JP5041727B2 - Elevator earthquake monitoring control device and its earthquake monitoring control system - Google Patents

Elevator earthquake monitoring control device and its earthquake monitoring control system Download PDF

Info

Publication number
JP5041727B2
JP5041727B2 JP2006126903A JP2006126903A JP5041727B2 JP 5041727 B2 JP5041727 B2 JP 5041727B2 JP 2006126903 A JP2006126903 A JP 2006126903A JP 2006126903 A JP2006126903 A JP 2006126903A JP 5041727 B2 JP5041727 B2 JP 5041727B2
Authority
JP
Japan
Prior art keywords
seismic
elevator
building
long
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006126903A
Other languages
Japanese (ja)
Other versions
JP2007297178A (en
Inventor
健治 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2006126903A priority Critical patent/JP5041727B2/en
Publication of JP2007297178A publication Critical patent/JP2007297178A/en
Application granted granted Critical
Publication of JP5041727B2 publication Critical patent/JP5041727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Description

本発明は、長周期地震動を予測し、高層・超高層の建物(以下、高層建物と総称する)に設置されるエレベータを保護する地震監視制御装置及びその監視制御システムに関する。   The present invention relates to an earthquake monitoring and control apparatus that predicts long-period ground motion and protects an elevator installed in a high-rise / super-high-rise building (hereinafter collectively referred to as a high-rise building) and a monitoring control system thereof.

従来、監視対象となる高層建物における地震の影響を把握するために、監視対象建物の適宜な個所(例えばエレベータの昇降路内のピット底部、昇降路上部の機械室、昇降路壁など)にP波地震検知器およびS波地震検知器が設置されている。   Conventionally, in order to grasp the effects of earthquakes on high-rise buildings to be monitored, it is necessary to place P at appropriate locations on the monitored buildings (for example, the pit bottom in the elevator hoistway, the machine room above the hoistway, the hoistway wall, etc.) Wave seismic detector and S wave seismic detector are installed.

P波は縦波または粗密波と呼ばれ、地盤崩壊等による震源から岩盤等を伝わって最初に建物に到達する小さな衝撃波である。S波は横波と呼ばれ、P波が到達した後に岩盤等を伝わってくる大きな揺れの波である。P波は地盤の密度や剛性(堅さの一種)によって多少異なるが、P波の速度は1秒間に約6km、S波は1秒間に3.5kmと言われている。これらP波及びS波は何れも表面波と呼ばれる波であるが、P波はS波の2倍近く伝わる速度が速い。   P waves are called longitudinal waves or dense waves, and are small shock waves that first reach the building from the epicenter due to ground collapse, etc., through the bedrock. The S wave is called a transverse wave, and is a large shaking wave that travels through the rock after the P wave arrives. The P wave differs slightly depending on the density and rigidity of the ground (a kind of stiffness), but the speed of the P wave is said to be about 6 km per second, and the S wave is said to be 3.5 km per second. These P waves and S waves are both called surface waves, but the P waves travel at a speed nearly twice that of the S waves.

ところで、従来のエレベータの地震対策としては、前述したようにエレベータ設備の適宜な個所に前述する地震検知器を設置し、地震発生によって高層建物が揺れたとき、エレベータ設備の影響を考慮し、予め所定レベル(例えばマグニチュードM4以上M6未満(小・中地震)の間の所定の信号レベル等)が設定され、所定レベルを超える揺れが生じたとき、地震検知器が地震発生と判断しエレベータに対して所望に運行制御指令を与え、地震に対する予防対策をとっている。   By the way, as an earthquake countermeasure for conventional elevators, as described above, the above-mentioned earthquake detector is installed at an appropriate location of the elevator equipment, and when the high-rise building shakes due to the occurrence of the earthquake, the influence of the elevator equipment is taken into consideration. When a predetermined level (for example, a predetermined signal level between magnitude M4 and less than M6 (small / medium earthquakes), etc.) is set and a vibration exceeding the predetermined level occurs, the earthquake detector determines that an earthquake has occurred and The operation control command is given as desired to take preventive measures against earthquakes.

しかしながら、以上のような地震対策は、主として震源地から岩盤等を伝わってくる衝撃波の振幅レベルから地震動を感知するものであって、短周期による一時的な衝撃に対するエレベータの防御対策に過ぎない。   However, the above-mentioned earthquake countermeasures are intended to detect the earthquake motion mainly from the amplitude level of the shock wave transmitted from the epicenter to the rock and the like, and are merely a countermeasure for the elevator against a temporary shock caused by a short period.

しかし、地震動の中にはP波、S波だけでなく、これらP波やS波に比べて周期が長く、振幅も大きいレイリー波やラブ波も発生する。このレイリー波とラブ波との動きが組み合わさると、地表にうねりが生まれる。   However, not only P waves and S waves but also Rayleigh waves and Love waves having a longer period and a larger amplitude than those P waves and S waves are generated in the ground motion. When the movements of Rayleigh waves and love waves are combined, undulations are created on the surface.

