JP5042484B2 - 受信機におけるビット誤りを最小限に抑えるように通信システムや通信方法で使用する選択的スクランブラ - Google Patents

受信機におけるビット誤りを最小限に抑えるように通信システムや通信方法で使用する選択的スクランブラ Download PDF

Info

Publication number
JP5042484B2
JP5042484B2 JP2005301432A JP2005301432A JP5042484B2 JP 5042484 B2 JP5042484 B2 JP 5042484B2 JP 2005301432 A JP2005301432 A JP 2005301432A JP 2005301432 A JP2005301432 A JP 2005301432A JP 5042484 B2 JP5042484 B2 JP 5042484B2
Authority
JP
Japan
Prior art keywords
bit
logic
sequence
bits
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005301432A
Other languages
English (en)
Other versions
JP2006115518A (ja
Inventor
クリストファ・エム・グリーン
デイビッド・ジェイ・ナップ
ホレイス・シイ・ホ
Original Assignee
オアシス・シリコン・システムズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オアシス・シリコン・システムズ・インコーポレーテッド filed Critical オアシス・シリコン・システムズ・インコーポレーテッド
Publication of JP2006115518A publication Critical patent/JP2006115518A/ja
Application granted granted Critical
Publication of JP5042484B2 publication Critical patent/JP5042484B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Dc Digital Transmission (AREA)

