JP2005349393A - Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst - Google Patents
Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst Download PDFInfo
- Publication number
- JP2005349393A JP2005349393A JP2005195177A JP2005195177A JP2005349393A JP 2005349393 A JP2005349393 A JP 2005349393A JP 2005195177 A JP2005195177 A JP 2005195177A JP 2005195177 A JP2005195177 A JP 2005195177A JP 2005349393 A JP2005349393 A JP 2005349393A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carrier
- phase oxidation
- water
- water absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Furan Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、オルソキシレンおよび/またはナフタレンから無水フタル酸を製造するに好適な触媒、その調製方法、およびこれら触媒を用いたオルソキシレン(および/またはナフタレン)の気相酸化方法に関する。 The present invention relates to a catalyst suitable for producing phthalic anhydride from orthoxylene and / or naphthalene, a preparation method thereof, and a gas phase oxidation method of orthoxylene (and / or naphthalene) using these catalysts.
オルソキシレンおよび/またはナフタレンの気相酸化による無水フタル酸の気相酸化による製造は広く工業的に行われており、使用する気相酸化触媒についても種々のものが提案されている。 Production by gas phase oxidation of phthalic anhydride by gas phase oxidation of orthoxylene and / or naphthalene has been widely carried out industrially, and various gas phase oxidation catalysts to be used have been proposed.
これら気相酸化触媒はそれなりに優れた性能を有するものであるが、触媒性能、すなわち活性、選択性および寿命がより優れている気相酸化触媒を開発することは当該技術分野の研究者の継続的なテーマとなっている。 Although these gas-phase oxidation catalysts have some excellent performance, it is the continuation of researchers in the technical field to develop gas-phase oxidation catalysts with better catalyst performance, ie, activity, selectivity and lifetime. It has become a theme.
本発明の目的は、触媒性能に優れ、長期にわたって安定して高収率で目的物を製造し得る、オルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化用触媒、この触媒の調製に好適な調製方法、およびこの触媒を用いたオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化方法を提供することにある。 An object of the present invention is a gas phase oxidation catalyst for producing phthalic anhydride from orthoxylene and / or naphthalene, which has excellent catalytic performance and can stably produce a target product in a high yield over a long period of time. And a gas phase oxidation method for producing phthalic anhydride from orthoxylene and / or naphthalene using the catalyst.
本願発明者らは、上記課題を解決するために、無水フタル酸の製造用触媒に用いられる担体に着目し、鋭意検討の結果、一般に用いられている担体を予め洗浄すると、この洗浄担体を用いて得られるオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化用触媒は触媒性能に優れていることを見出し、この知見に基づいて本発明を完成するに至った。 In order to solve the above problems, the inventors of the present application focused on a carrier used as a catalyst for the production of phthalic anhydride, and as a result of intensive studies, when a commonly used carrier was washed in advance, the washing carrier was used. The catalyst for gas phase oxidation for producing phthalic anhydride from orthoxylene and / or naphthalene obtained in this way was found to have excellent catalytic performance, and the present invention was completed based on this finding.
すなわち、本発明は不活性担体に触媒活性成分を担持してなるオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化用触媒において、該担体として、下記処理後の水の比抵抗が20,000Ωcm(25℃)以上となるものを用いることを特徴とする気相酸化用触媒である。 That is, the present invention relates to a gas phase oxidation catalyst for producing phthalic anhydride from orthoxylene and / or naphthalene obtained by supporting a catalytically active component on an inert carrier. A gas phase oxidation catalyst characterized by using a catalyst having a resistance of 20,000 Ωcm (25 ° C.) or more.
(処理方法)担体300mlを500mlコニカルビーカー(JIS R−3503準拠)にとり、120℃で2時間乾燥した後、純水を(吸水量+220)ml加え、常圧下、90℃で30分間加熱する。ここで、吸水量とは、下記式で示されるものである:吸水量=A/B ただし、式中、 A=300(ml)×充填密度(g/ml)×吸水率(wt%)/100 B=水の密度(g/ml)。 (Treatment method) After taking 300 ml of carrier in a 500 ml conical beaker (conforming to JIS R-3503) and drying at 120 ° C for 2 hours, add (water absorption +220) ml of pure water and heat at 90 ° C for 30 minutes under normal pressure. Here, the amount of water absorption is represented by the following formula: water absorption amount = A / B where A = 300 (ml) × packing density (g / ml) × water absorption rate (wt%) / 100 B = density of water (g / ml).
上記式において、充填密度(D)とは、D=W1(g)/1000ml(ここで、W1は乾燥担体を1000mlメスシリンダー(内径65mm)に2000ml/分の速さで充填したときにメスシリンダーに充填される担体の重量である)によって示される。 In the above formula, the packing density (D) is D = W1 (g) / 1000 ml (where W1 is a graduated cylinder when a dry carrier is filled into a 1000 ml graduated cylinder (inner diameter 65 mm) at a rate of 2000 ml / minute) Is the weight of the carrier to be filled in).
