JP5034342B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5034342B2
JP5034342B2 JP2006185140A JP2006185140A JP5034342B2 JP 5034342 B2 JP5034342 B2 JP 5034342B2 JP 2006185140 A JP2006185140 A JP 2006185140A JP 2006185140 A JP2006185140 A JP 2006185140A JP 5034342 B2 JP5034342 B2 JP 5034342B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
emitting device
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006185140A
Other languages
Japanese (ja)
Other versions
JP2008016583A5 (en
JP2008016583A (en
Inventor
忠雄 林
敏昭 森脇
真也 園部
陽一 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2006185140A priority Critical patent/JP5034342B2/en
Publication of JP2008016583A publication Critical patent/JP2008016583A/en
Publication of JP2008016583A5 publication Critical patent/JP2008016583A5/ja
Application granted granted Critical
Publication of JP5034342B2 publication Critical patent/JP5034342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device of high output type that emits a mixed light such as white light with a small amount of fluctuation in emission of light and color of light. <P>SOLUTION: The light emitting device includes: a transmissive heat radiating member; a conductor wiring formed as a pattern on the front surface of the transmissive heat radiating member; a light emitting element flip-chip mounted to the conductor wiring; and a wavelength converting member covering the light emitting element. In the transmissive heat radiating member, an insulating and non-transmissive inorganic member is formed to a non-conductive wire forming region on the surface opposing to the light emitting element. The inorganic member may be extended up to an interface between the transmissive member and the conductor wire, and a distance between the mounting surface of the light emitting element and the inorganic member is preferably shorter than the thickness of the wavelength converting member from the other surface. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、可視光を発光する発光素子と、該発光素子からの光を他の可視光に変換することが可能な波長変換部材と、を有する発光装置に関するものである。 The present invention relates to a light-emitting device having a light-emitting element that emits visible light and a wavelength conversion member that can convert light from the light-emitting element into other visible light.

発光ダイオード(Light Emitting Diode、以下「LED」ともいう)や半導体レーザ(Laser Diode、以下「LD」ともいう)等の発光素子を用いた発光装置として、例えば、可視光を発光する発光素子と、該発光素子から放出される光の少なくとも一部を吸収して他の可視光を発光することが可能な蛍光物質を具備する波長変換部材とを有し、これらの可視光の混色を発光することが可能な発光装置が知られている。 As a light emitting device using a light emitting element such as a light emitting diode (hereinafter also referred to as “LED”) or a semiconductor laser (hereinafter also referred to as “LD”), for example, a light emitting element that emits visible light; A wavelength conversion member having a fluorescent material capable of absorbing at least part of light emitted from the light emitting element and emitting other visible light, and emitting a mixed color of these visible light A light-emitting device capable of satisfying the requirements is known.

このような混色光を発光する発光装置において、色むらを改善する目的で、発光素子をサブマウント素子または基台に搭載し、前記発光素子の外郭面からの厚さが全方位でほぼ等しくなるように蛍光体含有樹脂を形成することが開示されている。これにより、前記発光素子の発光方向の全方位に対して波長変換部材による波長変換度を均一化することができる。 In such a light emitting device that emits mixed color light, the light emitting element is mounted on the submount element or the base for the purpose of improving the color unevenness, and the thickness from the outer surface of the light emitting element becomes almost equal in all directions. Thus, forming a phosphor-containing resin is disclosed. Thereby, the wavelength conversion degree by a wavelength conversion member can be equalize | homogenized with respect to all the directions of the light emission direction of the said light emitting element.

特開2005−311395号公報JP 2005-311395 A

しかしながら、上記の発光装置において、高出力を得るために大電流を投下すると、発光素子とサブマウント素子との間に介在する蛍光体含有樹脂が熱膨張し、各部材やこれらの界面に亀裂が生じ、発光装置の信頼性の低下や不灯を招くこととなる。 However, in the above light emitting device, when a large current is applied to obtain a high output, the phosphor-containing resin interposed between the light emitting element and the submount element thermally expands, and cracks occur in the members and their interfaces. As a result, the reliability of the light emitting device is reduced and the lamp is not lit.

そこで本発明は、上記課題を解決し、大電流を投下した際でも高い信頼性を維持でき、かつ発光むらや色むらの少ない白色光などの混色光を発光することが可能な、高出力タイプの発光装置を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems, can maintain high reliability even when a large current is applied, and can emit mixed color light such as white light with little uneven emission or color unevenness. An object of the present invention is to provide a light emitting device.

以上の目的を達成するために、本発明に係る発光装置は透光性放熱部材と、前記透光性放熱部材の表面にパターン形成された導体配線と、前記導体配線にフリップチップ実装された発光素子と、前記発光素子を被覆する波長変換部材と、を有し、
前記透光性放熱部材は、前記発光素子と対向する面の非導体配線形成領域に、絶縁性で且つ非透光性の無機部材が形成され、該無機部材は、前記透光性放熱部材と前記導体配線との界面に延在していることを特徴とする。
In order to achieve the above object, a light-emitting device according to the present invention includes a light-transmitting heat radiating member, a conductor wiring patterned on the surface of the light-transmitting heat radiating member, and a light-emitting device flip-chip mounted on the conductor wiring. An element, and a wavelength conversion member that covers the light-emitting element,
The translucent heat radiating member is formed with an insulating and non- translucent inorganic member in a non-conductor wiring forming region on a surface facing the light emitting element, and the inorganic member is formed with the translucent heat radiating member. It extends to the interface with the conductor wiring .