よって、このような長周期の地震動が発生した場合、既に地震動の影響を受けて高層建物が揺れてから地震動検知器による感知信号を受けてエレベータに運行制御指令を送出するので、運行制御指令を受けた時にはエレベータが既に高層建物の揺れの影響を受けた状態に陥っている。特に、長周期地震動が発生した場合、高層建物ほど大きな揺れが発生し、エレベータが途中で停止したり、ワイヤーロープの揺れ(rope sway)でエレベータ機器や建物設備を損傷させる可能性がある。   Therefore, when such a long-period ground motion occurs, the operation control command is sent to the elevator in response to the detection signal from the ground motion detector after the high-rise building has already shaken under the influence of the ground motion. When it was received, the elevator had already been affected by the shaking of the high-rise building. In particular, when long-period ground motion occurs, the higher the building, the greater the shaking, and the elevator may stop halfway or the elevator sway may damage the elevator equipment or building equipment.

また、利用者が乗りかごから出られないとか、停電により多大な影響を受ける可能性がある。   In addition, there is a possibility that the user cannot be removed from the car or is greatly affected by a power failure.

本発明は上記事情に鑑みてなされたもので、長周期地震波が到達する前に、エレベータに対して早めに危険回避のための最適な運行制御指令を与えるエレベータの地震監視制御装置及びその地震監視制御システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an earthquake monitoring and control apparatus for an elevator that gives an optimum operation control command for avoiding danger to the elevator as soon as a long-period seismic wave arrives, and its earthquake monitoring An object is to provide a control system.

上記課題を解決するために、本発明に係るエレベータの地震監視制御装置は、広範囲の地域に跨って点在する複数の地震観測点で観測される地震波情報を収集する地震波情報収集手段と、この地震波情報収集手段で収集された各地震観測点毎の地震波情報に含む加速度信号を周波数分析し、地震波の周波数及びピークレベル信号を求める個別分析処理手段と、複数の地震観測点の周波数分析結果から得られる地震波の周波数及びピークレベル信号から方向性及び広がりをもった長周期地震動を予測する長周期地震動予測手段と、この予測された長周期地震動の移動方向から管理対象となる建物のエレベータの影響有無を予測する手段と、影響有りと予測された建物のエレベータ制御装置に運行制御指令を通知する制御指令通知手段とを備えた構成である。 In order to solve the above problems, an elevator earthquake monitoring and control apparatus according to the present invention includes a seismic wave information collecting means for collecting seismic wave information observed at a plurality of seismic observation points scattered over a wide area, and Based on the frequency analysis of the acceleration signal included in the seismic wave information for each seismic observation point collected by the seismic wave information collecting means, and the individual analysis processing means to obtain the seismic wave frequency and peak level signal, and the frequency analysis results of multiple seismic observation points Long-period ground motion prediction means for predicting long-period ground motion with directionality and spread from the obtained seismic frequency and peak level signal, and the effect of the elevator of the building to be managed from the predicted direction of movement of the long-period ground motion A means for predicting presence / absence, and a control instruction notifying means for notifying an operation control instruction to an elevator control device of a building predicted to be affected It is formed.

また、本発明に係るエレベータの地震監視制御システムは、広範囲の地域に跨って点在設置された地震計で観測された地震波の加速度信号を伝送する複数の地震観測点と、エレベータを備えた管理対象となる複数の建物と、前記各建物の位置情報及び影響参照データとが記憶され、前記各地震観測点から送られてくる加速度信号を周波数分析し、この分析された各地震観測点のレベル信号のつながり及び分析周波数から長周期地震動を予測すると共に、この予測された長周期地震動の方向性及び周波数と前記記憶されている各建物の位置情報及び影響参照データとから建物におけるエレベータに影響を与える可能性を予測し、地震波が到達する前に該当建物のエレベータ逝去装置に地震対策用の運行制御指令を送信する地震監視制御装置とを備えた構成である。 The elevator seismic monitoring and control system according to the present invention includes a plurality of seismic observation points that transmit acceleration signals of seismic waves observed by seismometers installed across a wide area and an elevator. a plurality of buildings of interest, the the position information and the impact reference data and the storage of each building, each of the acceleration signal transmitted from the seismic stations frequency analysis, the level of the seismic stations that are this analysis The long-period ground motion is predicted from the signal connection and analysis frequency, and the elevator in the building is influenced from the directionality and frequency of the predicted long-period ground motion and the stored location information and influence reference data of each building. A seismic monitoring and control device that predicts the possibility of transmission and sends an operation control command for earthquake countermeasures to the elevator evacuation device of the building before the seismic wave arrives Example was a configuration.

本発明によれば、長周期の地震動が監視対象となる建物に到達する前に、エレベータに対して早めに危険回避のための最適な運行制御指令を与えることができるエレベータの地震監視制御装置及びその地震監視制御システムを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, before the earthquake motion of a long period arrives at the building used as a monitoring object, the earthquake monitoring control apparatus of the elevator which can give the optimal operation control command for danger avoidance to an elevator early, and The earthquake monitoring control system can be provided.

