JP4050904B2 - Method for producing oxidation or ammoxidation catalyst - Google Patents

Method for producing oxidation or ammoxidation catalyst Download PDF

Info

Publication number
JP4050904B2
JP4050904B2 JP2002013251A JP2002013251A JP4050904B2 JP 4050904 B2 JP4050904 B2 JP 4050904B2 JP 2002013251 A JP2002013251 A JP 2002013251A JP 2002013251 A JP2002013251 A JP 2002013251A JP 4050904 B2 JP4050904 B2 JP 4050904B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide catalyst
niobium
raw material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013251A
Other languages
Japanese (ja)
Other versions
JP2003210982A (en
Inventor
高明 加藤
悟 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002013251A priority Critical patent/JP4050904B2/en
Publication of JP2003210982A publication Critical patent/JP2003210982A/en
Application granted granted Critical
Publication of JP4050904B2 publication Critical patent/JP4050904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロパンまたはイソブタンの気相接触酸化または気相接触アンモ酸化反応に用いる酸化物触媒の製造方法、酸化物触媒、および該酸化物触媒を用いる不飽和酸または不飽和ニトリルの製造方法に関する。
【0002】
【従来の技術】
従来、プロピレンまたはイソブチレンを気相接触酸化または気相接触アンモ酸化して対応する不飽和カルボン酸または不飽和ニトリルを製造する方法が良く知られているが、近年、プロピレンまたはイソブチレンに替わってプロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化によって対応する不飽和カルボン酸または不飽和ニトリルを製造する方法が着目されており、種々の酸化物触媒製造方法が提案されている。
【0003】
例えば、Mo−V−Nb−(Te/Sb)を含む酸化物触媒の製造方法が、特開平6−279351号公報、特開平6−285372号公報、特開平7−315842号公報、特開平8−141401号公報、特開平9−157241号公報、特開平10−330343号公報、特開平11−42434号公報、特開平11−43314号公報、特開平11−226408号公報、特開平10−57479号公報、特開2000−70714号公報、特開2000−143244号公報、特開2001−58827号公報、特開2001−180936号公報、特開2001−130913号公報、特開2001−122625号公報、特開2001−122624号公報などに開示されている。
【0004】
また、Mo−V−Sbを含むアクリル酸製造用の酸化物触媒の製造方法が、特開10−45664号公報、特開2000−354765号公報、特開2000−317309号公報、特開2000−254496号公報、特開2000−256257号公報、特開2000−246108号公報、特開2000−51693号公報、特開平11−285636号公報、特開平11−285637号公報、特開平10−230164号公報、特開2001−70788号公報などに開示されている。
【0005】
複数種の金属イオンから成る混合溶液、特にニオブを含む混合溶液は、各々の金属イオンが異なるpH安定領域を持つため、溶液としての安定性が極めて低く、ゲル化や析出を生じやすい。そのため、特開平7−315842号公報では、Mo−V−Nb−(Te/Sb)から成る混合溶液が析出を生じる前に溶液から水分を除去する製造方法が提案されている。しかしながら、ニオブを添加してから析出を生じるまでの時間は数分から数十分であるため、原料調合液の水分除去に数時間以上を要する大量製造においては、溶液から水分を除去する工程中に、水分除去前の溶液の少なくとも一部から析出を生じてしまう。従って、この方法を大量製造に適用するのは困難であった。
【0006】
一方、Mo−V−Nb−(Te/Sb)から成る原料調合液は、無攪拌状態において非常にゲル化しやすい特性を有する。原料調合液がゲル化しやすい特性を有すると、成分組成が局所的に不均一となることが原因となり、得られる触媒の活性低下や目的物の選択性低下が起こる恐れがある。特開2001−180936号公報、特開2001−130913号公報、特開2001−122625号公報、特開2001−122624号公報において、ニオブを含む溶液またはスラリーを均一化する酸化物触媒の製造方法が提案されているが、スラリーのゲル化や攪拌に関する詳細な記述がなかった。
【0007】
しかしながら、工業的な規模で触媒を製造する場合、送液ポンプの切り替え時、残りわずかな原料調合液のフィード時、配管部でのつまりや各種設備のトラブル時等において、短時間ながらも無攪拌状態となることが多く、得られる触媒の性能は、小規模で製造される触媒の性能と比較して低くなりがちであった。従って、許容される無攪拌時間を決定し、大量に再現性よく優れた性能を有する酸化物触媒の製造方法が切望されていた。
【0008】
【発明が解決しようとする課題】
本発明の課題は、不飽和酸または不飽和ニトリルの製造に用いる新規な酸化物触媒の製造方法であって、ゲル化による成分組成の不均一化を抑制し、触媒性能の低下の少ない触媒を大量に再現性よく製造することを目的課題とする。
【0009】
【課題を解決するための手段】
本発明者らは、プロパンまたはイソブタンの気相接触酸化または気相接触アンモ酸化反応に用いる酸化物触媒の製造方法について鋭意検討した結果、原料調合液に対する無攪拌時間を1時間以内とすることにより、上記課題が解決されることを見出し、本発明をなすに至った。
即ち、本発明は次の態様からなるものである。
【0010】
[1]プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いる酸化物触媒の製造方法であって、(I)原料調合工程、(II)乾燥工程、(III)焼成工程から成り、(I)原料調合工程において、ニオブでない触媒成分と、過酸化水素/ニオブをモル比0 . 5〜20で含有するニオブ混合液とを混合し、攪拌翼が原料調合液内に浸からず、原料調合液の攪拌がされていない無攪拌時間を1時間以内とすることを特徴とする酸化物触媒の製造方法。
[2]上記原料調合液に対する無攪拌時間を20分以内とすることを特徴とする[1]に記載の酸化物触媒の製造方法。
【0011】
]上記酸化物触媒が、下記の一般組成式(1)で表されることを特徴とする[1]又は [ ]に記載の酸化物触媒の製造方法;
MoNb (1)
(式中、成分Xはテルルまたはアンチモンから選ばれる少なくとも1種以上の元素であり、a、b、c、nはMo1原子当たりの原子比を表し、aは0.01≦a≦1、bは0.01≦b≦1、cは0.01≦c≦1、そしてnは構成金属の原子価によって決まる数である。)
【0012】
]上記成分Xがアンチモンであることを特徴とする[1]〜[]のいずれか1項に記載の酸化物触媒の製造方法。
]上記ニオブの原料が、ジカルボン酸とニオブの化合物を含み、ジカルボン酸/ニオブのモル比が1〜4のニオブ含有液であることを特徴とする[1]〜[]のいずれか1項に記載の酸化物触媒の製造方法。
]上記酸化物触媒が、上記一般組成式(1)で表される触媒構成元素酸化物とこれを担持するシリカとからなるものであって、該シリカの含有割合が、該触媒構成元素酸化物とシリカの全重量に対し、SiO換算で20〜60重量%のシリカに担持されていることを特徴とする[1]〜[]のいずれか1項に記載の酸化物触媒の製造方法。
【0013】
][1]〜[6]のいずれか1項に記載の方法により酸化物触媒を製造し、得られた酸化物触媒にプロパンまたはイソブタンを接触させて、対応する不飽和酸または不飽和ニトリルを製造する方法
【0014】
以下、本発明を詳細に説明する。
本発明の酸化物触媒の製造方法は、(I)原料を調合する工程、(II)工程(I)で得られた原料調合液を乾燥し、触媒前駆体を得る工程、(III)工程(II)で得られた触媒前駆体を焼成する工程の3つの工程を経て製造することができる。
本発明における調合とは、水性溶媒に、触媒構成元素の原料を溶解または分散させることである。また、原料調合液とは、触媒構成金属および担体成分を全て含有する溶液、水性混合物またはスラリーを表す。乾燥機入口近傍で幾つかの触媒成分を添加する場合、その添加成分以外の全ての触媒構成金属および担体成分を含有する溶液、水性混合液またはスラリーを原料調合液とする。
【0015】
本発明における攪拌とは、水性溶媒に流動性を与えることである。攪拌は一般的な攪拌翼、攪拌羽根等を用いて行うことができるが、高粘度液用攪拌翼を用いることが好ましく、多段翼、アンカー翼、らせん軸翼、らせん帯翼を用いることが更に好ましい。低粘度液用攪拌翼である、プロペラ、ディスクタービン、ファンタービン、湾曲羽根ファンタービン、矢羽根タービン、角度付羽根タービン等の使用も可能であり、邪魔板と併せて用いることが更に好ましい。
本発明の無攪拌状態とは,原料調合液を攪拌することが可能な容器内での攪拌を停止した状態のみならず、攪拌翼が原料調合液内に浸からず、原料調合液への攪拌が不可能な状態も含まれる。また、無攪拌時間とは、原料調合液の無攪拌状態が開始してから終了するまでの時間である。
【0016】
本発明の製造方法により得られる触媒は下記の一般組成式(1)で示される酸化物触媒である。
Mo1aNbbcn (1)
(式中、成分Xはテルルまたはアンチモンから選ばれる少なくとも1種以上の元素であり、a、b、c、nはMo1原子当たりの原子比を表し、aは0.01≦a≦1、bは0.01≦b≦1、cは0.01≦c≦1、そしてnは構成金属の原子価によって決まる数である。)
また、Mo1原子当たりの原子比a〜cは、それぞれ、0.1〜0.4、0.01〜0.2、0.1〜0.5が好ましい。
【0017】
本発明の製造方法により得られる酸化物触媒は、シリカ担持触媒が好ましい。酸化物触媒がシリカ担持触媒の場合、高い機械的強度を有するので、流動床反応器を用いた気相接触酸化反応または気相接触アンモ酸化反応に好適である。シリカ担体の含有量は、触媒構成元素の酸化物とシリカ担体から成るシリカ担持酸化物触媒の全重量に対して、SiO2換算で20〜60重量%であることが好ましく、より好ましくは25〜55重量%である。
【0018】
原料とは、工程(I)で用いるものである。本発明の調製方法で用いる原料は特に限定されないが、触媒性能を悪化させる成分を実質的に含まないものが好ましい。また担体成分の原料や水などの溶媒についても、触媒性能を悪化させる成分を実質的に含まないものが好ましい。
原料には、例えば下記の化合物を用いることができる。
Moの原料は、ヘプタモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を好適に用いることができる。
【0019】
Vの原料は、メタバナジン酸アンモニウム[NH4VO3]を好適に用いることができる。
Nbの原料としては、ニオブ酸、ニオブの無機酸塩およびニオブの有機酸塩を用いることができる。特にニオブ酸が良い。ニオブ酸はNb25・nH2Oで表され、ニオブ水酸化物または酸化ニオブ水和物とも称される。更に、ジカルボン酸/ニオブのモル比が1〜4のNb原料液として用いることが好ましい。ジカルボン酸/ニオブのモル比を上記の値にすることにより、触媒構成金属の酸化還元状態を調整し触媒性能を特に優れたものとすることができる。また、このジカルボン酸はシュウ酸が好ましい。
【0020】
Sbの原料としては三酸化二アンチモン〔Sb23〕が好ましい。更に、Sbの水性溶媒に対する溶解速度を向上させるためには、平均粒径が1μm以下のSb23を用いることが好ましい。Teの原料としてはテルル酸〔H6TeO6〕が好ましい。シリカの原料はシリカゾルが好ましい。
以下に、工程(I)〜(III)からなる本発明の好ましい触媒調製例を説明する。
【0021】
(工程I:原料調合工程)
先に述べた原料を用い、原料調合液を得る。以下に一例を示す。
ヘプタモリブデン酸アンモニウム、メタバナジン酸アンモニウム、三酸化二アンチモンを水に添加し、70℃以上に加熱して混合液(A)を調製する。この時、容器内は窒素雰囲気でもよい。