Description

本発明は、通信システムに関し、より詳細には、伝送経路を介して送信されるデータ・ストリーム内のビット・シーケンスの論理値をランダム化することができる、送信機内部のスクランブラ回路に関する。スクランブラ回路は、ビット・フレームのペイロード・セクションだけ選択的にスクランブルをかけて、データ・ストリーム内で低周波数ジッタを最小限に抑え、ペイロードだけのスクランブルの後に、エンコーダを使用して、フレームのすべてのセクションを符号化して、データ・ストリーム内のDCアキュムレーション(つまりベースライン・ワンダ(baseline wander))などの、ジッタのその他の原因を最小限に抑えることができる。
以下の説明と例は、このセクションに含まれることにより、先行技術である、または慣例的であるとは認められない。
通信システムは、一般に、伝送経路によって互いに接続された少なくとも2つのノードを含む。各ノードは、一般に、トランシーバと呼ばれる、送信機と受信機をともに含んでいる。トランシーバは、伝送経路を介して送信される信号と、デジタル領域でその信号を操作する電子サブシステムとの間のインターフェースとなっている。互いに接続されたノードは、バス・トポロジ、リング・トポロジ、スター・トポロジ、またはツリー・トポロジなどの、様々なトポロジに従って編成される。ノード間の伝送経路は、有線であることも、無線であることも可能であり、伝送経路は、異なるタイプのデータに適応することが好ましい。例えば、経路は、パケット化されたデータ、またはストリーミング・データを転送することを求められる可能性がある。
ストリーミング・データは、ネットワーク上に送信元から生成されるサンプル間で時間的関係を有するが、パケット化されたデータは、時間関連である必要がない。というのは、パケットは、通常、宛先デバイスによって格納され、後に使用されるからである。ストリーミング・データは、ノードにローカルなサンプリング速度(fs)と伝送経路のフレーム同期速度(FSY)に依存して、等時性ストリーミング・データまたは同期ストリーミング・データとして送信されることがある。伝送経路を介して、パケット化されたデータまたはストリーミング・データを送信する際、そのフレームのプリアンブル・セクションやパリティ・セクションに対する、ペイロード内のパケット化されたまたはストリーミング・データの位置を知ることが有益である。このように、データ・ストリームとして送信されるデータ・フレームは、ペイロード・セクション、プリアンブル・セクション、ならびに、一部の実例では、パリティ・セクションを含む。プリアンブル・セクションは、FSYを生成するのに使用させ、他方、パリティ・セクションは、伝送における誤りを検出し、場合により、その誤りを訂正するのに使用される。
どのようなタイプのデータが伝送経路を介して送信されるか、またはパリティ・セクションやプリアンブル・セクションに対するペイロードの構成に関わらず、伝送経路と受信機は、時間分散的である。つまり、伝送経路と受信機は、データ・ストリームのある周波数成分を別の周波数よりも容易に転送する。このため、周波数応答は均一ではない。例えば、伝送経路は、ある低域通過特性を有する。シンボルから成るデータ・ストリームを受信する際、伝送経路は、各シンボルを時間的に広げる効果を有し、シンボル間干渉すなわちISIとして知られているものを生じさせる。ISIは、データ・ストリーム内のあるビットの損失、または誤った通信をもたらす可能性がある。別の例として、受信機自体も、低域通過および/または高域通過の特性を示すこともある。クロック信号を回復するために、受信機において位相ロック・ループ(PLL)に結合される場合、PLL内の追加のローパス・フィルタが、データ・ストリームの高い方の周波数成分をさらに減衰させる。
伝送経路、受信機、PLLの周波数応答は、パターン密度の変動を有する伝送されたデータ・ストリームの回復における誤りに寄与する。例えば、密度の十分な変動により、受信機内部に位置する判定回路が見る直流(DC)ベースラインのスキューが生じる可能性がある。DC値が時とともに変化する場合、判定回路は、着信するデータ・ストリームの遷移をサンプリングする瞬間を一時的に動かすことがある。このため、しばしば、ベースライン・ワンダと呼ばれるDCアキュムレーションを生じさせる、パターン密度における変動が受信機の出力のジッタを生じさせる。さらに、その出力が、クロック信号を回復するのに使用された場合、クロック信号のサンプル遷移にジッタを生じ、回復されたデータ・ストリームにおいてビット誤りを生じさせる。
ベースライン・ワンダがほとんどない例においてさえ、それでも、出力データ・ストリームにジッタが存在する可能性がある。例えば、伝送経路を介して送信されたデータ・ストリームが、低密度パターンに対して比較的均一な高密度パターンを有する場合、しばしば、「スライサ」と呼ばれる判定回路は、波形のエッジに沿った異なる振幅点で、転送されたデータをスライスするように接続された比較器として動作する。そのようなエッジの立ち上がり時間と立ち下がり時間は、希薄な着信データ・ストリーム遷移と密な着信データ・ストリーム遷移に依存する。希薄な遷移と密な遷移の間の周期が、PLLローパス・フィルタの低域通過応答の範囲内の(PLLローパス・フィルタ・カットオフ・コーナより低い)周波数で出現した場合、さらなるジッタが、回復される出力に与えられる。
米国特許第6437710号
ベースライン・ワンダを最小限に抑え、いずれのデータ依存ジッタ周波数も、PLL低域通過カットオフを超えるように変更する送信回路と受信回路を有する通信システムを導入することが望ましい。したがって、所望される通信システムは、リング・ベースのネットワーク全体のあらゆる低周波数ジッタアキュムレーションを最小限に抑えることができる。ペイロード・セクションだけから、そのようなジッタを選択的に除去することがさらに望ましい。というのは、プリアンブル・セクションとパリティ・セクションは、符号化されることが有益だからである。所望のプリアンブル・セクションのパリティ・セクションは、フレーム(およびフレーム内のセクション)を同期させ、フレーム速度を下回るベースライン・ワンダのすべての効果をなくし、符号化されたフレームにDCがない(すなわち、受信機によって読み取られるDCアキュムレーションを有さない)ことを確実にするように符号化される。さらに、所望される通信システムは、フレーム内、特にフレームのペイロード・セクション内のすべてのタイプのパケット化されたデータとストリーミング・データに適応することができるシステムでなければならない。
以上に概要を述べた諸問題は、大部分、ビット・シーケンスを送受信するための改良された通信システムによって解決される。本通信システムは、伝送経路を介して送信されるフレーム・シーケンスの各フレーム内のパケット化されたデータとストリーミング(同期および等時性)データを転送することができる。伝送経路は、有線(同軸ケーブル、銅線、光ファイバなどを含む)でも無線でもよく、伝送経路は、様々なトポロジで編成されたノード間接続とすることが可能である。
各フレームは、異なるデータ・タイプ向けに確保されたペイロード・セクション内にタイムスロットを有するか、またはペイロード・セクション内にコマンドを入れ、そのセクションの後に、そのコマンドに対応するデータ・タイプを続ける。フレームは、好ましくは、ノード間のトポロジを介して同期して送信され、各フレームがFSYに同期される。FSYは、同期ストリーミング・データまたは等時性ストリーミング・データに適応するように、fsと同一であること、またはfsとわずかに異なることが可能である。
各フレームが、ペイロード・セクション内において割り当てられたタイムスロットで適切に受信され、パリティ・セクション内の誤り検出/訂正を伴って、プリアンブル・セクションによって確実に同期されるように、エンコーダを使用して、受信機内部のデコーダによって検出される違反をプリアンブル・セクション内に符号化することができる。プリアンブル・セクションとともに、パリティ・セクションも符号化して、受信機上で受信された際、フレーム全体が、DCコンテンツをまったく含まないことを確実にする。パリティ・セクションは、その結果、プリアンブルとスクランブルされたペイロードの中の潜在的なDCコンテンツを相殺するように符号化される。プリアンブル・セクションとパリティ・セクションは、符号化違反、および各フレームにDCがないことを確実にするように計算されるため、それらのセクションはスクランブルされない。というのは、それらのセクションにスクランブルがかけられた場合、プリアンブルは、受信機のデコーダにおいて符号化違反をもはやシグナルしない可能性があり、パリティは、フレームの残りの部分からのDCオフセットをシグナルして、フレーム全体にDCがないことを確実にすることをもはや行わない可能性があるからである。
プリアンブル・セクションとパリティ・セクションが符号化されて、各フレームにおいて、したがって、フレーム速度(FSY)で、DCアキュムレーションをなくしても、比較的長いジッタ周期が、フレーム内のペイロード・セクション内や多くのフレームにわたって存在する可能性がある。したがって、ビット・シーケンスをキャプチャし、保持することができるメモリ・デバイスを使用して、ペイロードがスクランブルされる。そのようなメモリ・デバイスの例には、ランダム・アクセス・メモリ、レジスタ、ラッチ、フリップ・フロップなどが含まれる。シフト・レジスタが使用される場合、好ましくは、線形フィードバック・シフト・レジスタ(またはLSFR)が、ビット・シーケンスをキャプチャすることができる。LFSRは、直列に結合された、Dタイプのフリップ・フロップなどの、n個の遅延要素を有するシフト・レジスタとして定義される。遅延要素の少なくとも1つの出力から、少なくとも1つのタップが引き出され、好ましくは、2つの出力から2つのタップが引き出される。タップは、出力回路に送り込まれ、出力回路の出力が、第1の遅延要素の入力にそのシーケンスでフィードバックされる。