以下、本発明の実施形態について図面を参照して説明する。
図1は本発明に係るエレベータの地震監視制御システムに一実施の形態を示す構成図である。
地震監視制御システムは、高層建物1に設置されるエレベータの運行制御を司るエレベータ制御装置2と、広範囲の地域に跨って多数点在する地震波観測点a1〜an、b1〜bn、…(以下、a,b,…と呼ぶ)と、各地震波観測点a,b,…で観測される地震波情報を収集して分析し、長周期地震動によるエレベータの影響を予測する地震監視用中核基地となる地震監視制御装置3と、各地震波観測点a,b,…と地震監視制御装置3とを結ぶ情報伝送ライン4とで構成される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of an elevator earthquake monitoring control system according to the present invention.
The seismic monitoring and control system includes an elevator control device 2 that controls the operation of an elevator installed in a high-rise building 1 and seismic wave observation points a1 to an, b1 to bn,. Earthquakes that serve as a core base for earthquake monitoring that collects and analyzes seismic wave information observed at each seismic wave observation point a, b,... and predicts the effects of elevators caused by long-period ground motions .. And the information transmission line 4 connecting the seismic observation points a, b,...

エレベータとしては、管理対象となる高層建物1と一体に形成される昇降路の上部の機械室又は昇降路の適宜な場所に巻上機及び前述したエレベータ制御装置2が設置され、この巻上機にはワイヤーロープが掛け渡されている。ワイヤーロープの一端部には乗りかごが吊り下げられ、ワイヤーロープの他端部にはつりあい重りが吊り下げられている。乗りかごは、巻上機の回転駆動に伴い、昇降路に設置される一対のガイドレールに沿って昇降移動する。   As an elevator, the hoisting machine and the elevator control device 2 described above are installed in a machine room above the hoistway formed integrally with the high-rise building 1 to be managed or an appropriate place in the hoistway. A wire rope is stretched around. A car is suspended from one end of the wire rope, and a counterweight is suspended from the other end of the wire rope. The car moves up and down along a pair of guide rails installed in the hoistway as the hoisting machine rotates.

エレベータ制御装置2は、一般的には、かご呼びや乗場呼びの登録に応じて行先階に所定の走行速度で運行するように巻上機を駆動制御するが、地震の発生による検知レベルが一定レベル以上となったとき、地震災害に基づく管制運転に切替り、乗りかごを最寄階まで運転し、利用者を降ろした後、最寄階に停止するような制御を行う。   In general, the elevator control device 2 drives and controls the hoisting machine so as to operate at a predetermined traveling speed to the destination floor according to the registration of the car call or the hall call, but the detection level due to the occurrence of the earthquake is constant. When the level is exceeded, control is switched to the control operation based on the earthquake disaster, the car is driven to the nearest floor, the user is lowered, and then the control is stopped to the nearest floor.

各地震波観測点a,b,…には、地震動を検知する地震検知器と、予め定めた識別データIDが記憶され、当該IDと時間データと地震検知器で検知される地震動による加速度信号とからなる地震波情報を情報伝送ライン4を介して地震監視制御装置3に送信する通信制御部とが設けられている。   Each of the seismic wave observation points a, b,... Stores a seismic detector that detects seismic motion, a predetermined identification data ID, and the ID, time data, and acceleration signal generated by seismic motion detected by the seismic detector. And a communication control unit that transmits the seismic wave information to the earthquake monitoring control device 3 via the information transmission line 4.

なお、情報伝送ライン4は、有線通信、無線通信の何れでもよいが、有線通信による場合には緊急性の観点から専用ラインを用いることが望ましい。   The information transmission line 4 may be either wired communication or wireless communication. However, in the case of wired communication, it is desirable to use a dedicated line from the viewpoint of urgency.

地震監視制御装置3は、各地震波観測点a,b,…から送られてくる地震波情報を受信し必要に応じて地震監視制御装置3で扱う信号形態に変換する機能を有する通信インタフェース11と、監視制御に必要な情報を入力するキーボード,マウスなどの入力部12と、プログラムデータを記憶するブログラムデータ記憶部13と、プログラムデータに基づいて各地震波観測点a,b,…の地震波情報を解析処理するCPUで構成される地震解析処理部14と、解析途中や解析結果の内容を表示する表示部15と、各地震波観測点a,b,…の地震波情報や解析結果の情報を記憶するデータベース15とで構成される。   The seismic monitoring control device 3 receives the seismic wave information sent from each seismic wave observation point a, b,..., And if necessary, a communication interface 11 having a function of converting into a signal form handled by the seismic monitoring control device 3; An input unit 12 such as a keyboard and a mouse for inputting information necessary for monitoring control, a program data storage unit 13 for storing program data, and seismic wave information of each seismic observation point a, b,. The seismic analysis processing unit 14 composed of a CPU for analysis processing, the display unit 15 for displaying the contents of analysis results and analysis results, and the seismic wave information of each seismic observation point a, b,. And database 15.

