。また、図柄制御基板80aは、可変表示装置9の表示制御を行う。また、この実施の形態では、「演出制御」とは、可変表示装置9の表示制御や、スピーカ27の音出力制御、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fの表示制御を行うことによって、遊技演出などの演出を行うことをいう。また、この実施の形態では、演出制御手段は、可変表示装置9の表示制御を行う図柄制御用マイクロコンピュータ100aと、スピーカ27の音出力制御、および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fの表示制御を行う音/ランプ制御用マイクロコンピュータ100bとによって実現される。
音/ランプ制御基板80bは、音/ランプ制御用CPU101b、RAM、シリアル出力回路353、シリアル入力回路354、クロック信号出力部356および入力取込信号出力部357を含む音/ランプ制御用マイクロコンピュータ100bを搭載している。なお、RAMは外付けであってもよい。音/ランプ制御基板80bにおいて、音/ランプ制御用マイクロコンピュータ100bは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。
さらに、音/ランプ制御用マイクロコンピュータ100bはシリアル出力回路353を介してランプを駆動する信号を出力する。シリアル出力回路は、入力したランプのLEDを駆動する信号(パラレルデータ)をシリアルデータに変換して中継基板606に出力する。
また、クロック信号出力部356は、クロック信号を中継基板606に出力する。クロック信号出力部356からのクロック信号は、中継基板606,607を介して各枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615や入力IC620に供給される。また、クロック信号出力部356からのクロック信号は、中継基板606を介して盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618や入力IC621に供給される。したがって、この実施の形態では、各シリアル−パラレル変換IC610〜618および各入力IC620,621に共通のクロック信号が供給されることになる。
また、入力取込信号出力部357は、演出制御用CPU101の指示に従って、中継基板606,607を介して、盤側IC基板601または枠側IC基板602,603,604,605A,605Bに入力取込信号(ラッチ信号)を出力する。枠側IC基板605に搭載された入力IC620は、音/ランプ制御用マイクロコンピュータ100bからの入力取込信号を入力すると、操作ボタン81a〜81eの検出信号をラッチし、シリアルデータ方式として中継基板606,607を介して音/ランプ制御用マイクロコンピュータ100bに出力する。また、盤側IC基板601に搭載された入力IC621は、音/ランプ制御用マイクロコンピュータ100bからの入力取込信号を入力すると、各位置センサ151b,152bの検出信号をラッチし、シリアルデータ方式として中継基板606を介して音/ランプ制御用マイクロコンピュータ100bに出力する。
また、音/ランプ制御用マイクロコンピュータ100bは、音声合成用IC173に対して音番号データを出力する。音声合成用IC173は、音番号データに応じた音声や効果音を発生し増幅回路175に出力する。増幅回路175は、音声合成用IC173の出力レベルを、ボリューム176で設定されている音量に応じたレベルに増幅した音声信号をスピーカ27に出力する。音声データROM174には、音番号データに応じた制御データが格納されている。音番号データに応じた制御データは、所定期間(例えば飾り図柄の変動期間)における効果音または音声の出力態様を時系列的に示すデータの集まりである。
なお、ランプを駆動する信号および音番号データは、音/ランプ制御用マイクロコンピュータ100bとランプドライバ352および音声合成IC173との間で、双方向通信(信号受信側から送信側に応答信号を送信するような通信)によって伝達される。
図柄制御基板80aは、図柄制御用CPU101aおよびRAMを含む図柄制御用マイクロコンピュータ100aを搭載している。なお、RAMは外付けであってもよい。図柄制御基板80aにおいて、図柄制御用マイクロコンピュータ100aは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。また、図柄制御用マイクロコンピュータ100aは、主基板31から中継基板77を介して受信した演出制御コマンドにもとづいて、VDP(ビデオディスプレイプロセッサ)109に、LCDを用いた可変表示装置9の表示制御を行わせる。
図柄制御用マイクロコンピュータ100aは、遊技制御用マイクロコンピュータ560から受信した演出制御コマンドに従ってキャラクタROM(図示せず)から必要なデータを読み出す。キャラクタROMは、可変表示装置9に表示される画像の中でも使用頻度の高いキャラクタ画像データ、具体的には、人物、文字、図形または記号等(飾り図柄を含む)をあらかじめ格納しておくためのものである。図柄制御用マイクロコンピュータ100aは、キャラクタROMから読み出したデータをVDP109に出力する。VDP109は、図柄制御用マイクロコンピュータ100aから入力されたデータにもとづいて可変表示装置9の表示制御を実行する。
この実施の形態では、可変表示装置9の表示制御を行うVDP109が図柄制御基板80aに搭載されている。VDP109は、図柄制御用マイクロコンピュータ100aとは独立したアドレス空間を有し、そこにVRAMをマッピングする。VRAMは、VDPによって生成された画像データを展開するためのバッファメモリである。そして、VDP109は、VRAM内の画像データを可変表示装置9に出力する。
中継基板77には、主基板31から入力された信号を図柄制御基板80aに向かう方向にしか通過させない(図柄制御基板80aから中継基板77への方向には信号を通過させない)信号方向規制手段としての単方向性回路が搭載されている。単方向性回路として、例えばダイオードやトランジスタが使用される。図123には、ダイオードが例示されている。
また、図柄制御用マイクロコンピュータ100aは、主基板31からの演出制御コマンド(変動パターンコマンドや表示結果指定コマンド)を、入出力ポート104を介して音/ランプ制御基板80bに送信(転送)する。
図124は、第3の実施の形態における図柄制御基板80a、音/ランプ制御基板80b、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの構成例を示すブロック図である。音/ランプ制御基板80bの音/ランプ制御用マイクロコンピュータ100b(具体的には、音/ランプ制御用CPU101b)は、制御信号としてのシリアルデータとともに、クロック信号を中継基板606に出力する。また、入力IC620,621に入力信号をラッチさせるための入力取込信号を中継基板606に出力する。
中継基板606は、音/ランプ制御用マイクロコンピュータ100bから入力したシリアルデータおよびクロック信号を、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618に供給する。そして、各シリアル−パラレル変換IC616〜618は、入力したシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLED125a〜125f,126a〜126fや各可動部材のモータ151a,151bに供給する。
また、各シリアル−パラレル変換IC616〜618に接続されるシリアルデータ線300およびクロック信号線301は、盤側IC基板601上でバス形式に接続されている。
また、盤側IC基板601には、遊技盤6上に設けられた各可動部材の位置センサの検出信号を入力する入力IC621が搭載されている。この実施の形態では、盤側IC基板601に搭載された入力IC621と音/ランプ制御用マイクロコンピュータ100bとは、中継基板606を介して入力信号線、クロック信号線301および入力取込信号線303が接続されており、音/ランプ制御用マイクロコンピュータ100bは、所定のタイミングで、入力取込信号を中継基板606を介して入力IC621に出力する。すると、入力IC621は、入力取込信号(ラッチ信号)にもとづいて各位置センサの検出信号をラッチし、中継基板606を介して音/ランプ制御用マイクロコンピュータ100bに出力する。この場合、入力IC621は、各位置センサからパラレルに入力した検出信号をシリアルデータに変換して出力する。
中継基板606を介して中継基板607に入力されたシリアルデータおよびクロック信号は、図124に示すように、各枠側IC基板602,603,604,605A,605Bに搭載された各シリアル−パラレル変換IC610〜615に供給される。そして、各シリアル−パラレル変換IC610〜615は、入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fに供給する。
また、各シリアル−パラレル変換IC610〜613に接続されるシリアルデータ線およびクロック信号線は、各枠側IC基板602〜604上でバス形式に接続されている。この実施の形態では、図124に示すように、まず、枠側IC基板604のシリアル−パラレル変換IC613に入力され、シリアル−パラレル変換IC613から枠側IC基板602のシリアル−パラレル変換IC610およびシリアル−パラレル変換IC611の順に入力され、さらにシリアル−パラレル変換IC611から枠側IC基板603のシリアル−パラレル変換IC612に入力される。また、シリアル−パラレル変換IC614に接続されるシリアルデータ線300およびクロック信号線301は、中継基板607から直接接続される。また、シリアル−パラレル変換IC615に接続されるシリアルデータ線300およびクロック信号線301は、中継基板607から直接接続される。
また、枠側IC基板605Aには、遊技枠11に設けられた操作ボタン81a〜81eの検出信号を入力する入力IC620が搭載されている。この実施の形態では、枠側IC基板605Aに搭載された入力IC620と音/ランプ制御用マイクロコンピュータ100bとは、中継基板607を介して入力信号線302、クロック信号線301および入力取込信号線303が接続されており、音/ランプ制御用マイクロコンピュータ100bは、所定のタイミングで、入力取込信号を中継基板606,607を介して入力IC620に出力する。この場合、音/ランプ制御用マイクロコンピュータ100bは、入力IC621に入力取込信号を出力するタイミングとは異なるタイミングで、入力取込信号を入力IC620に出力する。すると、入力IC620は、入力取込信号(ラッチ信号)にもとづいて操作ボタン81a〜81eからの検出信号をラッチし、中継基板606,607を介して音/ランプ制御用マイクロコンピュータ100bに出力する。この場合、入力IC620は、操作ボタン81a〜81eからパラレルに入力した検出信号をシリアルデータに変換して出力する。
