JP5041514B2 - Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile - Google Patents

Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile Download PDF

Info

Publication number
JP5041514B2
JP5041514B2 JP2006334402A JP2006334402A JP5041514B2 JP 5041514 B2 JP5041514 B2 JP 5041514B2 JP 2006334402 A JP2006334402 A JP 2006334402A JP 2006334402 A JP2006334402 A JP 2006334402A JP 5041514 B2 JP5041514 B2 JP 5041514B2
Authority
JP
Japan
Prior art keywords
oxide catalyst
fluidity
producing
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006334402A
Other languages
Japanese (ja)
Other versions
JP2007216212A (en
Inventor
悟 駒田
定雄 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2006334402A priority Critical patent/JP5041514B2/en
Publication of JP2007216212A publication Critical patent/JP2007216212A/en
Application granted granted Critical
Publication of JP5041514B2 publication Critical patent/JP5041514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、アルケンまたはアルカンの気相接触酸化反応または気相接触アンモ酸化反応によって、それに対応する不飽和酸、不飽和ニトリルの製造に用いられるSbを含む酸化物触媒及び係る酸化物触媒を用いた不飽和酸、不飽和ニトリルの製造方法に関する。   The present invention uses an oxide catalyst containing Sb used for the production of an unsaturated acid and an unsaturated nitrile corresponding to the gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of an alkene or alkane, and the oxide catalyst. The present invention relates to a method for producing unsaturated acids and unsaturated nitriles.

従来、プロピレンまたはイソブチレンなどアルケンを気相接触酸化または気相接触アンモ酸化して対応する不飽和カルボン酸または不飽和ニトリルを製造する方法が良く知られている。
更に近年、アルケンに替わってプロパンまたはイソブタンなどアルカンを気相接触酸化または気相接触アンモ酸化によって対応する不飽和酸または不飽和ニトリルを製造する方法が着目されており、種々の酸化物触媒が特許文献1〜4などに開示されている。
Conventionally, a method for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by subjecting an alkene such as propylene or isobutylene to gas phase catalytic oxidation or gas phase catalytic ammoxidation is well known.
Furthermore, in recent years, attention has been focused on a method for producing a corresponding unsaturated acid or unsaturated nitrile by gas phase catalytic oxidation or gas phase catalytic ammoxidation of alkane such as propane or isobutane instead of alkene, and various oxide catalysts have been patented. It is disclosed in documents 1-4.

流動床反応器でアルケンまたはアルカンの気相接触酸化または気相接触アンモ酸化反応を行なう時には、高い目的物の収率を求められる事はもちろん、反応の安定性が求められる。流動床反応で流動性の悪い触媒を用いると、反応安定性に欠け、目的生成物の収率が変動する。収率が変動すると、反応器以降に接続された急冷塔、吸収塔、回収塔、精製塔などのフィード組成が変動し、プロセス全体が変動することとなる。更には、流動性が阻害されれば、反応ガスの流れの偏りや温度のムラが出来、その結果、触媒の劣化の原因になる事もある。   When performing the gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of alkene or alkane in a fluidized bed reactor, not only a high yield of the target product is required, but also the stability of the reaction is required. When a catalyst having poor fluidity is used in a fluidized bed reaction, the reaction stability is insufficient and the yield of the target product varies. When the yield fluctuates, the feed composition of the quenching tower, absorption tower, recovery tower, purification tower, etc. connected after the reactor fluctuates, and the entire process fluctuates. Furthermore, if the fluidity is hindered, the flow of the reaction gas is uneven and the temperature is uneven, and as a result, the catalyst may be deteriorated.

流動床反応器に用いる触媒の形状は、真球に近い球形が好ましいことは良く知られている。これは、形状が歪であると流動性を悪化させる要因となるからである。更に、流動性を悪化させる要因として、触媒の表面に物質が突出している場合が上げられる。
アルケンとしてプロピレンを原料とし、不飽和ニトリルを製造する際の触媒には、特許文献5に見られるように、触媒表面に突起状に発生する微小なトゲ状物質を生成する場合があることが知られている。
It is well known that the shape of the catalyst used in the fluidized bed reactor is preferably a spherical shape close to a true sphere. This is because if the shape is distorted, the fluidity is deteriorated. Furthermore, as a factor that deteriorates the fluidity, there is a case where a substance protrudes from the surface of the catalyst.
As is seen in Patent Document 5, a catalyst for producing an unsaturated nitrile using propylene as an alkene as a raw material may generate a fine thorn-like substance generated on the surface of the catalyst. It has been.

表面に不要な物質が突出した触媒は、明らかに流動性が悪く、そのまま反応器に供給することは行われない。表面に突出した不要な物質を除去しようとして、化学的な処理、例えば酸、アルカリなどの薬剤で処理などを行うと、反応活性を司る部位を損傷しやすく、このような処理を行うことは好ましくない。また、物理的な処理も、反応を司る部位の損傷はもちろん、球形である触媒自身を破壊しかねない。反応活性を司る部位が損傷したり、触媒粒子が割れ、欠けが生じると、結果的に性能の低い、流動性の悪い触媒に変質させてしまう危険性がある。このため、当業者は通常これらの処理を実施せず、表面に不要な物質が突出した触媒を工業的に使用しようとはしない。   The catalyst with unnecessary substances protruding on the surface clearly has poor fluidity and is not supplied to the reactor as it is. Chemical treatment such as treatment with chemicals such as acid and alkali in order to remove unnecessary substances protruding from the surface easily damages the site responsible for reaction activity, and such treatment is preferable. Absent. In addition, physical treatments can damage the spherical catalyst itself as well as damage to the site responsible for the reaction. If the site responsible for the reaction activity is damaged, or if the catalyst particles are cracked or chipped, there is a risk that the resulting catalyst will be deteriorated into a catalyst with poor performance and poor fluidity. For this reason, those skilled in the art usually do not carry out these treatments and do not attempt to industrially use a catalyst in which unnecessary substances protrude from the surface.

そのため、アルケンまたはアルカンを気相接触酸化または気相接触アンモ酸化し、対応する不飽和カルボン酸または不飽和ニトリルを製造する触媒で、Sbを含んだ触媒に関して、触媒性能は良好ながら、触媒表面に突出した不要な物質(以下、「流動性阻害物質」という。)が存在することにより流動床反応器で安定して使用することが困難であった触媒に対して、安定的に高い目的物収率を維持し、かつ反応を安定させる方法に関しては、これまで見出されてこなかった。   Therefore, a catalyst for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by subjecting an alkene or alkane to gas phase catalytic oxidation or gas phase catalytic ammoxidation. Highly stable target collection for catalysts that were difficult to use stably in a fluidized bed reactor due to the presence of protruding unwanted substances (hereinafter referred to as “fluidity inhibitors”). No method has been found so far for maintaining the rate and stabilizing the reaction.