地震解析処理部14は、図2に示すように各地震波観測点a,b,…の地震波情報を収集しデータベース15の地震波情報記憶領域15aに記憶する地震波情報収集記憶手段20と、この収集記憶手段14Aで収集された各地震波観測点a,b,…ごとに地震波情報に含む加速度データに基づき、フーリェ変換によって周波数分析を行って周波数及び地震波レベル信号を取得する個別分析処理手段21と、個別分析処理手段21で分析された地震波の周波数及び地震波レベル信号に基づき、レイリー波やラブ波のごとく方向性及び広がりをもった長周期地震動を予測する長周期地震動予測手段22と、これら処理手段21,22による処理結果に基づき、管理対象となる高層建物1のエレベータに及ぼす地震波の形態(地震波の大小)及び影響を予測する影響予測手段23と、この影響判断手段23に基づき、高層建物1のエレベータに影響を及ぼすと判断された場合、地震波が高層建物1に到達する前に当該高層建物1のエレベータ制御装置2に地震災害に伴う運行制御指令信号を送信する制御指令通知手段24とで構成される。 As shown in FIG. 2, the earthquake analysis processing unit 14 collects the seismic wave information at each of the seismic wave observation points a, b,... And stores it in the seismic wave information storage area 15a of the database 15, and this collection memory. Individual analysis processing means 21 for performing frequency analysis by Fourier transform based on acceleration data included in the seismic wave information for each seismic wave observation point a, b,... Collected by means 14A, and acquiring frequency and seismic wave level signals; Based on the seismic wave frequency and the seismic wave level signal analyzed by the analysis processing means 21, a long-period ground motion prediction means 22 for predicting a long-period ground motion having directionality and spread like a Rayleigh wave or a Love wave, and these processing means 21 , 22 Based on the processing result by the seismic wave form (the magnitude of the seismic wave) and shadow on the elevator of the high-rise building 1 to be managed If it is determined on the basis of the impact predicting means 23 and the impact determining means 23 that the elevator of the high-rise building 1 is affected, the elevator control device for the high-rise building 1 before the seismic wave reaches the high-rise building 1 2 includes control command notification means 24 for transmitting an operation control command signal associated with an earthquake disaster.

なお、前述したレイリー波やラブ波は何れも表面波の一種であるが、レイリー波は表面波の進行方向に対して円を描くように振動しつつ移動し、ラブ波は表面波の進行方向に対して左右に振動しながら移動することが知られている。   The Rayleigh wave and the Love wave described above are both types of surface waves, but the Rayleigh wave moves while oscillating in a circle with respect to the traveling direction of the surface wave, and the Love wave is the traveling direction of the surface wave. It is known to move while vibrating left and right.

データベース15は、前述したように地震波情報を記憶する地震波情報記憶領域15a、各地震観測点a,b,…毎にID、位置情報(緯度・軽度情報)及び個別分析結果情報を記憶する個別情報記憶領域15b(図3(a)参照)、管理対象となる高層建物1の建物名、位置情報(緯度・軽度情報、影響レベル、建物固有周期(又は建物固有周波数)等の建物情報を記憶する対象データ記憶領域15c(図3(b)参照)その他の処理結果情報記憶領域15dが設けられている。   As described above, the database 15 is a seismic information storage area 15a for storing seismic information, and individual information for storing ID, position information (latitude / mild information), and individual analysis result information for each seismic observation point a, b,. Stores storage information such as a storage area 15b (see FIG. 3A), a building name of a high-rise building 1 to be managed, position information (latitude / mild information, influence level, building natural period (or building natural frequency), etc. A target data storage area 15c (see FIG. 3B) and other processing result information storage area 15d are provided.

次に、以上のように構成された地震監視制御システムの動作について説明する。
先ず、各地震観測点a,b,…は、観測された加速度信号が送信タイミングとなる所定レベル信号に達したとき、所定の周期ごとに識別データID、時間データを含む加速度信号等の地震波情報を地震監視制御装置3に送信し続ける。
Next, the operation of the seismic monitoring and control system configured as described above will be described.
First, each seismic observation point a, b,... Has seismic wave information such as an acceleration signal including identification data ID and time data for each predetermined period when the observed acceleration signal reaches a predetermined level signal at which transmission timing is reached. Is continuously transmitted to the earthquake monitoring control device 3.

地震監視制御装置3の通信インタフェース11は、各地震観測点a,b,…から伝送されてくる地震波情報を受信すると、地震波情報収集記憶手段20がデータベース15の地震波情報記憶領域15aに例えば時系列的に順次記憶していく。   When the communication interface 11 of the earthquake monitoring control device 3 receives the seismic wave information transmitted from each of the seismic observation points a, b,..., The seismic wave information collecting / storing means 20 is stored in the seismic wave information storage area 15a of the database 15 in, for example, time series. It memorizes sequentially.