LFSRは、n個の遅延要素に送り込まれたビット・シーケンスの論理値をランダム化するのに使用される。n個のステージの中に一時的に格納されたnビットが、以降、単にシフト・レジスタと呼ぶLFSRの中に格納されたnビットの1つまたは複数の論理値を反転させる、または維持することにより、ランダム化される。一実施態様によれば、n個のステージの中に格納されたビット・シーケンス内の第1のビットの論理値は、n個のステージの中に格納されたビット・シーケンス内の第2のビットが、n個のステージの中に格納されたビット・シーケンス内の第n番のビットの論理値と異なる場合、反転させられる。別の実施態様によれば、n個のステージの中に格納されたビット・シーケンス内の第1のビットの論理値は、n個のステージの中に格納されたビット・シーケンス内の第2のビットが、n個のステージの中に格納されたビット・シーケンス内の第n番のビットの論理値と同様である場合、同一の論理値に保たれる。さらに別の実施形態によれば、どのようにシフト・レジスタが初期設定されるかに依存して、数がnを超える同様の論理値を有するビット・シーケンスの中に異なる論理値が挿入される。
改良された通信システムの送信回路は、LFSRを実装して、データ・ストリームのペイロード・セクションだけにスクランブルをかける(つまり、ランダム化する)スクランブラと、ペイロード・セクション、プリアンブル・セクション、パリティ・セクションを含むフレーム全体を符号化するエンコーダとを含む。符号化され、選択的にスクランブルがかけられたデータ・ストリームは、次に、フレーム転送速度(FSY)を下回る周波数でベースライン・ワンダをまったく伴わずに、最小の低周波数データ依存ジッタを伴って、伝送経路を介して送信される。
受信機におけるデコーダが、プリアンブル内の符号化違反を検出し、各フレームの先頭を特定することができ、より詳細には、各フレームに関して、ペイロード・セクションとパリティ・セクションがどこに存在するかを特定することができる。デコーダは、符号化されたフレームを復号化するのに使用することもでき、復号化されたビットストリームは、次に、ペイロードを逆スクランブルするデスクランブラに転送される。したがって、逆スクランブルされたペイロード、ならびに復号化されたプリアンブル・セクションとパリティ・セクションは、送信元から伝送経路上に送信された、ベースライン・ワンダまたはジッタによって生じさせられたビット誤りがまったくない、元のデータ・ストリームのより正確な回復から利益を得る。
一実施態様によれば、送信回路はスクランブラを含む。スクランブラは、シフト・レジスタ、イネーブル回路、出力回路を含む。シフト・レジスタはn個のステージを含む。シフト・レジスタがフレームのペイロード・セクション内だけのビット・シーケンスを時間的にシフトさせるために、イネーブル回路がシフト・レジスタに結合される。シフト・レジスタから出力されたビット・シーケンスが、同一の論理値の繰り返すシーケンスを含むのを防止するために、出力回路をシフト・レジスタに結合する。シフト・レジスタと、フィードバック(LFSR)を有する出力回路は、その結果、送信回路に送り込まれたビット値シーケンスをランダム化し、データ依存ジッタの周波数を有効に上方にシフトさせて、受信回路のPLL内部のローパス・フィルタによって、そのジッタをより有効に除去することが可能である。
別の実施態様によれば、ビット・シーケンスを送受信するための通信システムが提供される。通信システムは、スクランブラと、スクランブルがかけられ、符号化されたビットを伝送経路に送り込むためのエンコーダとを含む。通信システムは、符号化されたビットを復号化し、伝送経路を介して送信された、スクランブルがかけられたビットを逆スクランブルするためのデコーダとデスクランブラをさらに含む。スクランブラは、ビット・シーケンスのnビットを一時的に格納し、第2のビットの論理値と第n番のビットが異なる場合、第1のビットの論理値を反転させるように結合することができる。デスクランブラは、フィードバックではなく、フィードフォワードを有するシフト・レジスタの中に、復号化されたnビットを一時的に格納するように結合される。デスクランブラは、その結果、第2のビットの論理値が第n番のビットと異なる場合、第1のビットの論理値を反転させる。第2のビットと第n番のビットが同様である場合、第1のビットは、現在の状態に保たれる。
さらに別の実施態様によれば、ビット・シーケンスを転送する方法が提供される。本方法は、ビット・シーケンスのnビットの中の実質的にランダムな論理値セットを置き換えて、好ましくは、nビット未満にジッタ周期を縮小するステップを含む。本方法は、実質的にランダムな論理値セットの遷移周期を変更して、DCアキュムレーション、つまり、ベースライン・ワンダをなくすことも含む。次に、相異なる論理値と変更された遷移周期を、伝送媒体を介して転送することができる。その後、伝送媒体または伝送経路を介してそのようなビットを転送した後に、nビットの遷移周期を再び変更することができる。その後、ビット・シーケンスの中で、同様の論理値を置き換えて、符号化され、スクランブルがかけられるのに先立って、符号化され、スクランブルがかけられたビットの再構成を完了させることができる。
本発明のその他の目的および利点は、以下の詳細な説明を読み、添付の図面を参照することで、明白となろう。
本発明は、様々な変更形態や代替形態が可能であり、本明細書の特定の諸実施形態は、例として図面に示し、以下に詳細に説明する。ただし、図面と詳細な説明は、本発明を開示する特定の形態に限定することを意図するものではなく、添付の特許請求の範囲によって定義される本発明の趣旨と範囲に含まれる、すべての変更形態、均等形態、代替形態を含むことを意図している。
次に図面を参照する。図1は、有線伝送経路または無線伝送経路などの、伝送経路を介して送信されるデータ・ストリームを受信するように結合された受信機10を示す。受信機10は、送信機も含むノードの中に配置されている。したがって、通信システムの各ノードはトランシーバを含む。光ファイバが使用される場合、受信機10は、光検出器12で光エネルギーを電気信号に変換する。光検出器12は、光エネルギーを、電流IINのような電気エネルギーに変換する。増幅器またはバッファ14と負荷抵抗器16が、IINを入力電圧VINに変換する。
伝送経路および/または受信機10には、ローパス・フィルタ18が関連付けられている。ローパス・フィルタの周波数応答は、フィルタ18内部の抵抗器とコンデンサの値に依存する。受信機10には、ハイパス・フィルタ20も関連付けられている。フィルタ20は、阻止コンデンサと抵抗器を含む。抵抗器は、判定回路、スライサ、または比較器22の正端子と負端子の間に電圧を生成する。比較器22は、ハイパス・フィルタ20とローパス・フィルタ18を介して濾波された入力電圧を基準電圧(VREF)と比較する。
基準電圧は、好ましくは、着信データ・ストリームの論理高(論理1)値と論理低(論理0)値の間のしきい値に設定される。論理高(論理1)値は、論理低(論理0)値より大きい任意の値である。パルスの(濾波された)立ち上がりエッジが比較器22の非反転入力に受信されると、そのエッジが基準電圧と比較され、立ち上がりエッジが基準電圧を超えた時点で、比較器22は、論理1値を出力する。入力電圧が、基準電圧を下回って低下した場合、その逆が当てはまり、比較器22からの出力は、論理0電圧値に遷移させられる。
図1に示すとおり、受信機10は、バンドパスを形成するように互いに間隔が空けられたカットオフ周波数を有するバンドパス・フィルタを一緒になって形成している、ローパス・フィルタ18とハイパス・フィルタ20を含む。図2は、判定回路22、クロック回復回路30、データ回復回路32を含む受信機のバンドパス・フィルタ28にデータ・ストリームを送り込むように結合された送信機26を有する、通信システム24を示す。
クロック回復回路30は、フィードバック構成で結合された、位相検出器30a、ローパス・フィルタ30b、電圧制御された発振器30cを含む、PLLを含むことが可能である。ローパス・フィルタ30bは、位相検出器によって生じるあらゆる高周波数ジッタと、電圧制御された発振器30cからフィードバックされる発振器の周波数を除去する。ローパス・フィルタ30bの出力は、判定回路22から出力される論理高電圧値と論理低電圧値をサンプリングするのに使用されるクロック信号である。サンプリング・オペレーションは、データ回復回路32内部で行われて、データ出力信号DOUTをもたらす。
図3は、伝送経路を介して送信されるデータ・ストリームの論理高の密度が変動する場合にはいつでも本質的に伴う問題を誇張された形態で示す。例えば、図示するとおり、論理高の密度が低下すると、データ・パターンの平均値の変化に起因して、DCベースラインの電圧値が上方に動く。したがって、ハイパス・フィルタ・コーナの阻止コンデンサによって、論理低電圧値が、比較器の非反転入力を十分に大きく下回って低下するのが防止される。これにより、低い論理高の密度の時間中に、スライサ/判定回路の上方へのスキューとより早期のトリガを生じさせる。ベースラインは、破線で示され、好ましくは、基準電圧VREF近くに設定される。
図4は、伝送経路と受信経路の中にそれぞれ配置されたコーダおよびデコーダを有する通信システム24を示す。コーダまたはエンコーダ36は、送信元38からの非ゼロ復帰(NRZ)ビットストリームを取り込み、図3に示した問題を最小限に抑えるために、減少させたベースライン・ワンダを有する符号で、そのビットストリームを符号化する。符号化された信号は、次に、伝送経路27を介して、送信機26によって受信機10に送信される。受信される信号は、実質的なベースライン・ワンダのない、符号化された信号であるため、受信機は、シリアル・ビットストリームをより正確に回復することができる。ただし、符号化されたビットストリームは、デコーダ40によって復号化されなければならない。復号化されると、NRZビットストリームは、目標の宛先デバイス、つまり、宛先42に与えられる。