ニオブ酸とシュウ酸を水中で加熱撹拌してニオブ含有液(B0)を調製する。含有液(B0)は特開平11−253801号公報に教示されている方法で得られる含有液を用いることができる。更に、含有液(B0)の少なくとも一部に、過酸化水素、三酸化二アンチモンを添加し、ニオブ混合液(B)を調製する。この時、H22/Nb(モル比)は0.5〜20、特に、1〜10が好ましく、Sb/Nb(モル比)は0〜5、特に0.01〜2が好ましい。混合液(B)にはシュウ酸を加えることもできる。
【0022】
目的とする組成に合わせて、混合液(A)、混合液(B)、含有液(B0)を好適に混合して、原料調合液を得る。
得られた原料調合液の無攪拌時間は1時間以内、好ましくは20分以内とすることで、触媒性能の低下を抑制することができる。
本発明のアンモ酸化用触媒がシリカ担持触媒の場合、シリカゾルを含むように原料調合液が調製される。シリカゾルは適宜添加することができる。
また、アンチモンを用いる場合は、混合液(A)、または、調合途中の混合液(A)の成分を含む液に、過酸化水素を添加することが好ましい。この時、H22/Sb(モル比)は0.01〜5、特に、1〜3が好ましい。また、この時、30℃〜70℃で、30分〜2時間攪拌を続けることが好ましい。
【0023】
(工程II:乾燥工程)
工程(I)で得られた原料調合液を噴霧乾燥法によって乾燥させ、乾燥粉体を得る。噴霧乾燥法における噴霧化は遠心方式、二流体ノズル方式または高圧ノズル方式を採用することができる。乾燥熱源は、スチーム、電気ヒーターなどによって加熱された空気を用いることができる。熱風の乾燥機入口温度は150〜300℃が好ましい。
【0024】
(工程III:焼成工程)
乾燥工程で得られた乾燥粉体を焼成することによって酸化物触媒を得る。焼成は窒素ガス、アルゴンガス、ヘリウムガスなどの実質的に酸素を含まない不活性ガス雰囲気下、好ましくは、不活性ガスを流通させながら、500〜800℃、好ましくは600〜700℃で実施する。焼成時間は0.5〜20時間、好ましくは1〜8時間である。
【0025】
焼成は、回転炉、トンネル炉、管状炉、流動焼成炉等を用いて行うことができるが、大量焼成では回転炉を用いることが好ましい。
焼成は反復することができる。焼成工程の前に、乾燥粉体を大気雰囲気下または空気流通下で200〜400℃、1〜5時間で前焼成することもできる。
このようにして製造された酸化物触媒の存在下、プロパンまたはイソブタンを気相接触酸化または気相接触アンモ酸化反応させて、対応する不飽和酸または不飽和ニトリルを製造する。
【0026】
プロパンまたはイソブタンとアンモニアの供給原料は必ずしも高純度である必要はなく、工業グレードのガスを使用できる。
供給酸素源として空気、酸素を富化した空気または純酸素を用いることができる。更に、希釈ガスとしてヘリウム、アルゴン、炭酸ガス、水蒸気、窒素などを供給してもよい。
プロパンまたはイソブタンの気相接触酸化は以下の条件で行うことが出来る。反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
【0027】
反応温度は300℃〜500℃、好ましくは350℃〜450℃である。
反応圧力は5×104〜5×105Pa、好ましくは1×105〜3×105Paである。
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。本発明において、接触時間は次式で決定される。
接触時間(sec・g/cc)=(W/F)×273/(273+T)
ここで
W=充填触媒量(g)
F=標準状態(0℃、1.013×105Pa)での原料混合ガス
流量(Ncc/sec)
T=反応温度(℃)
である。
【0028】
プロパンまたはイソブタンの気相接触アンモ酸化は以下の条件で行うことが出来る。
反応に供給する酸素のプロパンまたはイソブタンに対するモル比は0.1〜6、好ましくは0.5〜4である。
反応に供給するアンモニアのプロパンまたはイソブタンに対するモル比は0.3〜1.5、好ましくは0.8〜1.0である。
【0029】
反応温度は350℃〜500℃、好ましくは380℃〜470℃である。
反応圧力は5×104〜5×105Pa、好ましくは1×105〜3×105Paである。
接触時間は0.1〜10(sec・g/cc)、好ましくは0.5〜5(sec・g/cc)である。
反応方式は、固定床、流動床、移動床など従来の方式を採用できるが、反応熱の除去が容易な流動床反応器が好ましい。
また、本発明の反応は、単流式であってもリサイクル式であってもよい。
【0030】
【発明の実施の形態】
以下に本発明の製造方法により得られた酸化物触媒について、触媒の調製実施例およびプロパンの気相接触アンモ酸化反応によるアクリロニトリルの製造実施例を用いて説明するが、本発明はその要旨を越えない限りこれら実施例に限定されるものではない。
プロパンのアンモ酸化反応の成績は反応ガスを分析した結果を基に、次式で定義されるプロパン転化率およびアクリロニトリル選択率を指標として評価した。
プロパン転化率(%)=(反応したプロパンのモル数)/(供給したプロパンのモル数)×100
アクリロニトリル選択率(%)=(生成したアクリロニトリルのモル数)/(反応したプロパンのモル数)×100
【0031】
(ニオブ含有液の調製)
特開平11−253801号公報に倣って、以下の方法でニオブ含有液を調製した。水5423gにNb25として80.2重量%を含有するニオブ酸782.3gとシュウ酸二水和物〔H224・2H2O〕3125gを混合した。仕込みのシュウ酸/ニオブのモル比は5.25、仕込みのニオブ濃度は0.506(mol−Nb/Kg−液)である。この混合液を95℃で1時間加熱撹拌することによって、ニオブが溶解した水溶液を得た。この水溶液を静置、氷冷後、固体を吸引濾過によって濾別し、均一なニオブ含有液を得た。このニオブ含有液のシュウ酸/ニオブのモル比は下記の分析により2.395であった。
るつぼにこのニオブ含有液10gを精秤して、95℃で一夜乾燥後、600℃で1時間熱処理し、Nb250.848gを得た。この結果から、ニオブ濃度は0.638(mol−Nb/Kg−液)であった。
【0032】
300mlのガラスビーカーにこのニオブ含有液3gを精秤して、約80℃の熱水200mlを加え、続いて1:1硫酸10mlを加えた。得られた溶液をホットスターラー上で液温70℃に保ちながら、攪拌下、1/4規定KMnO4を用いて滴定した。KMnO4によるかすかな淡桃色が約30秒以上続く点を終点とした。シュウ酸の濃度は、滴定量から次式に従って計算した結果、1.525(mol−シュウ酸/Kg)であった。
2KMnO4+3H2SO4+5H224→K2SO4+2MnSO4+10CO2+8H2
得られたニオブ含有液は、シュウ酸/ニオブのモル比を調整することなく、下記の触媒調製のニオブ原料として用いた。
【0033】
【実施例1】
(触媒の調製)
仕込み組成式がMo10.22Nb0.10Sb0.27n/45.0wt%−SiO2で示される酸化物触媒を次のようにして製造した。
水2353gにヘプタモリブデン酸アンモニウム〔(NH46Mo724・4H2O〕を448.3g、メタバナジン酸アンモニウム〔NH4VO3〕を65.36g、三酸化二アンチモン〔Sb23〕を77.72g加え、容器内に窒素ガスを流通させ、攪拌しながら90℃で2時間30分間加熱して混合液A−1を得た。
【0034】
ニオブ含有液(B0)398.0gに三酸化二アンチモン〔Sb23〕を22.21g加え、氷冷しながら、H22として30wt%を含有する過酸化水素水92.12gを少量づつ添加し、室温で1時間攪拌混合して、混合液B−1を調製した。
得られた溶液A−1を70℃に冷却した後にSiO2として30.6wt%を含有するシリカゾル1471gを添加し、更にH22として30wt%を含有する過酸化水素水90.68gを添加し、47℃で1時間攪拌を続けた。次に混合液B−1を添加し、そのまま20分間攪拌を続けて原料調合液を得た。
【0035】
得られた原料調合液を、攪拌を停止することなく、遠心式噴霧乾燥器に供給して乾燥し、微小球状の乾燥粉体を得た。乾燥機の入口温度は210℃、そして出口温度は120℃であった。
得られた乾燥粉体480gを直径3インチのSUS製焼成管に充填し、5.0NL/minの窒素ガス流通下、管を回転させながら、640℃で2時間焼成して触媒を得た。
【0036】
(プロパンのアンモ酸化反応)
内径25mmのバイコールガラス流動床型反応管に調製して得られた触媒を45g充填し、反応温度440℃、反応圧力常圧下にプロパン:アンモニア:酸素:ヘリウム=1:0.6:1.5:5.6のモル比の混合ガスを接触時間3.0(sec・g/cc)で供給した。得られた反応結果は、プロパン転化率51.0mol%、AN選択率66.9mol%であった。
【0037】
【実施例2】
(触媒の調製)
仕込み組成式がMo10.22Nb0.11Sb0.28n/45.0wt%−SiO2で示される酸化物触媒を次のように製造した。
実施例1で得られた原料調合液に対する攪拌を3分間停止したが、原料調合液のゲル化は起こらず配管内のつまりもなかったため、攪拌を再開し、そのまま10分間攪拌を続けた後は、実施例1と同様に乾燥し、次いで焼成した。成分組成の不均一化を抑制できた。
【0038】
(プロパンのアンモ酸化反応)
実施例1と同様にアンモ酸化反応を行った。得られた反応結果は、プロパン転化率50.5mol%、AN選択率66.5mol%であった。触媒性能の低下の少ない触媒を大量に再現性よく製造することが出来た。
【0039】
【比較例1】
(触媒の調製)
仕込み組成式がMo10.22Nb0.11Sb0.28n/45.0wt%−SiO2で示される酸化物触媒を次のように製造した。
実施例1で得られた原料調合液に対する攪拌を90分間停止したところ、原料調合液はゲル化して流動性を失い配管内のつまりを起こしたが、得られたゲル状物質を強攪拌することで流動性のスラリーとし、実施例1と同様に乾燥し、次いで焼成した以外は、実施例1と同様に行った。成分組成の不均一化を抑制しにくかった。
【0040】
(プロパンのアンモ酸化反応)
実施例1と同様にアンモ酸化反応を行った。得られた反応結果は、プロパン転化率45.1mol%、AN選択率61.2mol%であった。触媒性能の低下がみられ、触媒を大量に再現性よく製造し難かった。
【0041】
【発明の効果】
本発明の方法及びその触媒は、不飽和酸または不飽和ニトリルの製造に用いる新規な酸化物触媒の製造方法及び触媒であって、ゲル化による成分組成の不均一化を抑制し、触媒性能の低下の少ない触媒を大量に再現性よく製造することが出来た。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, an oxide catalyst, and a method for producing an unsaturated acid or an unsaturated nitrile using the oxide catalyst. .
[0002]
[Prior art]
Conventionally, a process for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation of propylene or isobutylene is well known, but in recent years propane or isobutylene is replaced by propane or isobutylene. A method for producing a corresponding unsaturated carboxylic acid or unsaturated nitrile by gas phase catalytic oxidation or gas phase catalytic ammoxidation of isobutane has attracted attention, and various oxide catalyst production methods have been proposed.
[0003]
For example, a method for producing an oxide catalyst containing Mo-V-Nb- (Te / Sb) is disclosed in JP-A-6-279351, JP-A-6-285372, JP-A-7-315842, and JP-A-8. -141401, JP-A-9-157241, JP-A-10-330343, JP-A-11-42434, JP-A-11-43314, JP-A-11-226408, JP-A-10-57479. JP, JP-A 2000-70714, JP-A 2000-143244, JP-A 2001-58827, JP-A 2001-180936, JP-A 2001-130913, JP-A 2001-122625. JP-A-2001-122624 and the like.
[0004]