地震解析処理部14は、地震波情報収集記憶手段20の処理とは別に独立的に常時プログラムデータに基づき、図4に示すような一連の処理を実行している。すなわち、地震解析処理部14の個別分析処理手段21は、常時地震波情報の受信有りか否かを判断し(S1)、受信有りと判断したとき、カウンタメモリに分析時間t=T、i=1に設定し(S2,S3)、地震波情報記憶領域15aに時系列的に記憶される1つの地震観測点を表すIDごとに加速度信号に対する周波数分析を実施し、地震波の周波数及び地震波ピークレベル信号を算出し、例えば図3(a)に示す個別情報記憶領域15bの該当IDの対応領域に記憶した後(S4)、分析設定時間Tを経過したか否かを判断する(S5)。未だ分析設定時間Tを経過していない場合にはi=1に+1をインクリメントし(S6)、次時点の地震観測点を表すIDの加速度信号に対する周波数分析を実施し、分析設定時間T内で高速処理にて多数の地震観測点a,b,…の周波数分析を行う。その結果、同じ地震観測点における複数の地震波の周波数及び地震波ピークレベル信号を取得することもある。   The seismic analysis processing unit 14 always executes a series of processes as shown in FIG. 4 independently of the process of the seismic wave information collecting / storing means 20 independently based on the program data. That is, the individual analysis processing means 21 of the earthquake analysis processing unit 14 always determines whether or not the seismic wave information is received (S1), and when it is determined that there is reception, the analysis time t = T, i = 1 in the counter memory. (S2, S3), frequency analysis is performed on the acceleration signal for each ID representing one seismic observation point stored in time series in the seismic information storage area 15a, and the seismic frequency and seismic peak level signal are obtained. After calculating and storing, for example, in the corresponding area of the corresponding ID in the individual information storage area 15b shown in FIG. 3A (S4), it is determined whether or not the analysis set time T has elapsed (S5). If the analysis set time T has not yet passed, i = 1 is incremented by +1 (S6), frequency analysis is performed on the acceleration signal of the ID representing the next seismic observation point, and within the analysis set time T Performs frequency analysis of a large number of seismic observation points a, b,. As a result, a plurality of seismic wave frequencies and seismic peak level signals may be acquired at the same seismic observation point.

分析設定時間Tを経過すると、長周期地震動予測手段22を実行する。長周期地震動予測手段22は、各地震観測点a,b,…の地震波ピークレベル信号のうち、ほぼ同一または近似する地震波ピークレベル信号をつなぎ合せることにより、これら地震観測点の位置情報から方向性を判断するとともに(S7)、取得した周波数を考慮し、長周期地震動であるか否かを判断する(S8)。通常、建物の地盤その他の状況によって異なるが、例えば6〜8秒程度の長周期地震動が高層建物1の固有周期に近くなり、大きな揺れが発生する。図3(b)にも示すように建物によっても異なる。   When the analysis set time T elapses, the long-period ground motion prediction means 22 is executed. The long-period ground motion prediction means 22 connects the seismic wave peak level signals of the seismic observation points a, b,... (S7) and considering the acquired frequency, it is determined whether or not it is a long-period ground motion (S8). Usually, for example, a long-period ground motion of about 6 to 8 seconds is close to the natural period of the high-rise building 1, and large shaking occurs depending on the ground of the building and other conditions. As shown in FIG. 3B, it differs depending on the building.

図5は各地震波の状況を表す図である。31は震源地、32−1はP波、32−2はS波、32−3はラブ波、34−4はレイリー波の移動状態を表している、2aは昇降路内の乗りかごである。   FIG. 5 shows the situation of each seismic wave. 31 is the epicenter, 32-1 is the P wave, 32-2 is the S wave, 32-3 is the Love wave, and 34-4 is the moving state of the Rayleigh wave. 2a is the car in the hoistway. .

そこで、長周期地震動予測手段22によって長周期地震動と判断されなかった場合には
ステップS9に移行し、残りの地震観測点の個別分析に移行するか、ステップS3に戻り、再度同様の処理を繰り返し実行する。
Therefore, if the long-period ground motion prediction means 22 does not determine that the long-period ground motion has occurred, the process proceeds to step S9, and the process proceeds to individual analysis of the remaining seismic observation points, or returns to step S3, and the same processing is repeated again. Execute.

一方、ステップS8において、長周期地震動と判断したとき、影響予測手段23を実行し、各管理対象となる高層建物1のエレベータの影響を予測する。すなわち、影響予測手段23は、長周期地震動予測手段22で得られた長周期地震動の移動方向性に基づき、図3(b)に示す各高層建物1の位置情報から、当該方向性に属する高層建物1を順次抽出し(S10)、カウンタにy=1を設定し、影響有無を予測する(S11〜S13)。
すなわち、影響予測手段23は、長周期地震動の地震波レベルが予め定める影響レベルに達しているか、又は高層建物1の固有周期(又は固有周波数)にほぼ等しいか、少なくとも後者の判断又は両方の判断を実施し、該当高層建物1におけるエレベータの影響有無を予測する。そして、全ての建物1について影響の有無を調べる(S14)。
On the other hand, when it is determined in step S8 that the long-period ground motion is detected, the influence predicting means 23 is executed to predict the influence of the elevator of the high-rise building 1 to be managed. That is, based on the moving directionality of the long-period ground motion obtained by the long-period ground motion prediction unit 22, the impact prediction unit 23 determines from the position information of each high-rise building 1 shown in FIG. The buildings 1 are sequentially extracted (S10), y = 1 is set in the counter, and the presence or absence of influence is predicted (S11 to S13).
That is, the impact prediction means 23 determines whether the seismic wave level of the long-period ground motion reaches a predetermined impact level or is approximately equal to the natural period (or natural frequency) of the high-rise building 1, or at least the latter judgment or both judgments. It carries out and predicts the presence or absence of the influence of the elevator in the high-rise building 1 concerned. Then, all the buildings 1 are checked for the presence or absence of influence (S14).