また、無機部材は、前記透光性部材と前記導体配線との界面に延在していてもよい。前記無機部材は、Ni 、SiC、C 、Ta 、SiO 、SiN、AlN、Al 、ZrO 、ZnO、TiO 、Y およびSi から選択される少なくとも1種であることが好ましい。前記無機部材は、多層膜であることが好ましい。前記多層膜は、光遮断層と絶縁層を有することが好ましい。 Moreover, the inorganic member may extend to the interface between the translucent member and the conductor wiring. The inorganic member includes Ni 2 O 3 , SiC, C 3 N 4 , Ta 2 O 5 , SiO 2 , SiN, AlN, Al 2 O 3 , ZrO 2 , ZnO, TiO 2 , Y 2 O 3 and Si 3 N. It is preferably at least one selected from 4 . The inorganic member is preferably a multilayer film. The multilayer film preferably has a light blocking layer and an insulating layer.

また、前記発光素子の実装面と前記無機部材との距離が、前記発光素子の他の面からの前記波長変換材の厚みよりも短いことが好ましい。 Moreover, it is preferable that the distance of the mounting surface of the said light emitting element and the said inorganic member is shorter than the thickness of the said wavelength conversion material from the other surface of the said light emitting element.

本発明の発光装置によれば、信頼性が高く、かつ、色むらの少ない高出力発光の発光装置を実現することができる。 According to the light emitting device of the present invention, a high output light emitting device with high reliability and less color unevenness can be realized.

本発明を実施するための最良の形態を、以下に図面を参照しながら説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための半導体装置を例示するものであって、本発明は半導体装置を以下に限定するものではない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に、実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the modes shown below exemplify a semiconductor device for embodying the technical idea of the present invention, and the present invention does not limit the semiconductor device to the following. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to a specific description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing.

実施の形態1.
図1は、本発明に係る実施の形態1の発光装置の模式的模式的断面図である。本実施の形態1の発光装置100は、同一面側に正電極111aおよび負電極111bを有するフリップチップ型の発光素子110と、表面に正極131aと負極131bとを有する導体配線パターン131が形成されたサブマウント130と、を有し、前記発光素子100が前記サブマウント130上に導電性接着剤120a,120bを介してフリップチップ実装されて、前記発光素子の周囲を覆うように波長変換部材140が形成されている。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view of the light-emitting device according to Embodiment 1 of the present invention. In the light emitting device 100 according to the first embodiment, the flip chip type light emitting element 110 having the positive electrode 111a and the negative electrode 111b on the same surface side, and the conductor wiring pattern 131 having the positive electrode 131a and the negative electrode 131b on the surface are formed. The wavelength conversion member 140 so that the light emitting element 100 is flip-chip mounted on the submount 130 via conductive adhesives 120a and 120b so as to cover the periphery of the light emitting element. Is formed.

[発光素子110]
本発明における発光素子として、ここでは特に、発光素子として、LEDチップについて説明する。LEDチップを構成する半導体発光素子としては、ZnSeやGaNなど種々の半導体を使用したものを挙げることができるが、蛍光物質を使用する場合には、その蛍光物質を効率良く励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0□X、0□Y、X+Y□1)が好適に挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
[Light emitting element 110]
As a light emitting element in the present invention, an LED chip will be described here as the light emitting element. Examples of semiconductor light-emitting elements that constitute LED chips include those using various semiconductors such as ZnSe and GaN. When a fluorescent material is used, a short wavelength that can excite the fluorescent material efficiently is emitted. possible nitride semiconductor (in X Al Y Ga 1- X-Y N, 0 □ X, 0 □ Y, X + Y □ 1) it is preferably exemplified. Examples of the semiconductor structure include a homostructure having a MIS junction, a PIN junction, and a pn junction, a heterostructure, and a double heterostructure. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated can be used.

窒化物半導体を使用した場合、半導体用基板にはサファイア、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性よく形成させるためにはサファイア基板を用いることが好ましい。このサファイア基板上にMOCVD法などを用いて窒化物半導体を形成させることができる。サファイア基板上にGaN、AlN、GaAlN等のバッファ層を形成し、その上にpn接合を有する窒化物半導体を形成させる。   When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, ZnO or the like is preferably used for the semiconductor substrate. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use a sapphire substrate. A nitride semiconductor can be formed on the sapphire substrate by MOCVD or the like. A buffer layer of GaN, AlN, GaAlN or the like is formed on the sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon.

窒化物半導体を使用したpn接合を有する発光素子の例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルへテロ構成などが挙げられる。窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。   As an example of a light emitting device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride, a first clad layer formed of n-type aluminum nitride / gallium on a buffer layer, Examples include a double hetero structure in which an active layer formed of indium / gallium nitride, a second cladding layer formed of p-type aluminum nitride / gallium, and a second contact layer formed of p-type gallium nitride are sequentially stacked. . Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, the p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since nitride semiconductors are not easily converted to p-type by simply doping with a p-type dopant, it is preferable to reduce resistance by heating in a furnace or plasma irradiation after introducing the p-type dopant.

本発明に用いられる発光素子は、同一面側に両電極を有するフリップチップ型の発光素子である。本実施の形態に用いられる発光素子110は、エッチング等の方法によりp型半導体層側からn型半導体の一部を露出させた後、p型半導体層上および露出されたn型半導体層上にそれぞれ正電極111aおよび負電極111bが蒸着法やスパッタリング法により形成されている。本実施の形態では、n型半導体を互いに平行なストライプ状となるように露出させて負電極111bを形成し、正電極111aおよび負電極111bとの間を流れる電流が均一になるように構成されている。 The light emitting element used in the present invention is a flip chip type light emitting element having both electrodes on the same surface side. In the light-emitting element 110 used in this embodiment, after a part of the n-type semiconductor is exposed from the p-type semiconductor layer side by a method such as etching, the p-type semiconductor layer and the exposed n-type semiconductor layer are exposed. The positive electrode 111a and the negative electrode 111b are formed by vapor deposition or sputtering, respectively. In the present embodiment, the negative electrode 111b is formed by exposing the n-type semiconductor so as to form a stripe parallel to each other, and the current flowing between the positive electrode 111a and the negative electrode 111b is configured to be uniform. ing.