この実施の形態では、各シリアル−パラレル変換IC610〜618には、あらかじめアドレスが付与されており、音/ランプ制御用マイクロコンピュータ100bは、シリアルデータに変換した制御信号を出力する際に、アドレスが付加されたシリアルデータを出力する。各シリアル−パラレル変換IC610〜618は、シリアルデータを入力すると、入力したシリアルデータに付加されているアドレスが自分のアドレスに合致するか否かを確認し、合致していればパラレルデータに変換して各ランプのLEDに供給する。アドレスが合致していなければ各ランプのLEDへの供給は行わない。
次に、図柄制御用マイクロコンピュータ100aの動作を説明する。図125は、第3の実施の形態における図柄制御用マイクロコンピュータ100aが実行するメイン処理を示すフローチャートである。遊技機に対する電力供給が開始され、リセット信号がハイレベルになると、図柄制御用マイクロコンピュータ100aは、メイン処理を開始する。メイン処理では、図柄制御用マイクロコンピュータ100aは、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS781)。その後、図柄制御用マイクロコンピュータ100aは、タイマ割込フラグの監視(ステップS782)の確認を行うループ処理に移行する。タイマ割込が発生すると、図柄制御用マイクロコンピュータ100aは、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、図柄制御用マイクロコンピュータ100aは、そのフラグをクリアし(ステップS783)、以下の図柄制御処理を実行する。
タイマ割込は例えば33ms毎にかかる。すなわち、図柄制御処理は、例えば33ms毎に起動される。また、この実施の形態では、タイマ割込処理ではフラグセットのみがなされ、具体的な図柄制御処理はメイン処理において実行されるが、タイマ割込処理で図柄制御処理を実行してもよい。
図柄制御処理において、図柄制御用マイクロコンピュータ100aは、まず、受信した演出制御コマンドを解析する(コマンド解析処理:ステップS784)。なお、この場合、図柄制御用マイクロコンピュータ100aは、第1の実施の形態で示したコマンド解析処理(図78〜図81に示す演出制御用マイクロコンピュータ100が実行するコマンド解析処理)と同様の処理に従って、演出制御コマンドを解析する。
次いで、図柄制御用マイクロコンピュータ100aは、図柄制御プロセス処理を行う(ステップS785)。この場合、図柄制御用マイクロコンピュータ100aは、第1の実施の形態で示した演出制御プロセス処理(図83に示す演出制御用マイクロコンピュータ100が実行する演出制御プロセス処理)と同様の処理に従って処理(ただし、可変表示装置9の制御に関する部分のみ)を実行する。
そして、図柄制御用マイクロコンピュータ100aは、乱数カウンタを更新する処理を実行する(ステップS786)。さらに、可変表示装置9を用いて報知を行う報知制御プロセス処理を実行する(ステップS787)。この場合、図柄制御用マイクロコンピュータ100aは、第1の実施の形態で示した報知制御プロセス処理のうち可変表示装置9を用いた報知処理と同様の処理を実行する。
また、図柄制御用マイクロコンピュータ100aは、主基板31から受信した演出制御コマンドを音/ランプ制御基板80bに送出(転送)する処理を行う(コマンド制御処理:ステップS788)。その後、ステップS782のタイマ割込フラグの確認を行う処理に戻る。
なお、ステップS788のコマンド制御処理において、図柄制御用マイクロコンピュータ100aは、遊技制御用マイクロコンピュータ560から受信した演出制御コマンドをそのまま音/ランプ制御用マイクロコンピュータ100bに送信してもよく、受信した演出制御コマンドを加工した上で音/ランプ制御用マイクロコンピュータ100bに送信するようにしてもよい。例えば、図柄制御用マイクロコンピュータ100aは、変動パターンコマンドと表示結果コマンドとを1つの演出制御コマンドに作りなおして、音/ランプ制御用マイクロコンピュータ100bに送信してもよい。この場合、図柄制御用マイクロコンピュータ100aは、例えば、変動パターンコマンドと表示結果コマンドとにもとづいて、飾り図柄の変動中に実行すべき演出の種類と演出時間のみ特定可能な演出制御コマンドと新たに生成し、音/ランプ制御用マイクロコンピュータ100bに送信する。そのように構成すれば、図柄制御用マイクロコンピュータ100aから音/ランプ制御用マイクロコンピュータ100bに送信するコマンド数を低減することができる。
次に、音/ランプ制御用マイクロコンピュータ100bの動作を説明する。図126は、第3の実施の形態における音/ランプ制御用マイクロコンピュータ100bが実行するメイン処理を示すフローチャートである。遊技機に対する電力供給が開始され、リセット信号がハイレベルになると、音/ランプ制御用マイクロコンピュータ100bは、メイン処理を開始する。メイン処理では、音/ランプ制御用マイクロコンピュータ100bは、まず、RAM領域のクリアや各種初期値の設定、また演出制御の起動間隔を決めるためのタイマの初期設定等を行うための初期化処理を行う(ステップS881)。その後、音/ランプ制御用マイクロコンピュータ100bは、タイマ割込フラグの監視(ステップS882)の確認を行うループ処理に移行する。タイマ割込が発生すると、音/ランプ制御用マイクロコンピュータ100bは、タイマ割込処理においてタイマ割込フラグをセットする。メイン処理において、タイマ割込フラグがセットされていたら、音/ランプ制御用マイクロコンピュータ100bは、そのフラグをクリアし(ステップS883)、以下の音/ランプ制御処理を実行する。
タイマ割込は例えば33ms毎にかかる。すなわち、音/ランプ制御処理は、例えば33ms毎に起動される。また、この実施の形態では、タイマ割込処理ではフラグセットのみがなされ、具体的な音/ランプ制御処理はメイン処理において実行されるが、タイマ割込処理で音/ランプ制御処理を実行してもよい。
音/ランプ制御処理において、音/ランプ制御用マイクロコンピュータ100bは、まず、図柄制御用マイクロコンピュータ100aから受信した演出制御コマンドを解析する(コマンド解析処理:ステップS884)。なお、この場合、音/ランプ制御用マイクロコンピュータ100bは、第1の実施の形態で示したコマンド解析処理(図78〜図81に示す演出制御用マイクロコンピュータ100が実行するコマンド解析処理)と同様の処理に従って、演出制御コマンドを解析する。
次いで、音/ランプ制御用マイクロコンピュータ100bは、音/ランプ制御プロセス処理を行う(ステップS885)。この場合、音/ランプ制御用マイクロコンピュータ100bは、第1の実施の形態で示した演出制御プロセス処理(図83に示す演出制御用マイクロコンピュータ100が実行する演出制御プロセス処理)と同様の処理に従って処理(ただし、スピーカ27および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fの制御に関する部分のみ)を実行する。
そして、音/ランプ制御用マイクロコンピュータ100bは、乱数カウンタを更新する処理を実行する(ステップS886)。さらに、スピーカ27および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを用いて報知を行う報知制御プロセス処理を実行する(ステップS887)。この場合、音/ランプ制御用マイクロコンピュータ100bは、第1の実施の形態で示した報知制御プロセス処理のうちスピーカ27および各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを用いた報知処理と同様の処理を実行する。さらに、コマンド解析処理や音/ランプ制御プロセス処理、報知制御プロセス処理でセットされたデータをシリアル出力回路353に出力したり、各入力IC620,621から受信したデータをシリアル入力回路354から読み込むシリアル入出力処理を実行する(ステップS888)。その後、ステップS882に移行する。
以上のように、この実施の形態によれば、第1の実施の形態と同様に、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられ、遊技状態に応じて打球供給皿(上皿)3に設けられた上皿ランプのLED82a,82b,82e,82fの発光状態を制御する。そのため、打球供給皿(上皿)3の外側側面に設けられた上皿ランプのLED82a,82b,82e,82fを発光させることによって、遊技演出における演出態様を多様化することができ、遊技者に対する演出効果を向上させることができる。また、打球供給皿(上皿)3の外側側面に上皿ランプのLED82a,82b,82e,82fが設けられるように構成されているので、例えば、遊技店内の一区画に遊技機が複数台設置されている場合に、その遊技機で遊技をしている遊技者以外の者(隣の遊技機で遊技をしている遊技者や遊技店内でまだ遊技を行っていない遊技者)であっても、その遊技機の上皿ランプのLED82a,82b,82e,82fの発光状態が見えるようにすることができる。そのため、その遊技機で遊技をしている遊技者以外の者に対しても、注意を引く演出を実行することができ、演出効果を与えることができる。
また、この実施の形態によれば、遊技制御用マイクロコンピュータ560の送信する演出制御コマンドは、余剰球受皿(下皿)4に所定量以上の遊技球が貯留された状態である満タン状態となったことにもとづいて、余剰球受皿(下皿)4が満タン状態であることを示すコマンド(入力ポートデータ指定コマンド)が含まれる。また、音/ランプ制御用マイクロコンピュータ100bは、遊技制御用マイクロコンピュータ560から余剰球受皿(下皿)4が満タン状態であることを示すコマンドが送信されたことにもとづいて、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって、余剰球受皿(下皿)4の満タン状態を報知するための制御を実行する。よって、音/ランプ制御用マイクロコンピュータ100bは、可変表示装置9やスピーカ27など遊技演出用の演出装置とは別に余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態を制御することによって満タン状態を報知する。そのため、第1の実施の形態と同様に、遊技演出(例えば、大当り中の演出)途中で中断することなく、満タン状態を報知することができる。また、余剰球受皿(下皿)4に設けられた下皿ランプのLED84a〜84fの発光状態の制御を音/ランプ制御用マイクロコンピュータ100bが行うので、遊技制御用マイクロコンピュータ560の処理負担を軽減することができる。