吸水率(M)とは、M=[(W3(g)−W2(g))/W2(g)]×100(ここで、W2は乾燥担体300mlの重量であり、W3は乾燥担体300mlをステンレス鋼製カゴにいれ、沸騰した純水中で30分間沸騰させた後、取り出して、濡れたガーゼで余分な水分を拭き取ってから秤量したときの重量である)によって示される。 The water absorption (M) is M = [(W3 (g) −W2 (g)) / W2 (g)] × 100 (W2 is the weight of the dry carrier 300 ml, and W3 is the dry carrier 300 ml. It is the weight when it is put in a stainless steel basket, boiled in boiling pure water for 30 minutes, then taken out, wiped off excess water with wet gauze and then weighed).
また、本発明は上記触媒の存在下にオルソキシレンおよび/またはナフタレンを気相酸化して無水フタル酸を製造することを特徴とする無水フタル酸の製造方法である。 The present invention is also a method for producing phthalic anhydride, characterized in that phthalic anhydride is produced by gas phase oxidation of orthoxylene and / or naphthalene in the presence of the above catalyst.
さらに、本発明は、不活性担体に触媒活性成分を担持してなるオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化用触媒において、該担体として、予め下記処理後の水の比抵抗が20,000Ωcm(25℃)以上になるまで洗浄したものを使用することを特徴とする気相酸化用触媒の調製方法である。 Furthermore, the present invention relates to a gas phase oxidation catalyst for producing phthalic anhydride from orthoxylene and / or naphthalene obtained by supporting a catalytically active component on an inert carrier. This is a method for preparing a gas phase oxidation catalyst, characterized by using a catalyst that has been washed until its specific resistance reaches 20,000 Ωcm (25 ° C.) or more.
(処理方法)担体300mlを500mlコニカルビーカーにとり、120℃で2時間乾燥した後、純水を(吸水量+220)ml加え、常圧下、90℃で30分間加熱する。ここで、吸水量は下記式で示される:吸水量=A/B ただし、式中、 A=300(ml)×充填密度(g/ml)×吸水率(wt%)/100 B=水の密度(g/ml)。 (Treatment method) Take 300 ml of carrier in a 500 ml conical beaker, dry at 120 ° C. for 2 hours, add (water absorption + 220) ml of pure water, and heat at 90 ° C. for 30 minutes under normal pressure. Here, the amount of water absorption is represented by the following formula: water absorption amount = A / B, where A = 300 (ml) × packing density (g / ml) × water absorption rate (wt%) / 100 B = water Density (g / ml).
本発明のオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための気相酸化用触媒は、活性、選択性および触媒寿命に優れ、長期にわたって高収率で目的とする化合物を製造することができる。 The catalyst for vapor phase oxidation for producing phthalic anhydride from orthoxylene and / or naphthalene of the present invention is excellent in activity, selectivity and catalyst life, and can produce the desired compound in a high yield over a long period of time. it can.
本発明で用いる不活性担体の材質自体には特に制限はなく、オルソキシレンおよび/またはナフタレンの気相酸化による無水フタル酸の製造の際に用いられる酸化触媒の調製に一般に用いられている、あるいは用いることが知られている担体のいずれも使用することができる。例えば、アルミナ、シリカ、シリカ・アルミナ、チタニア、マグネシア、シリカ・マグネシア、シリカ・マグネシア・アルミナ、炭化ケイ素、窒化ケイ素、ゼオライトなど気相酸化用触媒の担体として一般に用いられるものを挙げることができる。 The material of the inert carrier used in the present invention is not particularly limited, and is generally used for the preparation of an oxidation catalyst used in the production of phthalic anhydride by gas phase oxidation of orthoxylene and / or naphthalene, or Any of the carriers known to be used can be used. For example, alumina, silica, silica-alumina, titania, magnesia, silica-magnesia, silica-magnesia-alumina, silicon carbide, silicon nitride, zeolite, and the like that are commonly used as carriers for gas phase oxidation catalysts can be mentioned.
これらのなかでも、炭化ケイ素からなる不活性担体あるいは炭化ケイ素を主成分とする不活性担体は、例えば、特開昭57−105241号公報にはオルソキシレンおよび/またはナフタレンから無水フタル酸を製造するための触媒の担体として炭化ケイ素自焼結体を用いることが記載されている。 Among these, an inert carrier comprising silicon carbide or an inert carrier comprising silicon carbide as a main component is, for example, disclosed in JP-A-57-105241, in which phthalic anhydride is produced from orthoxylene and / or naphthalene. It is described that a silicon carbide self-sintered body is used as a catalyst support for the above.
本発明においては、上記の炭化ケイ素自焼結体である不活性担体および炭化ケイ素を主成分とする不活性担体が好適に用いられる。これらのなかでも、炭化ケイ素を主成分とする不活性担体は、安価であり、炭化ケイ素が有する優れた熱伝導性を備え、かつ所望の形状に成型しやすいことから特に好適に用いられる。 In the present invention, an inert carrier which is the silicon carbide self-sintered body and an inert carrier mainly composed of silicon carbide are preferably used. Among these, an inert carrier mainly composed of silicon carbide is particularly preferably used because it is inexpensive, has excellent thermal conductivity possessed by silicon carbide, and can be easily molded into a desired shape.