特開平9−157241号公報Japanese Patent Laid-Open No. 9-157241 特開2002−239382号公報JP 2002-239382 A 特開2003−71283号公報JP 2003-71283 A 特開2003−205237号公報JP 2003-205237 A 特公昭47−19766号公報Japanese Patent Publication No. 47-19766

本発明は、Sbを含む複合酸化物触媒を提供し、また、該酸化物触媒を用いて、流動床反応器にて、アルケンまたはアルカンの気相接触酸化反応または気相接触アンモ酸化反応によって、対応する不飽和酸、不飽和ニトリルを製造する方法において、流動性阻害物質が存在しても有効に利用でき、安定的に高い目的物収率を維持する新規な不飽和酸、不飽和ニトリルの製造方法を提供することを目的とする。   The present invention provides a composite oxide catalyst containing Sb and using the oxide catalyst in a fluidized bed reactor by a gas-phase catalytic oxidation reaction or a gas-phase catalytic ammoxidation reaction of an alkene or alkane, In the process for producing the corresponding unsaturated acid and unsaturated nitrile, a novel unsaturated acid and unsaturated nitrile which can be effectively used even in the presence of a fluidity inhibiting substance and stably maintain a high yield of the target product. An object is to provide a manufacturing method.

本発明者らは上記目的を達成するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、下記のとおりである。
(1) 気相接触酸化反応または気相接触アンモ酸化反応によって、流動床反応器でアルケンまたはアルカンからそれに対応する不飽和酸又は不飽和ニトリルを製造するのに用いられるSbを含む酸化物触媒であって、該酸化物触媒の流動性阻害物質が該酸化物触媒の全重量に対して0.5wt%以下である酸化物触媒。
(2) SiO換算で20〜60重量%のシリカに担持されている(1)に記載の酸化物触媒。
(3) 酸化物触媒が下記式(1)の条件を満たす(1)又は(2)に記載の酸化物触媒。
0<a/(a+b)≦0.4 (1)
(ここで、aは担体を除いた酸化物触媒成分中のSbの組成比(モル比)、bは担体を除く酸化物触媒成分中の、酸素とSb以外の成分の組成比(モル比)である。)
(4) 気相接触酸化反応または気相接触アンモ酸化反応によって、流動床反応器でアルケンまたはアルカンからそれに対応する不飽和酸又は不飽和ニトリルを製造するのに用いられるSbを含む酸化物触媒を製造する方法であって、該酸化物触媒の流動性阻害物質を該酸化物触媒の重量に対して0.5wt%以下にする工程を有する酸化物触媒の製造方法。
(5) 前記酸化物触媒を収容した装置内に流通するガスを流動させ、前記酸化物触媒同士を接触させることによって前記流動性阻害物質を除去する(4)に記載の酸化物触媒の製造方法。
(6) 前記装置の胴体部分における前記ガスの線速度を0.03m/s〜5m/sとし、かつ前記ガスの流通時間を1〜50時間とする(5)に記載の酸化物触媒の製造方法。
(7) 前記装置内の触媒密度を300〜1300Kg/mとする(5)又は(6)に記載の酸化物触媒の製造方法。
(8) 前記流動性阻害物質を前記流動床反応器中で除去する(4)〜(7)のいずれかに記載の酸化物触媒の製造方法。
(9) 上記(1)〜(3)に記載の酸化物触媒又は上記(4)〜(8)に記載の製造方法によって得られた酸化物触媒を使用する不飽和酸または不飽和ニトリルの製造方法。
The inventors of the present invention have reached the present invention as a result of intensive studies to achieve the above object. That is, the present invention is as follows.
(1) An oxide catalyst containing Sb used to produce a corresponding unsaturated acid or unsaturated nitrile from an alkene or alkane in a fluidized bed reactor by gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction. An oxide catalyst in which the fluidity-inhibiting substance of the oxide catalyst is 0.5 wt% or less with respect to the total weight of the oxide catalyst.
(2) The oxide catalyst according to (1), which is supported on 20 to 60% by weight of silica in terms of SiO 2 .
(3) The oxide catalyst according to (1) or (2), wherein the oxide catalyst satisfies a condition of the following formula (1).
0 <a / (a + b) ≦ 0.4 (1)
(Where a is the composition ratio (molar ratio) of Sb in the oxide catalyst component excluding the support, and b is the composition ratio (molar ratio) of components other than oxygen and Sb in the oxide catalyst component excluding the support. .)
(4) An oxide catalyst containing Sb, which is used to produce a corresponding unsaturated acid or unsaturated nitrile from an alkene or alkane in a fluidized bed reactor by a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction. A method for producing an oxide catalyst, the method comprising the step of setting the fluidity inhibiting substance of the oxide catalyst to 0.5 wt% or less based on the weight of the oxide catalyst.
(5) The method for producing an oxide catalyst according to (4), wherein the fluidity-inhibiting substance is removed by causing a gas flowing in an apparatus containing the oxide catalyst to flow and bringing the oxide catalysts into contact with each other. .
(6) The production of the oxide catalyst according to (5), wherein the gas linear velocity in the body portion of the apparatus is 0.03 m / s to 5 m / s and the gas circulation time is 1 to 50 hours. Method.
(7) The method for producing an oxide catalyst according to (5) or (6), wherein the catalyst density in the apparatus is 300 to 1300 Kg / m 3 .
(8) The method for producing an oxide catalyst according to any one of (4) to (7), wherein the fluidity inhibiting substance is removed in the fluidized bed reactor.
(9) Production of unsaturated acid or unsaturated nitrile using the oxide catalyst according to (1) to (3) or the oxide catalyst obtained by the production method according to (4) to (8) Method.

本発明によれば、酸化物触媒及び該酸化物触媒を用いた安定的に高い目的物収率を維持する不飽和酸、不飽和ニトリルの製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the unsaturated acid and unsaturated nitrile which maintain a stable high target object yield using this oxide catalyst and this oxide catalyst can be provided.

以下、本発明を詳細に説明する。
本発明において、流動性阻害物質とは、酸化物触媒の表面に突出した酸化物の結晶などであり、反応器内での酸化物触媒の流動性を阻害する物質である。流動性阻害物質は、通常、球状の酸化物触媒(直径30〜100μm程度)の表面に、数μm〜十数μmの大きさの突起状に形成される。
Hereinafter, the present invention will be described in detail.
In the present invention, the fluidity-inhibiting substance is an oxide crystal or the like protruding from the surface of the oxide catalyst, and is a substance that inhibits the fluidity of the oxide catalyst in the reactor. The fluidity-inhibiting substance is usually formed on the surface of a spherical oxide catalyst (having a diameter of about 30 to 100 μm) in the form of protrusions having a size of several μm to several tens of μm.