多数のタイプの符号化方法が存在する。好ましくは、いずれの符号が使用されても、コーダからの出力は、受信機の入力においてベースライン・ワンダを生じさせるDCアキュムレーションまたは符号をほとんど有さない。図5に、3つの符号化方法、すなわち、ミラー、バイフェース、DC適応(DCA)を示している。この3つの異なるタイプの符号化の説明は、参照により全体が本明細書に組み込まれている米国特許第6437710号に記載されている。ミラー符号化は、送信元データ転送速度と同一のデータ転送速度で行われるが、論理高電圧値は、クロック位相の中心における遷移によって符号化され、他方、論理低電圧値は、クロック位相の境界における遷移によって符号化される。バイフェース符号化では、データ転送速度は、送信元データに論理高値が出現した場合にはいつでも、送信元データ転送速度の2倍で符号化されるが、送信元データに論理低値が出現した場合には、送信元データ転送速度で符号化する。バイフェース符号化は、その結果、符号化されたデータ転送速度が、送信元データ転送速度の2倍である瞬間が生じる。
図示するとおり、ミラー符号化は、この例では、負にスキューが発生する、アキュムレーションされたDC電圧値44をこうむる。クロック・サイクルまたはクロック位相の中央における遷移は、DC値の変化を示さないが、クロック・サイクル中の下向きの論理値は、この例で示すとおり、1カウント量だけ、アキュムレーションされたDC値を低下させる。バイフェース符号化46に関するアキュムレーションされたDC電圧値は、ミラー符号化スキームのように、許容できる限界を超えて下方にスキューが発生することはない。このため、バイフェース符号化は、フィルタ20(図1)の入力コンデンサに電圧を蓄積しない。
バイフェース符号化と同様に、DC適応(DCA)符号化48も、範囲外のDCアキュムレーションをこうむることはない。DCA符号化機能は、基本的に、クロック・サイクルごとに動作する。DCAエンコーダは、mクロック・サイクルの始まり近くで遷移50を生成することにより、mクロック・サイクル中に出現する論理高電圧値を符号化する。ただし、この遷移は、m+1クロック・サイクル中に論理高電圧値が存在し、かつ、すべての符号化された論理高電圧値と論理低電圧値のDC電圧値48の合計が、mクロック・サイクルに先立って、論理高電圧値または論理低電圧値に向かってスキューが発生している場合に生じる。遷移52で示される、DC電圧値48の合計の既存のスキューがまったく存在しない場合、エンコーダは、クロック・サイクルの中央で遷移を生じさせることにより、論理高電圧値を符号化する。
コーダ36(図4)からの出力は、使用される符号化機構に応じて、異なるパターン密度をもたらすことが可能である。例えば、バイフェース符号化は、受信機において最小のベースライン・ワンダを示すが、図6に示すとおり、異なる遷移速度をもたらす。例えば、論理高(すなわち、符号化された1論理値)は、符号化された0論理値の2倍の速度で遷移する。受信機10(図1)の入力において構成されたローパス・フィルタ18の周波数応答を仮定すると、入力電圧VINは、図6に示すとおり、符号化された0に関して、立ち上がり、立ち下がる時間が符号化された1よりも長くなる。このため、論理0電圧値のシーケンスが出現した場合、比較器の非反転入力における電圧は、符号化された1のビット・パターンと比べて、より高いかつ低い振幅レベルに達する。
基準電圧VREFに対して、符号化された0論理値の立ち上がりは、符号化された1論理値の立ち上がりよりも、VREFに達するのに、より長い時間がかかる。同じことが、符号化された1論理値の立ち下がりに対する、符号化された0論理値の立ち下がりに関して当てはまる。符号化された1が基準電圧に達する時間をT1として示し、符号化された0が基準電圧に達する時間をT0として示す。T0−T1間の時間差は、バイフェース符号化されたパターンに対して、各符号化された1と符号化された0の間の境界で生じる。各境界に表れる時間差、つまり、ΔT値により、図7、図8に示した境界間のジッタ周期がもたらされる。
ジッタ周期は、交互する符号化された1と符号化された0の間のパターンとして形成される。したがって、ジッタの周波数は、符号化された1と符号化された0の間でパターンが変化する速度に等しい。PLLが、DOUTの遷移、PLLの伝達関数の遷移、特にPLLのローパス・フィルタの遷移をロックすると、ジッタ周波数に対して、ローパス・フィルタ・コーナがどこに存在するかに依存して、ジッタを通過させる可能性がある。
したがって、図6〜図8に示したジッタは、データ・パターンに依存し、しばしば、データ依存ジッタと呼ばれる。図9に示すとおり、データ依存ジッタ周波数54が、PLLローパス・フィルタ56の周波数応答を下回る場合、ジッタは、受信機から出力された、回復されたクロックに転送される。転送されたジッタは、最初に伝送されたNRZ送信元データの回復において相当な誤りを生じさせるであろう。さらに、回復されたクロック上のジッタは、回復されたクロックによってクロック制御される、あらゆるアナログ−デジタル変換器またはデジタル−アナログ変換器によって生成される信号上に歪みを生じさせる。
ジッタの周波数を増加させて、ジッタの周波数応答が、PLL内部のローパス・フィルタの周波数カットオフを超え、かつ/または、場合により、バンドパス・フィルタのローパス・フィルタ・コーナを超えるようにすることが望ましい。このため、図9に示すとおり、矢印60に沿ってジッタ54の周波数応答を増加させることが有益である。ジッタ周波数を増加させる好ましい機構は、符号化された1と符号化された0の比較的長いパターンをより短いパターンに切り離す、つまり「スクランブルをかける」ことである。符号化された1論理値と符号化された0論理値の間の境界に、依然、ジッタが存在するが、ジッタの周波数は、ローパス・フィルタの周波数応答を超えて広がる。
図10は、ジッタ周波数を増加させるだけでなく、最小のDCアキュムレーション、つまり最小のベースライン・ワンダも保つ、改良された通信システム64を実施する一例である。通信システム64は、ビット・シーケンスとして送信される複数のフレームを生成するNRZ送信元66を含む。各フレームは、ペイロード・セクション、プリアンブル・セクション、パリティ・セクションを含む。ペイロード・セクションだけが、NRZ_TX_DATAとしてスクランブラ68に転送される。スクランブラは、シフト・レジスタのn個のステージの中に格納された1つまたは複数のビットを、場合により、反転させることによって、ビット・シーケンスの中に異なる論理値を介在させることにより、スクランブラに転送されたビット値シーケンスをランダム化する。シーケンスが、nビットを超える同一の論理値を有する場合、スクランブルによってビット・シーケンスの中に1つまたは複数の異なる論理値を挿入する。スクランブラ68の出力は、したがって、NRZ_TX_SCR_DATAビット・シーケンスとしてスクランブルがかけられ、ペイロード・セクションとしてエンコーダ70に入力させられる。
ペイロード・セクションとともにプリアンブル・セクションとパリティ・セクションが存在する。これらは、符号が、1フレーム期間にわたってDCアキュムレーションを除去し、したがって、フレーム転送速度(FSY)を下回るDCアキュムレーションを除去するように符号化される。好ましい符号化技術には、バイフェース符号化またはDCA符号化が含まれる。各フレームに関する、スクランブルがかけられ、かつ符号化されたペイロード、および符号化されたプリアンブルとパリティは、送信機26に送られる。送信機26は、いずれの形態であれ、送信されるデータ・ストリームを伝送経路27を介して受信機10に転送するのに必要な形態に信号を変調する。受信機10は、信号を復調し、判定回路出力に基づいて信号をスライスし、送信された信号からクロック信号を回復し、クロック信号エッジを使用してデータを回復する。回復されたデータDOUT(RX)は、次に、デコーダ72に転送される。デコーダ72は、クロック信号エッジを使用して、符号化された信号を復号化する。
プリアンブル・セクションに対するペイロード・セクションとパリティ・セクションの位置を特定するのに、フレーム・シンクロナイザ74が必要とされる。プリアンブル・セクションは、選択された符号化機構に合わないとデコーダに認識可能である符号シーケンスで符号化されることが可能である。符号化違反が検出されると、フレーム・シンクロナイザ74は、復号化されたフレームNRZ_RXとともに、FRAME_SYNC(FSY)信号をデスクランブラ76に転送する。復号化されたビット・シーケンスの各ビットを同期させるように、BIT_SYNC信号も送信される。復号化されたフレームとともにFRAME_SYNC信号とBIT_SYNC信号、およびそのフレーム内に含まれる様々なビットのすべてを備えると、デスクランブラ76は、次に、ペイロード・セクションだけを逆スクランブルし、パリティ・セクションとプリアンブル・セクション(逆スクランブルなしの)をNRX_RX_DATAとしてNRZ宛先78に転送する。
符号化違反は、符号化されたデータの中で決して出現することがなく、このため、デコーダ72によって非データとして検出されることが可能な任意のビット・シーケンスと考えることができる。例えば、符号化違反は、最小パルス幅未満のパルス、最大パルス幅を超えるパルス、中央遷移で始まる最大パルス幅を超えるパルス、最大符号サイクルを超える符号化されたサイクル、あるいは+1より大きい、または−1未満のデジタル合計値を含むデータ・シーケンスなどである。参照により本明細書に組み込まれている米国特許第6437710号が、DCA符号化された信号やバイフェース符号化された信号に関する様々な符号化違反を説明している。
図10の通信システム64は、図11の通信システム80の一対のノード間における経路と同様に、送信元と宛先の間の送受信経路を示す。N1〜N64とラベルが付けられた各ノードは、NRZ信号の送信元と宛先となるトランシーバ、および様々なマルチメディア・デバイスを含む。例えば、1つのマルチメディア・デバイスは、およそ44.1kHzでサンプリングを行うCDプレーヤであることが可能である。CDプレーヤは、例えば、サンプル・オーディオ・チャネル当り16ビット(32ビット/ステレオ・チャネル)で、データをストリーミングすることができ、32ビット/ステレオ・サンプル×44.1kサンプル/秒=1.4122Mbpsという、伝送線全体のbpsボー速度をもたらす。伝送経路全体のFSYが、サンプリング速度fsとは異なる場合、マルチメディア・デバイスからのストリーミング・データは、伝送線を介して別のデバイスに(すなわち、DVDプレーヤからスピーカへ)同期させて送ることができない。代りに、ストリーミング・データは、同期ストリーミング・データとしてではなく、等時性ストリーミング・データとして送られなければならない。やはり、ネットワーク全体に送ることができる、他のタイプのデータは、パケット化されたデータに関連して説明される。