また、正電極111aの表面積は、負電極111bの表面積より大きく構成されている。具体的には、正電極111aと負電極111bは、ストライプ状に交互に配置されており、正電極111aの幅は負電極111bの幅より広い。このように、発光素子の発光に寄与しないn型半導体の露出領域を減らし、p型半導体の領域および正電極111aの領域を相対的に増やすことで発光素子の光取り出し効率を向上させることができる。 Further, the surface area of the positive electrode 111a is configured to be larger than the surface area of the negative electrode 111b. Specifically, the positive electrodes 111a and the negative electrodes 111b are alternately arranged in a stripe shape, and the width of the positive electrode 111a is wider than the width of the negative electrode 111b. Thus, the light extraction efficiency of the light-emitting element can be improved by reducing the exposed region of the n-type semiconductor that does not contribute to the light emission of the light-emitting element and relatively increasing the region of the p-type semiconductor and the positive electrode 111a. .

正電極111aは、発光素子からの光を反射することが可能な材料にて形成することが好ましく、例えば、Ag、Al、Rh、Rh/Irが挙げられる。その他、p型半導体層の全面にITO(インジウム(In)とスズ(Sn)の複合酸化物)、ZnOのような酸化物導電膜や、Ni/Au等の金属薄膜を透光性の拡散電極として形成させることができる。なお、本明細書中において、記号「A/B」は、金属Aおよび金属Bが順にスパッタリングあるいは蒸着のような方法により積層されることを示す。また、n型窒化物半導体層の露出面に形成する負電極111bには、Ti−Al−Ni−AuあるいはW−Al−W−Pt−Auの多層電極を用いることができる。負電極の厚さは、0.1〜1.5μmが好ましい。また、負電極以外の露出面を覆うように、SiO、Al、ZrO、TiO等の絶縁性の保護膜を設けることが好ましい。 The positive electrode 111a is preferably formed of a material that can reflect light from the light emitting element, and examples thereof include Ag, Al, Rh, and Rh / Ir. In addition, an oxide conductive film such as ITO (complex oxide of indium (In) and tin (Sn)), ZnO, or a metal thin film such as Ni / Au is formed on the entire surface of the p-type semiconductor layer. Can be formed. In this specification, the symbol “A / B” indicates that the metal A and the metal B are sequentially laminated by a method such as sputtering or vapor deposition. In addition, a multilayer electrode of Ti—Al—Ni—Au or W—Al—W—Pt—Au can be used for the negative electrode 111b formed on the exposed surface of the n-type nitride semiconductor layer. The thickness of the negative electrode is preferably 0.1 to 1.5 μm. Moreover, it is preferable to provide an insulating protective film such as SiO 2 , Al 2 O 3 , ZrO 2 , or TiO 2 so as to cover the exposed surface other than the negative electrode.

[透光性放熱部材130]
本形態における透光性放熱部材130は、上面側に発光素子が導通搭載される配線パターン131と前記配線パターン131間に絶縁性で且つ透光性の無機材料150が設けられており、前記配線パターンは透光性放熱部材130の内部および下面側まで延在している。ここで、本明細書において透光性とは、300〜700nmの波長域で厚さ1mmあたりの透過率が20%以上であることを示す。また、前記透過率は、分光光度計で測定した値とする。
[Translucent heat dissipation member 130]
The translucent heat radiating member 130 in this embodiment is provided with an insulating and translucent inorganic material 150 between the wiring pattern 131 and the wiring pattern 131 on which the light emitting element is conductively mounted on the upper surface side. The pattern extends to the inside and the lower surface side of translucent heat radiating member 130. Here, in this specification, translucency means that the transmittance per 1 mm thickness is 20% or more in the wavelength region of 300 to 700 nm. The transmittance is a value measured with a spectrophotometer.

透光性放熱部材130の材料は、AlN、Al、Si、GaAs、BN、SiN、C(ダイヤモンド)など、絶縁性で熱伝導率の高い材料を有していることが好ましい。また、発光素子110と熱膨張係数差が小さい材料を用いることが好ましく、製造時や使用時に透光性放熱部材130と発光素子110との間に発生する熱応力の影響を緩和することができる。例えば、窒化物半導体発光素子を用いる場合、窒化アルミニウム(AlN)を有する材料にて構成することが好ましい。また、静電保護素子の機能を備えたものを用いることもでき、安価でもあるSi(シリコン)を有する材料が好適に用いられる。(この辺に、各材料の条件(透光性・密度・それによる放熱効果、等)を明記して頂ければと思います。)ここで透光性放熱部材130は、不純物等を含有させることにより透光性を低下させることは可能であるが、不純物が多くなるほど放熱性が低下してしまう。そこで本発明では、発光素子の載置面側となる透光性放熱部材の表面のみに絶縁性で且つ非透光性の無機部材を形成することで、透光性放熱部材の放熱性を低下させることなく発光装置の色むらを抑制している。また、透光性放熱部材がポーラス状である場合にも本発明は有効である。透光性放熱部材がポーラスである場合、内部の空洞を光りが通過する為、発光装置の色むらが増大してしまうが、本発明では透光性放熱部材の表面に絶縁性で且つ被透光性の無機部材を形成することで発光装置の色むらを抑制する事が可能である。 The material of the translucent heat radiating member 130 is preferably an insulating material having a high thermal conductivity, such as AlN, Al 2 O 3 , Si, GaAs, BN, SiN, and C (diamond). In addition, it is preferable to use a material having a small difference in thermal expansion coefficient from that of the light-emitting element 110, and the influence of thermal stress generated between the light-transmitting heat dissipation member 130 and the light-emitting element 110 during manufacturing or use can be reduced. . For example, when a nitride semiconductor light emitting element is used, it is preferable to use a material containing aluminum nitride (AlN). A material having a function of an electrostatic protection element can also be used, and a material having Si (silicon) which is inexpensive is preferably used. (I think that you can clearly specify the conditions of each material (translucency, density, heat dissipation effect, etc.) on this side.) Here, the translucent heat dissipation member 130 contains impurities and the like. Although it is possible to reduce translucency, heat dissipation will fall, so that an impurity increases. Therefore, in the present invention, by forming an insulating and non-light-transmitting inorganic member only on the surface of the light-transmitting heat radiating member on the mounting surface side of the light-emitting element, the heat radiating property of the light-transmitting heat radiating member is lowered. The color unevenness of the light emitting device is suppressed without causing it. The present invention is also effective when the translucent heat radiating member is porous. When the translucent heat radiating member is porous, light passes through the internal cavity, and thus the color unevenness of the light emitting device increases. However, in the present invention, the surface of the translucent heat radiating member is insulative and transparent. By forming the light inorganic member, it is possible to suppress color unevenness of the light emitting device.