従来、流動性阻害物質が存在すると、流動床反応器での反応に不適であると考えられていたが、本発明者らは流動性阻害物質を除去する方法を見出し、流動性阻害物質が酸化物触媒に対して2wt%以下とすれば、流動床反応器で使用できることを見出した。
酸化物触媒の全重量に対する流動性阻害物質の割合は、0.5wt%以下が更に好ましい。
酸化物触媒の全重量に対する流動性阻害物質の割合が2wt%よりも大きいと、流動床反応器内の触媒の上下循環の悪化などにより、安定的に高い収率を得られない。また、流動床反応器にディップレッグが備え付けられている場合では、ディップレッグ内で触媒が閉塞を起こし、連続運転が困難になる。
Conventionally, it was thought that the presence of fluidity-inhibiting substances was unsuitable for reaction in a fluidized bed reactor, but the present inventors found a method for removing the fluidity-inhibiting substances and the fluidity-inhibiting substances were oxidized It was found that if it is 2 wt% or less based on the product catalyst, it can be used in a fluidized bed reactor.
The ratio of the fluidity inhibiting substance to the total weight of the oxide catalyst is more preferably 0.5 wt% or less.
When the ratio of the fluidity inhibiting substance to the total weight of the oxide catalyst is larger than 2 wt%, a stable high yield cannot be obtained due to deterioration of the vertical circulation of the catalyst in the fluidized bed reactor. Further, when the dipleg is provided in the fluidized bed reactor, the catalyst is clogged in the dipleg, making continuous operation difficult.

本発明で用いられる酸化物触媒は、Sbを含むことを特徴とする酸化物触媒であり、一般的な方法で調製することができ、例えば次の3つの工程を経て製造することができる。
(I)原料調合工程
(II)工程(I)で得られた原料調合液を乾燥し、触媒前駆体を得る工程
(III)工程(II)で得られた触媒前駆体を焼成する工程
The oxide catalyst used in the present invention is an oxide catalyst characterized by containing Sb, can be prepared by a general method, and can be produced, for example, through the following three steps.
(I) Raw material preparation step (II) Step of drying the raw material preparation liquid obtained in step (I) to obtain a catalyst precursor (III) Step of firing the catalyst precursor obtained in step (II)

(工程I:原料調合工程)
前記の調合とは、水性溶媒に、触媒構成元素の原料を溶解または分散させることである。原料とは、工程(I)で用いるものである。本発明の酸化物触媒を調製するにあたり、金属の原料は特に限定されない。連続的に原料調合液を調合する場合は、撹拌槽などの調合槽、乾燥工程へ送液する配管などに原料調合液の成分が付着する場合がある。これは連続的に生産するのに支障を起こすこととなるので、このような場合は原料調合液と接する配管内部、槽内壁等を随時洗浄する。
(Process I: Raw material preparation process)
The above preparation is to dissolve or disperse the raw material of the catalyst constituent element in the aqueous solvent. The raw material is used in step (I). In preparing the oxide catalyst of the present invention, the metal raw material is not particularly limited. When the raw material preparation liquid is continuously prepared, the components of the raw material preparation liquid may adhere to a preparation tank such as a stirring tank or a pipe for feeding to the drying process. This causes a hindrance to continuous production. In such a case, the inside of the pipe in contact with the raw material mixture, the inner wall of the tank, and the like are washed as needed.

(工程II:乾燥工程)
工程(I)で得られた原料調合液を噴霧乾燥法によって乾燥させ、乾燥粉体を得る。噴霧乾燥法における噴霧方法としては遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。中でも遠心方式が好ましい。例えば、数cmの分散皿を数千rpmで高速回転させることにより液を噴霧できる。分散皿への液の供給は1個所でも良いが、数カ所に分かれていることが好ましい。
乾燥熱源としては、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。熱風の乾燥機入口温度は150〜300℃が好ましい。熱風の乾燥機出口温度は100℃以上が好ましく、特に110〜150℃が好ましい。連続的に生産する場合は、乾燥機本体、送液配管、噴霧化装置、乾燥粉体排出配管などの汚れを随時取り除く必要がある。
(Process II: Drying process)
The raw material preparation liquid obtained in the step (I) is dried by a spray drying method to obtain a dry powder. As a spraying method in the spray drying method, a centrifugal method, a two-fluid nozzle method or a high-pressure nozzle method can be adopted. Of these, the centrifugal method is preferable. For example, the liquid can be sprayed by rotating a dispersion dish of several centimeters at a high speed of several thousand rpm. Although the supply of the liquid to the dispersion dish may be performed at one place, it is preferably divided into several places.
As the drying heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C. The dryer outlet temperature of the hot air is preferably 100 ° C. or higher, and particularly preferably 110 to 150 ° C. In the case of continuous production, it is necessary to remove dirt from the dryer body, liquid feeding pipe, atomizing device, dry powder discharge pipe, etc. as needed.

(工程III:焼成工程)
乾燥工程で得られた乾燥粉体を焼成に供することによって酸化物触媒を得る。
焼成は、回転炉、トンネル炉、管状炉、流動焼成炉等を用いて行うことができる。焼成は反復することができる。乾燥工程で得られた乾燥粉体をニューマーなどで焼成装置に供給できる。この時実質的に酸素不存在下で焼成する場合は、窒素などの不活性ガスを用いる。ニューマーなどで気流搬送する場合は、焼成装置にサイクロンなど気固分離装置を設ける。
(Process III: Firing process)
An oxide catalyst is obtained by subjecting the dry powder obtained in the drying step to firing.
Firing can be performed using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace, or the like. Firing can be repeated. The dry powder obtained in the drying process can be supplied to the baking apparatus by a pneumatic or the like. At this time, when firing in the substantial absence of oxygen, an inert gas such as nitrogen is used. In the case of air conveyance by a pneumatic or the like, a gas-solid separation device such as a cyclone is provided in the baking apparatus.

乾燥粉体は静置して焼成すると、均一に焼成されず性能が悪化するとともに、割れ、ひびなどが生じる原因となるので、工業触媒としての生産性を考慮すると、ロータリーキルンなどで実施する事が好ましい。
キルンの回転数は通常数rpm〜数十rpmで行われる。無回転でなければ、1rpm以下でも可能である。
連続的に焼成する際に、ロータリーキルンに供給する粉体供給量を安定に保つ必要がある場合はスクリューフィーダーなどを用いることができる。スクリューフィーダーなどの装置とニューマーを組み合わせても良いし、スクリューフィーダーなどの装置から排出された乾燥粉体を垂直配管内で落下させて供給しても良い。
If the dry powder is left standing and fired, it will not be fired uniformly and the performance will deteriorate and cracks, cracks, etc. will occur. Therefore, considering the productivity as an industrial catalyst, it can be carried out with a rotary kiln. preferable.
The rotation speed of the kiln is usually several rpm to several tens rpm. If it does not rotate, it is possible even at 1 rpm or less.
A screw feeder or the like can be used when it is necessary to keep the amount of powder supplied to the rotary kiln stable when firing continuously. A device such as a screw feeder and a pneumatic device may be combined, or dry powder discharged from a device such as a screw feeder may be dropped and supplied in a vertical pipe.