因みに、長周期地震動の周期と高層建物1の固有周期とが等しいと、共振現象が発生し、高層建物1の揺れが徐々に大きくなり、共振状態が発生する。なお、長周期地震動の大きさ及び強さに応じて高層建物1の共振のタイミングが異なる。そして、高層建物1が共振現象を起こして大きく揺れると、その振動がワイヤーロープに伝播し、ワイヤーロープ始端とワイヤーロープ終端である乗りかごとの間で振動が往来して振幅及び周期が徐々に増大し、高層建物1の固有周期に近づくと、乗りかご2aが大きく揺れる。   Incidentally, when the period of the long-period ground motion and the natural period of the high-rise building 1 are equal, a resonance phenomenon occurs, the shaking of the high-rise building 1 gradually increases, and a resonance state occurs. Note that the resonance timing of the high-rise building 1 varies depending on the magnitude and intensity of the long-period ground motion. And if the high-rise building 1 causes a resonance phenomenon and shakes greatly, the vibration propagates to the wire rope, and the vibrations come and go between the wire rope starting end and the wire rope terminating end, and the amplitude and period gradually When it increases and approaches the natural period of the high-rise building 1, the car 2a shakes greatly.

そこで、高層建物1におけるエレベータの影響有無を予測した後、影響有りとされた高層建物1のエレベータ制御装置2に対して地震波が到達する前に運行制御指令を送信し、影響有りとした全部の建物1のエレベータ制御装置2に繰り返し、運行制御指令を送信する(S15〜S18)。   Therefore, after predicting whether or not there is an elevator effect in the high-rise building 1, an operation control command is transmitted to the elevator control device 2 of the high-rise building 1 that has been affected before the earthquake wave arrives. The operation control command is repeatedly transmitted to the elevator control device 2 of the building 1 (S15 to S18).

地震監視制御装置3から運行制御指令を受けた各建物1のエレベータ制御装置2,…においては、地震監視制御装置3から運行制御指令に基づき、地震災害時の管制運転に切替え、最寄階に向かって停止し、エレベータ利用者を降ろして当該階に停止し、地震波の到達を待つことになる。   In the elevator control device 2 of each building 1 that has received the operation control command from the earthquake monitoring control device 3, based on the operation control command from the earthquake monitoring control device 3, switch to the control operation at the time of an earthquake disaster, to the nearest floor Stop, head down the elevator user, stop at the floor, and wait for the arrival of seismic waves.

従って、以上のような実施の形態によれば、高層建物1が大きく揺れる長周期地震動を予測し、かつ、地震波の移動方向から影響を受けるエレベータを設置する建物を特定し、地震波が建物に到達する前に適切に運行制御指令を送出するので、乗りかごの大きな揺れを未然に回避でき、また利用者を速やかに最寄階に降すことにより、利用者がかご内に閉じ込められたり、復旧するまで待つという状態を改善できる。   Therefore, according to the embodiment as described above, a long-period ground motion in which the high-rise building 1 is greatly shaken is predicted, and the building where the elevator affected by the moving direction of the seismic wave is specified, and the seismic wave reaches the building. Since the operation control command is sent out properly before the start of the operation, it is possible to avoid large shaking of the car, and the user can be locked in the car or restored by promptly moving the user to the nearest floor. You can improve the situation of waiting until.

なお、上記実施の形態では、長周期地震動を予測した後、地震波の移動方向から影響を受けるエレベータを設置する建物を特定し、自動的に該当建物のエレベータ制御装置2に運行制御指令を送信するようにしたが、例えば地震観測点a,b,…及び監視対象建物1をプロットした地図情報を表示部15に表示し、ほぼ同一のピークレベル信号となった地震観測点a,b,…のプロットを異なる色で順次表示することにより、監視員が方向性を見定め、影響を受けるエレベータを設置する建物を特定し、順次運行制御指令を送出する構成であっても構わない。   In the above embodiment, after predicting the long-period ground motion, the building where the elevator affected by the moving direction of the seismic wave is specified, and the operation control command is automatically transmitted to the elevator control device 2 of the corresponding building. However, for example, the map information obtained by plotting the seismic observation points a, b,... And the monitored building 1 is displayed on the display unit 15, and the seismic observation points a, b,. By displaying the plots sequentially in different colors, the monitor may determine the directionality, identify the building where the affected elevator is installed, and sequentially send operation control commands.

さらに、影響予測手段23で影響を受けるエレベータを設置する建物を抽出した後、表示部15の地図上にプロットされる建物1の建物名及び色替えによって表示することにより、該当建物1の近くの保守員又は現場近くの保守待機場所等に通知することも可能である。   Furthermore, after extracting the building where the affected elevator is installed by the influence predicting means 23, the building is displayed on the map of the display unit 15 with the building name and color change of the building 1 so that the vicinity of the building 1 is displayed. It is also possible to notify the maintenance staff or a maintenance standby place near the site.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

本発明に係る地震監視制御システムの一実施の形態を示す構成図。The block diagram which shows one Embodiment of the earthquake monitoring control system which concerns on this invention. 本発明に係る地震監視制御装置の要部構成を示す機能ブロック図。The functional block diagram which shows the principal part structure of the earthquake monitoring control apparatus which concerns on this invention. 図1のデータベースに記憶されるデータの一例を示す図。The figure which shows an example of the data memorize | stored in the database of FIG. 地震監視制御装置の動作を一例を説明するフローチャート。The flowchart explaining an example of operation | movement of an earthquake monitoring control apparatus. 各種の地震波の伝播状態を表す図。The figure showing the propagation state of various seismic waves.