また、この実施の形態によれば、音/ランプ制御用マイクロコンピュータ100bは、図柄制御用マイクロコンピュータ100aから転送された演出制御コマンドにもとづいて各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するための制御信号をシリアル信号方式で出力する。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とが、1系統の配線を介して接続されるとともに、あらかじめ相互に異なるアドレス情報が割り当てられ、自己のアドレス情報が付加された制御信号のみをパラレル信号方式に変換して出力する。また、音/ランプ制御用マイクロコンピュータ100bは、遊技盤6に設けられたシリアル−パラレル変換IC616〜618を制御するための制御信号を出力するときには、シリアル−パラレル変換IC616〜618を特定可能なアドレス情報を付加した制御信号をシリアル信号方式で出力する。また、音/ランプ制御用マイクロコンピュータ100bは、遊技枠11に設けられたシリアル−パラレル変換IC610〜615を制御するための制御信号を出力するときには、シリアル−パラレル変換IC610〜615を特定可能なアドレス情報を付加した制御信号をシリアル信号方式で出力する。そのため、第1の実施の形態と同様に、遊技盤6と遊技枠11との間の配線数を低減することができる。従って、遊技枠11と遊技盤6とが着脱自在に構成された遊技機において、遊技枠11と遊技盤6との着脱作業を容易に行えるようにすることができる。
なお、この実施の形態では、図柄制御基板80a、音/ランプ制御基板80b、盤側IC基板601、各枠側IC基板602,603,604,605A,605Bおよび各中継基板606,607の接続形態として、音/ランプ制御基板80b、中継基板606および中継基板607がバス型に1系統の配線ルートで接続される場合を説明したが、盤側IC基板601に搭載された各シリアル−パラレル変換IC616〜618を直列接続(デイジーチェーン型の接続)したり、各枠側IC基板602,603,604,605A,605Bに搭載された各シリアル−パラレル変換IC610〜615を直列接続(デイジーチェーン型の接続)することによって、配線数を低減してもよい。
図127は、第3の実施の形態における図柄制御基板80a、音/ランプ制御基板80b、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bの他の構成例を示すブロック図である。図127に示す例では、音/ランプ制御基板80bの音/ランプ制御用マイクロコンピュータ100b(具体的には、音/ランプ制御用CPU101b)は、制御信号としてのシリアルデータとともに、クロック信号を中継基板606にそれぞれ出力する。中継基板606は、音/ランプ制御用マイクロコンピュータ100bから入力したシリアルデータおよびクロック信号を、中継基板607および盤側IC基板601に供給する。
盤側IC基板601に入力されたシリアルデータは、まず、シリアル−パラレル変換IC616に入力される。図127に示すように、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC616から、盤側IC基板601に搭載される他のシリアル−パラレル変換IC618,617に順に転送される。例えば、図20に示すシフトレジスタ652の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部651に入力するように構成することによって、シリアルデータを各シリアル−パラレル変換IC616〜618に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC616〜618は、入力したシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLEDに供給する。また、盤側IC基板601に入力されたクロック信号は、盤側IC基板601上で分岐され、各シリアル−パラレル変換IC616〜618および入力IC621に入力される。
中継基板607は、演出制御用マイクロコンピュータ100から入力したシリアルデータおよびクロック信号を枠側IC基板604、枠側IC基板605Aおよび枠側IC基板605Bに供給する。枠側IC基板604に入力されたシリアルデータは、まず、シリアル−パラレル変換IC613に入力される。図127に示すように、各枠側IC基板602〜604に搭載される各シリアル−パラレル変換IC610〜613は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC613から、各枠側IC基板602,603に搭載される他のシリアル−パラレル変換IC610〜612に順に転送される。例えば、図20に示すシフトレジスタ652の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部651に入力するように構成することによって、シリアルデータを各シリアル−パラレル変換IC610〜613に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC610〜613は、入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLEDに供給する。
また、枠側IC基板602に入力されたクロック信号は、枠側IC基板604上で分岐され、シリアル−パラレル変換IC613に入力されるとともに、枠側IC基板602に入力される。枠側IC基板602に入力されたクロック信号は、枠側IC基板602上で分岐され、シリアル−パラレル変換IC610,611に入力されるとともに、枠側IC基板603に入力される。枠側IC基板603に入力されたクロック信号は、枠側IC基板603上で分岐され、シリアル−パラレル変換IC612に入力される。枠側IC基板605Aに入力されたクロック信号は、枠側IC基板605上で分岐され、シリアル−パラレル変換IC614および入力IC620に入力される。枠側IC基板605Bに入力されたクロック信号は、シリアル−パラレル変換IC615に入力される。
また、図112および図113に示した例と同様に、遊技枠11や遊技盤6に設けるランプのLEDとして、諧調制御を行うLED(例えば、マルチカラーLED)を用いるようにし、明るさを制御できるようにしてもよい。
また、この実施の形態では、アドレス付きのランプ制御信号をシリアル−パラレル変換IC610〜618に出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する場合を説明したが、第2の実施の形態と同様に、複数のシリアル−パラレル変換ICを同一系統の配線で直列に接続し、その同一系統の配線で接続された全てのランプを制御するためのランプ制御信号を含む固定長さのデータを出力するようにしてもよい。
図128は、第3の実施の形態における中継基板77、音/ランプ制御基板80bおよび図柄制御基板80aの他の回路構成例を示すブロック図である。図87に示す例では、音/ランプ制御基板80bは、音/ランプ制御用CPU101b、RAM、シリアル出力回路353、シリアル入力回路354、ラッチ信号出力部355、クロック信号出力部356および入力取込信号出力部357を含む音/ランプ制御用マイクロコンピュータ100bを搭載している。なお、RAMは外付けであってもよい。音/ランプ制御基板80bにおいて、音/ランプ制御用マイクロコンピュータ100bは、内蔵または外付けのROM(図示せず)に格納されたプログラムに従って動作する。
音/ランプ制御用CPU101bは、シリアル出力回路353を介してランプを駆動する信号を出力する。シリアル出力回路353は、入力したランプのLEDを駆動する信号(パラレルデータ)をシリアルデータに変換して中継基板606に出力する。
図128に示す例では、第2の実施の形態と同様に、遊技枠11側に設けられたシリアル−パラレル変換IC610〜615のうち4つのIC610〜613が同一系統の配線で直列に接続されている。天枠ランプや左枠ランプ、右枠ランプを制御する場合には、音/ランプ制御用CPU101bは、その同一系統の配線で接続された全てのシリアル−パラレル変換IC610〜613のランプ制御信号を含む固定長さのデータ(制御信号列)を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、音/ランプ制御用CPU101bは、固定長さの制御信号列を出力し終えると、各シリアル−パラレル変換IC610〜613にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
また、図128に示す例では、第2の実施の形態と同様に、遊技盤6側に設けられたシリアル−パラレル変換IC616〜618が同一系統の配線で直列に接続されている。センター飾り用ランプやステージランプを制御する場合には、音/ランプ制御用CPU101bは、その同一系統の配線で接続された全てのシリアル−パラレル変換IC616〜618用のランプ制御信号を含む固定長さのデータ(制御信号列)を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、音/ランプ制御用CPU101bは、固定長さの制御信号列を出力し終えると、各シリアル−パラレル変換IC616〜618にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