キルンは粉体が焼成管内壁に付着すると、付着した粉体は過度に焼成されるし、付着せずに通過する粉体は伝熱が悪化して、いずれも触媒性能が下がる。それゆえ、付着を防止するため、ノッカーやハンマーなどで衝撃を与えることが出来る。人的または機械的に衝撃を与えることができ、連続的に行うのが好ましい。ノッカーやハンマーの先端(焼成管との接触部分)は金属製のものが使用できる。これら衝撃は、キルン内部に装着された、凝集した粉体を篩う金網の目詰まりを防止することなどにも効果がある。   In the kiln, when the powder adheres to the inner wall of the calcining tube, the adhering powder is excessively calcined, and the powder passing through without adhering deteriorates the heat transfer, and the catalytic performance decreases. Therefore, in order to prevent adhesion, an impact can be given with a knocker or a hammer. It is possible to apply a human or mechanical shock, and it is preferable to perform it continuously. The tip of the knocker or hammer (contact portion with the firing tube) can be made of metal. These impacts are also effective in preventing clogging of the wire mesh that is installed inside the kiln and sifts through the agglomerated powder.

焼成工程は良好な性能を得るため、前段焼成と本焼成に分けることが可能である。本焼成とは、触媒とするために焼成された過程の中で最も高い温度で保持された段階をいい、前段焼成とはそれ以前の焼成段階をいう。前段焼成が更に数段に分かれていても良い。
本焼成は500〜800℃で行うことが好ましい。
前段焼成と本焼成をそれぞれ異なるキルンで実施する場合は、中間にホッパーなどの貯蔵器を設け、ニューマーなどで搬送することが出来る。もちろん、本焼成用にスクリューフィーダーなどを設けることが出来る。
The firing step can be divided into pre-stage firing and main firing in order to obtain good performance. The main calcination refers to the stage maintained at the highest temperature in the process of calcination to obtain a catalyst, and the pre-stage calcination refers to the previous calcination stage. The pre-stage firing may be further divided into several stages.
The main baking is preferably performed at 500 to 800 ° C.
When the pre-stage firing and the main firing are performed in different kilns, a storage such as a hopper can be provided in the middle and transported by a newer or the like. Of course, a screw feeder or the like can be provided for the main firing.

焼成の雰囲気は様々なものが可能であるが、実質的に酸素不存在下の場合、窒素等不活性ガスを焼成装置に供給して実施できる。この場合、ガスの排出経路にサイクロンなどの気固分離装置を設けて同伴する焼成中の粉体を回収する。回収粉体はそのまま焼成装置に戻しても良いし、別途回収しても良い。ロータリーキルンの場合は粉体供給側に戻すことが出来る。   Various firing atmospheres are possible, but in the substantial absence of oxygen, an inert gas such as nitrogen can be supplied to the firing apparatus. In this case, a gas-solid separation device such as a cyclone is provided in the gas discharge path to recover the powder being fired accompanying the gas. The recovered powder may be returned to the baking apparatus as it is, or may be recovered separately. In the case of a rotary kiln, it can be returned to the powder supply side.

本発明の酸化物触媒は、シリカを主成分とする担体によって担持された担持触媒であることが好ましい。酸化物触媒がシリカを主成分とする担体によって担持された触媒の場合、高い機械的強度を有するので、流動床反応器を用いた気相接触酸化反応または気相接触アンモ酸化反応に好適である。シリカを主成分とする担体中のシリカの含有量は、触媒構成元素の酸化物と担体から成る担持酸化物触媒の全重量に対して、SiO換算で20〜60重量%であることが好ましく、より好ましくは25〜55重量%である。 The oxide catalyst of the present invention is preferably a supported catalyst supported by a carrier mainly composed of silica. In the case where the oxide catalyst is a catalyst supported by a support containing silica as a main component, it has high mechanical strength and is suitable for gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction using a fluidized bed reactor. . The content of silica in the support mainly composed of silica is preferably 20 to 60% by weight in terms of SiO 2 with respect to the total weight of the supported oxide catalyst comprising the oxide of the catalyst constituent element and the support. More preferably, it is 25 to 55% by weight.

本発明における酸化物触媒は、下記の式(1)で示される条件を満たすことが好ましい。
0<a/(a+b)≦0.4 ・・・(1)
(ここで、aは担体を除いた酸化物触媒成分中のSbの組成比(モル比)、bは担体を除く酸化物触媒成分中の、酸素とSb以外の成分の組成比(モル比)である。)
a/(a+b)の値が0.4以下のものでは、特に本発明による効果が顕著である。特に0.2以下が好ましい。
The oxide catalyst in the present invention preferably satisfies the condition represented by the following formula (1).
0 <a / (a + b) ≦ 0.4 (1)
(Where a is the composition ratio (molar ratio) of Sb in the oxide catalyst component excluding the support, and b is the composition ratio (molar ratio) of components other than oxygen and Sb in the oxide catalyst component excluding the support. .)
When the value of a / (a + b) is 0.4 or less, the effect of the present invention is particularly remarkable. In particular, 0.2 or less is preferable.

(流動性阻害物質の除去工程)
このようにして製造された酸化物触媒は0.5wt%を超える流動性阻害物質を含んでいるので、その表面に突出する流動性阻害物質を除去し、酸化物触媒の重量に対して2wt%以下にする。
流動性阻害物質の処理方法には、いくつかの方法が考えられるが、これらのうち、ガス流通下、触媒同士の接触などにより除去する方法が好ましい。例えば、触媒を貯蔵するホッパーなどにガスを流通する方法、流動床反応器に酸化物触媒を入れてそこにガスを流通させる方法が挙げられる。流動床反応器を用いた場合は、流動性阻害物質を除去するための特別な装置が不要である。酸化物触媒を充填した流動床反応器等の装置にガスを流通させると、酸化物触媒は接触しあって、突起状の流動性阻害物質が除去される。酸化物触媒から剥離した流動性阻害物質は球状の酸化物触媒より遥かに小さいので、流通させているガスと共に流出する。
(Removal process of fluidity-inhibiting substances)
Since the oxide catalyst produced in this manner contains a fluidity inhibiting substance exceeding 0.5 wt%, the fluidity inhibiting substance protruding on the surface is removed, and 2 wt% relative to the weight of the oxide catalyst. % Or less.
There are several methods for treating the fluidity-inhibiting substance. Of these, a method of removing the fluidity-inhibiting substance by contacting the catalysts with each other under a gas flow is preferable. For example, a method of circulating gas through a hopper for storing the catalyst, a method of circulating an oxide catalyst in a fluidized bed reactor, and the like. When a fluidized bed reactor is used, a special apparatus for removing the fluidity inhibiting substance is unnecessary. When gas is passed through an apparatus such as a fluidized bed reactor filled with an oxide catalyst, the oxide catalyst comes into contact with each other, and the protruding fluidity inhibiting substance is removed. Since the fluidity inhibiting substance peeled from the oxide catalyst is much smaller than the spherical oxide catalyst, it flows out with the flowing gas.