データの各フレームを、したがって、1つのノードから別のノードにループ・トポロジを巡って、同期させて送信することが可能であり、各フレームは、次々に送信される。各フレームは、等時性ストリーミング・データ、同期ストリーミング・データ、パケット化されたデータ、制御データなどを収容する、確保されたタイムスロットを有する。代替として、各フレームは、そのフレーム内のどこに異なるタイプのデータが存在するかを決めるコマンド・バイトを有してもよい。このため、各フレームのペイロードは、異なるタイプのデータを収容することができ、プリアンブル・セクションとパリティ・セクションをペイロードとは別に保つことが有益である。これは、プリアンブル・セクションとパリティ・セクションは、ペイロードと一緒にスクランブルをかけることができないことを意味する。というのは、データ・タイプ間の境界、特にプリアンブルの中に含まれる符号化違反が、スクランブルがかけられたデータの中に有害な形で混合され、下流のデコーダが、タイミング調整された形で認識できないからである。認識可能な符号化違反が存在しないと、FSYを算出することができず、より重要なこととして、各ペイロード内のデータ・タイプ間の境界を特定することができない。このため、現在のフレーム・プロトコルに固有のこととして、ペイロードのスクランブルは、プリアンブル・セクションとパリティ・セクションにスクランブルをかけることなしに、選択的に実行されなければならない。
図11に示すとおり、基準電圧全体の遷移に対する論理1符号化ビットと論理0符号化ビットの間の時間差が濾波されない周波数に存在する場合、その時間差は、1つのノードから次のノードにループを巡ってアキュムレーションする。このため、ノード2からの回復されたクロックが、例えば、1ナノ秒のジッタであれば、ノード3からの回復されたクロックにおけるジッタは、1+1ナノ秒、つまり2ナノ秒のジッタとなる。したがって、ジッタはアキュムレーションして、最後のノード、例えば、図示するノード64において、相当な量のジッタになる。このため、ジッタの周波数応答を上方に移動して、ローパス・フィルタで濾波されるようにすることが、多数のノードとそれに接続されたマルチメディア・デバイスのリング・トポロジにおいて、圧倒的に有益である。リング・トポロジにおいて、64のノードを想定すると、データ依存ジッタは、単一ノードのジッタの64倍である。ジッタ・クロック信号は、下流のノード群に結合された、あらゆるオーディオ変換器のパフォーマンスを低下させて、相当なオーディオ効果を生じさせる。
図12は、ペイロード・セクションの選択的なスクランブルが行われ、その後に、そのペイロード・セクションが符号化されて、各フレーム内で、スクランブルがかけられ、符号化されたペイロードが生成されるのを示す。ただし、プリアンブル・セクションとパリティ・セクションにはスクランブルがかけられず、特に、プリアンブル・セクションは違反を伴って符号化される。伝送経路内の符号化機能とスクランブル機能を矢印82で示す。符号違反を検出することによって、受信経路デコーダが、そのフレームの先頭に関して、フレーム同期(FSY)を算出することを可能にし、したがって、フレームを復号化し、ペイロードを逆スクランブルして、ペイロード内の異なるデータ・タイプの正しいシーケンスに到達することができる。復号化オペレーションと逆スクランブル・オペレーションを矢印84で示す。パリティ・セクションは、プリアンブルの中の違反の符号化、およびペイロードの中のスクランブルがかけられたデータの符号化の中のDCアキュムレーションを相殺するように符号化されて、伝送経路を介して送信される最終的なDCのない符号化されたフレームを生じさせる。
図13は、プリアンブル(PRE_TIME)とパリティ(PAR_TIME)が出現する様々な時間を選択する状態マシン86である。状態マシン86は、ペイロードが存在し、プリアンブル・セクションとパリティ・セクションが存在しない場合、ペイロードに対するスクランブル・オペレーションと逆スクランブル・オペレーションを開始するのに使用される。プリアンブルは、伝送経路内のいずれのビットが、ペイロード上にラップされて、プリアンブルを形成しているかを知ることにより、検出することができる(PRE_DET)。プリアンブルは、符号化違反を復号化することにより、受信経路内で検出される。例えば、512ビット、つまり64バイトのフレームが出現した場合、カウンタ90は、0から511までカウントして、フレーム内のプリアンブル・ビット、ペイロード・ビット、パリティ・ビットの位置を特定する。9ビット・カウンタ90が、512ビットすべてを包含することができる。
受信機の出力において、プリアンブルが、例えば、RX信号(図10)として検出された場合、検出は、符号化違反を介して行われ、カウンタ90は、あるカウント値に設定される。図示した例では、カウント値は、マルチプレクサ92によって選択された004Hである。それ以外では、カウンタは、ブロック94で示すとおり、1ずつ増分される。安定したラッチ付きネットワークでは、カウンタ90は、まったくスキップなしに、0から511まで進む。状態マシン86は、デコーダ/デスクランブラとエンコーダ/スクランブラの両方に関して二重にされる。というのは、伝送経路と受信経路は、別個のクロックで動作する可能性があるからである。レジスタ96、98は、この例では、カウント値が000Hと003Hの間にある場合はいつでも、プリアンブル時間を示し、パリティ時間に対するカウント値は1FFHである。
図14は、一実施形態によるスクランブラ回路100を示す。スクランブラ100は、出力回路106を介してスクランブラ回路100に転送されたビット・シーケンスのそれぞれを格納することができるメモリ要素から成るメモリ・デバイスを含む。メモリ要素は、ランダム・アクセス・メモリ(RAM)のセル、ラッチ、レジスタ、フリップ・フロップなどでよく、したがって、ビット・シーケンスの各ビットを一時的に保持することができる任意のデバイスである。一例によれば、メモリは、n個の遅延ステージ、102a、102b、102c、102dから成るシフト・レジスタ102である。各遅延ステージは、伝送経路・クロック信号によってクロック制御され、イネーブル回路104から出力されたスクランブラ・イネーブル(SCR_EN)信号によって有効にされる、Dタイプのフリップ・フロップから構成されている。一例によれば、イネーブル回路104は、2入力NORゲートにプリアンブル時間とパリティ時間が入力されるNORゲートである。パリティ時間またはプリアンブル時間が生じた場合、遅延ステージ群のそれぞれが無効にされる。それ以外の場合、遅延ステージ群は、1つのステージの出力が、次のステージの入力に送り込まれるシフト・レジスタとして動作する。遅延ステージの数は、nに等しく、nは好ましくは15であるか、15に近い数である。遅延ステージ群は、その結果、送信されるビット・シーケンスを一時的に格納し、最後のステージと最後から2番目のステージが出力回路106に入力される。さらに、NRZ送信元データ(NRZ_TX_DATA)が出力回路106に転送される。出力回路106は、一対の排他的ORゲート106a、106bとして形成されており、ゲート106a、106bの出力、NRZ_TX_SCR_DATAが、第1の遅延ステージ102a入力に転送されて戻る。スクランブラ回路100のオペレーションは、図19に関連して、よりよく示される。
図15は、出力回路106のオペレーションの真理値表である。図示するとおり、NRZ_TX_DATAと遅延ステージ14(すなわち、n−1遅延ステージ102c)の論理値が異なる場合、遅延ステージ15(すなわち、n遅延ステージ102d)からの論理値が反転され、NRZ_TX_SCR_DATAとして、回路106の出力に印加される。しかし、NRZ_TX_DATAと遅延ステージ14(すなわち、n−1遅延ステージ102c)の論理値が同一である場合、遅延ステージ15(すなわち、n遅延ステージ102d)からの論理値が、反転なしに、NRZ_TX_SCR_DATAとして、回路106の出力に印加される。回路106からの出力は、第1の遅延ステージの入力に送り込まれるとともに、伝送経路に送り出される。第n番の遅延ステージにおいて保持される論理値は、したがって、nビット・シーケンス内の第1のビットであり、第n−1番の遅延ステージにおいて保持される論理値は、nビット・シーケンス内の第2のビットである。出力回路106の入力上に、シーケンス内の第1のビットと第2のビットに同時に印加されるNRZ_TX_DATAの論理値は、そのシーケンス内の第n番のビットである。
図16は、受信機に送信されるフレームをコンパイルするのに使用されるマルチプレクサ群のブロック図である。マルチプレクサ108は、スクランブル・イネーブル信号(SCR_EN)がアクティブであるかどうかに依存して、それぞれ送信元またはスクランブラからの、スクランブルがかけられたデータ、またはスクランブルがかけられていないデータを選択するのに使用される。アクティブである場合、スクランブルがかけられたペイロードが、スクランブラから受け取られ、マルチプレクサ110の入力に送り込まれ、アクティブでない場合、スクランブルがかけられていないデータ(NRZ_TX_DATA)が送られる。スクランブルが必要とされる場合、たいてい、スクランブル・イネーブル信号はアクティブになる。マルチプレクサ110は、次に、パリティ時間がアクティブでない場合にはいつでも、スクランブルがかけられたデータを転送する。そうではなく、パリティ時間がアクティブである場合、パリティ・セクションが、マルチプレクサ110を介して、エンコーダ70に転送される。エンコーダ70は、次に、スクランブルがかけられていないプリアンブル・セクションを符号化するとともに、スクランブルがかけられたペイロードとスクランブルがかけられていないパリティ・セクションを符号化し、両方とも、マルチプレクサ112に送り込む。プリアンブルは、バイフェース/DCAエンコーダ70aではなく、別のエンコーダ70bを通過することが示されている。別のエンコーダ70bの理由は、プリアンブルが、確実に、バイフェース符号またはDCA符号として認識できない符号を受け取り、符号化違反を構成することである。それによって、エンコーダ70bがプリアンブルを符号化し、符号化違反を確実に符号化する。