符号の説明Explanation of symbols

1…高層建物1、a1、〜,an、b1、〜、bn,c1,〜、cn、d1,〜,dn…地震観測点、2…エレベータ制御装置、2a…乗りかご、3…地震監視制御装置、14…地震解析処理部、15…データベース、20…地震波情報収集記憶手段、21…長周期地震動予測手段、22…影響予測手段、23…制御指令通知手段、31…震源地、32−1…P波、32−2…S波、32−3…ラブ波、34−4…レイリー波。   DESCRIPTION OF SYMBOLS 1 ... High-rise building 1, a1, ..., an, b1, ..., bn, c1, ..., cn, d1, ..., dn ... Earthquake observation point, 2 ... Elevator control device, 2a ... Ride car, 3 ... Earthquake monitoring control Device: 14 ... Earthquake analysis processing unit, 15 ... Database, 20 ... Earthquake wave information collection / storage means, 21 ... Long-period earthquake motion prediction means, 22 ... Impact prediction means, 23 ... Control command notification means, 31 ... Earthquake source, 32-1 ... P wave, 32-2 ... S wave, 32-3 ... Love wave, 34-4 ... Rayleigh wave.

Claims (4)

遠距離地点で発生した地震波から、建物に設置されるエレベータを保護するエレベータの地震監視制御装置において、
広範囲の地域に跨って点在する複数の地震観測点で観測される地震波情報を収集する地震波情報収集手段と、
この地震波情報収集手段で収集された各地震観測点毎の地震波情報に含む加速度信号を周波数分析し、地震波の周波数及びピークレベル信号を求める個別分析処理手段と、
複数の地震観測点の周波数分析結果から得られる地震波の周波数及びピークレベル信号から方向性及び広がりをもった長周期地震動を予測する長周期地震動予測手段と、
この予測された長周期地震動の移動方向から管理対象となる建物のエレベータの影響有無を予測する手段と、
影響有りと予測された建物のエレベータ制御装置に運行制御指令を通知する制御指令通知手段とを備えたことを特徴とするエレベータの地震監視制御装置。
In an elevator seismic monitoring and control system that protects elevators installed in buildings from seismic waves generated at long distances,
Seismic wave information collecting means for collecting seismic wave information observed at a plurality of seismic stations scattered over a wide area,
Individual analysis processing means for analyzing the frequency of the acceleration signal included in the seismic wave information for each seismic observation point collected by this seismic wave information collecting means to obtain the frequency and peak level signal of the seismic wave ,
Long-period ground motion prediction means for predicting long-period ground motion with directionality and spread from seismic frequency and peak level signals obtained from frequency analysis results of a plurality of seismic observation points;
Means for predicting the presence / absence of the elevator of the building to be managed from the predicted direction of movement of the long-period ground motion,
An elevator seismic monitoring and control device comprising control command notification means for notifying an elevator control device of a building that is predicted to have an operation control command.
前記長周期地震動予測手段は、複数の地震観測点の周波数分析結果から得られるピークレベル信号のつながり及び周波数から地震波の移動方向を有する長周期地震波を見つけ出すことを特徴とする請求項1に記載のエレベータの地震監視制御装置。 The long-period ground motion prediction means finds a long-period seismic wave having a moving direction of the seismic wave from the connection and frequency of peak level signals obtained from frequency analysis results of a plurality of seismic observation points . Elevator earthquake monitoring and control device. 各建物のエレベータの影響有無を予測する手段は、予め各建物の固有周期が規定され、前記長期地震動予測手段によって把握される地震波の移動方向と各建物の位置とから影響予測する建物を選定し、これら選定された建物の固有周期と地震波の周期とからエレベータの影響有無を予測することを特徴とする請求項1又は請求項2に記載のエレベータの地震監視制御装置。 The means for predicting the presence / absence of the elevator effect in each building is to select the building whose effect is to be predicted from the moving direction of the seismic wave and the position of each building in which the natural period of each building is defined in advance. 3. The elevator earthquake monitoring and control apparatus according to claim 1 or 2 , wherein the presence or absence of an elevator is predicted from the natural period of the selected building and the period of the seismic wave. 遠距離地点で発生した地震波から、建物に設置されるエレベータを保護するエレベータの地震監視制御システムにおいて、
広範囲の地域に跨って点在設置された地震計で観測された地震波の加速度信号を伝送する各地震観測点と、
エレベータを備えた管理対象となる複数の建物と、
前記各建物の位置情報及び影響参照データとが記憶され、前記各地震観測点から送られてくる加速度信号を周波数分析し、この分析された各地震観測点のレベル信号のつながり及び分析周波数から長周期地震動を予測すると共に、この予測された長周期地震動の方向性及び周波数と前記記憶されている各建物の位置情報及び影響参照データとから建物におけるエレベータに影響を与える可能性を予測し、地震波が到達する前に該当建物のエレベータ制御装置に地震対策用運行制御指令を送信する地震監視制御装置とを備えたことを特徴とするエレベータの地震監視制御システム。
In an elevator seismic monitoring and control system that protects elevators installed in buildings from seismic waves generated at long distances,
Each seismic station that transmits acceleration signals of seismic waves observed with seismometers installed across a wide area,
Multiple managed buildings with elevators,
The position information and the impact reference data of each building is stored, the acceleration signal frequency analysis sent from the seismic stations, the length from the connection and analysis frequency of the level signal for each seismic stations that are this analysis Along with predicting the periodic ground motion, predicting the possibility of affecting the elevator in the building from the directionality and frequency of the predicted long-period ground motion and the stored location information and influence reference data of each building. An earthquake monitoring control system for an elevator, comprising: an earthquake monitoring control device that transmits an earthquake control operation control command to the elevator control device of the building before the arrival of the building.
JP2006126903A 2006-04-28 2006-04-28 Elevator earthquake monitoring control device and its earthquake monitoring control system Expired - Fee Related JP5041727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126903A JP5041727B2 (en) 2006-04-28 2006-04-28 Elevator earthquake monitoring control device and its earthquake monitoring control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126903A JP5041727B2 (en) 2006-04-28 2006-04-28 Elevator earthquake monitoring control device and its earthquake monitoring control system