酸化物触媒の密度が300〜1300kg/mになるように装置内に酸化物触媒を充填するのが好ましい。用いる装置の胴体部分の断面積は、好ましくは0.1〜100m、更に好ましくは、0.2〜85mである。
流通させるガスは、窒素などのイナートガスや、空気が好ましい。ホッパー、流動床反応器等、酸化物触媒を充填した装置の胴体部分に流通させるガス線速度は0.03m/s〜5m/sとするのが好ましい。更に好ましくは、0.05〜1m/sである。また、ガスの流通時間は1〜50時間が好ましい。
It is preferable to fill the apparatus with an oxide catalyst so that the density of the oxide catalyst is 300 to 1300 kg / m 3 . Sectional area of the body portion of the apparatus used is preferably 0.1 to 100 m 2, and more preferably from 0.2~85m 2.
The gas to be circulated is preferably an inert gas such as nitrogen or air. It is preferable that the gas linear velocity to be circulated through the body portion of an apparatus filled with an oxide catalyst such as a hopper or a fluidized bed reactor is 0.03 m / s to 5 m / s. More preferably, it is 0.05-1 m / s. The gas circulation time is preferably 1 to 50 hours.

(酸化物触媒が有する流動性阻害物質の定量)
酸化物触媒における流動性阻害物質の割合は、以下のようにして測定することとする。
酸化物触媒を50g精秤し、直径0.40mm(1/64インチ)の3つの孔のある穴あき円盤で下端を覆われ、ペーパーフィルターで上端に蓋がされた内径41.6mm、長さ70cmの垂直チューブに入れ、下部から空気を380L/Hrで20時間流通させる。酸化物触媒から剥離した流動性阻害物質は、ペーパーフィルターに捕捉される。
酸化物触媒における流動性阻害物質の割合は、次式によって算出する。
(Quantification of fluidity-inhibiting substances possessed by oxide catalysts)
The ratio of the fluidity inhibiting substance in the oxide catalyst is measured as follows.
50g of oxide catalyst was precisely weighed, covered with a holed disk with three holes of 0.40mm (1/64 inch) in diameter, covered with a paper filter and covered at the top with an inner diameter of 41.6mm, length It puts in a 70 cm vertical tube, and distribute | circulates air from the lower part at 380 L / Hr for 20 hours. The fluidity inhibiting substance peeled from the oxide catalyst is captured by the paper filter.
The ratio of the fluidity inhibiting substance in the oxide catalyst is calculated by the following formula.

=[W0〜20/W]×100
ここで、
:酸化物触媒における流動性阻害物質の割合(wt%)
:所期投入量(=50g)
0〜20:0から20時間の間に酸化物触媒から除去されてペーパーフィルターに捕捉された流動性阻害物質の重量(g)
W R = [W 0-20 / W 0 ] × 100
here,
W R : Ratio of fluidity inhibiting substance in oxide catalyst (wt%)
W 0 : Expected input amount (= 50 g)
W 0-20 : Weight (g) of fluidity inhibitor removed from the oxide catalyst and trapped in the paper filter between 0 and 20 hours

(不飽和酸又は不飽和ニトリルの製造)
上述の流動性阻害物質の除去工程において流動床反応器を用いた場合、その流動床反応器でプロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応によって、対応する不飽和酸、不飽和ニトリルを製造するのが好ましい。
反応に用いるプロパンまたはイソブタンとアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用することができる。
供給酸素源として空気、酸素を富化した空気または純酸素を用いることができる。更に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。プロパンまたはイソブタンの気相接触酸化は以下の条件で行うことが出来る。
(Production of unsaturated acid or unsaturated nitrile)
When a fluidized bed reactor is used in the above-described removal process of the fluidity inhibiting substance, the corresponding unsaturated acid, non-reactant is reacted by a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction of propane or isobutane in the fluidized bed reactor. It is preferred to produce saturated nitriles.
The feedstock of propane or isobutane and ammonia used for the reaction does not necessarily have to be high purity, and industrial grade gas can be used.
Air, oxygen-enriched air, or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas. The gas phase catalytic oxidation of propane or isobutane can be carried out under the following conditions.

反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
反応温度は300〜500℃、好ましくは350〜450℃である。
反応圧力は5×10〜5×10Pa、好ましくは1×10〜3×10Paである。
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。本発明において、接触時間は次式で決定される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)
ここで、W、F及びTは次のように定義される。
W=充填触媒量(g)
F=標準状態(0℃、1.013×105Pa)での原料混合ガス流量(Ncc/sec)
T=反応温度(℃)
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
The reaction temperature is 300 to 500 ° C, preferably 350 to 450 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc). In the present invention, the contact time is determined by the following equation.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T)
Here, W, F, and T are defined as follows.
W = filled catalyst amount (g)
F = Raw material mixed gas flow rate (Ncc / sec) at standard condition (0 ° C, 1.013 x 10 5 Pa)
T = reaction temperature (° C.)

プロパンまたはイソブタンの気相接触アンモ酸化は以下の条件で行うことが出来る。
反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
反応後のガス中に数%の未反応酸素を残すことが好ましい。
反応に供給するアンモニアのプロパンまたはイソブタンに対するモル比は0.3〜1.5、好ましくは0.7〜1.2である。
反応後のガス中に若干の未反応アンモニアを残すことが好ましい。
反応温度は350〜500℃、好ましくは380〜470℃である。
反応圧力は5×10〜5×10Pa、好ましくは1×10〜3×10Paである。
The gas phase catalytic ammoxidation of propane or isobutane can be carried out under the following conditions.
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
It is preferable to leave several percent of unreacted oxygen in the gas after the reaction.
The molar ratio of ammonia to propane or isobutane supplied to the reaction is 0.3 to 1.5, preferably 0.7 to 1.2.
It is preferable to leave some unreacted ammonia in the gas after the reaction.
The reaction temperature is 350 to 500 ° C, preferably 380 to 470 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.

接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。
接触時間は次式で決定される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)
ここで
W=充填触媒量(g)
F=標準状態(0℃、1.013×10Pa)での原料混合ガス流量(Ncc/sec)
T=反応温度(℃)
である。
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc).
The contact time is determined by the following equation.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T)
Where W = filled catalyst amount (g)
F = Raw material mixed gas flow rate (Ncc / sec) in standard condition (0 ° C, 1.013 x 10 5 Pa)
T = reaction temperature (° C.)
It is.

反応方式は、固定床、流動床、移動床など従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。
また、不飽和酸又は不飽和ニトリルを製造する反応は、単流式であってもリサイクル式であってもよい。
As the reaction method, a conventional method such as a fixed bed, a fluidized bed, or a moving bed can be adopted, but a fluidized bed reactor in which reaction heat can be easily removed is preferable.
The reaction for producing the unsaturated acid or unsaturated nitrile may be a single flow type or a recycle type.

以下に、触媒の調製実施例およびプロパンの気相接触アンモ酸化反応によるアクリロニトリルの製造実施例を用いて説明するが、本発明はその要旨を越えない限りこれら実施例に限定されるものではない。
プロパンのアンモ酸化反応の成績は反応ガスを分析した結果を基に、次式で定義されるアクリロニトリル収率を指標として評価した。
Hereinafter, the preparation examples of the catalyst and the preparation examples of acrylonitrile by the vapor-phase catalytic ammoxidation reaction of propane will be described, but the present invention is not limited to these examples as long as the gist thereof is not exceeded.
The results of the ammoxidation reaction of propane were evaluated using the yield of acrylonitrile defined by the following formula as an index based on the result of analyzing the reaction gas.