図17は、デコーダ72から復号化されたデータ(NRZ_RX)を受信するデスクランブラ回路116を示す。復号化されたデータは、シフト・レジスタ100(図14)と同様のシフト・レジスタ18に送り込まれる。シフト・レジスタ118は、遅延ステージ118a、118b、118c、118dを含む。シフト・レジスタ118内部の遅延ステージの数は、シフト・レジスタ102(図14)内部の遅延ステージの数と等しい。さらに、各遅延ステージ118は、各遅延ステージ102と同様であり、受信経路内のクロック信号によってクロック制御され、デスクランブラ・イネーブル(DESCR_EN)信号によって有効にされるDタイプのフリップ・フロップを含むものとして構成されている。シフト・レジスタ118は、プリアンブル時間とパリティ時間が存在しない時間中に、イネーブル回路120によって有効にされる。出力回路122が、最後のステージと最後から2番目のステージからの出力、さらに第1のステージへの入力を、逆スクランブルされた出力(NRZ_RX_DESCR_DATA)を作成する際に受け取る。図14の出力回路106と同様に、出力回路122は、好ましくは、図15に示したのと同一の真理値表を有する、一対の直列結合された排他的OR論理ゲートから成る。NRZ_RXが遅延14出力論理値とは異なる場合、遅延15の論理値が反転され、NRZ_RX_DESCR_DATAに印加される。異ならない場合、遅延15の論理値は反転されない。デスクランブラ116オペレーションの詳細は、図19に関連してさらに説明する。
図18は、デスクランブラ116からの逆スクランブルされたデータか、または、スクランブル・オペレーションと逆スクランブル・オペレーションが使用されない場合は、逆スクランブルされていないデータ(通常、スクランブルされていないデータである)を選択するのに使用されるマルチプレクサ124を示す。逆スクランブルされたデータは、デスクランブラ・イネーブル(DESCR_EN)信号がアクティブである場合に選択される。アクティブである場合、逆スクランブルされたデータは、NRX_RX_DESCR_DATAとして、NRZ宛先78(図10)に送られる。
図19は、簡潔にする目的で簡略化された一例を使用することにより、スクランブラ・オペレーションとデスクランブラ・オペレーションを示す。スクランブラ・オペレーションはテーブル126に示され、デスクランブラ・オペレーションはテーブル128に示されている。テーブル126に示すとおり、着信ビット・シーケンスは、NRZ_TX_DATAに関する29クロック・サイクルにわたる論理1値で示されるのと同一の論理値である。ただし、図14と図19を併せて参照すると、シーケンス内の第1のビットと第2のビットは、第14遅延ステージと第15遅延ステージから出力され、NRZ_TX_DATAからのシーケンス内の第15のビットとともに、第15のクロック・サイクル130において、出力回路106への入力を形成する。出力回路106は、図15の真理値表を有するので、第n番の遅延ステージ(遅延15)から回復されたnビット・シーケンス内の第1のビットに関する、クロック15における論理1電圧値は、反転されない。というのは、n−1遅延ステージ(遅延14)から回復されたシーケンス内の第2のビットの論理値と、NRZ_TX_DATAからのシーケンス内の第n番のビットが、同一の論理値(論理1)だからである。しかし、シーケンス内の第2のビット(すなわち、n−1遅延ステージからの出力)が、NRZ_TX_DATAからの第n番のビットの論理値と異なる場合、第1のビットの論理値は反転される。例えば、クロック4を参照されたい。テーブル126は、遅延要素と出力回路の組合せにより、シフト・レジスタから出力されたビット・シーケンスが、n(ただし、この例では、n=15)個の同一論理値を超えるのが防止される方法を示す。第n−1番の遅延要素と第n番の遅延要素からの出力を引き出して、nビットのシーケンス内の第2のビット論理値と第1のビット論理値を受け取り、それらのビット値を、NRZ_TX_DATAからの第n番のビット論理値と論理的に結合することにより、比較的単純なスクランブラ機構が構想される。
テーブル127は、NRZ_TX_DATAに関する論理1電圧値なしに、スクランブルが初期設定された場合、何が生じるかを示す。おそらく、この条件では、スクランブルはまったく行われない。しかし、図示するとおり、時間131中に、場合により、始動中に、論理1電圧値が、着信ビット・シーケンスに与えられると、nビット(この例では、n=15)の後続のシーケンスは、nビットの着信シーケンスが同一の論理値を有していても、同一の論理値を含まない可能性がある。
テーブル128は、スクランブルがかけられたデータ(NRZ_TX_SCR_DATA)が、デスクランブラに入力(NRZ_RZ)として与えられる逆スクランブル機構を示す。図17と図19を併せて参照すると、スクランブルがかけられたデータ、NRZ_RXが、遅延14と遅延15(nビットのシーケンスの第1の論理値と第2の論理値を格納する)からの出力とともに、出力回路122にフィードフォワードされる。出力回路122は、図15の真理値表を有するものとすることができるため、第15(すなわち、第n番)のクロック・サイクル132で、排他的ORゲートから出力された逆スクランブルされたデータ、NRZ_RX_DATAは、論理1電圧値に戻る。すると、図示するとおり、逆スクランブルされたNRZ_RX_DATAビット・シーケンスは、NRZ_TX_DATAに関する元のスクランブルがかけられる前のビット・シーケンスと合致する。
以上の開示を完全に理解すると、多数の変形形態や変更形態が、当業者には明白となろう。添付の特許請求の範囲が、すべてのそのような変形形態および変更形態を包含すると解釈されるものとする。
光伝送経路を介して送信されるデータ・ストリームを論理値シリーズに変換するためのバンドパス・フィルタおよび判定回路を有する受信機の回路図である。 受信されたデータ・ストリームからクロック信号を回復し、そのクロック信号を使用して、データ・ストリームを回復するためのPLLを有する図1の受信機を示すブロック図である。 受信機のバンドパスの範囲外の周期的な周波数からもたらされる、受信機上のデータ・ストリームのDCアキュムレーションを示すタイミング図である。 DCアキュムレーションを最小限に抑えるエンコーダを有する通信システムを示すブロック図である。 相異なる符号化スキーム、ならびに各スキームのDCアキュムレーションを示すタイミング図である。 受信機が、バイフェース符号化された0論理値を受信した時点とバイフェース符号化された1論理値を受信した時点の間の、受信機の判定回路からのジッタ出力を示すタイミング図である。 図6の符号化された0論理値出力と符号化された1論理値出力の間の境界を示す拡大図である。 図6の隣接する境界間のジッタ周期を示すタイミング図である。 バンドパスの範囲内、かつPLLの低域通過を下回るジッタの通過を示す、PLLローパス・フィルタ、および受信機のバンドパス・フィルタに対する、ジッタの周波数対振幅のグラフである。 好ましい実施形態による、選択的スクランブラおよびデスクランブラを利用して、データ・ストリーム内の各フレームのペイロードのスクランブルおよび逆スクランブルを行い、データ・ストリーム内の各フレームのペイロード、プリアンブル、およびパリティの符号化および復号化を行う通信システムを示すブロック図である。 リンク・トポロジに接続されたノード群から構成され、リングを伝送されるデータ・ストリームからクロックが回復される際の、アキュムレーションされたジッタを示す通信システムのブロック図である。 スクランブルがかけられ、符号化されたペイロード、ならびに符号化されたプリアンブルおよびパリティを有し、プリアンブルは、後の復号化および逆スクランブルの目的で、プリアンブル・セクションとパリティ・セクションからペイロードを見分けるのに使用されるフレーム同期信号を設定する符号化違反に基づいて検出されることが可能な、フレームのプランである。 ペイロードに対して、プリアンブル・ビットおよびパリティ・ビットが出現する時間を設定するのに使用される状態マシンを示すブロック図である。 プリアンブル・ビットおよびパリティ・ビットが出現しない時間中にペイロードに選択的にスクランブルをかけるスクランブラ回路を示すブロック図である。 図14の出力回路の組合せ論理の真理値表である。 一実施形態による、スクランブルがかけられ、符号化されたペイロード、符号化されたパリティ・ビット、および符号化されていないプリアンブル・ビット(プリアンブル・ビットが、DCアキュムレーションをまったく有さない場合)のフレームをコンパイルするのに使用されるマルチプレクサ群を示すブロック図である。 プリアンブル・ビットおよびパリティ・ビットが出現しない時間中にペイロードを選択的に逆スクランブルするデスクランブラ回路を示すブロック図である。 一実施形態による、復号化され、逆スクランブルされたペイロード、復号化されたパリティ・ビット、および復号化されていないプリアンブル・ビット(プリアンブル・ビットが、DCアキュムレーションをまったく有さない場合)のフレームをコンパイルするのに使用されるマルチプレクサを示す図である。 図14および図17のスクランブラに入力され、デスクランブラから出力される論理値の典型的なテーブルである。
符号の説明
10 受信機、26 送信機、27 伝送経路、36 エンコーダ、38 NRZ送信元、40 デコーダ、42 NRZ宛先