上記炭化ケイ素を主成分とする不活性担体とは、炭化ケイ素を主成分とし、これと無機結合剤とを混合し、焼成した型の担体を意味する。炭化ケイ素の含量は70重量%以上が好ましい。無機結合剤の代表例としては二酸化ケイ素、ムライトなどを挙げることができる。したがって、炭化ケイ素を主成分とする不活性担体の代表例としては、特開平9−85096号公報に記載されているような、炭化ケイ素含量が70重量%以上であって、無機結合剤として二酸化ケイ素およびムライトを含む不活性担体を挙げることができる。 The inert carrier having silicon carbide as a main component means a carrier of a type in which silicon carbide is a main component and this is mixed with an inorganic binder and calcined. The content of silicon carbide is preferably 70% by weight or more. Typical examples of the inorganic binder include silicon dioxide and mullite. Therefore, as a typical example of an inert carrier containing silicon carbide as a main component, a silicon carbide content of 70% by weight or more as described in JP-A-9-85096 is used. Mention may be made of inert carriers comprising silicon and mullite.
そのほか、ステアタイトを主成分とする不活性担体も本発明において好適に用いられる。 In addition, an inert carrier mainly composed of steatite is also preferably used in the present invention.
本発明で用いる不活性担体の物性、形状、大きさなどには特に制限はない。物性に関していえば、比表面積は0.3m2/g以下、好ましくは0.02〜0.2m2/gであり、気孔率は0〜35%、好ましくは16〜30%である。また、形状については、球状、円柱状、リング状などいずれでもよく、また大きさについても、例えば球状の場合、平均粒径は2〜15mm程度、好ましくは3〜12mm程度のものが用いられる。 There are no particular restrictions on the physical properties, shape, size, etc. of the inert carrier used in the present invention. Regarding physical properties, the specific surface area is 0.3 m 2 / g or less, preferably 0.02 to 0.2 m 2 / g, and the porosity is 0 to 35%, preferably 16 to 30%. The shape may be any of a spherical shape, a cylindrical shape, a ring shape, and the like. Also, for example, in the case of a spherical shape, the average particle size is about 2 to 15 mm, preferably about 3 to 12 mm.
本発明は、担体として、前記処理を行った後の水の比抵抗が20,000Ωcm(25℃)以上となるものを用いることに特徴を有する。すなわち、担体300mlを500mlコニカルビーカーにとり、120℃で2時間乾燥した後、純水を(吸水量+220)ml加え、常圧下、90℃で30分間加熱したとき、この処理後の水の比抵抗が20,000Ωcm(25℃)以上、好ましくは25,000〜1,000,000Ωcm(25℃)、特に好ましくは30,000〜1,000,000Ωcm(25℃)となるものを用いる。 The present invention is characterized in that a carrier having a specific resistance of water of 20,000 Ωcm (25 ° C.) or more after the treatment is used. That is, when 300 ml of a carrier is placed in a 500 ml conical beaker, dried at 120 ° C. for 2 hours, added with pure water (water absorption amount + 220) ml, and heated at 90 ° C. for 30 minutes under normal pressure, the specific resistance of water after this treatment Is 20,000 Ωcm (25 ° C.) or more, preferably 25,000 to 1,000,000 Ωcm (25 ° C.), particularly preferably 30,000 to 1,000,000 Ωcm (25 ° C.).
本発明における比抵抗とは、25℃の前記処理後の水の導電率を導電率計で測定し、その逆数をもって示したものであり、本発明においては、例えば比抵抗が20,000Ωcmの場合、それを20,000Ωcm(25℃)として表示する。 The specific resistance in the present invention is a value obtained by measuring the conductivity of water after the treatment at 25 ° C. with a conductivity meter and showing the reciprocal thereof. In the present invention, for example, the specific resistance is 20,000 Ωcm. It is displayed as 20,000 Ωcm (25 ° C.).
前記処理後の水の比抵抗が20,000Ωcm(25℃)以上の担体は、担体を水、好ましくは純水で洗浄することにより好適に調製できる。 A carrier having a specific resistance of 20,000 Ωcm (25 ° C.) or more after the treatment can be suitably prepared by washing the carrier with water, preferably pure water.
具体的な洗浄方法の一つは、常圧下、90℃で30分間加熱する操作を繰り返して前記処理後の水の比抵抗が20,000Ωcm(25℃)以上、好ましくは25,000〜1,000,000Ωcm(25℃)、特に好ましくは30,000〜1,000,000Ωcm(25℃)となるようにすることである。前記処理後の水の比抵抗が20,000Ωcm(25℃)以上となるのであれば、上記操作は1回でもよい。なお、上記操作を複数回行う場合には、操作毎に新たな水を用い、操作毎に前記処理後の水の比抵抗を測定する。水の使用量には特に制限はないが、例えば担体300mlとすると第1回の操作には、吸水量+220ml、第1回以降の操作には、220mlの水を用いる。 One specific cleaning method is the operation of heating at 90 ° C. for 30 minutes under normal pressure, and the specific resistance of water after the treatment is 20,000 Ωcm (25 ° C.) or more, preferably 25,000 to 1, It is intended to be 000,000 Ωcm (25 ° C.), particularly preferably 30,000 to 1,000,000 Ωcm (25 ° C.). If the specific resistance of the water after the treatment is 20,000 Ωcm (25 ° C.) or more, the above operation may be performed once. In addition, when performing the said operation in multiple times, new water is used for every operation, and the specific resistance of the water after the said process is measured for every operation. The amount of water used is not particularly limited. For example, if the carrier is 300 ml, the water absorption amount is +220 ml for the first operation, and 220 ml of water is used for the first and subsequent operations.
上記水による洗浄に先立って、硝酸などの酸性の水溶液やアンモニア水などの塩基性の水溶液、または、アルコール類などの有機溶媒で洗浄してもよい。例えば、硝酸の水溶液で洗浄する場合、常圧下、90℃で加熱する操作を繰り返すのがよい。この場合、その後の水洗は必要であるが、この水洗の際は、必ずしも常圧下90℃で加熱しなくてもよい。 Prior to the washing with water, washing may be performed with an acidic aqueous solution such as nitric acid, a basic aqueous solution such as ammonia water, or an organic solvent such as alcohols. For example, when washing with an aqueous solution of nitric acid, the operation of heating at 90 ° C. under normal pressure may be repeated. In this case, subsequent water washing is necessary, but at the time of this water washing, it is not always necessary to heat at 90 ° C. under normal pressure.
また、担体の洗浄手段についても特に制限はなく、担体を流水中で一定時間洗浄したり、洗浄液に浸して一定時間静置するだけでもよく、洗浄液と共に加熱したり、減圧もしくは加圧条件下で担体の洗浄を行って、処理後の水が一定の比抵抗値を示すまで洗浄を行うことが好ましい。 Further, there is no particular limitation on the means for washing the carrier, and the carrier may be washed in running water for a certain period of time, or simply immersed in a washing solution and allowed to stand for a certain period of time. It is preferable to wash the carrier until the treated water shows a certain specific resistance value.
以上のように、担体を洗浄、好ましくは水で洗浄することにより、あるいは前記処理後の水の比抵抗が20,000Ωcm(25℃)以上である担体を用いることにより、触媒性能に優れたオルソキシレンおよび/またはナフタレンの気相酸化用触媒を得ることができる。 As described above, the support is washed, preferably washed with water, or by using a support having a specific resistance of 20,000 Ωcm (25 ° C.) or more after the treatment, an ortho catalyst having excellent catalytic performance. A catalyst for gas phase oxidation of xylene and / or naphthalene can be obtained.
本発明のオルソキシレンおよび/またはナフタレンの気相酸化用触媒は、担体として上記不活性担体を使用する点を除けば、公知の方法にしたがって調製することができる。 The catalyst for gas phase oxidation of orthoxylene and / or naphthalene of the present invention can be prepared according to a known method except that the above inert carrier is used as a carrier.
オルソキシレンおよび/またはナフタレンからの無水フタル酸の製造
一般に、(1)バナジウムおよび(2)チタンの酸化物を含有する触媒活性成分を前記の不活性担体に担持した触媒が用いられる。
Production of phthalic anhydride from ortho-xylene and / or naphthalene Generally, a catalyst in which a catalytically active component containing (1) vanadium and (2) an oxide of titanium is supported on the above inert carrier is used.
なかでも、(1)バナジウム、(2)チタン、(3)アルカリ金属元素、希土類元素、硫黄、リン、アンチモン、ニオブおよびホウ素から選ばれる少なくとも一種の元素を含有する酸化物組成物を触媒活性成分とし、これを前記の不活性担体に担持した触媒が好ましい。 Among these, (1) vanadium, (2) titanium, (3) an oxide composition containing at least one element selected from alkali metal elements, rare earth elements, sulfur, phosphorus, antimony, niobium and boron is used as a catalyst active component. And a catalyst in which this is supported on the above inert carrier is preferable.
触媒活性物質を不活性担体に担持させる方法には特に制限はないが、外部より加熱できる回転ドラムに一定量の不活性担体を入れ、200〜300℃に保ちつつ触媒活性物質を含有する液状物(スラリー)を噴霧し活性物質を担持させる方法がもっとも簡便である。この際、活性物質の不活性担体に対する担持量は使用する不活性担体の大きさおよび形状によって異なるが、球状または円筒状のものであれば3〜30g活性物質/100ml不活性担体、特に5〜20g活性物質/100ml不活性担体が好適である。 The method for supporting the catalytically active substance on the inert carrier is not particularly limited, but a liquid substance containing the catalytically active substance while keeping a certain amount of the inert carrier in a rotating drum that can be heated from the outside and maintaining at 200 to 300 ° C. The method of spraying (slurry) and supporting the active substance is the simplest. At this time, the loading amount of the active substance on the inert carrier varies depending on the size and shape of the inert carrier to be used, but if it is spherical or cylindrical, 3-30 g active substance / 100 ml inert carrier, especially 5-5 20 g active substance / 100 ml inert carrier is preferred.
本発明にかかわる気相酸化反応は、触媒として前記気相酸化用触媒を用いる点を除けば、各種反応の実施に一般に用いられている方法にしたがって行うことができる。通常、本発明の気相酸化用触媒を炭素鋼製またはステンレス製の反応管に充填して行う。反応管は、反応熱を除去することによって反応温度を一定に調節することができるように、溶融塩などの熱媒によってある一定温度に保温されていることが好ましい。また、気相酸化反応の反応条件などは特に制限はなく、各種反応に一般に用いられている条件下に実施することができる。前記反応の場合、オルソキシレン含有ガスを300〜400℃、好ましくは330〜380℃の温度で常圧または加圧下に酸化触媒と接触させればよい。 The gas phase oxidation reaction according to the present invention can be carried out in accordance with a method generally used for carrying out various reactions, except that the gas phase oxidation catalyst is used as a catalyst. Usually, the vapor phase oxidation catalyst of the present invention is filled in a carbon steel or stainless steel reaction tube. The reaction tube is preferably kept at a certain temperature by a heat medium such as a molten salt so that the reaction temperature can be adjusted to be constant by removing reaction heat. The reaction conditions for the gas phase oxidation reaction are not particularly limited, and can be carried out under conditions generally used for various reactions. In the case of the reaction, the ortho-xylene-containing gas may be brought into contact with the oxidation catalyst at a temperature of 300 to 400 ° C., preferably 330 to 380 ° C. under normal pressure or pressure.
本願発明を実施例により更に詳細に説明する。導電率の測定は導電率計(カスタニーLAB導電率計DS−12、HORIBA製)を用いて行った。 The present invention will be described in more detail with reference to examples. The conductivity was measured using a conductivity meter (Castany LAB conductivity meter DS-12, manufactured by HORIBA).
(実施例1)
−担体(1)の洗浄−
炭化ケイ素、二酸化ケイ素、ムライトの重量比が90:5:5であり、かつアルカリ金属元素およびアルカリ土類金属元素の全含有量(以下、アルカリ含有量と記す)が0.2重量%であり、かつ充填密度0.88g/ml、吸水率15%、比表面積0.14m2/g、気孔率23%、外径6.9mm、内径3.7mm、長さ7.3mmのリング形状担体(1)3リットルを3リットルの純水を用い、90℃で30分間加熱して洗浄した。この洗浄担体を担体(1W)と記す。
(Example 1)
-Cleaning of carrier (1)-
The weight ratio of silicon carbide, silicon dioxide, and mullite is 90: 5: 5, and the total content of alkali metal elements and alkaline earth metal elements (hereinafter referred to as alkali content) is 0.2% by weight. A ring-shaped carrier having a packing density of 0.88 g / ml, a water absorption rate of 15%, a specific surface area of 0.14 m 2 / g, a porosity of 23%, an outer diameter of 6.9 mm, an inner diameter of 3.7 mm, and a length of 7.3 mm. 1) 3 liters was washed by heating at 90 ° C. for 30 minutes using 3 liters of pure water. This washing carrier is referred to as a carrier (1W).
なお、担体(1W)300mlを500mlのコニカルビーカーにとり、120℃で2時間乾燥した後、純水を260ml(=(300×0.88×0.15)+220)加え、常圧下、90℃で30分間加熱した。担体を分離した後の水の導電率を測定し、比抵抗を求めたところ、27,400Ωcm(25℃)であった。
−触媒調製−
イルメナイトに80%の濃硫酸を混合し、充分反応を行った後、水で希釈して硫酸チタン水溶液を得た。これに還元剤として鉄片を加え、イルメナイト中の鉄分を第1鉄イオンに還元した後、冷却して硫酸第一鉄として析出分離した。このようにして得られた硫酸チタン水溶液に150℃に加熱した水蒸気を吹き込み、含水酸化チタンを沈殿させた。これを水洗、酸洗および二次水洗した後、800℃の温度で空気流通下に4時間焼成した。これをジェット気流粉砕処理し、平均粒子径0.5μmで比表面積22m2/gのアナタ−ゼ型酸化チタンを得た。
In addition, after taking 300 ml of carrier (1W) into a 500 ml conical beaker and drying at 120 ° C. for 2 hours, 260 ml of pure water (= (300 × 0.88 × 0.15) +220) was added, and the pressure was 90 ° C. under normal pressure. Heated for 30 minutes. The electrical conductivity of the water after separating the carrier was measured, and the specific resistance was determined to be 27,400 Ωcm (25 ° C.).
-Catalyst preparation-
After 80% concentrated sulfuric acid was mixed with ilmenite and reacted sufficiently, it was diluted with water to obtain a titanium sulfate aqueous solution. An iron piece was added thereto as a reducing agent, and the iron content in the ilmenite was reduced to ferrous ions, and then cooled and precipitated and separated as ferrous sulfate. Water vapor heated to 150 ° C. was blown into the titanium sulfate aqueous solution thus obtained to precipitate hydrous titanium oxide. This was washed with water, pickled and washed with secondary water, and then calcined at 800 ° C. for 4 hours under air flow. This was subjected to jet airflow pulverization to obtain anatase type titanium oxide having an average particle size of 0.5 μm and a specific surface area of 22 m 2 / g.
脱イオン水3200mlにシュウ酸100gを溶解してシュウ酸水溶液とし、これにメタバナジン酸アンモニウム23.63g、第一リン酸アンモニウム2.99g、塩化ニオブ9.40g、硫酸セシウム4.13gおよび三酸化アンチモン18.35gを添加し、十分撹拌した。このようにして得られた溶液に上記アナターゼ型酸化チタン900gを加え、乳化機により撹拌して触媒スラリ−液を調製した。 100 g of oxalic acid was dissolved in 3200 ml of deionized water to form an aqueous oxalic acid solution. To this, 23.63 g of ammonium metavanadate, 2.99 g of monobasic ammonium phosphate, 9.40 g of niobium chloride, 4.13 g of cesium sulfate and antimony trioxide 18.35 g was added and stirred well. 900 g of the anatase-type titanium oxide was added to the solution thus obtained, and stirred with an emulsifier to prepare a catalyst slurry liquid.