[導体配線131]
透光性放熱部材130の表面には、正極の導体配線131aと負極の導体配線131bとがパターン形成されている。これらの材料は、導電性を有しているものであれば特に限定されず、Auや銀白色の金属、特に、発光素子からの光に対して光反射率の高いAg、Al、Pt、Pdなどを用いることが好ましい。このような銀白色の金属を用いた導電性パターンは、発光素子からの光を取り出し方向へと反射することができ、発光装置の光取り出し効率を向上させることができる一方で、マイグレーションが発生しやすいため、導体配線パターン間の距離を広く取る必要がある。本願発明は、このような光反射性の高い導体配線パターンと透光性放熱部材とを組み合わせてなる発光装置において、大きな効果を示すことができる。ここで、導体配線131の材料とする金属は、金属相互間の接着性の良さ、いわゆる濡れ性等を考慮して選択されることが好ましい。導体配線は、透光性放熱部材の表面上に、配線を形成しない領域にホトレジストパターンを形成し、電子ビーム蒸着、あるいはスパッタ、あるいは鍍金などの方法により、例えば厚さ10nmのTi層、厚さ1000nm(1μm)のAu層を堆積する。その後、レジストパターンを除去し、その上に堆積した金属層をリフトオフする。配線層は、Ti/Auの他、Ni/Au,Al/Au等を用いることもできる。
[Conductor wiring 131]
On the surface of the translucent heat radiating member 130, a positive conductor wiring 131a and a negative conductor wiring 131b are patterned. These materials are not particularly limited as long as they have conductivity. Ag, Al, Pt, Pd, which have high light reflectivity with respect to light from Au or silver-white metal, in particular, light emitting elements. Etc. are preferably used. Such a conductive pattern using silver-white metal can reflect the light from the light emitting element in the extraction direction and improve the light extraction efficiency of the light emitting device, while migration occurs. For this reason, it is necessary to increase the distance between the conductor wiring patterns. The invention of the present application can show a great effect in a light-emitting device in which such a light-reflecting conductor wiring pattern and a translucent heat radiating member are combined. Here, the metal used as the material of the conductor wiring 131 is preferably selected in consideration of good adhesion between the metals, so-called wettability. For the conductor wiring, a photoresist pattern is formed on the surface of the translucent heat radiating member in a region where no wiring is formed, and a Ti layer having a thickness of, for example, 10 nm is formed by a method such as electron beam evaporation, sputtering, or plating. A 1000 nm (1 μm) Au layer is deposited. Thereafter, the resist pattern is removed, and the metal layer deposited thereon is lifted off. As the wiring layer, Ni / Au, Al / Au, etc. can be used in addition to Ti / Au.

また、前記導体配線のパターンは、透光性放熱部材130の発光素子が実装されている面から対向する下面まで延在している。特に、透光性放熱部材の厚さ方向に少なくとも一つ以上の貫通孔を設け、貫通孔の内壁面に導体配線が延在するように形成した場合、透光性放熱部材の放熱性をさらに向上させることができる。 Further, the pattern of the conductor wiring extends from the surface on which the light emitting element of the translucent heat radiating member 130 is mounted to the opposite lower surface. In particular, when at least one through hole is provided in the thickness direction of the translucent heat radiating member, and the conductor wiring extends on the inner wall surface of the through hole, the heat radiating property of the translucent heat radiating member is further increased. Can be improved.

[波長変換部材140]
本実施の形態の発光装置において、波長変換部材140は、発光素子からの発光波長によって励起され、前記波長と異なる可視光を発する蛍光物質を含有された樹脂にて構成されているが、これに限定されず、発光素子からの光を他の可視光に変換することが可能であれば特に限定されず、例えば非線形光学結晶等を用いる事もできる。
[Wavelength conversion member 140]
In the light emitting device of the present embodiment, the wavelength conversion member 140 is made of a resin containing a fluorescent material that is excited by the light emission wavelength from the light emitting element and emits visible light different from the wavelength. The light-emitting element is not particularly limited as long as the light from the light-emitting element can be converted into other visible light. For example, a nonlinear optical crystal or the like can be used.

発光素子からの光がエネルギーの高い短波長の可視光の場合、アルミニウム酸化物系蛍光体の一種であるYAG:Ce蛍光体やCaSi蛍光体が好適に用いられる。特に、YAG:Ce蛍光体は、その含有量によってLEDチップからの青色系の光を一部吸収して補色となる黄色系の光を発するため、白色系の混色光を発する高出力な発光ダイオードを、比較的簡単に形成することができる。これらのYAG系蛍光体および窒化物系蛍光体は、混合して封止部材中に含有させてもよいし、複数の層から構成される波長変換部材中に別々に含有させてもよい。 When the light from the light emitting element is high energy short wavelength visible light, a YAG: Ce phosphor or a Ca 2 Si 5 N 8 phosphor, which is a kind of aluminum oxide phosphor, is preferably used. In particular, the YAG: Ce phosphor absorbs part of the blue light from the LED chip depending on its content and emits yellow light that is a complementary color. Can be formed relatively easily. These YAG phosphors and nitride phosphors may be mixed and contained in the sealing member, or may be separately contained in the wavelength conversion member composed of a plurality of layers.