Figure 0005041514
Figure 0005041514

(ニオブ混合液の調製)
以下の方法でニオブ混合液を調製した。
水2552gにNbとして80重量%を含有するニオブ酸352gとシュウ酸二水和物〔H・2HO〕1344gを混合した。仕込みのシュウ酸/ニオブのモル比は5.03、仕込みのニオブ濃度は0.50(mol−Nb/kg−液)である。
この液を95℃で1時間加熱撹拌することによって、ニオブが溶解した混合液を得た。
この混合液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ混合液を得た。
この操作を数回繰り返し、液を集めて混合した。
このニオブ混合液のシュウ酸/ニオブのモル比は下記の分析により2.52であった。
(Preparation of niobium mixture)
A niobium mixed solution was prepared by the following method.
To 552 g of water, 352 g of niobic acid containing 80% by weight as Nb 2 O 5 and 1344 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were mixed. The molar ratio of the charged oxalic acid / niobium is 5.03, and the charged niobium concentration is 0.50 (mol-Nb / kg-solution).
This solution was heated and stirred at 95 ° C. for 1 hour to obtain a mixed solution in which niobium was dissolved.
The mixture was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform niobium mixture.
This operation was repeated several times, and the liquid was collected and mixed.
The molar ratio of oxalic acid / niobium in this niobium mixed solution was 2.52 according to the following analysis.

るつぼにこのニオブ混合液10gを精秤し、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb0.8228gを得た。この結果から、ニオブ濃度は0.618(mol−Nb/kg−液)であった。
300mlのガラスビーカーにこのニオブ混合液3gを精秤し、約80℃の熱水200mlを加え、続いて1:1硫酸10mlを加えた。得られた混合液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnOを用いて滴定した。KMnO4によるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.558(mol−シュウ酸/kg)であった。
2KMnO+3HSO+5H→KSO+2MnSO+10CO+8H
得られたニオブ混合液は、下記の触媒調製のニオブ混合液(B0)として用いた。
10 g of this niobium mixed solution was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.8228 g of Nb 2 O 5 . From this result, the niobium concentration was 0.618 (mol-Nb / kg-solution).
3 g of this niobium mixture was precisely weighed into a 300 ml glass beaker, 200 ml of hot water at about 80 ° C. was added, and then 10 ml of 1: 1 sulfuric acid was added. The obtained mixed liquid was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer. The end point was a point where a faint pale pink color by KMnO4 lasted for about 30 seconds or more. The concentration of oxalic acid was 1.558 (mol-oxalic acid / kg) as a result of calculation according to the following formula from titration.
2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 → K 2 SO 4 + 2MnSO 4 + 10CO 2 + 8H 2 O
The obtained niobium mixed solution was used as the following niobium mixed solution (B0) for catalyst preparation.

(触媒の調製)
仕込み組成式がMo0.21Nb0.09Sb0.25Ce0.005/45.0wt%−SiOで示される酸化物触媒を次のようにして製造した。
水3800gにヘプタモリブデン酸アンモニウム〔(NH)6Mo24・4HO〕を921.4g、メタバナジン酸アンモニウム〔NHVO〕を127.4g、三酸化二アンチモン〔Sb〕を189.8g、および硝酸セリウム6水和物[Ce(NO・6HO]を11.48g加え、攪拌しながら90℃で2時間30分に加熱して混合液Aを得た。
(Preparation of catalyst)
Mixing composition formula was produced by the oxide catalyst represented by Mo 1 V 0.21 Nb 0.09 Sb 0.25 Ce 0.005 O n /45.0wt%-SiO 2 as follows.
921.4 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O], 127.4 g of ammonium metavanadate [NH 4 VO 3 ], and antimony trioxide [Sb 2 O 3 ] in 3800 g of water 189.8 g and cerium nitrate hexahydrate [Ce (NO 3 ) 3 · 6H 2 O] were added, and the mixture was heated at 90 ° C. for 2 hours 30 minutes with stirring to obtain a mixed solution A. .

ニオブ混合液(B0)754.7gに、Hとして30wt%を含有する過酸化水素水を105.8g添加し、室温で10分間攪拌混合して、混合液Bを調製した。
得られた混合液Aを70℃に冷却した後にSiOとして29.3wt%を含有するシリカゾル1843gを添加し、更に、Hとして30wt%含有する過酸化水素水220.4gを添加し、50℃で1時間撹拌を続けた。次に混合液Bを添加した。更に平均一次粒子径が12nmのフュームドシリカ360gを5040gの水に分散させた液を添加して、原料調合液を得た。
105.8 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added to 754.7 g of the niobium mixed solution (B0), and the mixture was stirred and mixed at room temperature for 10 minutes to prepare a mixed solution B.
After cooling the obtained mixed liquid A to 70 ° C., 1843 g of silica sol containing 29.3 wt% as SiO 2 was added, and further, 220.4 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added. And stirring was continued at 50 ° C. for 1 hour. Next, the mixed solution B was added. Furthermore, a liquid in which 360 g of fumed silica having an average primary particle size of 12 nm was dispersed in 5040 g of water was added to obtain a raw material preparation liquid.

得られた原料調合液を、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
上記操作を繰り返して、乾燥粉体を集め、約20kg得た。
直径127mm、長さ1150mmの連続式キルンを用い、焼成を行った。得られた乾燥粉体を220g/Hrで供給し、向流で3.6NL/minの窒素流通下、360℃で2時間、前段焼成し、前段焼成品を得た。次いで前段焼成品を130g/Hrで供給し、向流で2.3NL/minの窒素流通下、660℃で2時間焼成して触媒(Cat−0)を得た。
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried to obtain a microspherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
The above operation was repeated to collect dry powder to obtain about 20 kg.
Firing was performed using a continuous kiln having a diameter of 127 mm and a length of 1150 mm. The obtained dry powder was supplied at 220 g / Hr, and pre-baked at 360 ° C. for 2 hours under a nitrogen flow of 3.6 NL / min counter-current to obtain a pre-baked product. Next, the pre-stage calcined product was supplied at 130 g / Hr, and calcined at 660 ° C. for 2 hours under a nitrogen flow of 2.3 NL / min countercurrent to obtain a catalyst (Cat-0).

参考例1]
(流動性阻害物質の除去)
底部に直径1/64インチの3つの孔のある穴あき円盤を備え、上部にペーパーフィルターを設けた垂直チューブ(内径41.6 mm、長さ70 cm)に触媒(Cat−0)を50g精秤し、下部から空気を380L/Hrで12時間流通させた。この操作を3回繰り返し、チューブから回収した触媒を集めて、参考例1の酸化物触媒(Cat−1)を得た。胴体部分の線速度は0.05m/sである。また、触媒密度は1000kg/mである。
[ Reference Example 1]
(Removal of fluidity-inhibiting substances)
A vertical tube (inside diameter 41.6 mm, length 70 cm) equipped with a perforated disk with 3 holes of 1/64 inch diameter at the bottom and a paper filter at the top is 50 g of catalyst (Cat-0). Weighing was performed, and air was circulated from the lower part at 380 L / Hr for 12 hours. This operation was repeated three times, and the catalyst recovered from the tube was collected to obtain the oxide catalyst (Cat-1) of Reference Example 1. The linear velocity of the body part is 0.05 m / s. The catalyst density is 1000 kg / m 3 .