Publications (2)

Publication Number Publication Date
JP2007297178A JP2007297178A (en) 2007-11-15
JP5041727B2 true JP5041727B2 (en) 2012-10-03

Family

ID=38767017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126903A Expired - Fee Related JP5041727B2 (en) 2006-04-28 2006-04-28 Elevator earthquake monitoring control device and its earthquake monitoring control system

Country Status (1)

Country Link
JP (1) JP5041727B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562196B2 (en) * 2010-09-30 2014-07-30 三菱電機ビルテクノサービス株式会社 Elevator control command device, elevator device, and elevator system
JP5997569B2 (en) * 2012-10-05 2016-09-28 株式会社日立製作所 Shut-off valve control device and shut-off valve control method
JP6278887B2 (en) * 2014-12-22 2018-02-14 三菱電機ビルテクノサービス株式会社 Facility management system
JP6402692B2 (en) * 2015-08-21 2018-10-10 三菱電機ビルテクノサービス株式会社 Long-period ground motion prediction system
WO2022013928A1 (en) * 2020-07-13 2022-01-20 三菱電機ビルテクノサービス株式会社 Elevator stop prediction system
KR102686609B1 (en) * 2021-08-12 2024-07-18 한전케이디엔주식회사 Earthquake detection system and method using frtu(feeder remote terminal unit) in distribution system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637269B2 (en) * 1984-11-09 1994-05-18 株式会社日立製作所 Elevator control operation device
JPH01303280A (en) * 1988-05-30 1989-12-07 Hitachi Elevator Eng & Service Co Ltd Control operation device for elevator
JP2849297B2 (en) * 1993-01-12 1999-01-20 鹿島建設株式会社 Seismic intensity prediction system
JPH072450A (en) * 1993-06-14 1995-01-06 Hitachi Building Syst Eng & Service Co Ltd Emergency operating device for elevator
JPH11160447A (en) * 1997-12-02 1999-06-18 Katsuyuki Mori Earthquake alarm system
JP4301659B2 (en) * 1999-11-05 2009-07-22 株式会社フジタ Earthquake warning system
JP3755131B2 (en) * 2001-08-28 2006-03-15 独立行政法人防災科学技術研究所 Earthquake prediction system

Also Published As

Publication number Publication date
JP2007297178A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP4907150B2 (en) Remote monitoring system
JP5041727B2 (en) Elevator earthquake monitoring control device and its earthquake monitoring control system
JP5205754B2 (en) Building monitoring system
JP5183185B2 (en) Elevator device and control operation method of elevator
JP5246636B2 (en) Elevator seismic control system
JP4994616B2 (en) Elevator control device and elevator control method
US9415972B2 (en) Elevator operation control method and operation control device
JP4488216B2 (en) Elevator control device
US20170210597A1 (en) Building sway operation system
JP2008114944A (en) Elevator device
JP2004224469A (en) Control operation system of elevator when earthquake occurs
JP5743027B2 (en) Elevator control device
JP2009113937A (en) Emergency operation device of elevator
JP2009298546A (en) Control system for elevator
JP2011057420A (en) Elevator earthquake damage prediction device
JP6436245B2 (en) Monitoring system
JP2011051739A (en) Control device of elevator
JP6737254B2 (en) Information processing equipment
JP4867813B2 (en) Elevator seismic control operation system
JP5473375B2 (en) Earthquake monitoring control system
JP5562196B2 (en) Elevator control command device, elevator device, and elevator system
JP5634812B2 (en) Earthquake motion impact prediction device
JP2008105762A (en) Long period vibration control operation system of elevator
JP5985378B2 (en) Elevator and elevator control method
JP6402692B2 (en) Long-period ground motion prediction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120710

R150 Certificate of patent or registration of utility model

Ref document number: 5041727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees