JP5034043B2 - 加速度センサ、および加速度検出装置 - Google Patents

加速度センサ、および加速度検出装置 Download PDF

Info

Publication number
JP5034043B2
JP5034043B2 JP2006242852A JP2006242852A JP5034043B2 JP 5034043 B2 JP5034043 B2 JP 5034043B2 JP 2006242852 A JP2006242852 A JP 2006242852A JP 2006242852 A JP2006242852 A JP 2006242852A JP 5034043 B2 JP5034043 B2 JP 5034043B2
Authority
JP
Japan
Prior art keywords
electrode
acceleration
movable electrode
fixed electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006242852A
Other languages
English (en)
Other versions
JP2008064603A (ja
Inventor
智由 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2006242852A priority Critical patent/JP5034043B2/ja
Publication of JP2008064603A publication Critical patent/JP2008064603A/ja
Application granted granted Critical
Publication of JP5034043B2 publication Critical patent/JP5034043B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、いわゆるサーフェスマイクロマシニング技術で作製された静電容量型の加速度センサ、および当該加速度センサを備えた加速度検出装置に関する。
近年、高機能な加速度検出装置として、3次元的に作用する加速度を検出可能な加速度センサを有する加速度検出装置が注目を集めている。それと共に当該加速度センサをさらに小型化しようとする傾向がある。加速度センサの作製には、小型化のためにMEMS(Micro Electro Mechanical System)技術が導入されている。
MEMS技術を導入した加速度センサは、ピエゾ抵抗素子を用いたものと静電容量素子を用いたものとに大別でき、開発の歴史的沿革からピエゾ抵抗素子を用いたものが主流であったが、小型化の要求に対して構造上の限界があり、また消費電力低減等の観点から現在では静電容量素子を用いたものが台頭しつつある。
小型の加速度センサを作製するためのMEMS技術には、大きく分けてバルクマイクロマシニング技術とサーフェスマイクロマシニング技術とがある。バルクマイクロマシニング技術を用いて作製された加速度センサでは3軸方向の各加速度成分を検出可能なものが提案されているが(特許文献1を参照。)、バルクマイクロマシニング技術を用いると小型化が困難であるので、更なる小型化の観点からサーフェスマイクロマシニング技術を用いて3軸方向の各加速度成分を検出可能なものが模索されている。
従来、サーフェスマイクロマシニング技術で作製された静電容量型の加速度センサでは、1軸方向の加速度成分を検出可能なもの(特許文献2を参照。)や基板主面方向の2軸の加速度成分を検出可能なもの(特許文献3を参照。)が提案されており、したがって、3次元的に作用する加速度を検出するには、単純にはこれらを3つあるいは2つ組み合わせればよいと考えられる。
特開2005−017216号公報 特開2003−337138号公報 特表2000−512023号公報
しかしながら、上記従来のサーフェスマイクロマシニング技術を用いた加速度センサを3つあるいは2つ組み合わせて3次元的に作用する加速度を検出しようとすると、1つの基板を他の基板と直交するように設けるか2つのセンサ構造を基板上に並べる、あるいは1つの非常に複雑な構造のセンサを製作する等の必要が生じて小型化の要求に応えられなくなるおそれがある。
本発明は、上記問題に鑑みて成されたものであり、小型化可能で3次元的に作用する加速度を検出可能な加速度センサおよび当該加速度センサを備えた加速度検出装置を提供することを目的とする。
上記目的を達成するため、本発明に係る加速度センサでは、基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、上記揺動体には第1揺動杆とこれに交差する第2揺動杆とを備えさせ、両揺動杆の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には少なくとも1個の可動電極を形成し、上記基板側には上記可動電極の夫々に対向する固定電極を形成して、少なくとも4個の電極対を形成し、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成されている一対の上記電極対を、第1揺動杆の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、第2揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成された一対の上記電極対を、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、さらに、上記揺動体のZ軸方向の可動に対し、第1揺動杆の電極対の対向面積の変化と第2揺動杆の電極対の対向面積の変化とが逆になるよう上記固定電極と可動電極の関係を設定した。
上記のように本発明に係る加速度センサでは、基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、上記揺動体には第1揺動杆とこれに交差する第2揺動杆とを備えさせ、両揺動杆部の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には少なくとも1個の可動電極を形成し、上記基板側には上記可動電極の夫々に対向する固定電極を形成して、少なくとも4個の電極対を形成し、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成されている一対の上記電極対を、第1揺動杆部の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定し、第2揺動杆を構成する一対の上記揺動杆の夫々の可動電極と、これらに対向する上記固定電極とによって形成された一対の上記電極対を、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定した。
具体的には、本発明に係る加速度センサにおいて、2つの揺動杆の上記可動電極と上記基板上の上記固定電極とを、夫々複数枚設けておき、その配設順序を、2つの揺動杆の交差部から見たとき、いずれの揺動杆部材に沿う方向においても同一の順序にすると、上記機能を発揮させることができる。
したがって、本発明にかかる加速度センサでは、加速度が作用したときに第1揺動杆、第2揺動杆の夫々において一方の電極対の間隙の変化と他方の電極対の間隙の変化を対比したとき互いの符号が逆になり、加速度が作用して各電極対がキャパシタとして機能するときに一方のキャパシタの静電容量の変化量と他方のキャパシタの静電容量の変化量とを対比したときに上記X軸方向もしくはY軸方向の変位に起因する成分の符号が逆になる。
なおかつ、上記揺動体のZ軸方向の揺動に対し、第1揺動杆の電極対の対向面積の変化と第2揺動杆の電極対の対向面積の変化とが逆になるよう上記固定電極と可動電極の関係を設定した。
具体的には、本発明に係る加速度センサにおいて、上記第1揺動杆、第2揺動杆の夫々に形成された夫々の上記可動電極を、長尺状として上記基板と並行させ、これらに対向する上記固定電極を長尺状として上記基板と並行させておき、上記固定電極と上記可動電極とを夫々の軸が平行になるように対向させて、上記第1揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との上記Z軸方向での順序を、上記第2揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との上記Z軸方向での順序と、逆にすれば、上記機能を発揮させることができる。
したがって、本発明に係る加速度センサでは、上記第1揺動杆の電極対と上記第2揺動杆の電極対とを対比すると、電極対がキャパシタとして機能したときにキャパシタの静電容量の変化量において上記Z軸方向の変位に起因する成分の符号が逆になる。
そして、本発明にかかる加速度センサでは、上記構成を採用することによって、各キャパシタの静電容量の変化分に、上記X軸方向、Y軸方向、Z軸方向の変位に起因する成分を含ませることができ、したがって、各キャパシタの静電容量の測定値をもとに例えばガウスの消去法などの演算処理をすることにより3軸方向(上記X軸方向、Y軸方向、Z軸方向)夫々の変位に起因する成分を抽出することができる。これらX軸、Y軸、Z軸を直交座標系に一致させれば、抽出後の各変位成分の使い勝手が向上して好ましい。
ここで、当該加速度センサでは、すべての電極対において加速度が作用していない場合での各キャパシタの静電容量、すなわち初期容量Coを等しくしておけば後述する各キャパシタの静電容量の数式を適宜組み合わせて差分をとることにより初期容量の項を消去でき、上記揺動杆の夫々の一対の電極対ごとに加速度の作用を受けた状態での各一対の電極対の電極間隙の和を、加速度を受けていない状態での上記一対の電極対の電極間隙の和に等しくすれば後述する各キャパシタの静電容量の数式において△Xの項、△Yの項の絶対値を等しくすることができ、かつ全ての電極対において上記Z軸方向での上記対向主平面同士の図心間距離を等しくしておけば、後述する各キャパシタの静電容量の数式において△Zの項の絶対値を等しくすることができる。そして、上記可動電極と上記固定電極とを共に上記基板主面に平行な長尺状に形成してその延出方向を各揺動杆の長手方向と直交するように形成すると、各電極はX軸方向あるいはY軸方向と直交しているので、上記可動電極と上記固定電極との相対位置がそれぞれの電極の延出方向に変位してもキャパシタの静電容量の変化量にほとんど無視できるぐらいに影響しなくなる。したがって、キャパシタの静電容量の変化量には上記X軸方向もしくはY軸方向に垂直でかつ基板主面と平行な方向の成分はほとんど含まれない。
すると、当該加速度センサでは、第1揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成されている一対の上記電極対の夫々及び、第2揺動杆を構成する一対の上記揺動杆部材の夫々の可動電極と、これらに対向する上記固定電極とによって形成された一対の上記電極対の夫々は、以下の式(1)ないし(4)の関係を満たす。
(1) C1=Co+P△X+R△Z
(2) C2=Co−P△X+R△Z
(3) C3=Co+Q△Y−R△Z
(4) C4=Co−Q△Y−R△Z
ここで、C1は、第1揺動杆部側の一対の電極対のうち一方の電極対の静電容量、C2は、第1揺動杆部側の一対の電極対のうち他方の電極対の静電容量、C3は、第2揺動杆部側の一対の電極対のうち一方の電極対の静電容量、C4は、第2揺動杆部側の一対の電極対のうち他方の電極対の静電容量を表す。
式(1)−式(2)の演算を実行すれば、△Xの項を抽出でき、式(3)−式(4)の演算を実行すれば△Yの項を抽出でき、{式(1)+式(2)}−{式(3)+式(4)}の演算を実行すれば△Zの項を抽出できる。
したがって、上記式(1)ないし(4)から△X、△Y、△Zの各項を抽出するためにたとえば後述する実施の形態で用いる図5に示すように各キャパシタC1〜C4を並列接続した回路を構築して、以下の式(5)から(7)を上記演算処理部に実行させると、上記演算処理部が差動演算を実行することとなり、上記式に含まれる各軸方向の変位成分に対応する出力値を出力することができ、各軸方向の加速度を検出することができる。
(5) (Co+P△X+R△Z)・(−Vr)+(Co−P△X+R△Z)・(+Vr)=Cf・Vx
(6) (Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(+Vr)=Cf・Vy
(7) (Co+P△X+R△Z)・(+Vr)+(Co−P△X+R△Z)・(+Vr)+(Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(−Vr)=Cf・Vz
但し、Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
P,Q,R:係数
△X,△Y,△Z:各軸方向の変位
+Vr,−Vr:当該加速度検出装置に対する入力電圧
Vx,Vy,Vz:当該加速度検出装置からの出力電圧
Cf:負帰還用キャパシタの静電容量
よって、本発明に係る加速度センサでは、上記演算処理部と接続すれば、当該加速度センサに加速度が加わったときに加速度を3次元的に検出可能な構成とすることができる。
上記加速度センサのいずれもが、サーフェスマイクロマシニング技術で作製できるので、汎用のMEMSプロセスで作製でき、また、従来のバルクマシニング技術で作製された加速度センサに比べて製造工程を簡易にできる構造を備えている。
本発明に係る加速度センサは、サーフェスマイクロマシニング技術を用いて作成された従来のいわゆる1軸、あるいは2軸の加速度センサを2つあるいは3つ組み合わせた場合に比べて、また、従来のバルクマイクロマシニング技術で作製された加速度センサと比べて加速度を3次元的に検出しながら、加速度センサの構造を薄くして小型化を図ることができる。
加速度が作用していない状態において、上記第1揺動杆に形成された上記可動電極と上記基板上の上記固定電極とで構成される1対の電極対の静電容量、ならびに上記第2揺動杆に形成された上記可動電極と上記基板上の上記固定電極とで構成される1対の電極対の静電容量を夫々等しく設定すると、上記X軸方向、Y軸方向、ならびにZ軸方向の各方向成分の変位に対応した出力値を出力するとき、初期静電容量の差をキャンセルするための補償容量あるいはオフセット調整回路が必要なくなり、好ましい。
具体的には、上記第1揺動杆、第2揺動杆のそれぞれをその両端部で上記ばね部材に支持させて、加速度が加わっていない状態において、各杆部材に設けられた上記可動電極とこれに対向する基板上の固定電極との対向間隙を等しくしておけば、上記のように静電容量を夫々等しく設定することができ、上記補償容量あるいはオフセット調整回路が必要なくなる。
また、各揺動杆部材に設けられた複数の可動電極とそれに対向する基板上の固定電極とを、上記交差部からの距離に比例して電極長が長くなるように構成すれば、それによって対向面積を大きく確保できて感度を高くすることができる。