(流動性阻害物質の割合の測定)
実施例1(Cat−1)の流動性阻害
物質の割合を、以下のようにして求めた。
底部に直径0.40mm(1/64インチ)の3つの孔のある穴あき円盤を備え、上端はペーパーフィルターで蓋がされた垂直チューブ(内径41.6mm、長さ70cm)に入れ、垂直チューブ内に空気を380L/Hrで20時間流通させたところ、実施例1における流動性阻害物質の割合は1.5wt%であった。
(Measurement of the ratio of fluidity inhibiting substances)
The ratio of the fluidity-inhibiting substance of Example 1 (Cat-1) was determined as follows.
Equipped with a perforated disk with 3 holes of 0.40 mm (1/64 inch) in diameter at the bottom, and the upper end is placed in a vertical tube (inside diameter 41.6 mm, length 70 cm) covered with a paper filter. When air was circulated at 380 L / Hr for 20 hours, the ratio of the fluidity inhibiting substance in Example 1 was 1.5 wt%.

(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に実施例1(Cat−1)を40g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:1:3:18のモル比の混合ガスを接触時間2.8(sec・g/cc)で供給した。
反応開始後、3時間おきに反応成績を評価した。720時間までの平均AN収率は54.5%であった。反応は安定であり、反応成績分析数の93%が平均収率の±0.3%の範囲内にあった。ここで、反応成績分析数とは、反応時間中に反応成績を分析した全分析数のことを言う。
(Propane ammoxidation reaction)
A Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm was charged with 40 g of Example 1 (Cat-1), propane: ammonia: oxygen: helium = 1: 1: 3: 18 under a reaction temperature of 440 ° C. and a normal pressure of the reaction. A mixed gas having a molar ratio was supplied at a contact time of 2.8 (sec · g / cc).
The reaction results were evaluated every 3 hours after the start of the reaction. The average AN yield up to 720 hours was 54.5%. The reaction was stable, and 93% of the reaction performance analysis numbers were within ± 0.3% of the average yield. Here, the number of analysis of reaction results refers to the total number of analyzes obtained by analyzing reaction results during the reaction time.

[実施例
(流動性阻害物質の除去)
流動性阻害物質の除去のための空気流通時間を17時間としたこと以外は参考例1と同様にして、Cat−0の流動性阻害物質を除去し、実施例の酸化物触媒(Cat−2)を得た。
実施例(Cat−2)に含まれる流動性阻害物質の割合を、参考例1と同様にして求めた結果、0.5wt%であった。
(プロパンのアンモ酸化反応)
Cat−2を用いて、プロパンのアンモ酸化反応を参考例1と同様に行った。
反応開始後、3時間おきに反応成績を評価した。720時間までの平均AN収率は54.7%であった。反応は安定であり、反応成績分析数の95%が平均収率の±0.3%の範囲内にあった。
[Example 1 ]
(Removal of fluidity-inhibiting substances)
Except that the air circulation time for removing the fluidity inhibiting substance was set to 17 hours, the fluidity inhibiting substance of Cat-0 was removed in the same manner as in Reference Example 1, and the oxide catalyst of Example 1 (Cat- 2) was obtained.
As a result of obtaining the ratio of the fluidity inhibiting substance contained in Example 1 (Cat-2) in the same manner as in Reference Example 1, it was 0.5 wt%.
(Propane ammoxidation reaction)
The propane ammoxidation reaction was performed in the same manner as in Reference Example 1 using Cat-2.
The reaction results were evaluated every 3 hours after the start of the reaction. The average AN yield up to 720 hours was 54.7%. The reaction was stable and 95% of the number of reaction performance analyzes was within ± 0.3% of the average yield.

[比較例1]
(プロパンのアンモ酸化反応)
(触媒の調製)の工程で得られた触媒Cat−0(比較例1)を用いて、プロパンのアンモ酸化反応を参考例1と同様に行った。Cat−0の流動性阻害物質を含む触媒の全重量における流動性阻害物質の割合は4wt%であった。
反応開始後、3時間おきに反応成績を評価した。最高収率は、54.5%であったが、反応が不安定であり、反応成績が大きくばらついた。その結果720時間までの平均AN収率は53.1%であり、平均収率の±0.3%の範囲内に反応成績分析数の35%しかなかった。
[Comparative Example 1]
(Propane ammoxidation reaction)
Propane ammoxidation was carried out in the same manner as in Reference Example 1 using Catalyst Cat-0 (Comparative Example 1) obtained in the step (Preparation of Catalyst). The ratio of the fluidity inhibiting substance in the total weight of the catalyst containing the Cat-0 fluidity inhibiting substance was 4 wt%.
The reaction results were evaluated every 3 hours after the start of the reaction. Although the maximum yield was 54.5%, the reaction was unstable and the reaction results varied greatly. As a result, the average AN yield up to 720 hours was 53.1%, and only 35% of the number of reaction performance analyzes was within the range of ± 0.3% of the average yield.

本発明は、アルケンまたはアルカンを気相接触酸化反応または気相接触アンモ酸化反応させて対応する不飽和酸または不飽和ニトリル製造用酸化物触媒を提供し、不飽和酸または不飽和ニトリルを製造する工業的製造プロセスに有用に利用できる。   The present invention provides a corresponding oxide catalyst for producing an unsaturated acid or unsaturated nitrile by subjecting an alkene or alkane to a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction to produce an unsaturated acid or an unsaturated nitrile. It can be usefully used in industrial manufacturing processes.

Claims (9)