波長変換部材140の載置場所は、発光素子の主光取り出し面側であれば特に限定されず、発光素子110から離間して設けてもよい。また、波長変換部材140にて発光素子110を被覆するように設けることで、発光素子110を外部環境からの外力、塵芥や水分などから保護することができる。また、発光素子110の外周から波長変換部材の外周までの距離をほぼ等しくすることで、発光面を小さくでき、かつ均一な発光が得られる。波長変換部材140の形状はこれに限定されず、目的に合わせて種々の形状とすることができる。即ち、波長変換部材140の形状を凸レンズ形状、凹レンズ形状とすることによってレンズ効果をもたすことができる。そのため、所望に応じて、ドーム型、発光観測面側から見て楕円状、立方体、三角柱など種々の形状を選択することができる。 The place for placing the wavelength conversion member 140 is not particularly limited as long as it is on the main light extraction surface side of the light emitting element, and may be provided apart from the light emitting element 110. In addition, by providing the wavelength conversion member 140 so as to cover the light emitting element 110, the light emitting element 110 can be protected from external force, dust, moisture, and the like from the external environment. Further, by making the distance from the outer periphery of the light emitting element 110 to the outer periphery of the wavelength conversion member substantially equal, the light emitting surface can be made smaller and uniform light emission can be obtained. The shape of the wavelength conversion member 140 is not limited to this, and can be various shapes according to the purpose. That is, the lens effect can be achieved by making the wavelength conversion member 140 into a convex lens shape or a concave lens shape. Therefore, as desired, various shapes such as a dome shape, an elliptical shape as viewed from the light emission observation surface side, a cube, and a triangular prism can be selected.

波長変換部材同士を固着させる、または、波長変換部材を発光素子表面に固着させるバインダー材料として、耐光性、透光性に優れたエポキシ樹脂、アクリル樹脂、イミド樹脂、シリコーン樹脂などの有機物や硝子など無機物があげられる。特に無機物のバインダー材料を用いることで、発光装置の部材を全て無機材料にて構成することができ、さらに信頼性の高い高出力タイプの発光装置を得ることができる。また、発光素子110からの光を拡散させる目的で、酸化アルミニウム、酸化バリウム、チタン酸バリウム、酸化珪素などを含有させることもできる。同様に外来光や発光素子110からの不要な波長をカットするフィルター効果を持たすために各種着色剤を添加させることもできる。さらに、封止樹脂の内部応力を緩和させる各種フィラーを含有させることもできる。   Epoxy resin, acrylic resin, imide resin, silicone resin, and other organic materials such as glass resin, which are excellent in light resistance and translucency, as a binder material for fixing wavelength conversion members to each other or fixing the wavelength conversion member to the surface of a light emitting element Examples include inorganic substances. In particular, by using an inorganic binder material, all members of the light emitting device can be made of an inorganic material, and a highly reliable high output type light emitting device can be obtained. Further, for the purpose of diffusing light from the light emitting element 110, aluminum oxide, barium oxide, barium titanate, silicon oxide, or the like can be contained. Similarly, various colorants can be added in order to have a filter effect for cutting extraneous light and unnecessary wavelengths from the light emitting element 110. Furthermore, various fillers that relieve internal stress of the sealing resin can be contained.

また、発光素子の搭載面を除いた他の外郭面から波長変換部材の厚みは、ほぼ等しいことが好ましい。これにより、発光素子の全方向において均一な発光を得ることができる。また、前記発光素子の実装面と前記無機部材との距離は、前記発光素子の他の面からの前記波長変換部材の厚みよりも短いことが好ましく、これにより、発光素子を封止する波長変換部材に熱膨張しやすい樹脂などを用いた場合でも、発光素子の実装面と無機部材との間まで流れ込むことを抑制することができる。また図3に示すように、発光素子の搭載面側を空気層160とすることが好ましい。空気層の場合は樹脂と比較してはるかに流動性が優れる為、熱膨張による体積増加を容易に逃がす事ができるだけでなく、発生した応力が空気層と接触する面全域に均一にかかり、各部材やこれらの界面への亀裂を生じさせるような応力の集中が起こり難いため、信頼性の高い発光装置を得ることができる。 Moreover, it is preferable that the thickness of the wavelength conversion member is substantially equal from the other outer surface excluding the mounting surface of the light emitting element. Thereby, uniform light emission can be obtained in all directions of the light emitting element. Further, the distance between the mounting surface of the light emitting element and the inorganic member is preferably shorter than the thickness of the wavelength converting member from the other surface of the light emitting element, and thereby the wavelength conversion for sealing the light emitting element. Even when a resin that easily expands thermally is used as the member, it is possible to suppress the flow between the mounting surface of the light emitting element and the inorganic member. In addition, as shown in FIG. 3, it is preferable that the mounting surface side of the light emitting element is an air layer 160. In the case of the air layer, the fluidity is much better than that of the resin, so not only can the volume increase due to thermal expansion be easily escaped, but the generated stress is uniformly applied to the entire surface in contact with the air layer, Since concentration of stress that causes cracks on the members and their interfaces is unlikely to occur, a highly reliable light-emitting device can be obtained.

[無機部材150]
本発明の発光装置は、透光性放熱部材130の表面において、少なくとも発光素子と対向する面の非導体配線形成領域に、絶縁性で且つ非透光性の無機部材150が形成されている。無機部材150は、透光性放熱部材130と導体配線パターン131との界面に延在していてもよい。このように、透光性放熱部材130の表面に無機部材150を形成した後に、導体配線パターン131を形成することにより、工程を簡略化することができるが、透光性放熱部材130の表面に導体配線パターン130を形成した後に導体配線パターン部をマスキングし、導体配線パターンのパターン間に無機部材150を形成する方法でも作成可能である。無機部材150の形成方法は、透光性放熱部材を焼成する際に予めペースト印刷により無機部材150を形成した後に焼成する方法と、透光性放熱部材を焼成した後にスパッタ蒸着、メッキあるいは電着等の方法によって表面に無機部材150を形成する方法とがある。無機部材150を形成する材料としては、特に限定されないが、Ni、SiC、C、Ta、SiO2、SiN、AlN、Al、ZrO2、ZnO、TiO、YおよびSiから選択される少なくとも1種を用いることが好ましい。またこれらの材料にCあるいは遷移金属を添加する事によって光り遮断率を向上する事が可能である。また窒化物では一部を酸化物で置換する事で光遮断率を向上する事が可能である。前記無機部材は、膜状に形成することが好ましく、さらに多層膜とすることが好ましい。多層膜とすることで光遮断と絶縁を異なる層で行うことができ、材料選択の幅が広がる。多層膜における光遮断層としてはFe、Ti、Ni、Cu、Zn、Mo、W、Nb、Pd、Ag、W、Pt、Auから選択される少なくとも1種を用いることが好ましく、絶縁層としてはNi、SiC、C、Ta、SiO、SiN、AlN、Al、ZrO、ZnO、TiO、YおよびSiから選択される少なくとも1種を用いることが好ましい。この場合メッキ、スパッタ、蒸着、電着等の手法によって作成された光遮断率の高い層の表面に同様の方法で絶縁層を設けることで光遮断と絶縁の両立が可能となる。
[Inorganic member 150]
In the light-emitting device of the present invention, an insulating and non-transparent inorganic member 150 is formed on the surface of the translucent heat radiating member 130 at least in the non-conductor wiring formation region on the surface facing the light-emitting element. The inorganic member 150 may extend to the interface between the translucent heat radiating member 130 and the conductor wiring pattern 131. As described above, by forming the conductive wiring pattern 131 after forming the inorganic member 150 on the surface of the light transmissive heat radiating member 130, the process can be simplified. It is also possible to create a method by masking the conductor wiring pattern portion after forming the conductor wiring pattern 130 and forming the inorganic member 150 between the patterns of the conductor wiring pattern. The inorganic member 150 is formed by a method in which the inorganic member 150 is preliminarily formed by paste printing when firing the translucent heat radiating member, or by sputtering deposition, plating or electrodeposition after the translucent heat radiating member is fired. There is a method of forming the inorganic member 150 on the surface by such a method. A material for forming the inorganic member 150 is not particularly limited, but Ni 2 O 3 , SiC, C 3 N 4 , Ta 2 O 5 , SiO 2 , SiN, AlN, Al 2 O 3 , ZrO 2 , ZnO, TiO 2 , It is preferable to use at least one selected from Y 2 O 3 and Si 3 N 4 . Further, by adding C or a transition metal to these materials, the light blocking rate can be improved. In addition, it is possible to improve the light blocking rate by replacing part of the nitride with an oxide. The inorganic member is preferably formed in a film shape, and more preferably a multilayer film. By using a multilayer film, light blocking and insulation can be performed in different layers, and the range of material selection is widened. As the light blocking layer in the multilayer film, it is preferable to use at least one selected from Fe, Ti, Ni, Cu, Zn, Mo, W, Nb, Pd, Ag, W, Pt, and Au. Selected from Ni 2 O 3 , SiC, C 3 N 4 , Ta 2 O 5 , SiO 2 , SiN, AlN, Al 2 O 3 , ZrO 2 , ZnO, TiO 2 , Y 2 O 3 and Si 3 N 4 It is preferable to use at least one kind. In this case, it is possible to achieve both light shielding and insulation by providing an insulating layer by the same method on the surface of a layer having a high light shielding rate prepared by a technique such as plating, sputtering, vapor deposition, electrodeposition or the like.

以下、本発明に係る実施例を詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1として、図1に示す発光装置を製造する。
(第一の工程)
<Example 1>
As Example 1, the light emitting device shown in FIG. 1 is manufactured.
(First step)

図1は、本実施例における発光装置の模式的な断面図を示す。本実施例における発光装置は、2つの半導体発光素子が同一の透光性放熱部材(本実施例では、「サブマウント」と呼ぶこととする。)にフリップチップ実装され、波長変換部材にて被覆されてなる。   FIG. 1 is a schematic cross-sectional view of a light emitting device in this example. In the light emitting device in this embodiment, two semiconductor light emitting elements are flip-chip mounted on the same light transmissive heat radiating member (referred to as “submount” in this embodiment) and covered with a wavelength conversion member. Being done.

AlN粉末を焼成した後、研磨を行い透光性放熱部材130を形成する。次に、透光性放熱部材130の発光素子載置側の面全体に、無機部材150としてスパッタにて厚み1μmのTi層を形成し、続いてスパッタにて厚み3μmのAlN層を形成する。次に、無機部材150が形成された面に対して導体配線を形成しない領域にホトレジストパターンを形成し、スパッタにてAgの導体配線パターン131を形成する。   After the AlN powder is fired, polishing is performed to form a light transmissive heat radiating member 130. Next, a Ti layer having a thickness of 1 μm is formed by sputtering as the inorganic member 150 on the entire surface of the translucent heat radiating member 130 on the light emitting element mounting side, and then an AlN layer having a thickness of 3 μm is formed by sputtering. Next, a photoresist pattern is formed in a region where no conductor wiring is formed on the surface on which the inorganic member 150 is formed, and an Ag conductor wiring pattern 131 is formed by sputtering.