なお、第2の実施の形態と同様に、遊技枠11側に設けられたシリアル−パラレル変換IC610〜615のうちIC614およびC615については単独の配線で接続されている。上皿ランプや操作ボタンランプを制御する場合には、音/ランプ制御用CPU101bは、その単独の配線で接続されたシリアル−パラレル変換IC614用のランプ制御信号を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、音/ランプ制御用CPU101bは、ランプ制御信号を出力し終えると、シリアル−パラレル変換IC614にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。また、下皿ランプを制御する場合には、音/ランプ制御用CPU101bは、その単独の配線で接続されたシリアル−パラレル変換IC615用のランプ制御信号を、シリアル出力回路353を介してシリアルデータ方式として出力する。そして、音/ランプ制御用CPU101bは、ランプ制御信号を出力し終えると、シリアル−パラレル変換IC615にランプ制御信号を取り込ませるためのラッチ信号を、ラッチ信号出力部355に出力させる。
図129は、第3の実施の形態における図柄制御基板80a、音/ランプ制御基板80b、中継基板606,607、盤側IC基板601、枠側IC基板602,603,604,605A,605Bのさらに他の構成例を示すブロック図である。音/ランプ制御基板80の音/ランプ制御用マイクロコンピュータ100bは、制御信号としてのシリアルデータとともに、クロック信号を中継基板606に出力する。また、音/ランプ制御用マイクロコンピュータ100bは、シリアルデータを出力し終えたタイミングで、ラッチ信号を中継基板606に出力する。中継基板606は、音/ランプ制御用マイクロコンピュータ100bから入力したシリアルデータ、クロック信号およびラッチ信号を盤側IC基板601に供給する。また、中継基板606は、シリアルデータ、クロック信号およびラッチ信号を、さらに中継基板607を介して各枠側IC基板602,603,604,605A,605Bに供給する。
盤側IC基板601に入力されたシリアルデータは、まず、シリアル−パラレル変換IC616に入力される。図129に示すように、盤側IC基板601に搭載される各シリアル−パラレル変換IC616〜618は、同一系統の配線で直列に接続されている。例えば、各シリアル−パラレル変換IC616〜618は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC616から、盤側IC基板601に搭載される他のシリアル−パラレル変換IC618,617に順に転送される。図129に示す例では、第2の実施の形態と同様に、各シリアル−パラレル変換ICが搭載するシフトレジスタ682の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部681に入力するように構成する(図116参照)ことによって、シリアルデータを各シリアル−パラレル変換IC616〜618に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC616〜618は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチしたシリアルデータをパラレルデータに変換して、遊技盤6に設けられた各ランプのLEDに供給する。また、盤側IC基板601に入力されたクロック信号は、盤側IC基板601上で分岐され、各シリアル−パラレル変換IC616〜618および入力IC621に入力される。
中継基板607は、音/ランプ制御用マイクロコンピュータ100bから入力したシリアルデータ、クロック信号およびラッチ信号を枠側IC基板604、枠側IC基板605Aおよび枠側IC基板605Bに供給する。枠側IC基板604に入力されたシリアルデータは、まず、シリアル−パラレル変換IC613に入力される。図129に示すように、各枠側IC基板602〜604に搭載される各シリアル−パラレル変換IC610〜613は、同一系統の配線で直列に接続されている。例えば、各シリアル−パラレル変換IC610〜613は、シリアルデータ用の信号線がデイジーチェーン型に接続されている。したがって、入力されたシリアルデータは、シリアル−パラレル変換IC613から、各枠側IC基板602,603に搭載される他のシリアル−パラレル変換IC610〜612に順に転送される。図129に示す例では、第2の実施の形態と同様に、各シリアル−パラレル変換ICが搭載するシフトレジスタ682の最終ビットの出力を次のシリアル−パラレル変換ICのデータラッチ部681に入力するように構成する(図116参照)ことによって、シリアルデータを各シリアル−パラレル変換IC610〜613に順に転送するようにすればよい。そして、各シリアル−パラレル変換IC610〜613は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチした入力したシリアルデータをパラレルデータに変換して、遊技枠11に設けられた各ランプのLEDに供給する。
また、枠側IC基板602に入力されたクロック信号は、枠側IC基板604上で分岐され、シリアル−パラレル変換IC613に入力されるとともに、枠側IC基板602に入力される。枠側IC基板602に入力されたクロック信号は、枠側IC基板602上で分岐され、各シリアル−パラレル変換IC610,611に入力されるとともに、枠側IC基板603に入力される。
枠側IC基板605Aに入力されたシリアルデータは、シリアル−パラレル変換IC614に入力される。そして、シリアル−パラレル変換IC614は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチしたシリアルデータをパラレルデータに変換して、遊技枠11に設けられた上皿ランプおよび操作ボタンランプのLED82a〜82f,83に供給する。また、枠側IC基板605Aに入力されたクロック信号は、枠側IC基板605A上で分岐され、シリアル−パラレル変換IC614および入力IC620に入力される。
枠側IC基板605Bに入力されたシリアルデータは、シリアル−パラレル変換IC615に入力される。そして、シリアル−パラレル変換IC615は、ラッチ信号を入力したタイミングでシリアルデータをラッチし、ラッチしたシリアルデータをパラレルデータに変換して、遊技枠11に設けられた下皿ランプのLED84a〜84fに供給する。また、枠側IC基板605Bに入力されたクロック信号は、シリアル−パラレル変換IC615に入力される。
図128および図129に示す例では、各シリアル−パラレル変換ICは、第2の実施の形態で示した構成と同様に構成される(図116参照)。また、図128および図129に示す例では、第2の実施の形態で示したランプ制御信号やモータ制御信号を含む制御信号列(図117、図118参照)が用いられる。また、図128および図129に示す例では、音/ランプ制御用マイクロコンピュータ100b(具体的には、音/ランプ制御用CPU101b)は、第2の実施の形態で示した演出制御用マイクロコンピュータ100と同様の処理に従って、シリアル設定処理やシリアル入出力処理を実行する(図119〜図121参照)。
図128および図129に示すように構成すれば、音/ランプ制御用マイクロコンピュータ100bは、図柄制御用マイクロコンピュータ100aから転送された演出制御コマンドにもとづいて各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するための制御信号をシリアル信号方式で出力する。また、盤側IC基板601に搭載されたシリアル−パラレル変換IC616〜618と、枠側IC基板602,603,604,605A,605Bに搭載されたシリアル−パラレル変換IC610〜615とが、1系統の配線を介して接続される。そのため、第2の実施の形態と同様に、遊技盤6と遊技枠11との間の配線数を低減することができる。従って、遊技枠11と遊技盤6とが着脱自在に構成された遊技機において、遊技枠11と遊技盤6との着脱作業を容易に行えるようにすることができる。
なお、この実施の形態では、図柄制御基板80aに搭載された図柄制御用マイクロコンピュータ100aが、まず遊技制御用マイクロコンピュータ560から演出制御コマンドを受信し、次いで音/ランプ制御用マイクロコンピュータ100bに転送する場合を説明したが、音/ランプ制御基板80bに搭載された音/ランプ制御用マイクロコンピュータ100bが遊技制御用マイクロコンピュータ560から演出制御コマンドを受信するようにしてもよい。この場合、音/ランプ制御基板80bが搭載する音/ランプ制御用マイクロコンピュータ100bは、まず、遊技制御用マイクロコンピュータ560から演出制御コマンドを受信する。そして、音/ランプ制御用マイクロコンピュータ100bは、受信した演出制御コマンドにもとづいて、制御信号をシリアルデータ方式として出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するとともに、受信した演出制御コマンドを図柄制御基板80aに転送(送信)する。なお、音/ランプ制御用マイクロコンピュータ100bは、例えば、予告演出の実行の有無や予告演出の内容を決定し、予告演出の内容を特定可能な予告演出コマンドを図柄制御用マイクロコンピュータ100aに送信するようにしてもよい。また、音/ランプ制御用マイクロコンピュータ100bは、遊技制御用マイクロコンピュータ560から受信した演出制御コマンドを加工して、予告演出の有無を特定可能なコマンドを図柄制御用マイクロコンピュータ100aに送信するようにしてもよい。
また、この実施の形態では、別々の制御基板を用いて各演出手段を制御する例として、遊技機が図柄制御基板80aと音/ランプ制御基板80bとを備える場合を説明したが、他の種類の制御基板を複数備えるものであってもよい。例えば、遊技機は、可変表示装置9とスピーカ27とを制御する図柄/音制御基板と、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御するランプ制御基板とを備えていてもよい。この場合、例えば、図柄/音制御基板が搭載する図柄/音制御用マイクロコンピュータが、まず、遊技制御用マイクロコンピュータ560から演出制御コマンドを受信し、ランプ制御基板に転送(送信)する。そして、ランプ制御基板が搭載するランプ制御用マイクロコンピュータは、転送された演出制御コマンドにもとづいて、制御信号をシリアルデータ方式として出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する。
また、例えば、遊技機は、可変表示装置9と各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fとを制御する図柄/ランプ制御基板と、スピーカ27を制御する音制御基板とを備えていてもよい。この場合、例えば、音制御基板が搭載する音制御用マイクロコンピュータが、まず、遊技制御用マイクロコンピュータ560から演出制御コマンドを受信し、図柄/ランプ制御基板に転送(送信)する。そして、図柄/ランプ制御基板が搭載する図柄/ランプ制御用マイクロコンピュータは、転送された演出制御コマンドにもとづいて、制御信号をシリアルデータ方式として出力することによって、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84fを制御する。
なお、上記に示した各実施の形態において、図130に示すように、払出制御基板37から主基板321に出力される賞球カウント信号を、主基板31において分岐させて情報端子盤34に入力させるようにしてもよい。なお、賞球カウント信号を含む払出制御基板37からの信号は、I/Oポート部57(図10参照)における入力ポート571を介してCPU56に入力される。また、図130に示すように、CPU56は、ドア開閉信号を、I/Oポート部57における出力ポート572を介して情報端子盤34に出力するようにしてもよい。図130に示すように構成されている場合には、払出制御基板37から情報端子盤34に対して賞球カウント信号およびドア開閉信号は出力されない。また、ドア開閉信号についても、主基板31において分岐させて情報端子盤34に入力させるようにしてもよい。なお、図11に示されたように、払出制御基板37において、ドア開閉信号(ドア開放センサ155の検出信号)は、払出制御用マイクロコンピュータ370には入力されずに主基板31に出力されることが好ましい。また、払出制御基板37から主基板321に出力される賞球カウント信号は、払出個数カウントスイッチ301の検出信号が10回出力される毎に1回オン状態になるような信号であってもよい。
なお、上記の各実施の形態のパチンコ遊技機は、主として、始動入賞にもとづいて可変表示部に可変表示される特別図柄の停止図柄が所定の図柄になると所定の遊技価値が遊技者に付与可能になるパチンコ遊技機であったが、始動入賞にもとづいて開放する電動役物の所定領域への入賞があると所定の遊技価値が遊技者に付与可能になるパチンコ遊技機や、始動入賞にもとづいて可変表示される図柄の停止図柄が所定の図柄の組み合わせになると開放する所定の電動役物への入賞があると所定の権利が発生または継続するパチンコ遊技機であっても、本発明を適用できる。さらに、遊技メダルを投入して賭け数を設定し遊技を行うスロット機や、遊技メダルではなく遊技球を投入して賭け数を設定し遊技を行う遊技機などにも本発明を適用できる。
また、上述した実施の形態では、以下の(1)〜(7)に示すような遊技機の特徴的構成も示されている。
(1)遊技機は、外枠に対して開閉自在に設置される遊技枠(例えば、遊技枠11)と、遊技枠に取り付けられ、所定の板状体および板状体に取り付けられる各種部品を含む遊技盤(例えば、遊技盤6)とを備え、遊技盤を交換可能な遊技機であって、遊技の進行を制御し、演出用の電気部品を制御させるための演出制御コマンドを送信する遊技制御手段(例えば、遊技制御用マイクロコンピュータ560)と、遊技制御手段が送信した演出制御コマンドに応じて演出用の電気部品(例えば、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f、モータ151a,152a)を制御する演出制御手段(例えば、演出制御用マイクロコンピュータ100)とを遊技盤に備え、遊技制御手段は、演出制御コマンドを演出制御手段に送信するコマンド送信手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS29を実行する部分)を含み、演出制御手段は、遊技制御手段から受信した演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段(例えば、演出制御用マイクロコンピュータ100におけるステップS708を実行する部分)を含み、遊技盤に設けられた盤側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC616〜618)および遊技枠に設けられた枠側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC610〜615)をさらに備え、盤側シリアル−パラレル変換回路は、演出制御手段の出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技盤に設けられた電気部品(例えば、ランプのLED125a〜125f,126a〜126f、モータ151a,152a)に出力し、枠側シリアル−パラレル変換回路は、演出制御手段の出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技枠に設けられた電気部品(例えば、ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)に出力するものであり、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路、または演出制御手段と枠側シリアル−パラレル変換回路は、1系統の配線を介して接続され(例えば、中継基板606,607がバス型に接続されることによって1系統の配線を介して接続される。各シリアル−パラレル変換IC610〜618がバス形式またはデイジーチェーン型に接続されることによって1系統に接続される)、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板(例えば、中継基板606,607)、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板(例えば、中継基板607)が設けられているように構成されていてもよい。そのような構成によれば、演出制御手段が、遊技制御手段から受信した演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段を含み、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路、または演出制御手段と枠側シリアル−パラレル変換回路が、1系統の配線を介して接続されるように構成されているので、遊技盤と遊技枠との間の配線数を低減することができる。従って、遊技枠と遊技盤とが着脱自在に構成された遊技機において、遊技枠と遊技盤との着脱作業を容易に行えるようにすることができる。また、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板が設けられているので、中継基板への接続作業や取り外し作業を行うだけで遊技枠と遊技盤との脱着作業を容易に行うことができる。
(2)また、遊技機は、外枠に対して開閉自在に設置される遊技枠(例えば、遊技枠11)と、遊技枠に取り付けられ、所定の板状体および板状体に取り付けられる各種部品を含む遊技盤(例えば、遊技盤6)とを備え、遊技盤を交換可能な遊技機であって、遊技の進行を制御し、演出用の電気部品を制御させるための演出制御コマンドを送信する遊技制御手段(例えば、遊技制御用マイクロコンピュータ560)と、遊技制御手段が送信した演出制御コマンドに応じて演出用の電気部品(例えば、可変表示装置9、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f、モータ151a,152a)を制御する演出制御手段(例えば、図柄制御用マイクロコンピュータ100a、音/ランプ制御用マイクロコンピュータ100b)とを遊技盤に備え、演出制御手段は、演出用の電気部品のうちの少なくとも1つの電気部品(例えば、可変表示装置9)を制御する第1の演出制御手段(例えば、図柄制御用マイクロコンピュータ100a)と、演出用の電気部品のうち第1の演出制御手段が制御する電気部品以外の電気部品(例えば、各ランプのLED125a〜125f,126a〜126f,281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f、モータ151a,152a)を制御する第2の演出制御手段(例えば、音/ランプ制御用マイクロコンピュータ100b)とを含み、遊技制御手段は、第1の演出制御コマンドを第1の演出制御手段に送信する第1コマンド送信手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS29を実行する部分)を含み、第1の演出制御手段は、第1の演出制御コマンドを受信したことにもとづいて、第1の演出制御コマンドの内容を特定可能な第2の演出制御コマンドを第2の演出制御手段に送信する第2コマンド送信手段(例えば、図柄制御用マイクロコンピュータ100aにおけるステップS788を実行する部分)を含み、第2の演出制御手段は、第1の演出制御手段から受信した第2の演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段(例えば、音/ランプ制御用マイクロコンピュータ100bにおけるステップS888を実行する部分)を含み、遊技盤に設けられた盤側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC616〜618)および遊技枠に設けられた枠側シリアル−パラレル変換回路(例えば、シリアル−パラレル変換IC610〜615)をさらに備え、盤側シリアル−パラレル変換回路は、第2の演出制御手段の出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技盤に設けられた電気部品(例えば、ランプのLED125a〜125f,126a〜126f、モータ151a,152a)に出力し、枠側シリアル−パラレル変換回路は、第2の演出制御手段の出力手段から入力された制御信号をシリアル信号方式からパラレル信号方式に変換して、演出用の電気部品のうち遊技枠に設けられた電気部品(例えば、ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)に出力するものであり、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路、または演出制御手段と枠側シリアル−パラレル変換回路は、1系統の配線を介して接続され(例えば、中継基板606,607がバス型に接続されることによって1系統の配線を介して接続される。各シリアル−パラレル変換IC610〜618がバス形式またはデイジーチェーン型に接続されることによって1系統に接続される)、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板(例えば、中継基板606,607)、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板(例えば、中継基板607)が設けられているように構成されていてもよい。そのような構成によれば、第2の演出制御手段が、第1の演出制御手段から受信した第2の演出制御コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段を含み、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路、または演出制御手段と枠側シリアル−パラレル変換回路が、1系統の配線を介して接続されるように構成されているので、遊技盤と遊技枠との間の配線数を低減することができる。従って、遊技枠と遊技盤とが着脱自在に構成された遊技機において、遊技枠と遊技盤との着脱作業を容易に行えるようにすることができる。また、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板、または枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板が設けられているので、中継基板への接続作業や取り外し作業を行うだけで遊技枠と遊技盤との脱着作業を容易に行うことができる。
(3)盤側シリアル−パラレル変換回路または枠側シリアル−パラレル変換回路の少なくとも一部は、同一の系統の配線で直列に接続され(例えば、図115に示すように、各シリアル−パラレル変換IC610〜613が同一系統の配線で直列に接続されている、シリアル−パラレル変換IC616〜618が同一系統の配線で直列に接続されている)、出力手段は、同一の系統の配線に接続された全ての演出用の電気部品の制御信号の情報を含む固定長さのデータを単位データづつ所定周期ごとにシリアル信号方式で出力し(例えば、演出制御用マイクロコンピュータ100または音/ランプ制御用マイクロコンピュータ100bは、ステップS972Aで、シリアル出力回路375を用いて、図117に示すランプ制御信号を含む制御信号列や図118に示すモータ制御信号を含む制御信号列を出力する)、同一の系統の配線に接続された盤側シリアル−パラレル変換回路または枠側シリアル−パラレル変換回路は、同一の系統の配線の下位側に接続された盤側シリアル−パラレル変換回路または枠側シリアル−パラレル変換回路に、所定周期ごとに出力された単位データの制御信号をそのまま順次転送する(例えば、図116に示すように、各シリアル−パラレル変換IC610〜613,616〜618において、シフトレジスタ682の最終ビットがそのまま下位側のデータラッチ部681に入力される)とともに、所定のタイミングで単位データにもとづいて制御信号を出力する(例えば、図116に示すように、各シリアル−パラレル変換IC610〜613,616〜618において、データバッファ683は、演出制御用マイクロコンピュータ100または音/ランプ制御用マイクロコンピュータ100bからのラッチ信号を入力したタイミングで、シフトレジスタ682が格納するデータをラッチして出力する)ように構成されていてもよい。そのような構成によれば、出力手段が、同一の系統の配線に接続された全ての演出用の電気部品の制御信号の情報を含む固定長さのデータを単位データづつ所定周期ごとにシリアル信号方式で出力するように構成されているので、盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路とにあらかじめ相互に異なるアドレス情報を割り当てる必要をなくすことができる。
(4)遊技制御手段は、演出制御コマンドをシリアル信号方式で演出制御手段に送信するシリアル送信手段(例えば、遊技制御用マイクロコンピュータ560におけるステップS29でシリアル出力回路78を用いてシリアルデータを送信する部分)を含むように構成されていてもよい。そのような構成によれば、遊技制御手段が、演出制御コマンドをシリアル信号方式で演出制御手段に送信するシリアル送信手段を含むように構成されているので、遊技制御手段と演出制御手段との間の配線数も低減することができる。
(5)遊技機は、入力用の電気部品(例えば、操作ボタン81a〜81e,位置センサ151b,152b)と、該電気部品から入力された入力信号をラッチしてパラレル信号方式で出力するラッチ手段(例えば、入力IC620,621を構成する各Dフリップフロップ661〜668)と、ラッチ手段が出力した入力信号をシリアル信号方式に変換して出力するパラレル−シリアル変換回路(例えば、入力IC620,621)と、盤側シリアル−パラレル変換回路、枠側シリアル−パラレル変換回路およびパラレルーシリアル変換回路に共通に用いるクロック信号を出力するクロック信号出力手段(例えば、演出制御用マイクロコンピュータ100または音/ランプ制御用マイクロコンピュータ100bが搭載するクロック信号出力部356)とを備えるように構成されていてもよい。そのような構成によれば、盤側シリアル−パラレル変換回路、枠側シリアル−パラレル変換回路およびパラレルーシリアル変換回路に共通に用いるクロック信号を出力するクロック信号出力手段を備えるように構成されているので、盤側シリアル−パラレル変換回路、枠側シリアル−パラレル変換回路および入力用のパラレル−シリアル変換回路とを容易に同期させることができ、クロック信号用の配線数も低減することができる。
(6)遊技機は、演出用の電気部品として発光部品(例えば、各ランプのLED281a〜281l,282a〜282f,283a〜283f,82a〜82f,83,84a〜84f)を備え、出力手段は、発光部品の発光状態を制御する制御信号として、発光部品を発光させるときの輝度に応じて、パルス量を変化させた信号を出力する(例えば、演出制御用マイクロコンピュータ100は、図112に示す輝度に応じてパルス数を変化させた信号を出力する)ように構成されていてもよい。そのような構成によれば、出力手段が、発光部品の発光状態を制御する制御信号として、発光部品を発光させるときの輝度に応じて、パルス量を変化させた信号を出力するように構成されているので、発光部品の輝度を調整する諧調制御を行えるようにすることができる。
(7)遊技機は、遊技球を用いて所定の遊技を行うことが可能であり、各々を識別可能な複数種類の識別情報(例えば、特別図柄や飾り図柄)の可変表示を行い表示結果を導出表示する可変表示装置(例えば、特別図柄表示器8や可変表示装置9)を備え、該可変表示装置に特定表示結果(例えば、大当り図柄)が導出表示されたときに遊技者にとって有利な特定遊技状態(例えば、大当り遊技状態)に移行させる遊技機であって、特定遊技状態において開放状態に変化可能な可変入賞球装置(例えば、特別可変入賞球装置20)と、可変入賞球装置に入賞した遊技球を検出して検出信号を出力する検出手段(例えば、カウントスイッチ23)とを備え、遊技制御手段は、特定遊技状態に移行させるか否かを表示結果の導出表示以前に決定する事前決定手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS62,S63の処理を実行する部分)と、事前決定手段の決定にもとづいて、可変表示装置における識別情報の可変表示の開始と可変表示時間とを特定可能な可変表示コマンド(例えば、変動パターンコマンド)を送信する可変表示コマンド送信手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS103の処理を実行する部分)と、検出手段からの検出信号を入力したか否かを判定する入賞判定手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS341〜S348、S361〜S366,S361の処理を実行する部分。特に、カウントスイッチ入力ビット判定値を用いてステップS365,S361の処理を実行する部分)と、特定遊技状態以外の遊技状態において入賞判定手段が検出信号を入力したことにもとづいて、異常報知の実行を指示するための異常報知コマンドを送信する異常報知コマンド送信手段(例えば、遊技制御用マイクロコンピュータ560において、ステップS1585,S1587〜S589の処理を実行する部分)とを含み、演出制御手段は、可変表示コマンド送信手段が送信した可変表示コマンドにもとづいて可変表示装置において識別情報の可変表示を開始し、可変表示時間が経過したときに可変表示装置に表示結果を導出表示する可変表示制御手段(例えば、演出制御用マイクロコンピュータ100において、ステップS800〜S803の処理を実行する部分、図柄制御用マイクロコンピュータ100aにおいて、ステップS800〜S803と同様の処理を実行する部分)と、異常報知コマンド送信手段が送信した異常報知コマンドにもとづいて、演出装置により異常報知を実行する異常報知手段(例えば、演出制御用マイクロコンピュータ100において、ステップS1924〜S1929,S1977〜S1983の処理を実行する部分、音/ランプ制御用マイクロコンピュータ100bにおいて、ステップS1924〜S1929,S1977〜S1983と同様の処理を実行する部分)とを含み、該異常報知手段は、可変表示制御手段が可変表示装置において識別情報の可変表示を実行しているときにも異常報知を実行可能であり(例えば、演出制御用マイクロコンピュータ100は、ステップS835AでYのときステップS835Dを実行し、ステップS845AでYのときステップS845Dを実行する、音/ランプ制御用マイクロコンピュータ100bは、ステップS835Aと同様の処理でYのときステップS835Dと同様の処理を実行し、ステップS845Aと同様の処理でYのときステップS845Dと同様の処理を実行する)、出力手段は、異常報知手段による異常報知の実行時に、異常報知コマンド送信手段が送信した異常報知コマンドにもとづいて、演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する(例えば、演出制御用マイクロコンピュータ100において、ステップS1928,S1983の設定結果にもとづいてステップS708を実行する部分、音/ランプ制御用マイクロコンピュータ100bにおいて、ステップS1928,S1983と同様の処理の設定結果にもとづいてステップS888を実行する部分)ように構成されていてもよい。そのような構成によれば、遊技制御手段が、特定遊技状態以外の遊技状態において入賞判定手段が検出信号を入力したことにもとづいて、異常報知の実行を指示するための異常報知コマンドを送信する異常報知コマンド送信手段を含み、演出制御手段が、異常報知コマンド送信手段が送信した異常報知コマンドにもとづいて、演出装置により異常報知を実行する異常報知手段を含み、異常報知手段が、可変表示制御手段が可変表示装置において識別情報の可変表示を実行しているときにも異常報知を実行可能であるので、異常入賞が生じたことを報知することができるとともに、遊技を継続することが可能であって遊技者が不利益を被らないようにすることができる。
本発明は、遊技媒体を用いて遊技者が所定の遊技を行うことが可能であり、外枠に対して開閉自在に設置される遊技枠と、遊技枠に取り付けられ、所定の板状体および板状体に取り付けられる各種部品を含む遊技盤とを備えたパチンコ遊技機等の遊技機に適用される。
パチンコ遊技機を正面からみた正面図である。 遊技枠の前面を示す正面図である。 遊技盤の前面を示す正面図である。 打球供給皿(上皿)の正面および上面を示す図である。 余剰球受皿(下皿)の正面および上面を示す図である。 可動部材としてのトロッコの動作を示す説明図である。 可動部材としての梁の動作を示す説明図である。 遊技枠を開いた状態を示す説明図である。 遊技盤の裏面を示す説明図である。 遊技制御基板(主基板)の回路構成例を示すブロック図である。 払出制御基板および球払出装置などの払出に関連する構成要素を示すブロック図である。 中継基板および演出制御基板の回路構成例を示すブロック図である。 情報端子盤の構成例を示すブロック図である。 遊技制御手段における出力ポートのビット割り当ての例を示す説明図である。 遊技制御手段における入力ポートのビット割り当ての例を示す説明図である。 演出制御基板、中継基板、盤側IC基板、枠側IC基板の構成例を示すブロック図である。 各シリアル−パラレル変換ICに付与されるアドレスの例を示す説明図である。 各シリアル−パラレル変換ICに付与されるアドレスの例を示す説明図である。 各入力ICに付与されるアドレスの例を示す説明図である。 各シリアル−パラレル変換ICの構成を示すブロック図である。 演出制御用マイクロコンピュータから出力されるシリアルデータのフォーマットの例を示す説明図である。 シリアル−パラレル変換ICへのシリアルデータおよびクロック信号の入力タイミングと、パラレルデータの出力タイミングとの例を示すタイミング図である。 各入力ICの構成を示すブロック図である。 主基板におけるCPUが実行するメイン処理を示すフローチャートである。 主基板におけるCPUが実行するメイン処理を示すフローチャートである。 2msタイマ割込処理を示すフローチャートである。 各乱数を示す説明図である。 大当り判定値の一例を示す説明図である。 変動パターンの一例を示す説明図である。 シリアルデータ方式として送信される演出制御コマンドのフォーマットの例を示す説明図である。 演出制御コマンドの内容の一例を示す説明図である。 演出制御コマンドの送信タイミングの一例を示す説明図である。 入力ポートデータ指定コマンドのEXTデータの構成を示す説明図である。 特別図柄プロセス処理を示すフローチャートである。 特別図柄プロセス処理を示すフローチャートである。 始動口スイッチ通過処理を示すフローチャートである。 特別図柄通常処理を示すフローチャートである。 特別図柄通常処理を示すフローチャートである。 変動パターン設定処理を示すフローチャートである。 表示結果特定コマンド送信処理を示すフローチャートである。 特別図柄変動中処理を示すフローチャートである。 特別図柄停止処理を示すフローチャートである。 大当り終了処理を示すフローチャートである。 小当り終了処理を示すフローチャートである。 普通図柄プロセス処理の一例を示すフローチャートである。 普通図柄通常処理を示すフローチャートである。 普通図柄変動処理を示すフローチャートである。 普通図柄停止処理を示すフローチャートである。 高ベース時テーブルおよび低ベース時テーブルの例を示す説明図である。 普通電動役物作動処理を示すフローチャートである。 遊技制御用マイクロコンピュータから払出制御用マイクロコンピュータに対して送信される払出指令信号等の内容の一例を示す説明図である。 各制御信号の送受信に用いられる信号線等を示すブロック図である。 払出指令信号の出力の仕方の一例を示すタイミング図である。 払出個数カウントスイッチの検出信号の状態と賞球カウント信号の出力状態との関係を示す説明図である。 入力ポートデータ確認処理を示すフローチャートである。 スイッチ処理の処理例を示すフローチャートである。 賞球処理の一例を示すフローチャートである。 賞球個数テーブルの例を示す説明図である。 賞球個数加算処理を示すフローチャートである。 賞球制御処理を示すフローチャートである。 異常入賞報知処理を示すフローチャートである。 演出制御コマンド制御処理における演出制御コマンド送信要求フラグにもとづく演出制御コマンドの送信処理を示すフローチャートである。 払出制御用マイクロコンピュータにおける出力ポートのビット割り当ての例を示す説明図である。 払出制御用マイクロコンピュータにおける入力ポートのビット割り当ての例を示す説明図である。 払出制御手段が実行する払出制御処理を示すフローチャートである。 賞球球貸し制御処理を示すフローチャートである。 払出開始待ち処理を示すフローチャートである。 払出モータ停止待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 払出通過待ち処理を示すフローチャートである。 エラーの種類とエラー表示用LEDの表示との関係等を示す説明図である。 エラー処理を示すフローチャートである。 エラー処理を示すフローチャートである。 入力判定処理のうち、入力ポート0,1の入力データを主基板に送信する部分の処理を示すフローチャートである。 演出制御用CPUが実行する演出制御メイン処理を示すフローチャートである。 コマンド受信バッファの構成例を示す説明図である。 コマンド解析処理を示すフローチャートである。 コマンド解析処理を示すフローチャートである。 コマンド解析処理を示すフローチャートである。 コマンド解析処理を示すフローチャートである。 ドア開閉確認処理を示すフローチャートである。 演出制御プロセス処理を示すフローチャートである。 変動パターンコマンド受信待ち処理を示すフローチャートである。 飾り図柄変動開始処理を示すフローチャートである。 飾り図柄の停止図柄の一例を示す説明図である。 プロセスデータの構成例を示す説明図である。 各演出制御コマンドを受信した場合にプロセスデータに応じて実行されるランプの制御内容の例を示す説明図である。 飾り図柄変動中処理を示すフローチャートである。 飾り図柄変動停止処理を示すフローチャートである。 大当り表示処理を示すフローチャートである。 大当り終了処理を示すフローチャートである。 可変表示装置に表示される報知画面の例を示す説明図である。 報知制御プロセス処理において実行される各種エラー報知の態様の例を示す説明図である。 報知制御プロセス処理を示すフローチャートである。 報知開始処理を示すフローチャートである。 報知開始処理を示すフローチャートである。 報知中処理を示すフローチャートである。 報知中処理を示すフローチャートである。 報知中処理を示すフローチャートである。 エラー報知用プロセステーブルの構成例を示す説明図である。 報知制御プロセス処理においてシリアルデータ方式として出力されるランプ制御信号の例を示す説明図である。 報知制御プロセス処理においてシリアルデータ方式として出力されるランプ制御信号の他の例を示す説明図である。 遊技演出においてシリアルデータ方式として出力されるモータ制御信号の例を示す説明図である。 シリアル設定処理の一例を示すフローチャートである。 出力対象のランプ制御信号やモータ制御信号が設定されるデータ格納領域の一構成例を示す説明図である。 シリアル入出力処理の具体例を示すフローチャートである。 可変表示装置における表示演出、スピーカによる音演出および各ランプによる表示演出の状況の例を示す説明図である。 可変表示装置における表示演出、スピーカによる音演出および各ランプによる表示演出の状況の例を示す説明図である。 遊技店内に遊技機が複数設置されている状態を示す説明図である。 演出制御基板、中継基板、盤側IC基板、枠側IC基板の他の構成例を示すブロック図である。 LEDの諧調制御を行う場合にLEDに供給されるパルス列の例を示す説明図である。 諧調制御を行うランプのLEDを用いて明るさを制御する場合における演出制御基板、中継基板、盤側IC基板、枠側IC基板の構成例を示すブロック図である。 第2の実施の形態における中継基板および演出制御基板の回路構成例を示すブロック図である。 第2の実施の形態における演出制御基板、中継基板、盤側IC基板、枠側IC基板の構成例を示すブロック図である。 第2の実施の形態における各シリアル−パラレル変換ICの構成を示すブロック図である。 第2の実施の形態における報知制御処理においてシリアルデータ方式として出力されるランプ制御信号を含む制御信号列の例を示す説明図である。 第2の実施の形態における遊技演出においてシリアルデータ方式として出力されるモータ制御信号を含む制御信号列の例を示す説明図である。 第2の実施の形態におけるシリアル設定処理の例を示すフローチャートである。 第2の実施の形態における出力対象のランプ制御信号やモータ制御信号を含む制御信号列が設定されるデータ格納領域の一構成例を示す説明図である。 第2の実施の形態におけるシリアル入出力処理の具体例を示すフローチャートである。 第2の実施の形態における演出制御基板、中継基板、盤側IC基板、枠側IC基板の他の構成例を示すブロック図である。 第3の実施の形態における中継基板、音/ランプ制御基板および図柄制御基板の回路構成例を示すブロック図である。 第3の実施の形態における図柄制御基板、音/ランプ制御基板、中継基板、盤側IC基板、枠側IC基板の構成例を示すブロック図である。 第3の実施の形態における図柄制御用マイクロコンピュータが実行するメイン処理を示すフローチャートである。 第3の実施の形態における音/ランプ制御用マイクロコンピュータが実行するメイン処理を示すフローチャートである。 第3の実施の形態における図柄制御基板、音/ランプ制御基板、中継基板、盤側IC基板、枠側IC基板の他の構成例を示すブロック図である。 第3の実施の形態における中継基板、音/ランプ制御基板および図柄制御基板の他の回路構成例を示すブロック図である。 第3の実施の形態における図柄制御基板、音/ランプ制御基板、中継基板、盤側IC基板、枠側IC基板のさらに他の構成例を示すブロック図である。 主基板、払出制御基板、演出制御基板および情報端子盤の接続例を示すブロック図である。
符号の説明
1 パチンコ遊技機
8 特別図柄表示器
9 可変表示装置
13 第1始動入賞口
14 第2始動入賞口
20 特別可変入賞球装置
31 遊技制御基板(主基板)
56 CPU
560 遊技制御用マイクロコンピュータ
78 シリアル出力回路
80 演出制御基板
81 操作ボタン
82a〜82f 上皿ランプ(LED)
83 操作ボタンランプ(LED)
84a〜84f 下皿ランプ(LED)
100 演出制御用マイクロコンピュータ
101 演出制御用CPU
109 VDP
125a〜125f センター飾り用ランプ(LED)
126a〜126f ステージランプ(LED)
151,152 可動部材(トロッコ、梁)
151a,152a 可動モータ
151b,152b 位置センサ
281a〜281l 天枠ランプ(LED)
282a〜282f 左枠ランプ(LED)
283a〜283f 右枠ランプ(LED)
353 シリアル出力回路
354 シリアル入力回路
601 盤側IC基板
602,603,604,605A,605B 枠側IC基板
606,607 中継基板
610〜618 シリアル−パラレル変換IC
620,621 入力IC

Claims (6)

  1. 遊技媒体を用いて遊技者が所定の遊技を行うことが可能であり、外枠に対して開閉自在に設置される遊技枠と、前記遊技枠に取り付けられ、所定の板状体および前記板状体に取り付けられる各種部品を含む遊技盤とを備えた遊技機であって、
    前記遊技機の前面に配置され、所定の発光体が設けられるとともに前記遊技媒体を貯留可能な貯留部と、
    遊技の進行を制御し、演出用の電気部品を制御させるための演出制御コマンドを送信する遊技制御手段と、
    前記遊技制御手段が送信した前記演出制御コマンドに応じて、前記貯留部に設けられた発光体を含む演出用の電気部品を制御する演出制御手段とを備え、
    前記遊技制御手段の送信する前記演出制御コマンドは、前記貯留部に所定量以上の遊技媒体が貯留された状態である満タン状態となったことにもとづいて送信されるコマンドが含まれ、
    前記演出制御手段は、
    前記遊技制御手段から送信された前記演出制御コマンドにもとづいて、前記演出用の電気部品を制御するための制御信号をシリアル信号方式で出力する出力手段を含み、
    前記遊技盤に設けられた盤側シリアル−パラレル変換回路および前記遊技枠に設けられた枠側シリアル−パラレル変換回路をさらに備え、
    前記盤側シリアル−パラレル変換回路は、前記出力手段から入力された前記制御信号をシリアル信号方式からパラレル信号方式に変換して、前記演出用の電気部品のうち前記遊技盤に設けられた電気部品に出力し、
    前記枠側シリアル−パラレル変換回路は、前記出力手段から入力された前記制御信号をシリアル信号方式からパラレル信号方式に変換して、前記演出用の電気部品のうち前記遊技枠に設けられた電気部品に出力し、
    前記出力手段は、前記遊技制御手段から前記貯留部が満タン状態となったことを示すコマンドが送信されたことにもとづいて、前記貯留部に設けられた前記所定の発光体により、前記貯留部の満タン状態を報知するための制御信号をシリアル信号方式で出力する満タン報知制御手段を含む
    ことを特徴とする遊技機。
  2. 貯留部に設けられた所定の発光体は、前記貯留部の周縁部に設けられている請求項1記載の遊技機。
  3. 演出制御手段は、遊技状態に応じて貯留部に設けられた所定の発光体を含む遊技機に設けられた発光体の発光状態を制御する貯留部発光体制御手段を含み、
    満タン報知制御手段は、前記貯留部発光体制御手段によって前記貯留部に設けられた発光体の発光状態が制御されるときとは異なる発光態様で、前記貯留部に設けられた所定の発光体の発光状態を制御して満タン報知を実行する
    請求項1または請求項2記載の遊技機。
  4. 盤側シリアル−パラレル変換回路と枠側シリアル−パラレル変換回路との接続を中継する中継基板、または前記枠側シリアル−パラレル変換回路と演出制御手段との接続を中継する中継基板が設けられている請求項1から請求項3のうちのいずれかに記載の遊技機。
  5. 枠側シリアル−パラレル変換回路または盤側シリアル−パラレル変換回路を複数搭載した集合基板が設けられている請求項1から請求項4のうちのいずれかに記載の遊技機。
  6. 遊技制御手段が搭載された遊技制御基板と、
    遊技媒体の払い出しを行う払出手段と、
    前記払出手段を制御する払出制御処理を実行する払出制御手段が搭載された払出制御基板と、
    演出制御手段が搭載された演出制御基板とを備え、
    前記払出制御基板に、遊技媒体の払い出しに関するエラー状態を含む遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号を前記遊技制御基板に対して出力する状態通知手段が設けられ、
    前記遊技機の状態に関する複数種類の情報のそれぞれに対応する状態検出信号は、前記遊技制御基板において一時にアクセス可能な入力ポート部に入力され、
    前記遊技制御手段は、
    前記入力ポート部に入力される複数の前記状態検出信号のうちのいずれか1つ以上の状態が変化したか否かを判定する状態検出信号判定手段と、
    前記状態検出信号判定手段が複数の前記状態検出信号のうちのいずれか1つ以上の状態が変化したと判定したときに、前記入力ポート部に入力されている複数の前記状態検出信号の状態を一括してコマンドとして送信する入力ポートデータ送信手段とを含み、
    前記演出制御手段は、前記入力ポートデータ送信手段が送信した前記コマンドにもとづいて遊技機の状態に関する複数種類の情報のいずれの状態が変化したかを判定する入力ポートデータ判定手段を含み、
    前記出力手段は、前記入力ポートデータ判定手段が判定した遊技機の状態に関する情報に対応する報知をするための制御信号をシリアル信号方式で出力する状態報知制御手段を含む
    請求項1から請求項5のうちのいずれかに記載の遊技機。
JP2006319375A 2006-11-27 2006-11-27 遊技機 Expired - Fee Related JP5042602B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319375A JP5042602B2 (ja) 2006-11-27 2006-11-27 遊技機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319375A JP5042602B2 (ja) 2006-11-27 2006-11-27 遊技機

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2011168813A Division JP5043221B2 (ja) 2011-08-01 2011-08-01 遊技機
JP2011168812A Division JP5043220B2 (ja) 2011-08-01 2011-08-01 遊技機

Publications (2)

Publication Number Publication Date
JP2008132086A JP2008132086A (ja) 2008-06-12
JP5042602B2 true JP5042602B2 (ja) 2012-10-03

Family

ID=39557352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319375A Expired - Fee Related JP5042602B2 (ja) 2006-11-27 2006-11-27 遊技機

Country Status (1)

Country Link
JP (1) JP5042602B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5922717B2 (ja) * 2014-07-14 2016-05-24 株式会社三共 遊技機
JP2017035122A (ja) * 2015-08-04 2017-02-16 京楽産業.株式会社 遊技機
JP6315498B2 (ja) * 2016-08-24 2018-04-25 株式会社大一商会 遊技機
JP6315497B2 (ja) * 2016-08-24 2018-04-25 株式会社大一商会 遊技機
JP6315507B2 (ja) * 2016-09-05 2018-04-25 株式会社大一商会 遊技機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190559A (ja) * 2001-12-26 2003-07-08 Aruze Corp 遊技機
JP2004174097A (ja) * 2002-11-28 2004-06-24 Sansei R & D:Kk 遊技機
JP2006218137A (ja) * 2005-02-14 2006-08-24 Akuseru:Kk 発光体の駆動システム

Also Published As

Publication number Publication date
JP2008132086A (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP5208402B2 (ja) 遊技機
JP4907293B2 (ja) 遊技機
JP5026095B2 (ja) 遊技機
JP5075436B2 (ja) 遊技機
JP4527094B2 (ja) 遊技機
JP4527095B2 (ja) 遊技機
JP5415576B2 (ja) 遊技機
JP2008200207A (ja) 遊技機
JP5695168B2 (ja) 遊技機
JP5042602B2 (ja) 遊技機
JP5415577B2 (ja) 遊技機
JP5043174B2 (ja) 遊技機
JP5823914B2 (ja) 遊技機
JP4762845B2 (ja) 遊技機
JP5043173B2 (ja) 遊技機
JP5043220B2 (ja) 遊技機
JP5814327B2 (ja) 遊技機
JP5043222B2 (ja) 遊技機
JP4762844B2 (ja) 遊技機
JP5043221B2 (ja) 遊技機
JP5043223B2 (ja) 遊技機
JP4988049B2 (ja) 遊技機
JP5829650B2 (ja) 遊技機
JP5829649B2 (ja) 遊技機
JP5739377B2 (ja) 遊技機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees