JP5035265B2 - Manufacturing method of electronic component mounting structure - Google Patents

Manufacturing method of electronic component mounting structure Download PDF

Info

Publication number
JP5035265B2
JP5035265B2 JP2009032176A JP2009032176A JP5035265B2 JP 5035265 B2 JP5035265 B2 JP 5035265B2 JP 2009032176 A JP2009032176 A JP 2009032176A JP 2009032176 A JP2009032176 A JP 2009032176A JP 5035265 B2 JP5035265 B2 JP 5035265B2
Authority
JP
Japan
Prior art keywords
substrate
electronic component
resin
thermosetting resin
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009032176A
Other languages
Japanese (ja)
Other versions
JP2010192489A (en
Inventor
憲 前田
誠一 吉永
忠彦 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009032176A priority Critical patent/JP5035265B2/en
Publication of JP2010192489A publication Critical patent/JP2010192489A/en
Application granted granted Critical
Publication of JP5035265B2 publication Critical patent/JP5035265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、電子部品が備える複数のバンプと基板が備える複数の電極が接合されて成る電子部品実装構造体の製造方法に関するものである。 The present invention relates to the production how the electronic component mounting structure in which a plurality of electrodes is formed by bonding with a plurality of bumps and a substrate provided in the electronic component.

従来、電子部品が備える複数のバンプと基板が備える複数の電極が接合されて成る電子部品構造体の製造方法としては、各バンプを基板の対応する電極に接触させて位置合わせをした後、電子部品及び基板を加熱してバンプと電極を接合させ、更に、電子部品と基板の間にアンダーフィル剤として熱硬化性樹脂を供給してこれを熱硬化させ、電子部品と基板の間に熱硬化物を形成させることによって電子部品と基板を強固に結合するようにした方法が知られている。また、バンプと電極を接合させる前に、基板上の電極を避けた複数の位置に予め熱硬化性樹脂を供給しておき、熱硬化性樹脂に電子部品を接触させながらバンプを電極に接触させて位置合わせした後、加熱によりバンプと電極を接合すると同時に熱硬化性樹脂を熱硬化させる、いわゆる「樹脂先塗り」の方法も知られている(特許文献1)。後者の方法では、電子部品と基板は両者の間に形成される複数の熱硬化物によって結合されることになり、前者のものほど大きな結合力は得られないが、使用する熱硬化性樹脂を少なくすることができるとともに、リペアが容易なために歩留まりを向上させることができるという利点がある。
特開2005−26502号公報
Conventionally, as a method of manufacturing an electronic component structure in which a plurality of bumps provided in an electronic component and a plurality of electrodes provided in a substrate are joined, each bump is brought into contact with a corresponding electrode on the substrate and aligned. The component and the substrate are heated to bond the bump and the electrode, and further, a thermosetting resin is supplied as an underfill agent between the electronic component and the substrate to thermally cure it, and the thermosetting is performed between the electronic component and the substrate. A method is known in which an electronic component and a substrate are firmly bonded by forming an object. In addition, before bonding the bump and the electrode, thermosetting resin is supplied in advance to a plurality of positions on the substrate avoiding the electrode, and the bump is brought into contact with the electrode while the electronic component is in contact with the thermosetting resin. There is also known a so-called “resin pre-coating” method in which a bump and an electrode are bonded together by heating, and at the same time a thermosetting resin is thermoset (Patent Document 1). In the latter method, the electronic component and the substrate are bonded by a plurality of thermosets formed between them, and a bonding force as great as that of the former is not obtained, but the thermosetting resin to be used is not obtained. There is an advantage that the yield can be improved because it can be reduced and repair is easy.
JP 2005-26502 A

しかしながら、「樹脂先塗り」の方法によって電子部品実装構造体を製造する場合、電子部品と基板の間に形成される各熱硬化物は、基板の厚さ方向の中間部がその上下部分(電子部品との接合面及び基板との接合面)よりも太い太鼓形状となるため、電子部品と基板の間の線膨張係数の差よって各熱硬化物内に生じる熱応力が断面積の小さい接合面(電子部品との接合面及び基板との接合面)に集中し、接合面の剥離が生じて電子部品実装構造体が破損し易くなるという問題点があった。   However, when an electronic component mounting structure is manufactured by the “resin pre-coating” method, each of the thermosets formed between the electronic component and the substrate has its upper and lower parts (electronic The bonding surface has a small cross-sectional area due to the difference in linear expansion coefficient between the electronic component and the substrate. There is a problem that the electronic component mounting structure is likely to be damaged due to concentration on the (bonding surface with the electronic component and the bonding surface with the substrate) and peeling of the bonding surface.

そこで本発明は、樹脂先塗りの方法をとりつつも熱応力により破損しにくい構成の電子部品実装構造体を得ることができる電子部品実装構造体の製造方法を提供することを目的とする。 The present invention aims to provide a manufacturing how the electronic component mounting structure it is possible to obtain an electronic parts packaging structure is not easily damaged formed by thermal stresses while keeping the method of resin destination coating.

請求項1に記載の電子部品実装構造体の製造方法は、電子部品が備える複数のバンプと基板が備える複数の電極が接合されて成る電子部品実装構造体の製造方法であって、基板上の電極を避けた複数の樹脂供給位置のそれぞれに熱硬化性樹脂を供給する樹脂供給工程と、各樹脂供給位置に供給された熱硬化性樹脂に電子部品を接触させながら各バンプを基板の対応する電極に接触させて電子部品と基板の位置合わせを行う位置合わせ工程と、位置合わせをした電子部品及び基板を加熱してバンプと電極を接合させるとともに、電子部品と基板の間の熱硬化性樹脂が熱硬化して得られる複数の熱硬化物により電子部品と基板を結合させる加熱工程とを含み、樹脂供給工程における基板上の各樹脂供給位置への熱硬化性樹脂の供給を、熱硬化性樹脂が基板の厚さ方向に複数段に重なるように複数回に分けて行い、前記加熱工程において、前記基板上の各樹脂供給位置に複数段に重なるように供給された熱硬化性樹脂が硬化することにより各熱硬化物の基板の厚さ方向の中間部にくびれ部が形成されるようにした。 The manufacturing method of the electronic component mounting structure according to claim 1 is a manufacturing method of an electronic component mounting structure in which a plurality of bumps provided in the electronic component and a plurality of electrodes provided in the substrate are joined. A resin supply step for supplying a thermosetting resin to each of a plurality of resin supply positions avoiding the electrodes, and each bump corresponding to a substrate while contacting an electronic component with the thermosetting resin supplied to each resin supply position Positioning process for positioning the electronic component and the substrate by contacting the electrode, heating the aligned electronic component and the substrate to bond the bump and the electrode, and thermosetting resin between the electronic component and the substrate Including a heating step of bonding the electronic component and the substrate with a plurality of thermosetting products obtained by thermosetting, and supplying the thermosetting resin to each resin supply position on the substrate in the resin supply step. Tree There performed a plurality of times so as to overlap in a plurality of stages in the thickness direction of the substrate, in the heating step, the supplied thermosetting resin is cured so as to overlap in a plurality of stages in each resin supply position on the substrate As a result , a constricted portion was formed at the intermediate portion in the thickness direction of the substrate of each thermoset.

本発明では、電子部品のバンプと基板の電極を接合させる前に、基板上の電極を避けた複数の樹脂供給位置のそれぞれに予め熱硬化性樹脂を供給しておき、各樹脂供給位置に供給された熱硬化性樹脂に電子部品を接触させながら各バンプを基板の対応する電極に接触させて位置合わせをした後、加熱によりバンプと電極を接合すると同時に熱硬化性樹脂を熱硬化させる、いわゆる「樹脂先塗り」の方法によって電子部品と基板とを接合させるのであるが、基板上の各樹脂供給位置への熱硬化性樹脂の供給を、熱硬化性樹脂が基板の厚さ方向に複数段に重なるように複数回に分けて行い、各熱硬化物の基板の厚さ方向の中間部にくびれ部(その上下部分よりも細い部分)が形成されるようにしているので、電子部品と基板の線膨張係数の差により各熱硬化物内に生ずる熱応力が、電子部品及び基板との接合面だけでなく、断面積の小さい熱硬化物のくびれ部にも作用して熱応力が分散されるようになり、熱応力によって破損しにくい電子部品実装構造体を得ることができる。   In the present invention, before bonding the bumps of the electronic component and the electrodes of the substrate, a thermosetting resin is supplied in advance to each of a plurality of resin supply positions that avoid the electrodes on the substrate, and is supplied to each resin supply position. After bringing the bumps into contact with the corresponding electrodes of the substrate while bringing the electronic components into contact with the thermosetting resin thus formed, the bumps and the electrodes are joined by heating, and at the same time, the thermosetting resin is thermally cured. The electronic component and the substrate are joined by the “resin pre-coating” method. The thermosetting resin is supplied to each resin supply position on the substrate in multiple stages in the thickness direction of the substrate. The constricted part (part narrower than the upper and lower parts) is formed in the middle part of the thickness direction of each thermosetting product in the substrate so that it overlaps with the electronic component and the substrate. Due to the difference in linear expansion coefficient The thermal stress generated in each thermosetting product acts not only on the interface between the electronic component and the substrate, but also on the constricted portion of the thermosetting product having a small cross-sectional area, so that the thermal stress is dispersed. Thus, an electronic component mounting structure that is not easily damaged can be obtained.

以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の一実施の形態における電子部品実装構造体の側面図、図2(a),(b),(c),(d)及び図3(a),(b),(c)は本発明の一実施の形態における電子部品実装構造体の製造工程の説明図、図4(a),(b),(c)は本発明の一実施の形態における樹脂供給位置の例を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 is a side view of an electronic component mounting structure according to an embodiment of the present invention, FIGS. 2 (a), (b), (c), (d) and FIGS. 3 (a), (b), (c). ) Is an explanatory diagram of the manufacturing process of the electronic component mounting structure according to the embodiment of the present invention, and FIGS. 4A, 4B, and 4C are examples of the resin supply position according to the embodiment of the present invention. FIG.

図1において、電子部品実装構造体1は基板2と電子部品3から成る。基板2の電極形成面11(図1では上面)には複数の電極12が備えられており、電子部品3の電極形成面21(図1では下面)には複数の電極22が備えられている。電子部品3の各電極22には半田バンプ23が形成されており、各半田バンプ23は基板2上の各電極12と接合されている。   In FIG. 1, an electronic component mounting structure 1 includes a substrate 2 and an electronic component 3. A plurality of electrodes 12 are provided on the electrode forming surface 11 (upper surface in FIG. 1) of the substrate 2, and a plurality of electrodes 22 are provided on the electrode forming surface 21 (lower surface in FIG. 1) of the electronic component 3. . A solder bump 23 is formed on each electrode 22 of the electronic component 3, and each solder bump 23 is joined to each electrode 12 on the substrate 2.

図1において、電子部品3と基板2の間には複数の柱状の熱硬化物30が設けられており、電子部品3と基板2はこれら複数の熱硬化物30によって結合されている。各熱硬化物30の基板2の厚さ方向(ここでは上下方向)の中間部Mにはくびれ部31(その上下部分よりも細い部分)が形成されている(図1中の拡大図参照)。   In FIG. 1, a plurality of columnar thermosets 30 are provided between the electronic component 3 and the substrate 2, and the electronic component 3 and the substrate 2 are coupled by the plurality of thermosets 30. A constricted portion 31 (a portion narrower than the upper and lower portions) is formed in an intermediate portion M of each thermoset 30 in the thickness direction (here, the vertical direction) of the substrate 2 (see an enlarged view in FIG. 1). .

電子部品3と基板2の間で線膨張係数の差があると、各熱硬化物30には熱応力が生じるが、各熱硬化物30の中間部Mにくびれ部31が形成されている場合には、各熱硬化物30に生じる熱応力は、熱硬化物30と電子部品3との接合面S1及び熱硬化物30と基板2との接合面S2だけでなく、断面積の小さいくびれ部31にも作用して分散されるようになるので、電子部品実装構造体1は熱応力によって破損しにくくなる。   When there is a difference in linear expansion coefficient between the electronic component 3 and the substrate 2, thermal stress is generated in each thermoset 30, but a constricted portion 31 is formed in the intermediate portion M of each thermoset 30. In addition, the thermal stress generated in each thermoset 30 is not only the joint surface S1 between the thermoset 30 and the electronic component 3 and the joint surface S2 between the thermoset 30 and the substrate 2, but also a constricted portion having a small cross-sectional area. Accordingly, the electronic component mounting structure 1 is less likely to be damaged by thermal stress.

次に、図2、図3及び図4を用いて電子部品実装構造体1の製造方法について説明する。電子部品実装構造体1を製造するには先ず、基板2を基板保持台40に保持する。このとき基板2は電極形成面11が上方を向くようにする(基板保持工程。図2(a))。基板保持台40に基板2を保持させたら、基板2の電極形成面11上の電極12を避けた複数の樹脂供給位置のそれぞれに、ディスペンサ(樹脂供給装置)50によって熱硬化性樹脂30aを供給する(図2(b),(c)。樹脂供給工程)。   Next, a method for manufacturing the electronic component mounting structure 1 will be described with reference to FIGS. 2, 3, and 4. In order to manufacture the electronic component mounting structure 1, first, the substrate 2 is held on the substrate holder 40. At this time, the substrate 2 is set such that the electrode forming surface 11 faces upward (substrate holding step, FIG. 2A). When the substrate 2 is held on the substrate holding table 40, the thermosetting resin 30a is supplied by the dispenser (resin supply device) 50 to each of a plurality of resin supply positions on the electrode forming surface 11 of the substrate 2 avoiding the electrodes 12. (FIGS. 2B and 2C. Resin supply step).

基板2上の樹脂供給位置としては、例えば、図4(a),(b)に示すように、基板2の外縁近傍の四隅に点状に(図4(a))、或いはL字状に(図4(b))供給するのであってもよいし、図4(c)に示すように、基板2の四辺のうち対向する二辺に沿って直
線状に供給するもの等であってもよい。更に、図4(c)に示すように、基板2の中央部の電極12が存在しない部分に熱硬化性樹脂30aを供給するようにしてもよい。
As the resin supply position on the substrate 2, for example, as shown in FIGS. 4A and 4B, dots are formed at four corners near the outer edge of the substrate 2 (FIG. 4A), or L-shaped. (FIG. 4 (b)) may be supplied, or as shown in FIG. 4 (c), it may be supplied linearly along two opposing sides of the four sides of the substrate 2. Good. Furthermore, as shown in FIG. 4C, a thermosetting resin 30a may be supplied to a portion of the substrate 2 where the electrode 12 does not exist.

この樹脂供給工程では、図2(b),(c)に示すように、基板2上の各樹脂供給位置への熱硬化性樹脂30aの供給を、熱硬化性樹脂30aが基板2の厚さ方向(ここでは上下方向)に複数段に重なるように複数回(ここでは2回)に分けて行うようにする。ここで、複数回に分けて供給した熱硬化性樹脂30aが流動することなく基板2の厚さ方向に複数段に重なるようにするようにするため、熱硬化性樹脂30aには或る程度の粘性を有しているもの(例えば、粘度ηが10≦η≦90(Pa・s:パスカル秒)を満たし、かつチキソ比TIが3≦TI≦15を満たす熱硬化性樹脂30a等)を使用する。   In this resin supply step, as shown in FIGS. 2B and 2C, the thermosetting resin 30 a is supplied to each resin supply position on the substrate 2. The process is divided into a plurality of times (here, twice) so as to overlap a plurality of steps in the direction (here, the vertical direction). Here, the thermosetting resin 30a supplied in a plurality of times does not flow but overlaps in a plurality of stages in the thickness direction of the substrate 2, so that the thermosetting resin 30a has a certain amount. Use a material having viscosity (for example, a thermosetting resin 30a satisfying a viscosity η satisfying 10 ≦ η ≦ 90 (Pa · s: Pascal second) and a thixotropy TI satisfying 3 ≦ TI ≦ 15). To do.

樹脂供給工程が終了したら、電子部品3の電極形成面21が(すなわち半田バンプ23が)下を向くように、圧着ツール60によって電子部品3を吸着する。そして基板2の上方で圧着ツール60を下降させ(図2(d))、基板2上の各樹脂供給位置に供給された熱硬化性樹脂30aに電子部品3を接触させながら各半田バンプ23を基板2の対応する電極12に接触させて電子部品3と基板2の位置合わせを行う(位置合わせ工程。図3(a))。この位置合わせ工程では、基板2の各樹脂供給位置に複数段に重ねて供給した熱硬化性樹脂30aの最上段のものに、電子部品3の電極形成面21の半田バンプ23を避けた位置が接触するようにする。   When the resin supply process is completed, the electronic component 3 is sucked by the crimping tool 60 so that the electrode forming surface 21 of the electronic component 3 (that is, the solder bump 23) faces downward. Then, the crimping tool 60 is lowered above the substrate 2 (FIG. 2D), and the solder bumps 23 are applied to the thermosetting resin 30a supplied to each resin supply position on the substrate 2 while the electronic component 3 is brought into contact therewith. The electronic component 3 and the substrate 2 are aligned by bringing them into contact with the corresponding electrodes 12 of the substrate 2 (alignment process, FIG. 3A). In this alignment step, a position where the solder bumps 23 on the electrode forming surface 21 of the electronic component 3 are avoided is provided on the uppermost layer of the thermosetting resin 30a supplied in multiple stages to each resin supply position of the substrate 2. Make contact.

位置合わせ工程が終了したら、或いは位置合わせ工程と同時に、圧着ツール60の内部のヒータ(図示せず)を作動させて電子部品3及び基板2を加熱し、半田バンプ23を溶融させて半田バンプ23と電極12を加熱接合するとともに、熱硬化性樹脂30aを熱硬化させる。これにより電子部品3と基板2の間の熱硬化性樹脂30aが熱硬化し、電子部品3と基板2の間に複数の熱硬化物30が形成されて、電子部品3と基板2が結合される(加熱工程)。この加熱工程において、基板2上の各樹脂供給位置に複数段に重なるように供給された熱硬化性樹脂30aは、基板2の厚さ方向の中間部Mにくびれ部31が形成されるように変形しながら熱硬化する(図3(b))。   When the positioning process is completed or simultaneously with the positioning process, a heater (not shown) inside the crimping tool 60 is operated to heat the electronic component 3 and the substrate 2, and the solder bumps 23 are melted to solder the solder bumps 23. The electrode 12 is heated and bonded, and the thermosetting resin 30a is thermoset. As a result, the thermosetting resin 30a between the electronic component 3 and the substrate 2 is thermally cured, and a plurality of thermosets 30 are formed between the electronic component 3 and the substrate 2, and the electronic component 3 and the substrate 2 are combined. (Heating process). In this heating step, the thermosetting resin 30a supplied so as to overlap each resin supply position on the substrate 2 in a plurality of stages is formed such that the constricted portion 31 is formed in the intermediate portion M in the thickness direction of the substrate 2. It is thermally cured while being deformed (FIG. 3B).

加熱工程が終了したら、圧着ツール60による電子部品3の吸着を解除し、圧着ツール60を上昇させて、圧着ツール60から電子部品3を分離した後(図3(c))、電子部品3及び基板2の結合体1aを冷却する(冷却工程)。結合体1aの各熱硬化物30が冷却により固化したら、電子部品実装構造体1が完成する。   After the heating process is finished, the electronic component 3 is released from being adsorbed by the crimping tool 60, and the crimping tool 60 is lifted to separate the electronic component 3 from the crimping tool 60 (FIG. 3C). The combined body 1a of the substrate 2 is cooled (cooling step). When each thermoset 30 of the combined body 1a is solidified by cooling, the electronic component mounting structure 1 is completed.

以上説明したように、本実施の形態における電子部品実装構造体の製造方法は、電子部品3が備える複数の半田バンプ23と基板2が備える複数の電極12が接合されて成る電子部品実装構造体の製造方法であり、基板2上の電極12を避けた複数の樹脂供給位置のそれぞれに熱硬化性樹脂30aを供給する樹脂供給工程と、各樹脂供給位置に供給された熱硬化性樹脂30aに電子部品3を接触させながら各半田バンプ23を基板2の対応する電極12に接触させて電子部品3と基板2の位置合わせを行う位置合わせ工程と、位置合わせをした電子部品3及び基板2を加熱して半田バンプ23と電極12を接合させるとともに電子部品3と基板2の間の熱硬化性樹脂30aが熱硬化して得られる複数の熱硬化物30により電子部品3と基板2を結合させる加熱工程とを含み、樹脂供給工程における基板2上の各樹脂供給位置への熱硬化性樹脂30aの供給を、熱硬化性樹脂30aが基板2の厚さ方向に複数段に重なるように複数回に分けて行い、各熱硬化物30の基板2の厚さ方向の中間部にくびれ部31が形成されるようにしている。   As described above, the manufacturing method of the electronic component mounting structure according to the present embodiment is an electronic component mounting structure formed by bonding the plurality of solder bumps 23 included in the electronic component 3 and the plurality of electrodes 12 included in the substrate 2. And a resin supply step of supplying the thermosetting resin 30a to each of a plurality of resin supply positions avoiding the electrodes 12 on the substrate 2, and the thermosetting resin 30a supplied to each resin supply position. An alignment step of aligning the electronic component 3 and the substrate 2 by bringing the solder bumps 23 into contact with the corresponding electrodes 12 of the substrate 2 while the electronic component 3 is in contact, and the aligned electronic component 3 and substrate 2 are aligned. The electronic component 3 and the substrate 2 are heated by a plurality of thermosetting products 30 obtained by heating and bonding the solder bumps 23 and the electrodes 12 and thermosetting the thermosetting resin 30a between the electronic component 3 and the substrate 2. A heating process to be combined, and supply of the thermosetting resin 30a to each resin supply position on the substrate 2 in the resin supply process so that the thermosetting resin 30a overlaps the thickness direction of the substrate 2 in a plurality of stages. The constricted part 31 is formed in the intermediate part of the thickness direction of the board | substrate 2 of each thermosetting material 30 divided into several times.

このように、本実施の形態では、電子部品3の半田バンプ23と基板2の電極12を接合させる前に、基板2上の電極12を避けた複数の樹脂供給位置のそれぞれに予め熱硬化性樹脂30aを供給しておき、各樹脂供給位置に供給された熱硬化性樹脂30aに電子部
品3を接触させながら各半田バンプ23を基板2の対応する電極12に接触させて位置合わせをした後、加熱により半田バンプ23と電極12を接合すると同時に熱硬化性樹脂30aを熱硬化させる、いわゆる「樹脂先塗り」の方法によって電子部品3と基板2とを接合させるのであるが、基板2上の各樹脂供給位置への熱硬化性樹脂30aの供給を、熱硬化性樹脂30aが基板2の厚さ方向に複数段に重なるように複数回に分けて行い、各熱硬化物30の基板2の厚さ方向の中間部にくびれ部31が形成されるようにしているので、電子部品3と基板2の線膨張係数の差により各熱硬化物30内に生ずる熱応力が、電子部品3及び基板2との接合面S1,S2だけでなく、断面積の小さい熱硬化物30のくびれ部31にも作用して分散されるようになり、熱応力によって破損しにくい電子部品実装構造体1を得ることができる。
As described above, in the present embodiment, before the solder bumps 23 of the electronic component 3 and the electrodes 12 of the substrate 2 are joined, the thermosetting property is previously set in each of a plurality of resin supply positions on the substrate 2 avoiding the electrodes 12. After the resin 30a is supplied and the electronic bumps 3 are brought into contact with the thermosetting resin 30a supplied to the respective resin supply positions, the solder bumps 23 are brought into contact with the corresponding electrodes 12 of the substrate 2 and aligned. The electronic component 3 and the substrate 2 are bonded by a so-called “resin pre-coating” method in which the solder bump 23 and the electrode 12 are bonded together by heating and the thermosetting resin 30a is thermoset. The supply of the thermosetting resin 30a to each resin supply position is performed in a plurality of times so that the thermosetting resin 30a overlaps in multiple stages in the thickness direction of the substrate 2, and the substrate 2 of each thermosetting product 30 is supplied. Thickness direction Since the constricted portion 31 is formed in the intermediate portion, the thermal stress generated in each thermoset 30 due to the difference in the linear expansion coefficient between the electronic component 3 and the substrate 2 is bonded to the electronic component 3 and the substrate 2. The electronic component mounting structure 1 that acts on and is dispersed not only on the surfaces S1 and S2 but also on the constricted portion 31 of the thermoset 30 having a small cross-sectional area can be obtained.

これまで本発明の実施の形態について説明してきたが、本発明は上述の実施の形態に示したものに限定されない。例えば、上述の実施の形態では、電子部品3のバンプとして半田バンプ23が用いられており、加熱工程で半田バンプ23が溶融されることによって半田バンプ23と基板2の電極12が接合されるようになっていたが、バンプは半田バンプ23以外のバンプ(例えば金バンプ)を用いてもよい。この場合には、基板2の電極12にクリーム半田等の導電性の接合材料を塗布しておけば、加熱工程における加熱によって、バンプと基板2の電極12を接合させることができる。   Although the embodiments of the present invention have been described so far, the present invention is not limited to those shown in the above-described embodiments. For example, in the above-described embodiment, the solder bumps 23 are used as the bumps of the electronic component 3, and the solder bumps 23 and the electrodes 12 of the substrate 2 are joined by melting the solder bumps 23 in the heating process. However, bumps other than the solder bumps 23 (for example, gold bumps) may be used. In this case, if a conductive bonding material such as cream solder is applied to the electrode 12 of the substrate 2, the bump and the electrode 12 of the substrate 2 can be bonded by heating in the heating process.

樹脂先塗りの方法をとりつつも熱応力により破損しにくい構成の電子部品実装構造体を得ることができる電子部品実装構造体の製造方法を提供する。 To provide a manufacturing how the electronic component mounting structure while keeping the method of resin destination coating also can be obtained an electronic component mounting structure is not easily damaged structure due to thermal stress.

本発明の一実施の形態における電子部品実装構造体の側面図The side view of the electronic component mounting structure in one embodiment of this invention (a)(b)(c)(d)本発明の一実施の形態における電子部品実装構造体の製造工程の説明図(A) (b) (c) (d) Explanatory drawing of the manufacturing process of the electronic component mounting structure in one embodiment of this invention (a)(b)(c)本発明の一実施の形態における電子部品実装構造体の製造工程の説明図(A) (b) (c) Explanatory drawing of the manufacturing process of the electronic component mounting structure in one embodiment of this invention (a)(b)(c)本発明の一実施の形態における樹脂供給位置の例を示す図(A) (b) (c) The figure which shows the example of the resin supply position in one embodiment of this invention

1 電子部品実装構造体
2 基板
3 電子部品
12 電極
23 半田バンプ(バンプ)
30 熱硬化物
30a 熱硬化性樹脂
31 くびれ部
DESCRIPTION OF SYMBOLS 1 Electronic component mounting structure 2 Board | substrate 3 Electronic component 12 Electrode 23 Solder bump (bump)
30 Thermoset 30a Thermosetting resin 31 Constriction

Claims (1)

電子部品が備える複数のバンプと基板が備える複数の電極が接合されて成る電子部品実装構造体の製造方法であって、
基板上の電極を避けた複数の樹脂供給位置のそれぞれに熱硬化性樹脂を供給する樹脂供給工程と、
各樹脂供給位置に供給された熱硬化性樹脂に電子部品を接触させながら各バンプを基板の対応する電極に接触させて電子部品と基板の位置合わせを行う位置合わせ工程と、
位置合わせをした電子部品及び基板を加熱してバンプと電極を接合させるとともに、電子部品と基板の間の熱硬化性樹脂が熱硬化して得られる複数の熱硬化物により電子部品と基板を結合させる加熱工程とを含み、
樹脂供給工程における基板上の各樹脂供給位置への熱硬化性樹脂の供給を、熱硬化性樹脂が基板の厚さ方向に複数段に重なるように複数回に分けて行い、前記加熱工程において、前記基板上の各樹脂供給位置に複数段に重なるように供給された熱硬化性樹脂が硬化することにより各熱硬化物の基板の厚さ方向の中間部にくびれ部が形成されるようにしたことを特徴とする電子部品実装構造体の製造方法。
A method for manufacturing an electronic component mounting structure in which a plurality of bumps provided in an electronic component and a plurality of electrodes provided in a substrate are joined,
A resin supply step of supplying a thermosetting resin to each of a plurality of resin supply positions avoiding the electrodes on the substrate;
An alignment step of aligning the electronic component and the substrate by bringing each bump into contact with a corresponding electrode of the substrate while contacting the electronic component with the thermosetting resin supplied to each resin supply position;
The aligned electronic component and substrate are heated to bond the bumps and electrodes, and the electronic component and the substrate are joined by a plurality of thermosets obtained by thermosetting the thermosetting resin between the electronic component and the substrate. Heating step,
In the heating step, the thermosetting resin is supplied to each resin supply position on the substrate in the resin supply step by dividing the thermosetting resin into a plurality of times so that the thermosetting resin overlaps the thickness direction of the substrate . By constricting the thermosetting resin supplied so as to overlap each resin supply position on the substrate in a plurality of stages , a constricted portion is formed at the intermediate portion in the thickness direction of the substrate of each thermosetting product. An electronic component mounting structure manufacturing method characterized by the above.
JP2009032176A 2009-02-16 2009-02-16 Manufacturing method of electronic component mounting structure Active JP5035265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032176A JP5035265B2 (en) 2009-02-16 2009-02-16 Manufacturing method of electronic component mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032176A JP5035265B2 (en) 2009-02-16 2009-02-16 Manufacturing method of electronic component mounting structure

Publications (2)

Publication Number Publication Date
JP2010192489A JP2010192489A (en) 2010-09-02
JP5035265B2 true JP5035265B2 (en) 2012-09-26

Family

ID=42818245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032176A Active JP5035265B2 (en) 2009-02-16 2009-02-16 Manufacturing method of electronic component mounting structure

Country Status (1)

Country Link
JP (1) JP5035265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738623B2 (en) * 2011-02-22 2015-06-24 オリンパス株式会社 Cable connection structure and cable connection method
JP2014045152A (en) * 2012-08-28 2014-03-13 Panasonic Corp Component mounting board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165530A (en) * 1989-11-24 1991-07-17 Fujitsu Ltd Soldering jig and soldering process
JPH0969538A (en) * 1995-08-31 1997-03-11 Toshiba Corp Semiconductor device and manufacture thereof
JP2001237271A (en) * 2000-02-23 2001-08-31 Sony Corp Substrate for mounting semiconductor chip and method and apparatus for manufacturing the same
JP2002271014A (en) * 2001-03-09 2002-09-20 Hitachi Kokusai Electric Inc Method of mounting electronic component
JP4361572B2 (en) * 2007-02-28 2009-11-11 株式会社新川 Bonding apparatus and method

Also Published As

Publication number Publication date
JP2010192489A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
US8377745B2 (en) Method of forming a semiconductor device
TWI533421B (en) Semiconductor package structure and semiconductor process
JP5321601B2 (en) Semiconductor device
JP2017513241A (en) Method for mounting electrical device using lid, and lid suitable for use in the method
JP6287789B2 (en) Power module and manufacturing method thereof
JP2012119597A (en) Semiconductor device and manufacturing method of the same
JP6366723B2 (en) Semiconductor device and manufacturing method thereof
TW201739551A (en) Method for producing a heat spreader plate, heat spreader plate, method for producing a semiconductor module and semiconductor module
TW201820489A (en) Method for manufacturing semiconductor device, and mounting device
CN104979314A (en) Semiconductor packaging structure and semiconductor technologies
JP2007067175A (en) Method of manufacturing semiconductor device
JP5035265B2 (en) Manufacturing method of electronic component mounting structure
TWI669792B (en) Method for producing semiconductor chip
WO2007099759A1 (en) Method of bonding part, method of stacking part, and structure including part bonded
CN104779232B (en) Pass through the encapsulation of pre-formed metal pins
JP5022756B2 (en) Mounting method of semiconductor chip
TW201438120A (en) Chip arrangement and method for the production of a chip arrangement
JP2011066078A (en) Circuit module, and method of manufacturing the same
JP2012015446A (en) Method of manufacturing semiconductor device
US20150373845A1 (en) Electronic component mounting structure and method of manufacturing electronic component mounting structure
TWI455264B (en) Chip bonding structures and methods of bonding chip
JP4144553B2 (en) Manufacturing method of semiconductor device
JP2005142452A (en) Semiconductor device and its manufacturing method
JP4556788B2 (en) Manufacturing method of multistage electronic components
JP4511266B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5035265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3