Moreover, the manufacturing method of the oxide catalyst for acrylic acid manufacture containing Mo-V-Sb is disclosed in Japanese Patent Laid-Open Nos. 10-45664, 2000-354765, 2000-317309, and 2000-. No. 254496, JP-A 2000-256257, JP-A 2000-246108, JP-A 2000-51693, JP-A 11-285636, JP-A 11-285637, JP-A 10-230164 This is disclosed in Japanese Patent Laid-Open No. 2001-70788.
[0005]
A mixed solution composed of a plurality of types of metal ions, particularly a mixed solution containing niobium, has a pH stability region in which each metal ion is different, so that the stability as a solution is extremely low, and gelation and precipitation are likely to occur. Therefore, Japanese Patent Laid-Open No. 7-315842 proposes a manufacturing method in which moisture is removed from a solution before the mixed solution of Mo—V—Nb— (Te / Sb) is precipitated. However, since the time from the addition of niobium to the occurrence of precipitation is several minutes to several tens of minutes, in mass production that requires several hours or more for removing water from the raw material preparation liquid, during the process of removing water from the solution Then, precipitation occurs from at least a part of the solution before moisture removal. Therefore, it has been difficult to apply this method to mass production.
[0006]
On the other hand, the raw material preparation liquid composed of Mo-V-Nb- (Te / Sb) has a characteristic that it is very easy to gel in an unstirred state. If the raw material preparation liquid has the property of being easily gelled, the component composition is locally non-uniform, which may cause a decrease in the activity of the resulting catalyst and a decrease in the selectivity of the target product. In JP-A-2001-180936, JP-A-2001-130913, JP-A-2001-122625, and JP-A-2001-122624, a method for producing an oxide catalyst for homogenizing a solution or slurry containing niobium is disclosed. Although proposed, there was no detailed description of gelation or stirring of the slurry.
[0007]
However, when manufacturing catalysts on an industrial scale, no stirring is required for a short time, such as when switching liquid pumps, feeding a small amount of raw material mixture, or clogging in piping, or in trouble with various equipment. In many cases, the performance of the resulting catalyst tended to be lower than that of the catalyst produced on a small scale. Accordingly, there has been a strong demand for a method for producing an oxide catalyst that determines an allowable no-stirring time and has a large amount of reproducible and excellent performance.
[0008]
[Problems to be solved by the invention]
An object of the present invention is a method for producing a novel oxide catalyst for use in the production of an unsaturated acid or an unsaturated nitrile, which suppresses the heterogeneous component composition due to gelation and reduces the catalyst performance. The objective is to produce a large amount with good reproducibility.
[0009]
[Means for Solving the Problems]
As a result of intensive studies on a method for producing an oxide catalyst used for gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction of propane or isobutane, the inventors have determined that the non-stirring time for the raw material mixture is within 1 hour. The present inventors have found that the above problems can be solved, and have made the present invention.
That is, the present invention comprises the following aspects.
[0010]
[1] A method for producing an oxide catalyst for use in a gas phase catalytic oxidation reaction or gas phase catalytic ammoxidation reaction of propane or isobutane, comprising (I) a raw material preparation step, (II) a drying step, and (III) a firing step. become, in (I) the raw material preparation step, the catalyst component is not a niobium hydrogen peroxide / niobium molar ratio of 0. mixing the niobium mixture containing 5-20, Hitakara stirring blade in raw material mixture in The method for producing an oxide catalyst is characterized in that the non-stirring time during which the raw material mixture is not stirred is within one hour.
[2] The method for producing an oxide catalyst according to [1], wherein the non-stirring time for the raw material preparation liquid is set to 20 minutes or less.
[0011]
[ 3 ] The method for producing an oxide catalyst according to [1] or [ 2 ] , wherein the oxide catalyst is represented by the following general composition formula (1):
Mo 1 V a Nb b X c O n (1)
(In the formula, component X is at least one element selected from tellurium or antimony, a, b, c, and n represent an atomic ratio per Mo atom, and a is 0.01 ≦ a ≦ 1, b. Is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals.)
[0012]
[ 4 ] The method for producing an oxide catalyst according to any one of [1] to [ 3 ], wherein the component X is antimony.
[ 5 ] Any one of [1] to [ 4 ], wherein the niobium raw material is a niobium-containing liquid containing a dicarboxylic acid / niobium compound and having a dicarboxylic acid / niobium molar ratio of 1 to 4 . 2. A method for producing the oxide catalyst according to item 1.
[ 6 ] The oxide catalyst is composed of a catalyst constituent element oxide represented by the general composition formula (1) and silica supporting the catalyst, and the content ratio of the silica is the catalyst constituent element. The oxide catalyst according to any one of [1] to [ 5 ], which is supported on 20 to 60% by weight of silica in terms of SiO 2 with respect to the total weight of the oxide and silica. Production method.
[0013]
[ 7 ] An oxide catalyst is produced by the method according to any one of [ 1] to [6], and propane or isobutane is brought into contact with the obtained oxide catalyst to produce a corresponding unsaturated acid or unsaturated compound. A method for producing nitrile.
[0014]
Hereinafter, the present invention will be described in detail.
The method for producing an oxide catalyst of the present invention comprises (I) a step of preparing a raw material, (II) a step of drying the raw material preparation liquid obtained in step (I) to obtain a catalyst precursor, and a step (III) ( The catalyst precursor obtained in II) can be produced through three steps of calcination.
The preparation in the present invention is to dissolve or disperse the raw material of the catalyst constituent element in the aqueous solvent. The raw material preparation liquid represents a solution, an aqueous mixture or a slurry containing all of the catalyst constituent metal and the carrier component. When several catalyst components are added in the vicinity of the dryer inlet, a solution, an aqueous mixture or a slurry containing all catalyst constituent metals and carrier components other than the added components is used as a raw material preparation solution.
[0015]
Stirring in the present invention is to give fluidity to an aqueous solvent. Stirring can be performed using a general stirring blade, a stirring blade, etc., but it is preferable to use a stirring blade for high viscosity liquid, and it is more preferable to use a multistage blade, an anchor blade, a spiral shaft blade, and a spiral belt blade. preferable. Propellers, disk turbines, fan turbines, curved blade fan turbines, arrow blade turbines, angled blade turbines, and the like, which are low-viscosity liquid stirring blades, can be used, and more preferably used together with baffle plates.
The non-stirring state of the present invention is not only the state in which stirring in a container capable of stirring the raw material preparation liquid is stopped, but also the stirring blade is not immersed in the raw material preparation liquid, and stirring to the raw material preparation liquid This includes situations where this is impossible. Further, the non-stirring time is the time from the start of the unstirred state of the raw material preparation liquid to the end.
[0016]
The catalyst obtained by the production method of the present invention is an oxide catalyst represented by the following general composition formula (1).
Mo 1 V a Nb b X c O n (1)
(In the formula, component X is at least one element selected from tellurium or antimony, a, b, c, and n represent an atomic ratio per Mo atom, and a is 0.01 ≦ a ≦ 1, b. Is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals.)
The atomic ratios a to c per Mo atom are preferably 0.1 to 0.4, 0.01 to 0.2, and 0.1 to 0.5, respectively.
[0017]
The oxide catalyst obtained by the production method of the present invention is preferably a silica-supported catalyst. When the oxide catalyst is a silica-supported catalyst, it has a high mechanical strength, and therefore is suitable for a gas phase catalytic oxidation reaction or a gas phase catalytic ammoxidation reaction using a fluidized bed reactor. The content of the silica support is preferably 20 to 60% by weight, more preferably 25 to 60% by weight in terms of SiO 2 with respect to the total weight of the silica-supported oxide catalyst comprising the oxide of the catalyst constituent element and the silica support. 55% by weight.
[0018]
The raw material is used in step (I). Although the raw material used by the preparation method of this invention is not specifically limited, What does not contain the component which deteriorates catalyst performance is preferable. In addition, it is preferable that the raw material for the carrier component and the solvent such as water do not substantially contain a component that deteriorates the catalyst performance.
As the raw material, for example, the following compounds can be used.
As the raw material of Mo, ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O] can be suitably used.
[0019]
As the raw material for V, ammonium metavanadate [NH 4 VO 3 ] can be preferably used.
As a raw material of Nb, niobic acid, an inorganic acid salt of niobium, and an organic acid salt of niobium can be used. Niobic acid is particularly good. Niobic acid is represented by Nb 2 O 5 .nH 2 O and is also referred to as niobium hydroxide or niobium oxide hydrate. Furthermore, it is preferable to use as a Nb raw material liquid having a dicarboxylic acid / niobium molar ratio of 1 to 4. By setting the molar ratio of dicarboxylic acid / niobium to the above value, the oxidation-reduction state of the metal constituting the catalyst can be adjusted and the catalyst performance can be made particularly excellent. The dicarboxylic acid is preferably oxalic acid.
[0020]
As a raw material of Sb, diantimony trioxide [Sb 2 O 3 ] is preferable. Furthermore, in order to improve the dissolution rate of Sb in an aqueous solvent, it is preferable to use Sb 2 O 3 having an average particle diameter of 1 μm or less. As a raw material for Te, telluric acid [H 6 TeO 6 ] is preferable. The silica raw material is preferably silica sol.
Below, the preferable catalyst preparation example of this invention which consists of process (I)-(III) is demonstrated.
[0021]
(Process I: Raw material preparation process)
A raw material preparation liquid is obtained using the raw materials described above. An example is shown below.
Ammonium heptamolybdate, ammonium metavanadate, and antimony trioxide are added to water and heated to 70 ° C. or higher to prepare a mixed solution (A). At this time, the inside of the container may be a nitrogen atmosphere.
Niobic acid and oxalic acid are heated and stirred in water to prepare a niobium-containing liquid (B 0 ). As the containing liquid (B 0 ), a containing liquid obtained by the method taught in JP-A-11-253801 can be used. Furthermore, hydrogen peroxide and antimony trioxide are added to at least a part of the containing liquid (B 0 ) to prepare a niobium mixed liquid (B). In this, H 2 O 2 / Nb (molar ratio) is 0.5 to 20, especially 1 to 10 are preferred, Sb / Nb (molar ratio) is 0-5, especially 0.01 to 2 is preferred. Oxalic acid can also be added to the mixed solution (B).
[0022]
According to the target composition, the mixed solution (A), the mixed solution (B), and the containing solution (B 0 ) are suitably mixed to obtain a raw material preparation solution.
By reducing the non-stirring time of the obtained raw material preparation liquid within 1 hour, preferably within 20 minutes, it is possible to suppress a decrease in catalyst performance.
When the catalyst for ammoxidation of the present invention is a silica-supported catalyst, the raw material preparation liquid is prepared so as to contain silica sol. Silica sol can be added as appropriate.
Moreover, when using antimony, it is preferable to add hydrogen peroxide to the liquid mixture (A) or the liquid containing the component of the liquid mixture (A) in the middle of preparation. At this time, H 2 O 2 / Sb (molar ratio) is 0.01 to 5, especially 1 to 3 are preferred. At this time, it is preferable to continue stirring at 30 ° C. to 70 ° C. for 30 minutes to 2 hours.
[0023]
(Process II: Drying process)
The raw material preparation liquid obtained in the step (I) is dried by a spray drying method to obtain a dry powder. The atomization in the spray drying method can employ a centrifugal method, a two-fluid nozzle method, or a high-pressure nozzle method. As the drying heat source, air heated by steam, an electric heater or the like can be used. The dryer inlet temperature of hot air is preferably 150 to 300 ° C.
[0024]
(Step III: Firing step)
An oxide catalyst is obtained by firing the dry powder obtained in the drying step. Firing is performed in an inert gas atmosphere substantially free of oxygen such as nitrogen gas, argon gas, helium gas, preferably at 500 to 800 ° C., preferably 600 to 700 ° C. while circulating the inert gas. . The firing time is 0.5 to 20 hours, preferably 1 to 8 hours.
[0025]
Firing can be performed using a rotary furnace, tunnel furnace, tubular furnace, fluidized firing furnace, or the like, but it is preferable to use a rotary furnace for mass firing.
Firing can be repeated. Prior to the firing step, the dried powder can be pre-fired at 200 to 400 ° C. for 1 to 5 hours in an air atmosphere or under air flow.
Propane or isobutane is subjected to gas phase catalytic oxidation or gas phase catalytic ammoxidation reaction in the presence of the oxide catalyst thus prepared to produce the corresponding unsaturated acid or unsaturated nitrile.
[0026]
The feedstock for propane or isobutane and ammonia does not necessarily have to be high purity, and industrial grade gases can be used.
Air, oxygen-enriched air, or pure oxygen can be used as the supply oxygen source. Further, helium, argon, carbon dioxide gas, water vapor, nitrogen or the like may be supplied as a dilution gas.
The gas phase catalytic oxidation of propane or isobutane can be carried out under the following conditions. The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
[0027]
The reaction temperature is 300 ° C to 500 ° C, preferably 350 ° C to 450 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc). In the present invention, the contact time is determined by the following equation.
Contact time (sec · g / cc) = (W / F) × 273 / (273 + T)
Where W = filled catalyst amount (g)
F = Raw material mixed gas flow rate (Ncc / sec) at standard condition (0 ° C., 1.013 × 10 5 Pa)
T = reaction temperature (° C.)
It is.
[0028]
The gas phase catalytic ammoxidation of propane or isobutane can be carried out under the following conditions.
The molar ratio of oxygen supplied to the reaction to propane or isobutane is 0.1 to 6, preferably 0.5 to 4.
The molar ratio of ammonia to propane or isobutane supplied to the reaction is 0.3 to 1.5, preferably 0.8 to 1.0.
[0029]
The reaction temperature is 350 ° C to 500 ° C, preferably 380 ° C to 470 ° C.
The reaction pressure is 5 × 10 4 to 5 × 10 5 Pa, preferably 1 × 10 5 to 3 × 10 5 Pa.
The contact time is 0.1 to 10 (sec · g / cc), preferably 0.5 to 5 (sec · g / cc).
As the reaction method, a conventional method such as a fixed bed, a fluidized bed, or a moving bed can be adopted, but a fluidized bed reactor in which reaction heat can be easily removed is preferable.
The reaction of the present invention may be a single flow type or a recycle type.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the oxide catalyst obtained by the production method of the present invention will be described using a catalyst preparation example and an example of acrylonitrile production by propane gas phase catalytic ammoxidation reaction. As long as there is no limitation, it is not limited to these Examples.
The results of the propane ammoxidation reaction were evaluated based on the results of analysis of the reaction gas, using the propane conversion and acrylonitrile selectivity defined by the following equations as indicators.
Propane conversion (%) = (moles of propane reacted) / (moles of propane fed) × 100
Acrylonitrile selectivity (%) = (number of moles of acrylonitrile produced) / (number of moles of reacted propane) × 100
[0031]
(Preparation of niobium-containing liquid)
According to Japanese Patent Laid-Open No. 11-253801, a niobium-containing liquid was prepared by the following method. To 5423 g of water, 782.3 g of niobic acid containing 80.2% by weight as Nb 2 O 5 and 3125 g of oxalic acid dihydrate [H 2 C 2 O 4 .2H 2 O] were mixed. The molar ratio of the charged oxalic acid / niobium is 5.25, and the charged niobium concentration is 0.506 (mol-Nb / Kg-solution). This mixed solution was heated and stirred at 95 ° C. for 1 hour to obtain an aqueous solution in which niobium was dissolved. The aqueous solution was allowed to stand and ice-cooled, and then the solid was separated by suction filtration to obtain a uniform niobium-containing liquid. The niobium-containing liquid had an oxalic acid / niobium molar ratio of 2.395 according to the following analysis.
10 g of this niobium-containing solution was precisely weighed in a crucible, dried overnight at 95 ° C., and then heat-treated at 600 ° C. for 1 hour to obtain 0.848 g of Nb 2 O 5 . From this result, the niobium concentration was 0.638 (mol-Nb / Kg-solution).
[0032]
3 g of this niobium-containing solution was precisely weighed into a 300 ml glass beaker, 200 ml of hot water at about 80 ° C. was added, and then 10 ml of 1: 1 sulfuric acid was added. The obtained solution was titrated with 1 / 4N KMnO 4 under stirring while maintaining the liquid temperature at 70 ° C. on a hot stirrer. The end point was a point where a faint pale pink color by KMnO 4 lasted for about 30 seconds or more. The concentration of oxalic acid was 1.525 (mol-oxalic acid / Kg) as a result of calculation according to the following formula from titration.
2KMnO 4 + 3H 2 SO 4 + 5H 2 C 2 O 4 → K 2 SO 4 + 2MnSO 4 + 10CO 2 + 8H 2 O
The obtained niobium-containing liquid was used as a niobium raw material for the following catalyst preparation without adjusting the molar ratio of oxalic acid / niobium.
[0033]
[Example 1]
(Preparation of catalyst)
An oxide catalyst having a charging composition formula of Mo 1 V 0.22 Nb 0.10 Sb 0.27 O n /45.0 wt% -SiO 2 was produced as follows.
To 2353 g of water, 448.3 g of ammonium heptamolybdate [(NH 4 ) 6 Mo 7 O 24 · 4H 2 O], 65.36 g of ammonium metavanadate [NH 4 VO 3 ], antimony trioxide [Sb 2 O 3 ] Was added, and nitrogen gas was circulated in the container, followed by heating at 90 ° C. for 2 hours and 30 minutes with stirring to obtain a mixed solution A-1.
[0034]
22.21 g of antimony trioxide [Sb 2 O 3 ] was added to 398.0 g of the niobium-containing liquid (B 0 ), and 92.12 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was added while cooling with ice. A small amount was added and stirred and mixed at room temperature for 1 hour to prepare a mixed solution B-1.
After the obtained solution A-1 was cooled to 70 ° C., 1471 g of silica sol containing 30.6 wt% as SiO 2 was added, and 90.68 g of hydrogen peroxide containing 30 wt% as H 2 O 2 was further added. And stirring was continued at 47 ° C. for 1 hour. Next, the mixed solution B-1 was added and stirring was continued for 20 minutes as it was to obtain a raw material preparation solution.
[0035]
The obtained raw material mixture was supplied to a centrifugal spray dryer and dried without stopping stirring to obtain a fine spherical dry powder. The dryer inlet temperature was 210 ° C and the outlet temperature was 120 ° C.
480 g of the obtained dry powder was filled in a SUS calcining tube having a diameter of 3 inches, and calcined at 640 ° C. for 2 hours while rotating the tube under a nitrogen gas flow of 5.0 NL / min to obtain a catalyst.
[0036]
(Propane ammoxidation reaction)
45 g of the catalyst prepared in a Vycor glass fluidized bed reaction tube having an inner diameter of 25 mm was charged, and propane: ammonia: oxygen: helium = 1: 0.6: 1.5 under a reaction temperature of 440 ° C. and a normal pressure of the reaction. : A mixed gas having a molar ratio of 5.6 was supplied at a contact time of 3.0 (sec · g / cc). The obtained reaction results were a propane conversion of 51.0 mol% and an AN selectivity of 66.9 mol%.
[0037]
[Example 2]
(Preparation of catalyst)
An oxide catalyst having a charging composition formula of Mo 1 V 0.22 Nb 0.11 Sb 0.28 O n /45.0 wt% -SiO 2 was produced as follows.
Stirring for the raw material preparation liquid obtained in Example 1 was stopped for 3 minutes, but no gelation of the raw material preparation liquid occurred and there was no clogging in the piping, so stirring was resumed and continued stirring for 10 minutes. , Dried in the same manner as in Example 1, and then fired. Inhomogeneous component composition could be suppressed.
[0038]
(Propane ammoxidation reaction)
An ammoxidation reaction was carried out in the same manner as in Example 1. The obtained reaction results were a propane conversion of 50.5 mol% and an AN selectivity of 66.5 mol%. A large amount of catalyst with little deterioration in catalyst performance could be produced with good reproducibility.
[0039]
[Comparative Example 1]
(Preparation of catalyst)
An oxide catalyst having a charging composition formula of Mo 1 V 0.22 Nb 0.11 Sb 0.28 O n /45.0 wt% -SiO 2 was produced as follows.
When stirring for the raw material preparation liquid obtained in Example 1 was stopped for 90 minutes, the raw material preparation liquid gelled and lost fluidity, causing clogging in the pipe, but vigorously stirring the obtained gel substance. A fluid slurry was prepared in the same manner as in Example 1 except that the slurry was dried in the same manner as in Example 1 and then fired. It was difficult to suppress non-uniform component composition.
[0040]
(Propane ammoxidation reaction)
An ammoxidation reaction was carried out in the same manner as in Example 1. The obtained reaction results were a propane conversion of 45.1 mol% and an AN selectivity of 61.2 mol%. The catalyst performance decreased, and it was difficult to produce a large amount of catalyst with good reproducibility.
[0041]
【The invention's effect】
The method of the present invention and the catalyst thereof are a novel oxide catalyst production method and catalyst used for the production of an unsaturated acid or an unsaturated nitrile, which suppresses the heterogeneity of the component composition due to gelation and improves the catalyst performance. It was possible to produce a large amount of a catalyst with little deterioration with high reproducibility.