外部から加熱できる直径35cm、長さ80cmのステンレス製回転炉中に担体(1W)を1000ml入れ、200〜250℃に予熱しておき、炉を回転させながら担体上に上記触媒スラリ−液を噴霧して、触媒活性物質を9.5g/100ml(担体)の割合で担持させた。その後、空気を流通させながら580℃の温度で6時間焼成して、触媒(A)を調製した。 1000 ml of carrier (1 W) is placed in a stainless steel rotary furnace having a diameter of 35 cm and a length of 80 cm that can be heated from the outside, preheated to 200 to 250 ° C., and spraying the catalyst slurry liquid onto the carrier while rotating the furnace. Then, the catalytically active substance was supported at a ratio of 9.5 g / 100 ml (support). Thereafter, the catalyst (A) was prepared by calcination at a temperature of 580 ° C. for 6 hours while circulating air.
上記触媒(A)の調製において、第一リン酸アンモニウムの添加量を11.96gに変更した以外は上記方法と同様にして触媒(B)を調製した。触媒(A)および触媒(B)の触媒組成を表1に示す。 In the preparation of the catalyst (A), a catalyst (B) was prepared in the same manner as in the above method except that the addition amount of primary ammonium phosphate was changed to 11.96 g. Table 1 shows the catalyst compositions of the catalyst (A) and the catalyst (B).
−酸化反応−
350℃の温度に保たれた溶融塩浴中に浸した内径25mm、長さ3mの鉄製反応管に、先ず触媒(B)を後段触媒として原料ガス出口部に1mの高さに充填し、次いで触媒(A)を前段触媒として入口部に1.8mの高さに充填した。原料ガスとして、オルソキシレンを空気と70g/Nm3(空気)の割合で混合した混合ガスを上記反応管の上部入口から空間速度(SV)2910Hr−1(STP)で導入してオルソキシレンの酸化反応を行った。反応初期、反応初期から3ヶ月後の無水フタル酸収率および未反応副生物であるフタライド量を測定し、その結果を表2に示した。なお、オルソキシレンの転化率はほぼ100%であり、上記収率はフタル酸選択率と見なし得るものである。
-Oxidation reaction-
An iron reaction tube having an inner diameter of 25 mm and a length of 3 m, immersed in a molten salt bath maintained at a temperature of 350 ° C., is first filled with a catalyst (B) at a height of 1 m at the raw material gas outlet as a subsequent catalyst, and then Catalyst (A) was packed at a height of 1.8 m at the inlet portion as a pre-stage catalyst. As a raw material gas, a mixed gas in which ortho-xylene is mixed with air at a ratio of 70 g / Nm 3 (air) is introduced from the upper inlet of the reaction tube at a space velocity (SV) 2910Hr −1 (STP) to oxidize ortho-xylene. Reaction was performed. The initial stage of the reaction, the phthalic anhydride yield three months after the initial stage of the reaction, and the amount of unreacted byproduct phthalide were measured. The conversion rate of ortho-xylene is almost 100%, and the above yield can be regarded as phthalic acid selectivity.
(実施例2)
実施例1(触媒調製)において、担体(1W)の代わりに以下に示した担体(2W)を使用した以外は実施例1(触媒調製)と同様にして触媒(C)、(D)を調製し、以下実施例1(酸化反応)と同様にして酸化反応を行った。触媒(C)、(D)の組成を表1に、酸化反応の結果を表2に示す。
(Example 2)
In Example 1 (catalyst preparation), catalysts (C) and (D) were prepared in the same manner as in Example 1 (catalyst preparation) except that the following support (2W) was used instead of support (1W). Then, an oxidation reaction was performed in the same manner as in Example 1 (oxidation reaction). The compositions of the catalysts (C) and (D) are shown in Table 1, and the results of the oxidation reaction are shown in Table 2.
−担体(2)の洗浄−
充填密度1.08g/ml、吸水率3%、比表面積0.007m2/g、気孔率5%、外径6.9mm、内径3.8mm、長さ7.0mmのリング状ステアタイト担体(2)3リットルを3リットルの純水を用い90℃で30分間加熱して洗浄した。この洗浄担体を担体(2W)と記す。
-Cleaning of carrier (2)-
Ring-shaped steatite carrier having a packing density of 1.08 g / ml, a water absorption of 3%, a specific surface area of 0.007 m 2 / g, a porosity of 5%, an outer diameter of 6.9 mm, an inner diameter of 3.8 mm, and a length of 7.0 mm ( 2) 3 liters were washed by heating at 90 ° C. for 30 minutes using 3 liters of pure water. This washing carrier is referred to as a carrier (2W).
なお、担体(2W)300mlを500mlのコニカルビーカーにとり、120℃で2時間乾燥した後、純水を230ml(=(300×1.08×0.03)+220)加え、常圧下、90℃で30分間加熱した。担体を分離した後の水の導電率を測定し、比抵抗を求めたところ、44,200Ωcm(25℃)であった。 In addition, after taking 300 ml of carrier (2W) in a 500 ml conical beaker and drying at 120 ° C. for 2 hours, 230 ml of pure water (= (300 × 1.08 × 0.03) +220) was added, and at 90 ° C. under normal pressure. Heated for 30 minutes. When the electrical conductivity of the water after separating the carrier was measured and the specific resistance was determined, it was 44,200 Ωcm (25 ° C.).