発光素子110として、青色系に発光する窒化物系半導体からなり、同一面側に正および負の電極をそれぞれ2対有し、それぞれの表面が略平行となるように高さが調整されてなる発光ダイオードを用いる。 The light emitting element 110 is made of a nitride-based semiconductor that emits blue light, has two pairs of positive and negative electrodes on the same surface side, and is adjusted in height so that the surfaces are substantially parallel to each other. A light emitting diode is used.

発光素子110の電極形成面側に、導電部材を形成する。具体的には、各正電極表面には平面視が略楕円形状となるよう3つに分離されたAu−Sn膜を、各負電極表面には分離されていない楕円形状のAu−Sn膜を形成することが可能となるように開口パターンを有するマスクを載置し、Au−Sn膜を2μmの厚みでスパッタ形成する。 A conductive member is formed on the electrode formation surface side of the light emitting element 110. Specifically, an Au-Sn film separated into three so as to have a substantially elliptical shape in plan view is formed on each positive electrode surface, and an elliptical Au-Sn film not separated on each negative electrode surface. A mask having an opening pattern is placed so that it can be formed, and an Au—Sn film is formed by sputtering with a thickness of 2 μm.

次に、導体配線パターン131a,131b上に、フラックスを塗布する。ここで、フラックスの厚みは、前記導電膜の厚みより厚く塗布することが好ましい。このようにフラックスが形成された導体配線パターン131上に発光素子110の各電極111a,111bを対向させ、これらの表面に形成されたAu−Sn膜を前記フラックス中に埋没させて仮固定する。 Next, a flux is applied on the conductor wiring patterns 131a and 131b. Here, it is preferable that the flux is applied thicker than the conductive film. The electrodes 111a and 111b of the light emitting element 110 are made to face each other on the conductor wiring pattern 131 on which the flux is formed in this manner, and the Au—Sn film formed on these surfaces is buried in the flux and temporarily fixed.

発光素子110が仮固定された透光性放熱部材130を、340℃のリフロー炉に通してAu−Sn膜120a,120bの表面を溶融し、それぞれ導体配線パターン130a,130bの表面に溶融接合させる。正電極111aと前記導電膜130aとの接合面積は、前記導電膜130aと前記配線パターン120aとの接合面積より大きいことが好ましい。これにより、の安定した接合が得られ、これらの距離間を短くしても十分な接合強度とリークやオープンの無い安定した導電性を得る事ができる。また、発光装置において、前記発光素子110と前記透光性放熱部材130との間に樹脂など熱ストレスにより膨張する部材が介在したとしても、その介在物の熱ストレスを瞬時に透光性放熱部材130側へ逃がすことができることから、使用環境に左右されない優れた信頼性を有する発光装置を提供することができる。 The translucent heat radiating member 130 on which the light emitting element 110 is temporarily fixed is passed through a reflow furnace at 340 ° C. to melt the surfaces of the Au—Sn films 120a and 120b, and melt bonded to the surfaces of the conductor wiring patterns 130a and 130b, respectively. . The bonding area between the positive electrode 111a and the conductive film 130a is preferably larger than the bonding area between the conductive film 130a and the wiring pattern 120a. As a result, stable bonding can be obtained, and even if the distance between these distances is shortened, sufficient bonding strength and stable conductivity without leakage or opening can be obtained. Further, in the light emitting device, even if a member such as a resin that expands due to thermal stress is interposed between the light emitting element 110 and the light transmissive heat radiating member 130, the light transmissive heat radiating member instantly receives the thermal stress of the inclusion. Since it can escape to 130 side, the light-emitting device which has the outstanding reliability which is not influenced by the use environment can be provided.

その後、準水系洗浄剤にてフラックスを洗浄する。 Thereafter, the flux is washed with a semi-aqueous detergent.

次に、波長変換部材の材料として、中心粒径が8μmである(Y0.995Gd0.0052.750Al12:Ce0.250蛍光物質が20wt%含有されたシリコーン樹脂を用い、発光素子110の主光取り出し面側および側面にスクリーン印刷にて波長変換部材を形成する。 Next, as a material for the wavelength conversion member, a silicone resin having a center particle diameter of 8 μm (Y 0.995 Gd 0.005 ) 2.750 Al 5 O 12 : Ce 0.250 containing 20 wt% of a fluorescent substance is used. The wavelength conversion member is formed by screen printing on the main light extraction surface side and the side surface of the light emitting element 110.

このようにして得られた発光装置は、青色リングが発生することなく、発光面全体において色むらの少ない発光が得られると共に、大電流を投下しても優れた性能を保持することができる。   The light emitting device thus obtained can emit light with less color unevenness over the entire light emitting surface without generating a blue ring, and can maintain excellent performance even when a large current is applied.

本発明にかかる発光装置は、封止部材の熱変形に伴う機能劣化がなく、信頼性の高い半導体装置として、高出力かつ高信頼性発光が求められる車両用灯具などに利用可能である。   The light emitting device according to the present invention does not deteriorate in function due to thermal deformation of the sealing member, and can be used as a highly reliable semiconductor device for a vehicular lamp that requires high output and highly reliable light emission.

図1は、本発明の一実施例における発光装置を示す模式的な断面図である。FIG. 1 is a schematic cross-sectional view showing a light emitting device according to an embodiment of the present invention. 図2は、本発明の他の一実施例における発光装置を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing a light emitting device according to another embodiment of the present invention. 図3は、本発明の他の一実施例における発光装置を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing a light emitting device according to another embodiment of the present invention.

符号の説明Explanation of symbols

100・・・発光装置
110・・・発光素子
111a・・・正電極
111b・・・負電極
120a,120b・・・導電部材
130・・・透光性放熱部材
131a,131b・・・導体配線
140・・・波長変換部材
150・・・無機部材
160・・・空気層


DESCRIPTION OF SYMBOLS 100 ... Light-emitting device 110 ... Light-emitting element 111a ... Positive electrode 111b ... Negative electrode 120a, 120b ... Conductive member 130 ... Translucent heat radiation member 131a, 131b ... Conductor wiring 140 ... Wavelength conversion member 150 ... Inorganic member 160 ... Air layer


Claims (6)

透光性放熱部材と、前記透光性放熱部材の表面にパターン形成された導体配線と、前記導体配線にフリップチップ実装された発光素子と、前記発光素子を被覆する波長変換部材と、を有し、
前記透光性放熱部材は、前記発光素子と対向する面の非導体配線形成領域に、絶縁性で且つ非透光性の無機部材が形成され、該無機部材は、前記透光性放熱部材と前記導体配線との界面に延在していることを特徴とする発光装置。
A translucent heat radiating member; conductor wiring patterned on the surface of the translucent heat radiating member; a light emitting element flip-chip mounted on the conductor wiring; and a wavelength conversion member covering the light emitting element. And
The translucent heat radiating member is formed with an insulating and non- translucent inorganic member in a non-conductor wiring forming region on a surface facing the light emitting element, and the inorganic member is formed with the translucent heat radiating member. A light emitting device characterized by extending to an interface with the conductor wiring .
前記無機部材は、前記透光性部材と前記導体配線との界面に延在していることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic member extends to an interface between the translucent member and the conductor wiring. 前記発光素子の実装面と前記無機部材との距離は、前記発光素子の他の面からの前記波長変換部材の厚みよりも短いことを特徴とする請求項1または2に記載の発光装置。   The light-emitting device according to claim 1, wherein a distance between the mounting surface of the light-emitting element and the inorganic member is shorter than a thickness of the wavelength conversion member from the other surface of the light-emitting element. 前記無機部材は、Ni、SiC、C、Ta、SiO、SiN、AlN、Al、ZrO、ZnO、TiO、YおよびSiから選択される少なくとも1種であることを特徴とする請求項1乃至3のいずれか1つに記載の発光装置。 The inorganic member includes Ni 2 O 3 , SiC, C 3 N 4 , Ta 2 O 5 , SiO 2 , SiN, AlN, Al 2 O 3 , ZrO 2 , ZnO, TiO 2 , Y 2 O 3 and Si 3 N. The light-emitting device according to claim 1, wherein the light-emitting device is at least one selected from four . 前記無機部材は、多層膜であることを特徴とする請求項1乃至4のいずれか1つに記載の発光装置。   The light emitting device according to claim 1, wherein the inorganic member is a multilayer film. 前記多層膜は、光遮断層と絶縁層を有することを特徴とする請求項5に記載の発光装置。   The light emitting device according to claim 5, wherein the multilayer film includes a light blocking layer and an insulating layer.
JP2006185140A 2006-07-05 2006-07-05 Light emitting device Active JP5034342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185140A JP5034342B2 (en) 2006-07-05 2006-07-05 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185140A JP5034342B2 (en) 2006-07-05 2006-07-05 Light emitting device

Publications (3)

Publication Number Publication Date
JP2008016583A JP2008016583A (en) 2008-01-24
JP2008016583A5 JP2008016583A5 (en) 2009-08-06
JP5034342B2 true JP5034342B2 (en) 2012-09-26

Family

ID=39073332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185140A Active JP5034342B2 (en) 2006-07-05 2006-07-05 Light emitting device

Country Status (1)

Country Link
JP (1) JP5034342B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231440A (en) * 2008-03-21 2009-10-08 Nippon Carbide Ind Co Inc Wiring substrate for mounting light emitting element, and light emitting device
JPWO2011016282A1 (en) * 2009-08-05 2013-01-10 コニカミノルタアドバンストレイヤー株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR101858254B1 (en) 2011-08-22 2018-05-15 엘지이노텍 주식회사 Light emitting device, light emitting apparatus and fabricating method for light emitting device
US8889439B2 (en) * 2012-08-24 2014-11-18 Tsmc Solid State Lighting Ltd. Method and apparatus for packaging phosphor-coated LEDs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057373A (en) * 2000-08-08 2002-02-22 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device
JP4114557B2 (en) * 2003-06-25 2008-07-09 松下電工株式会社 Light emitting device
JP4539235B2 (en) * 2004-08-27 2010-09-08 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008016583A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP6437154B2 (en) Light emitting device package
JP6312899B2 (en) Light emitting device package, light source module, and illumination system including the same
US7420217B2 (en) Thin film LED
US7491981B2 (en) Light-emitting device and glass seal member therefor
EP2128906B1 (en) Light-emitting device
WO2011099384A1 (en) Light emitting device and method for manufacturing light emitting device
JP2009088299A (en) Light-emitting element and light-emitting device provided with the element
KR101646666B1 (en) Light emitting device, light emitting device package including the device, and lighting apparatus including the package
JP2010157638A (en) Light emitting device, and method of manufacturing the same
JP2005019874A (en) Led, led chip, led module, and lighting system
US20110248623A1 (en) Light emitting device
KR100836494B1 (en) Semiconductor light emitting device
JP2011040494A (en) Light emitting module
JP5568476B2 (en) Optoelectronic parts
JP2009252899A (en) Light-emitting device and method for manufacturing light-emitting device
JP5272287B2 (en) Light emitting device
US20120138995A1 (en) Light emitting device
JP5034342B2 (en) Light emitting device
KR20160115868A (en) Light emitting device, light emitting device package including the device, and lighting apparatus including the package
JP4947569B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6661964B2 (en) Light emitting device
JP2008166311A (en) Semiconductor light-emitting element and semiconductor light-emitting device
KR102343872B1 (en) Light emitting device and package including the same
KR102571786B1 (en) Light emitting device
KR102572515B1 (en) Semiconductive device and lighting apparatus having the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250