Claims (7)

プロパンまたはイソブタンの気相接触酸化反応または気相接触アンモ酸化反応に用いる酸化物触媒の製造方法であって、(I)原料調合工程、(II)乾燥工程、(III)焼成工程から成り、(I)原料調合工程において、ニオブでない触媒成分と、過酸化水素/ニオブをモル比0 . 5〜20で含有するニオブ混合液とを混合し、攪拌翼が原料調合液内に浸からず、原料調合液の攪拌がされていない無攪拌時間を1時間以内とすることを特徴とする酸化物触媒の製造方法。A method of manufacturing an oxide catalyst for use in propane or isobutane in the vapor phase catalytic oxidation reaction or vapor-phase catalytic ammoxidation reaction, (I) the raw material preparation step, (II) drying process consists (III) firing step, ( in I) raw material preparation step, the catalyst component is not a niobium hydrogen peroxide / niobium molar ratio of 0. mixing the niobium mixture containing 5-20, without Hitakara stirring blade in raw material mixture in the raw material A method for producing an oxide catalyst, characterized in that the non-stirring time during which the preparation liquid is not stirred is within one hour. 上記原料調合液に対する無攪拌時間を20分以内とすることを特徴とする請求項1に記載の酸化物触媒の製造方法。2. The method for producing an oxide catalyst according to claim 1, wherein the non-stirring time for the raw material preparation liquid is set to 20 minutes or less. 上記酸化物触媒が、下記の一般組成式(1)で表されることを特徴とする請求項1又は2に記載の酸化物触媒の製造方法;
MoNb (1)
(式中、成分Xはテルルまたはアンチモンから選ばれる少なくとも1種以上の元素であり、a、b、c、nはMo1原子当たりの原子比を表し、aは0.01≦a≦1、bは0.01≦b≦1、cは0.01≦c≦1、そしてnは構成金属の原子価によって決まる数である。)
The method for producing an oxide catalyst according to claim 1 or 2 , wherein the oxide catalyst is represented by the following general composition formula (1):
Mo 1 V a Nb b X c O n (1)
(In the formula, component X is at least one element selected from tellurium or antimony, a, b, c, and n represent an atomic ratio per Mo atom, and a is 0.01 ≦ a ≦ 1, b. Is 0.01 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, and n is a number determined by the valence of the constituent metals.)
上記成分Xがアンチモンであることを特徴とする請求項1〜のいずれか1項に記載の酸化物触媒の製造方法。The said component X is antimony, The manufacturing method of the oxide catalyst of any one of Claims 1-3 characterized by the above-mentioned. 上記ニオブの原料が、ジカルボン酸とニオブの化合物を含み、ジカルボン酸/ニオブのモル比が1〜4のニオブ含有液であることを特徴とする請求項1〜のいずれか1項に記載の酸化物触媒の製造方法。Material of the niobium comprises a compound of a dicarboxylic acid and niobium, according to any one of claims 1 to 4, wherein the molar ratio of the dicarboxylic acid / niobium is niobium-containing liquid 1-4 A method for producing an oxide catalyst. 上記酸化物触媒が、上記一般組成式(1)で表される触媒構成元素酸化物とこれを担持するシリカとからなるものであって、該シリカの含有割合が、該触媒構成元素酸化物とシリカの全重量に対し、SiO換算で20〜60重量%のシリカに担持されていることを特徴とする請求項1〜のいずれか1項に記載の酸化物触媒の製造方法。The oxide catalyst is composed of a catalyst constituent element oxide represented by the general composition formula (1) and a silica supporting the catalyst, and the content ratio of the silica is the catalyst constituent element oxide. total weight of the silica to producing the oxide catalyst according to any one of claims 1 to 5, characterized in that it is supported on 20-60 wt.% of the silica in terms of SiO 2. 請求項1〜6のいずれか1項に記載の方法により酸化物触媒を製造し、得られた酸化物触媒にプロパンまたはイソブタンを接触させて、対応する不飽和酸または不飽和ニトリルを製造する方法。 How the method according to any one of claims 1 to 6 to produce an oxide catalyst, by contacting the propane or isobutane to the obtained oxide catalyst, to produce the corresponding unsaturated acid or unsaturated nitrile .
JP2002013251A 2002-01-22 2002-01-22 Method for producing oxidation or ammoxidation catalyst Expired - Lifetime JP4050904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002013251A JP4050904B2 (en) 2002-01-22 2002-01-22 Method for producing oxidation or ammoxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013251A JP4050904B2 (en) 2002-01-22 2002-01-22 Method for producing oxidation or ammoxidation catalyst

Publications (2)

Publication Number Publication Date
JP2003210982A JP2003210982A (en) 2003-07-29
JP4050904B2 true JP4050904B2 (en) 2008-02-20

Family

ID=27650253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013251A Expired - Lifetime JP4050904B2 (en) 2002-01-22 2002-01-22 Method for producing oxidation or ammoxidation catalyst

Country Status (1)

Country Link
JP (1) JP4050904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101537875B1 (en) * 2010-12-17 2015-07-17 아사히 가세이 케미칼즈 가부시키가이샤 Apparatus and process for production of catalyst, and process for production of unsaturated acid or unsaturated nitrile
JP6717948B2 (en) * 2016-08-12 2020-07-08 旭化成株式会社 Method for producing oxide catalyst, and method for producing unsaturated nitrile and unsaturated acid

Also Published As

Publication number Publication date
JP2003210982A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
TWI438031B (en) Mixture of catalyst
JP5694727B2 (en) Method for producing unsaturated acid or unsaturated nitrile
TWI501810B (en) Production method of unsaturated nitrile
JP5219249B2 (en) Method for producing composite oxide and method for producing unsaturated acid or unsaturated nitrile
JP5041514B2 (en) Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile
JP5392806B2 (en) Method for producing oxide catalyst
JP4050904B2 (en) Method for producing oxidation or ammoxidation catalyst
RU2702126C1 (en) Method of producing an oxide catalyst and a method of producing an unsaturated nitrile
JP4791203B2 (en) Method for producing oxide catalyst
JP4014863B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4162915B2 (en) Preparation method of oxidation catalyst and production method of nitrile using the catalyst
JP4667674B2 (en) Method for producing oxidation or ammoxidation catalyst
JP4111715B2 (en) Method for producing ammoxidation catalyst
JP5785369B2 (en) Mixture catalyst
JP4647858B2 (en) Oxidation or ammoxidation oxide catalyst and method for producing the same
JP4212139B2 (en) Method for preparing catalyst for ammoxidation
JP2001276618A (en) Catalyst for oxidation or ammoxidation
JP4067316B2 (en) Catalyst preparation method
JP4118056B2 (en) Method for producing oxidation or ammoxidation catalyst
JP7456727B2 (en) Acrylonitrile synthesis catalyst, method for producing acrylonitrile synthesis catalyst, and method for producing acrylonitrile
JP2003170044A (en) Catalyst preparation method
JP4311842B2 (en) Catalyst for acrylonitrile or methacrylonitrile production
JP5785370B2 (en) Mixture catalyst
JP2007326036A (en) Oxide catalyst for oxidation or amm oxidation
JP4318331B2 (en) Catalyst and method for producing unsaturated nitrile using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

R150 Certificate of patent or registration of utility model

Ref document number: 4050904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term