(比較例1)
実施例1(触媒調製)において、担体(1W)の代わりに未洗浄の担体(1)を使用した以外は実施例1(触媒調製)と同様にして触媒(E)、(F)を調製し、以下実施例1(酸化反応)と同様にして酸化反応を行った。触媒(E)、(F)の組成を表1に、酸化反応の結果を表2に示す。
(Comparative Example 1)
In Example 1 (catalyst preparation), catalysts (E) and (F) were prepared in the same manner as in Example 1 (catalyst preparation) except that unwashed carrier (1) was used instead of carrier (1W). Thereafter, an oxidation reaction was carried out in the same manner as in Example 1 (oxidation reaction). The compositions of the catalysts (E) and (F) are shown in Table 1, and the results of the oxidation reaction are shown in Table 2.
なお、担体(1)300mlを500mlのコニカルビーカーにとり、120℃で2時間乾燥した後、純水を260ml(=(300×0.88×0.15)+220)加え、常圧下、90℃で30分間加熱した。担体を分離した後の水の導電率を測定し、比抵抗を求めたところ、10,500Ωcm(25℃)であった。 In addition, after taking 300 ml of carrier (1) in a 500 ml conical beaker and drying at 120 ° C. for 2 hours, 260 ml of pure water (= (300 × 0.88 × 0.15) +220) was added, and the pressure was 90 ° C. under normal pressure. Heated for 30 minutes. When the electrical conductivity of the water after separating the carrier was measured and the specific resistance was determined, it was 10,500 Ωcm (25 ° C.).
(比較例2)
実施例2(触媒調製)において、担体(2W)の代わりに未洗浄の担体(2)を使用した以外は実施例2(触媒調製)と同様にして触媒(G)、(H)を調製し、以下実施例2(酸化反応)と同様にして酸化反応を行った。触媒(G)、(H)の組成を表1に、酸化反応の結果を表2に示す。
(Comparative Example 2)
In Example 2 (catalyst preparation), catalysts (G) and (H) were prepared in the same manner as in Example 2 (catalyst preparation) except that unwashed carrier (2) was used instead of carrier (2W). Thereafter, an oxidation reaction was carried out in the same manner as in Example 2 (oxidation reaction). The compositions of the catalysts (G) and (H) are shown in Table 1, and the results of the oxidation reaction are shown in Table 2.
なお、担体(2)300mlを500mlのコニカルビーカーにとり、120℃で2時間乾燥した後、純水を230ml(=(300×1.08×0.03)+220)加え、常圧下、90℃で30分間加熱した。担体を分離した後の水の導電率を測定し、比抵抗を求めたところ、9,500Ωcm(25℃)であった。 In addition, after taking 300 ml of carrier (2) in a 500 ml conical beaker and drying at 120 ° C. for 2 hours, 230 ml of pure water (= (300 × 1.08 × 0.03) +220) was added, and at 90 ° C. under normal pressure. Heated for 30 minutes. When the electrical conductivity of the water after separating the carrier was measured and the specific resistance was determined, it was 9,500 Ωcm (25 ° C.).
Claims (3)
(処理方法)
担体300mlを500mlコニカルビーカーにとり、120℃で2時間乾燥した後、純水を(吸水量+220)ml加え、常圧下、90℃で30分間加熱する。ここで、吸水量は下記式で示される:
吸水量=A/B
ただし、式中、
A=300(ml)×充填密度(g/ml)×吸水率(wt%)/100
B=水の密度(g/ml)。 In the catalyst for gas phase oxidation for producing phthalic anhydride from orthoxylene and / or naphthalene having a catalytically active component supported on an inert carrier, the carrier has a specific resistance of 20,000 Ωcm after the following treatment as the carrier. (25 ° C.) or higher gas phase oxidation catalyst characterized by using:
(Processing method)
After taking 300 ml of the carrier in a 500 ml conical beaker and drying at 120 ° C. for 2 hours, add (water absorption + 220) ml of pure water and heat at 90 ° C. for 30 minutes under normal pressure. Here, the water absorption is expressed by the following formula:
Water absorption = A / B
However, in the formula:
A = 300 (ml) × packing density (g / ml) × water absorption (wt%) / 100
B = density of water (g / ml).