Claims (28)

  1. メモリと、
    前記メモリに、ビット・シーケンスを受信させるために、前記メモリに結合されたイネーブル回路と、
    ペイロード・セクションとプリアンブル・セクションを含むフレームのペイロード・セクション内の前記ビット・シーケンスの少なくとも1ビットの論理値を反転させるため、前記メモリに結合された出力回路と
    含むビット・シーケンスをを送信する回路。
  2. 前記メモリは、シフト・レジスタを含む請求項1に記載の送信回路。
  3. 前記出力回路は、前記メモリから前記ビット・シーケンスの前記少なくとも1ビットを受け取り、前記少なくとも1つの論理値を反転させ、前記反転された前記少なくとも1つの論理値を前記メモリに転送して戻すように結合された請求項1に記載の送信回路。
  4. 前記メモリは、シリーズに結合されたn個のフリップ・フロップを含み、前記シリーズの中の第1のフリップ・フロップが前記出力回路の出力に結合され、前記シリーズの中の第n番のフリップ・フロップと第n−1番のフリップ・フロップの出力が前記出力回路の一対の入力に結合される請求項1に記載の送信回路。
  5. 前記イネーブル回路と前記出力回路はそれぞれ、組合せ論理を含む請求項1に記載の送信回路。
  6. 前記フレームはパリティ・セクションをさらに含む請求項1に記載の送信回路。
  7. 前記イネーブル回路は、
    一対の入力と、
    前記プリアンブル・セクションまたは前記パリティ・セクションが前記送信回路に与えられたことを示す信号を前記一対の入力が受け取った場合、前記メモリからの出力を無効にするように結合された出力とを含む請求項6に記載の送信回路。
  8. 前記反転される論理値は、前記シーケンス内の第2のビットの前記論理値と前記シーケンス内の第n番のビットが異なる場合、前記シーケンス内の第1のビットの論理値である請求項1に記載の送信回路。
  9. 前記出力回路は、前記シーケンス内の第2ビットの前記論理値と前記シーケンス内の第n番のビットが同一である場合、前記シーケンス内の第1のビットの前記論理値を反転させないためにさらに結合される請求項1に記載の送信回路。
  10. 前記メモリは、nビットの前記シーケンスの各ビットを格納するためのn個のステージを含み、前記出力回路は、
    前記n個のステージの第n番のステージからの第1のビット、前記n個のステージの第n−1番のステージからの第2のビット、第n番のビットを受け取るように結合された3つの入力と、
    前記n個のステージの第1のステージの入力に、前記反転された論理値を印加するように結合された出力とを含む請求項1に記載の送信回路。
  11. 前記反転された論理値を符号化し、前記符号化され、反転された論理値を伝送経路上に送る、前記出力回路と該伝送経路の間に結合されたエンコーダをさらに含む請求項1に記載の送信回路。
  12. 符号化違反を前記プリアンブル・セクションに符号化するエンコーダをさらに含む請求項1に記載の送信回路。
  13. 前記フレーム内の、前記ペイロード・セクションと前記プリアンブル・セクションとは異なる領域内に配置されたパリティ・セクションを符号化するためのエンコーダをさらに含み、前記パリティ・セクションは、受信機に受信されて、符号化されたプリアンブル・セクションと符号化されたペイロード・セクションと結合されたとき、単一の前記フレーム内に実質的にまったくDCアキュムレーションをもたらさない論理値で符号化される請求項1に記載の送信回路。
  14. 前記出力回路は、前記シフト・レジスタから出力された前記ビット・シーケンスが、n個の同一の論理値を超えるのを防止する請求項1に記載の送信回路。
  15. ビット・シーケンスのnビットを一時的に格納し、前記シーケンス内の第2のビットの論理値と前記シーケンス内の第n番のビットの論理値が異なる場合、前記シーケンス内の第1のビットの論理値を反転させるように結合されたスクランブラと、
    前記nビットを符号化するため、前記スクランブラの出力に結合されたエンコーダと、
    前記符号化されたnビットを受け取るため、前記エンコーダの出力に結合された伝送経路と、
    前記符号化されたnビットを復号化するため、前記伝送経路に結合されたデコーダと、
    前記復号化されたnビットを復号化されたビットのシーケンスとして一時的に格納し、前記第2のビットの前記論理値と、復号化されたビットの前記シーケンス内の第n番のビットの論理値が異なる場合、復号化されたビットの前記シーケンス内の第1のビットの論理値を反転させるように結合されたデスクランブラとを含む通信システム。
  16. 前記スクランブラは、ペイロード・セクションと、プリアンブル・セクションと、パリティ・セクションとを含むフレームの該ペイロード・セクション内だけの前記nビットを一時的に格納するように結合される請求項15に記載の通信システム。
  17. 前記符号化されたnビットの論理1電圧値は、論理0電圧値の2倍の周波数で遷移する請求項15に記載の通信システム。
  18. 前記符号化されたnビットは、論理1電圧値がm+1クロック・サイクルの間に生じ、かつすべての符号化された論理1電圧値と論理0電圧値のDC電圧値の合計が、mクロック・サイクルに先立って、前記論理1電圧値または論理低電圧値に向かってスキューしていると、該mクロック・サイクルの始めの近くで遷移する請求項15に記載の通信システム。
  19. 前記伝送経路は光媒体である請求項15に記載の通信システム。
  20. 前記エンコーダは、フレームのペイロード・セクション内の前記nビットに先行する、該フレームのプリアンブル・セクション内のさらなるmビットを符号化するように結合され、前記フレームの先頭を同期するとともに、前記フレーム内の前記ペイロード・セクションを同期するために符号化違反として前記デコーダを認識できる、シーケンス内の前記mビットを符号化することを目的とする請求項15に記載の通信システム。
  21. 前記エンコーダは、前記ペイロード・セクション内の前記nビットの後に続く、フレームのパリティ・セクション内のさらなるpビットを符号化するように結合され、前記ペイロード・セクション内の前記nビットに対してパリティを維持するシーケンスを前記pビットに符号化することを目的とする請求項15に記載の通信システム。
  22. ビット・シーケンスを転送する方法であって、
    前記ビット・シーケンスのnビットの中の実質的にランダムな論理値セットを置き換えて、ジッタ周期を短くするステップと、
    DCアキュムレーションを低減するために論理値の前記実質的にランダムなセットの遷移周期を変更するステップと、
    前記実質的にランダムな論理値セットを変更された遷移周期で、伝送媒体を介して転送するステップを含む方法。
  23. 前記置き換えるステップは、
    前記ビット・シーケンスのnビットを一時的に格納するステップと、
    前記シーケンス内の第2のビットの前記論理値と前記シーケンス内の第n番のビットが異なる場合、前記第1のビットの前記論理値を逆転させるステップとを含む請求項22に記載の方法。
  24. 前記置き換えるステップは、
    前記ビット・シーケンスのnビットを一時的に格納するステップと、
    前記シーケンス内の第2のビットの前記論理値と前記シーケンス内の第n番のビットが同様である場合、前記シーケンス内の第1のビットの前記論理値を維持するステップとを含む請求項22に記載の方法。
  25. 前記変更するステップは、論理1電圧値を論理0電圧値の2倍の速度で遷移させるステップを含む請求項22に記載の方法。
  26. 前記変更するステップは、
    mサイクルに先立って、論理0電圧値と論理1電圧値に関するDC電圧値の合計を計算するステップと、
    前記mクロック・サイクル中と前記m+1クロック・サイクル中、前記nビットを有する論理1電圧値を検出するステップと、
    DC電圧値の前記計算された合計が、前記論理1電圧値または論理0電圧値に向かってスキューしていると、前記mクロック・サイクルの始まり近くで遷移を生成するステップとを含む請求項22に記載の方法。
  27. 前記置き換えるステップは、フレームのペイロード・セクション内だけのnビットに対して行われ、前記遷移周期を前記変更するステップは、前記ペイロード・セクション内のnビットと、前記ペイロード・セクションに先行するプリアンブル・セクション内のmビットと、前記ペイロード・セクションの後に続くパリティ・セクション内のpビットに対して行われる請求項22に記載の方法。
  28. 前記転送するステップの後に、前記変更された遷移周期を有する実質的にランダムな論理値セットの前記遷移周期を元に戻すステップと、
    前記ビット・シーケンスのnビットの中の前記実質的にランダムな論理値セットの中の前記ビット・シーケンスを置き換えるステップとをさらに含む請求項22に記載の方法。
JP2005301432A 2004-10-15 2005-10-17 受信機におけるビット誤りを最小限に抑えるように通信システムや通信方法で使用する選択的スクランブラ Active JP5042484B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/966,254 US7634694B2 (en) 2004-10-15 2004-10-15 Selective scrambler for use in a communication system and method to minimize bit error at the receiver
US10/966,254 2004-10-15