気相接触酸化反応または気相接触アンモ酸化反応によって、流動床反応器でアルケンまたはアルカンからそれに対応する不飽和酸又は不飽和ニトリルを製造するのに用いられるSbを含む酸化物触媒であって、該酸化物触媒の流動性阻害物質が該酸化物触媒の全重量に対して0.5wt%以下であることを特徴とする酸化物触媒。 An oxide catalyst comprising Sb used to produce a corresponding unsaturated acid or unsaturated nitrile from an alkene or alkane in a fluidized bed reactor by gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction, An oxide catalyst, wherein the fluidity-inhibiting substance of the oxide catalyst is 0.5 wt% or less based on the total weight of the oxide catalyst. SiO換算で20〜60重量%のシリカに担持されていることを特徴とする請求項1に記載の酸化物触媒。 The oxide catalyst according to claim 1, wherein the oxide catalyst is supported on 20 to 60% by weight of silica in terms of SiO 2 . 該酸化物触媒が下記式(1)の条件を満たすことを特徴とする請求項1又は2に記載の酸化物触媒。
0<a/(a+b)≦0.4 (1)
(ここで、aは担体を除いた酸化物触媒成分中のSbの組成比(モル比)、bは担体を除く酸化物触媒成分中の、酸素とSb以外の成分の組成比(モル比)である。)
The oxide catalyst according to claim 1 or 2, wherein the oxide catalyst satisfies a condition of the following formula (1).
0 <a / (a + b) ≦ 0.4 (1)
(Where a is the composition ratio (molar ratio) of Sb in the oxide catalyst component excluding the support, and b is the composition ratio (molar ratio) of components other than oxygen and Sb in the oxide catalyst component excluding the support. .)
気相接触酸化反応または気相接触アンモ酸化反応によって、流動床反応器でアルケンまたはアルカンからそれに対応する不飽和酸又は不飽和ニトリルを製造するのに用いられるSbを含む酸化物触媒を製造する方法であって、該酸化物触媒の流動性阻害物質を該酸化物触媒の重量に対して0.5wt%以下にする工程を有することを特徴とする酸化物触媒の製造方法。 Process for producing an oxide catalyst comprising Sb used to produce the corresponding unsaturated acid or unsaturated nitrile from an alkene or alkane in a fluidized bed reactor by gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction A method for producing an oxide catalyst, comprising a step of setting the fluidity-inhibiting substance of the oxide catalyst to 0.5 wt% or less based on the weight of the oxide catalyst. 前記酸化物触媒を収容した装置内に流通するガスを流動させ、前記酸化物触媒同士を接触させることによって前記流動性阻害物質を除去することを特徴とする請求項4に記載の酸化物触媒の製造方法。   5. The oxide catalyst according to claim 4, wherein the fluidity-inhibiting substance is removed by causing a gas flowing in an apparatus containing the oxide catalyst to flow and bringing the oxide catalysts into contact with each other. Production method. 前記装置の胴体部分における前記ガスの線速度を0.03m/s〜5m/sとし、かつ前記ガスの流通時間を1〜50時間とすることを特徴とする請求項5に記載の酸化物触媒の製造方法。   The oxide catalyst according to claim 5, wherein a linear velocity of the gas in a body portion of the apparatus is 0.03 m / s to 5 m / s, and a circulation time of the gas is 1 to 50 hours. Manufacturing method. 前記装置内の触媒密度を300〜1300kg/mとすることを特徴とする、請求項5又は6に記載の酸化物触媒の製造方法。 The method for producing an oxide catalyst according to claim 5 or 6, wherein the catalyst density in the apparatus is set to 300 to 1300 kg / m 3 . 前記流動性阻害物質を前記流動床反応器中で除去することを特徴とする請求項4〜7のいずれかに記載の酸化物触媒の製造方法。   The method for producing an oxide catalyst according to any one of claims 4 to 7, wherein the fluidity-inhibiting substance is removed in the fluidized bed reactor. 請求項1〜3のいずれかに記載の酸化物触媒又は請求項4〜8のいずれかに記載の製造方法によって得られた酸化物触媒を使用することを特徴とする不飽和酸または不飽和ニトリルの製造方法。   An unsaturated acid or an unsaturated nitrile using the oxide catalyst according to any one of claims 1 to 3 or the oxide catalyst obtained by the production method according to any one of claims 4 to 8. Manufacturing method.
JP2006334402A 2006-01-19 2006-12-12 Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile Active JP5041514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006334402A JP5041514B2 (en) 2006-01-19 2006-12-12 Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006011007 2006-01-19
JP2006011007 2006-01-19
JP2006334402A JP5041514B2 (en) 2006-01-19 2006-12-12 Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile

Publications (2)

Publication Number Publication Date
JP2007216212A JP2007216212A (en) 2007-08-30
JP5041514B2 true JP5041514B2 (en) 2012-10-03

Family

ID=38494020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006334402A Active JP5041514B2 (en) 2006-01-19 2006-12-12 Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile

Country Status (1)

Country Link
JP (1) JP5041514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269790A (en) * 2010-12-27 2013-08-28 旭化成化学株式会社 Composite oxide catalyst and method for producing same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527994B2 (en) * 2008-03-31 2014-06-25 旭化成ケミカルズ株式会社 Method for producing oxide catalyst
KR101390449B1 (en) * 2010-04-30 2014-04-30 아사히 가세이 케미칼즈 가부시키가이샤 Apparatus for removing substances from catalyst surface
KR101737165B1 (en) * 2011-02-18 2017-05-17 아사히 가세이 케미칼즈 가부시키가이샤 Burning apparatus, process for producing oxide catalyst, and process for producing unsaturated acid or unsaturated nitrile
JP5698102B2 (en) * 2011-05-26 2015-04-08 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
CN104661745A (en) * 2012-09-27 2015-05-27 旭化成化学株式会社 Composite oxide catalyst, method for producing same, and method for producing unsaturated nitrile

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413368B2 (en) * 2000-04-03 2010-02-10 旭化成ケミカルズ株式会社 Oxidation or ammoxidation catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269790A (en) * 2010-12-27 2013-08-28 旭化成化学株式会社 Composite oxide catalyst and method for producing same

Also Published As

Publication number Publication date
JP2007216212A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP5041514B2 (en) Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile
JPWO2009081758A1 (en) Method for producing oxide catalyst
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
JP5730984B2 (en) Process for producing unsaturated nitrile
JP5476314B2 (en) Process for producing mixed metal oxide catalysts for ammoxidation and / or oxidation of lower alkane hydrocarbons
JP6861696B2 (en) Method for Producing Mixed Metal Oxide Catalyst Containing Molybdenum and Bismuth
JP6764939B2 (en) Method for producing oxide catalyst and method for producing unsaturated nitrile
JP5219249B2 (en) Method for producing composite oxide and method for producing unsaturated acid or unsaturated nitrile
JP6105809B2 (en) Method for producing oxide catalyst and method for producing unsaturated nitrile
JPH1147598A (en) Preparation of catalyst
JP4179675B2 (en) Process for producing unsaturated nitriles
JP5392806B2 (en) Method for producing oxide catalyst
JP4413368B2 (en) Oxidation or ammoxidation catalyst
JP2005320331A (en) Method for producing acrolein and/or acrylic acid
JP5527994B2 (en) Method for producing oxide catalyst
JP4791203B2 (en) Method for producing oxide catalyst
JPWO2018030384A1 (en) METHOD FOR PRODUCING OXIDE CATALYST AND METHOD FOR PRODUCING UNSATURATED NITRILE AND UNSATURATED ACID
JP4296020B2 (en) Regeneration method of deteriorated catalyst
JP2005349393A (en) Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst
JP4162915B2 (en) Preparation method of oxidation catalyst and production method of nitrile using the catalyst
JP4067316B2 (en) Catalyst preparation method
JP5345901B2 (en) Method for producing composite oxide catalyst
JP4647858B2 (en) Oxidation or ammoxidation oxide catalyst and method for producing the same
JPH07206427A (en) Production of hydrocyanic acid
WO2024024973A1 (en) Catalyst used in vapor-phase contact ammoxidation reaction, method for producing said catalyst, and method for producing unsaturated acid or unsaturated nitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120706

R150 Certificate of patent or registration of utility model

Ref document number: 5041514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350