(処理方法)
担体300mlを500mlコニカルビーカーにとり、120℃で2時間乾燥した後、純水を(吸水量+220)ml加え、常圧下、90℃で30分間加熱する。ここで、吸水量は下記式で示される:
吸水量=A/B
ただし、式中、
A=300(ml)×充填密度(g/ml)×吸水率(wt%)/100
B=水の密度(g/ml)。 In a gas phase oxidation catalyst for producing phthalic anhydride from ortho-xylene and / or naphthalene, in which a catalytically active component is supported on an inert carrier, the carrier has a specific resistance of 20 after treatment as follows. A method for preparing a gas-phase oxidation catalyst characterized by using a catalyst that has been washed to 000 Ωcm (25 ° C.) or more:
(Processing method)
After taking 300 ml of the carrier in a 500 ml conical beaker and drying at 120 ° C. for 2 hours, add (water absorption + 220) ml of pure water and heat at 90 ° C. for 30 minutes under normal pressure. Here, the water absorption is expressed by the following formula:
Water absorption = A / B
However, in the formula:
A = 300 (ml) × packing density (g / ml) × water absorption (wt%) / 100
B = density of water (g / ml).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005195177A JP2005349393A (en) | 1999-06-24 | 2005-07-04 | Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17878599 | 1999-06-24 | ||
JP2005195177A JP2005349393A (en) | 1999-06-24 | 2005-07-04 | Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23435899A Division JP4263815B2 (en) | 1999-06-24 | 1999-08-20 | Catalyst for gas phase oxidation of aromatic compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005349393A true JP2005349393A (en) | 2005-12-22 |
Family
ID=35584280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005195177A Pending JP2005349393A (en) | 1999-06-24 | 2005-07-04 | Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005349393A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013527153A (en) * | 2010-04-13 | 2013-06-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for controlling a gas phase oxidation reactor for producing phthalic anhydride |
JP2018179421A (en) * | 2017-04-14 | 2018-11-15 | Jfeケミカル株式会社 | Recovered steam utilization method in phthalic anhydride manufacturing facility |
CN112642454A (en) * | 2019-10-12 | 2021-04-13 | 中国石油化工股份有限公司 | Catalyst for preparing phthalic anhydride by oxidizing o-xylene and preparation method thereof |
CN116060062A (en) * | 2021-11-01 | 2023-05-05 | 中国石油化工股份有限公司 | Composite catalyst bed for preparing phthalic anhydride from o-xylene, preparation method of composite catalyst bed and method for preparing phthalic anhydride from o-xylene |
-
2005
- 2005-07-04 JP JP2005195177A patent/JP2005349393A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013527153A (en) * | 2010-04-13 | 2013-06-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Method for controlling a gas phase oxidation reactor for producing phthalic anhydride |
JP2018179421A (en) * | 2017-04-14 | 2018-11-15 | Jfeケミカル株式会社 | Recovered steam utilization method in phthalic anhydride manufacturing facility |
CN112642454A (en) * | 2019-10-12 | 2021-04-13 | 中国石油化工股份有限公司 | Catalyst for preparing phthalic anhydride by oxidizing o-xylene and preparation method thereof |
CN116060062A (en) * | 2021-11-01 | 2023-05-05 | 中国石油化工股份有限公司 | Composite catalyst bed for preparing phthalic anhydride from o-xylene, preparation method of composite catalyst bed and method for preparing phthalic anhydride from o-xylene |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2654315B2 (en) | Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same | |
JP4025891B2 (en) | Method for producing shell catalyst for catalytic gas phase oxidation of aromatic hydrocarbons | |
JP2006000850A (en) | Catalytic oxidation catalyst for producing phthalic anhydride | |
JP5190994B2 (en) | Oxidation or ammoxidation catalyst and method for producing the same | |
KR950008197B1 (en) | Catalyst for producing phthalic anhydride | |
JPS603307B2 (en) | Method for producing phthalic anhydride | |
JPH0515711B2 (en) | ||
US7491673B2 (en) | Method for preparing a catalyst for partial oxidation of acrolein | |
JP2005349393A (en) | Catalyst for vapor-phase oxidation for production of phthalic anhydride from orthoxylene and/or naphthalene, its preparation method, and vapor-phase oxidation method using the catalyst | |
JP5448561B2 (en) | Catalyst for producing acrylic acid, method for producing acrylic acid using the catalyst, and method for producing a water-absorbing resin using the acrylic acid | |
JP5041514B2 (en) | Oxide catalyst for producing unsaturated acid or unsaturated nitrile, method for producing the same, and method for producing unsaturated acid or unsaturated nitrile | |
JP2018521851A (en) | Method for producing mixed metal oxide catalyst containing molybdenum and bismuth | |
US6344568B1 (en) | Catalyst for gas phase partial oxidation | |
JPS6037108B2 (en) | Method for producing phthalic anhydride | |
US4127591A (en) | Method of producing maleic anhydride | |
US20070149390A1 (en) | Catalysts for alkane or alkene oxidation and ammoxidation | |
JP4263815B2 (en) | Catalyst for gas phase oxidation of aromatic compounds | |
JP2005529742A (en) | Catalyst comprising titanium-vanadium-tin and method for producing phthalic anhydride | |
JPS608860B2 (en) | Catalyst for phthalic anhydride production | |
JP4162915B2 (en) | Preparation method of oxidation catalyst and production method of nitrile using the catalyst | |
JP4667674B2 (en) | Method for producing oxidation or ammoxidation catalyst | |
JP3298609B2 (en) | Catalyst for producing phthalic anhydride and method for producing phthalic anhydride using the same | |
JPH0729056B2 (en) | Catalyst for phthalic anhydride production | |
JP4647858B2 (en) | Oxidation or ammoxidation oxide catalyst and method for producing the same | |
JP4067316B2 (en) | Catalyst preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060509 |
|
A131 | Notification of reasons for refusal |
Effective date: 20090818 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20100511 Free format text: JAPANESE INTERMEDIATE CODE: A02 |