Publications (2)

Publication Number Publication Date
JP2006115518A JP2006115518A (ja) 2006-04-27
JP5042484B2 true JP5042484B2 (ja) 2012-10-03

Family

ID=35846886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005301432A Active JP5042484B2 (ja) 2004-10-15 2005-10-17 受信機におけるビット誤りを最小限に抑えるように通信システムや通信方法で使用する選択的スクランブラ

Country Status (4)

Country Link
US (1) US7634694B2 (ja)
EP (1) EP1648128B1 (ja)
JP (1) JP5042484B2 (ja)
ES (1) ES2638289T3 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034719B2 (en) 2002-09-27 2006-04-25 Samsung Electronics Co., Ltd. Data modulating method and apparatus, data demodulating method and apparatus, and code arranging method
US7330320B1 (en) 2003-06-16 2008-02-12 Marvell International Ltd. Method and apparatus to limit DC-level in coded data
US7877670B2 (en) * 2005-12-06 2011-01-25 Ternarylogic Llc Error correcting decoding for convolutional and recursive systematic convolutional encoded sequences
WO2006044980A1 (en) * 2004-10-19 2006-04-27 Matsushita Electric Industrial Co, Ltd Enhanced transmission systems for use in wireless personal area networks
DE602005000513T2 (de) * 2005-01-07 2007-10-25 Alcatel Lucent Empfänger zur Verbesserung der Polarisationsmodendispersion mittels Polarisationsverwürfelung
KR100782327B1 (ko) * 2006-05-27 2007-12-06 삼성전자주식회사 반도체 장치 사이의 단일형 병렬데이터 인터페이스 방법,기록매체 및 반도체 장치
US8552891B2 (en) 2006-05-27 2013-10-08 Samsung Electronics Co., Ltd. Method and apparatus for parallel data interfacing using combined coding and recording medium therefor
US7953987B2 (en) * 2007-03-06 2011-05-31 International Business Machines Corporation Protection of secure electronic modules against attacks
US8144802B2 (en) * 2007-10-16 2012-03-27 Semiconductor Components Industries, Llc Digital data encoding and decoding method and system
WO2010006651A1 (en) * 2008-07-17 2010-01-21 Nokia Corpaoration Data packet processing for estimation of a direction towards a transmitter
TW201015874A (en) * 2008-10-14 2010-04-16 Univ Nat Changhua Education Encoding/decoding method of Berger invert codes, and its encoder and inspector circuit
FR2938990B1 (fr) * 2008-11-27 2011-01-21 Canon Kk Procede et dispositif de pointage d'antenne
KR101115520B1 (ko) * 2008-12-23 2012-02-27 전자부품연구원 자기장 기반의 저주파 대역(~300㎑) 무선통신의 물리계층 구성 방법 및 이 방법을 실행하는 프로그램이 기록되어 컴퓨터로 읽을 수 있는 기록매체
US10375252B2 (en) * 2010-06-01 2019-08-06 Ternarylogic Llc Method and apparatus for wirelessly activating a remote mechanism
US9112760B2 (en) 2010-10-18 2015-08-18 Sony Corporation Transmitter and transmitting method for transmitting data via OFDM symbols in which the data is provided from a plurality of different data pipes
GB2484896A (en) * 2010-10-18 2012-05-02 Sony Corp OFDM transmitter comprises a frequency de-interleaver and interleaver for the manipulation of pilot symbols.
US8958513B1 (en) * 2013-03-15 2015-02-17 Xilinx, Inc. Clock and data recovery with infinite pull-in range
CN107850655B (zh) * 2015-05-22 2022-04-01 诺基亚技术有限公司 数据分组准备
JP6971538B2 (ja) * 2016-05-18 2021-11-24 ソニーセミコンダクタソリューションズ株式会社 通信装置、通信方法、プログラム、および、通信システム
US10440160B2 (en) * 2018-02-27 2019-10-08 Microchip Technology Incorporated Scramble of payload and preamble in 10SPE with synchronous and self-synchronous scrambling
KR102503176B1 (ko) * 2018-03-13 2023-02-24 삼성디스플레이 주식회사 데이터 전송 시스템, 상기 데이터 전송 시스템을 포함하는 표시 장치 및 이를 이용한 데이터 전송 방법
TWI658700B (zh) * 2018-07-16 2019-05-01 創意電子股份有限公司 積體電路、多通道傳輸裝置及其信號傳輸方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1500132A (en) * 1974-03-07 1978-02-08 Standard Telephones Cables Ltd Multi-level data scramblers and descramblers
JPS59125144A (ja) 1982-12-30 1984-07-19 ソニー株式会社 デイジタル信号伝送方法
JPS6162263A (ja) * 1984-09-04 1986-03-31 Toshiba Corp 情報伝送方式
US5655078A (en) * 1994-09-30 1997-08-05 Motorola Inc. Apparatus and method for encoding data in a fiber data distributed interface (FDDI)
US6349138B1 (en) * 1996-06-14 2002-02-19 Lucent Technologies Inc. Method and apparatus for digital transmission incorporating scrambling and forward error correction while preventing bit error spreading associated with descrambling
US5946355A (en) * 1997-03-21 1999-08-31 Tektronix, Inc. Serial-digital receiver
US5917852A (en) * 1997-06-11 1999-06-29 L-3 Communications Corporation Data scrambling system and method and communications system incorporating same
US6738935B1 (en) * 2000-02-07 2004-05-18 3Com Corporation Coding sublayer for multi-channel media with error correction
US6741636B1 (en) * 2000-06-27 2004-05-25 Lockheed Martin Corporation System and method for converting data into a noise-like waveform
US6437710B1 (en) * 2000-11-10 2002-08-20 Oasis Design, Inc. Encoder within a communication system that avoids encoded DC accumulation and can use coding violations to synchronize a decoder and detect transmission errors
US6848968B2 (en) 2001-02-08 2005-02-01 Mattel, Inc. Communication system for radio controlled toy vehicle
US6754190B2 (en) * 2001-10-17 2004-06-22 Motorola, Inc. Channel selection method used in a communication system
US20040091106A1 (en) * 2002-11-07 2004-05-13 Moore Frank H. Scrambling of data streams having arbitrary data path widths
US7284184B2 (en) * 2003-01-30 2007-10-16 International Business Machines Corporation Forward error correction scheme compatible with the bit error spreading of a scrambler

Also Published As

Publication number Publication date
US20060083328A1 (en) 2006-04-20
EP1648128B1 (en) 2017-05-24
US7634694B2 (en) 2009-12-15
EP1648128A3 (en) 2008-12-10
JP2006115518A (ja) 2006-04-27
ES2638289T3 (es) 2017-10-19
EP1648128A2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
JP5042484B2 (ja) 受信機におけるビット誤りを最小限に抑えるように通信システムや通信方法で使用する選択的スクランブラ
EP1112648B1 (en) A system and method for sending and receiving data signals over a clock signal line
EP2051422B1 (en) Digital data encoding and decoding method and system
US7949134B2 (en) Multiplexed multilane hybrid scrambled transmission coding
US20150381316A1 (en) Integrated physical coding sublayer and forward error correction in networking applications
US6539051B1 (en) Parallel framer and transport protocol with distributed framing and continuous data
US6437710B1 (en) Encoder within a communication system that avoids encoded DC accumulation and can use coding violations to synchronize a decoder and detect transmission errors
JP4057085B2 (ja) 光ファイバで送信されるデジタル・データをエンコードおよびデコードする回路および方法
US11888586B2 (en) Low latency network device and method for treating received serial data
US7200782B2 (en) Clock recovery system for encoded serial data with simplified logic and jitter tolerance
US11755524B2 (en) Controller area network apparatus
US7342520B1 (en) Method and system for multilevel serializer/deserializer
EP1897307B1 (en) Method and apparatus for increasing data transfer rates through a communication channel
US7376211B2 (en) High speed early/late discrimination systems and methods for clock and data recovery receivers
EP1547296B1 (en) System and method for transferring data among transceivers substantially void of data dependent jitter
CA2031494C (en) Correlation code transmission system
CA2396948A1 (en) A system and method for sending and receiving data signals over a clock signal line
Muzaffar et al. Dynamic Edge-coded Protocols for Low-power, Device-to-device Communication
US11481217B2 (en) Data transmitting and receiving system including clock and data recovery device and operating method of the data transmitting and receiving system
JP2007142860A (ja) 送信器、受信器及びデータ伝送方法
US6628213B2 (en) CMI-code coding method, CMI-code decoding method, CMI coding circuit, and CMI decoding circuit
JPS6048939B2 (ja) デ−タ伝送方式
Rockrohr et al. Protocol Logic and Specifications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250