そして、このように上記可動電極、固定電極を配すると、これら可動電極、固定電極を上記揺動杆の軸を基準に線対称になるように配することもできるので、上記揺動杆の夫々が上記可動電極の長手方向に揺動しても当該方向への変位に対する感度を消すことができ、既述したような差動演算において差動演算処理の対象となる項を一つ減らすことができ、演算処理の負担を抑制できて、好ましい。また、上記ばね部材の少なくとも1つに可動電極の外部引き出し電路を兼ねさせているので、上記固定電極の外部引き出し電路を、上記固定電極の両端部のうち上記可動電極に臨まない方の端部から引き出せば、上記基板面上において可動電極の外部引き出し電路と固定電極の外部引き出し電路とを離すことができ、平面配線が容易になって、当該加速度センサの構造の薄型化を図ることができ、好ましい。
(実施の形態1)
本発明の実施の形態1に係る3軸加速度検出装置について、適宜、図面を用いて説明する。
<検出装置の概略構成>
図1(a)は、本実施の形態に係る3軸加速度検出装置の概略断面図であり、同図(b)は、当該検出装置内の要部平面図である。
図1(a)に示すように、本実施の形態に係る3軸加速度検出装置10では、エポキシ樹脂等の絶縁性を有する樹脂で形成された絶縁モールド体11に加速度センサ部12と、当該センサ部12から出力された出力値を演算処理する演算処理部13とが内包された状態となっている。
具体的には、当該モールド体11の内底に載置されたダイパッド14の主面に導電部材15を介して当該センサ部12と当該演算処理部13とがダイボンドされている。演算処理部13には例えばASIC等の半導体素子が採用されている。当該検出装置10では、当該センサ部12、シーケンス制御用回路36を含む演算処理部13ならびに不図示の電源とで検出回路(図5(b)参照)が構築されている。
そして、図1(b)に示すように、モールド体11を貫通してモールド体11の内外を電気的に接続可能にするリード16と演算処理部13のボンディングパッド部17とがワイヤボンディングされ、当該ボンディングパッド部17とは別のボンディングパッド部18とセンサ部12のボンディングパッド部19とがワイヤボンディングされている。
センサ部12では、センサ構造体20の主面を覆うように被覆板21が載置されている。被覆板21は例えばガラス材を主成分として形成されたものである。被覆板21にはスルーホール22が穿設されており、当該スルーホール22を塞ぐように図示しない配線層が設けられ、当該配線層がボンディングパッド部19と一体となっている。したがって、当該配線層を介してセンサ構造体20の電位取り出し部26(図2参照)が演算処理部13と電気的に接続され、以下に説明するセンサ構造体20からの信号が演算処理部13に出力される。
<センサ構造体20の概略構成>
図2は、本実施の形態に係るセンサ構造体20の概略平面図である。
図2に示すように、本実施の形態では、基板23の主面に固定電極ユニット24が複数個固定され、可動電極ユニット25が基板23に加速度が加わったときにその加速度の方向にかつ加速度の大きさに比例して3次元的に揺動できるようにばね部33で支持されている。各固定電極ユニット24には、固定電極指29が基板23の主面に沿って一定方向に櫛歯状に列設されている。また、可動電極ユニット25には、上記固定電極指29に並行するように櫛歯状の可動電極指31が列設されている。図示した範囲内においては、固定電極ユニット24が4つ設けられ、そのうち一方の対は固定電極指29がX軸方向に、他方の対は固定電極指29がY軸方向に沿って設けられている。また、可動電極ユニット25が1つ基板23主面に設けられており、これら各固定電極ユニット24、可動電極ユニット25は互いに電気的に絶縁されている。すなわち、例えばSOI(Silicon On Insulator)基板を用いてセンサ構造体20が作製されていれば、各固定電極ユニット24と可動電極ユニット25とは基板23の主面方向において間隙を空けて設けられているので、固定電極ユニット24同士ならびに固定電極ユニット24と可動電極ユニット25との間を電気的に絶縁することができる。もちろん固定電極ユニット24が互いに絶縁物で繋がれて一体的に設けられていても良い。
そして、固定電極ユニット24、可動電極ユニット25それぞれの電位取り出し部26が基板23主面に1列に並ぶように配置されている。
センサ構造体20では、固定電極ユニット24、可動電極ユニット25を囲うように枠体27が基板23の主面のうち基板23の周部に配されており、枠体27を接地電位(GND)に設定するための電位取り出し部26が上記の電位取り出し部26の列の中に含まれるように配されている。
図3は本実施の形態におけるセンサ構造体20の要部斜視図であり、図2で示したA部とB部とを示したものである。図4は、本実施の形態におけるセンサ構造体20の要部斜視図であり、図2で示したC部とD部とを示したものである。A部ないしD部の全てについては、図3,4のいずれにおいても図2で示した配設位置を維持した状態で示している。以下、図2および図3,4を用いて説明する。
<固定電極ユニット24の概略構成>
固定電極ユニット24のそれぞれは、壁部28と固定電極指29とを備えている(図3,4参照)。
当該壁部28は、基板23主面を均等に4分割するように、略二等辺三角形状のあるいは略二等辺三角形と矩形とを組み合わせたような輪郭を有する。ただし、当該壁部28は二等辺の交差点に該当する部分において開口されている。当該壁部28は、当該開口部を互いにつき合わせた状態で配されている。本実施の形態では、当該壁部28の輪郭は略二等辺三角形状であるが、これに限定されず、正三角形状であっても良い。
固定電極ユニット24の固定電極指29は、略二等辺三角形状の壁部28のうち二等辺部分の内側側壁から伸びた状態で、かつ当該二等辺三角形の底辺と平行になるように複数配されている。一の固定電極ユニット24での固定電極指29の本数は複数に限定されず、1本でも良い。当該壁部28から延出された固定電極指29が複数本設けられていると、当該センサ構造体20の感度が向上して好ましい。
図3,4の部分拡大図に示すように、固定電極ユニット24の固定電極指29は、基板23に対して浮いた状態であるが、当該固定電極指29を支持する固定電極ユニット24の壁部28は動かないように基板23に固定されており、したがって当該固定電極指29は基板23に対して原則的に動かないように支持されている。
また、図3,4に示すように、本実施の形態では基板23の主面に垂直な方向において、固定電極ユニット24の固定電極指29の長さが、上記A部および上記B部で同じであり、なおかつ上記C部および上記D部で同じであるのに対して、上記A部もしくは上記B部と上記C部もしくは上記D部とを比べたとき、異なっている。具体的には、基板23の主面に垂直な方向では、上記A部および上記B部における固定電極ユニット24の固定電極指29の長さが、上記C部および上記D部における固定電極ユニット24の固定電極指29の長さに比べて大きい。
<可動電極ユニット25の概略構成>
可動電極ユニット25は質量(マス)部30と可動電極指31とを備えている(図3,4参照)。
当該質量部30は、図示した範囲内において基板23主面の図心から直線状の杆が直交したように、別限すれば、杆部材を四方に伸ばしたように十字状に配されている(図2参照)。当該質量部30の当該杆部材の夫々が固定電極ユニット24の壁部28の上記開口部分から当該壁部28に囲われた基板23主面上の領域内に進入するように配されている。
可動電極ユニット25の可動電極指31は、当該質量部30の各杆部材から固定電極ユニット24の壁部28のうち上記二等辺部分に向けて伸びた状態に、固定電極ユニット24の固定電極指29同士の間に進入するように、かつ固定電極ユニット24の固定電極指29と並行するように複数配されている。可動電極ユニット25の可動電極指31の本数はこれに限定されず、1本でも良い。当該質量部30から延出された可動電極指31が複数本設けられていると、センサ構造体20の感度が向上して好ましい。
上記構成を採用することによって、図3,4の部分拡大図に示すように、可動電極ユニット25の可動電極指31と固定電極ユニット24の固定電極指29とは原則的に並行した配置となる。
可動電極ユニット25とばね部33を介して接続されているアンカー部32は、基板23の主面のうち固定電極ユニット24の壁部28に囲われた領域で基板23の主面に固定されている(図2参照)。そして可動電極ユニット25の質量部30と当該アンカー部32とをばね部33が繋いでいる。
図3,4に示すように、可動電極ユニット25では、原則的に質量部30が基板23から離れて浮いた状態となっている。そして図3,4の部分拡大図に示すように、当該質量部30と一体的に形成されている可動電極指31も原則的に基板23から浮いており、かつ図示していないがばね部33も原則的に基板23から浮いている。
当該構成を採用することによって、当該センサ構造体20に対して3軸方向の各軸方向成分もしくはこれら各軸方向成分のいずれかの方向成分同士を合計した加速度が加わったとき、当該質量部30から延出された複数の可動電極指31は、当該アンカー部32および当該ばね部33を介して基板23に対して3次元的に変位可能に支持されている。
<対向電極の構成>
図2に示すように、センサ構造体20のうちA部ないしD部の全てにおいて固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とは、それぞれの主面がX軸方向またはY軸方向に対向するように配されている。そして、不図示の電源から固定電極ユニット24の固定電極指29に電圧が印加され、可動電極ユニット25の可動電極指31が接地電位(GND)に維持されると、当該対向主面がキャパシタの機能を発揮する。
可動電極ユニット25の可動電極指31は、基板23に対して3次元的に変位可能に支持された質量部30から延出された構成であるので、基板23に固定された固定電極ユニット24の固定電極指29との間において、センサ構造体20に加速度が加わったとき、互いに対向する主面が可変キャパシタ(バリアブル・コンデンサ)の機能を発揮することができる。
〔Z軸方向における対向電極の特徴〕
図3の部分拡大図に示すように、基板23主面に垂直なZ軸方向において、センサ構造体20においてA部およびB部では、可動電極指31と固定電極指29とが、それらの対向主面の図心同士が互いにずれるように配されている。C部およびD部でも同様に対向主面の図心同士が互いにずれるように電極指29,31が配されている。
そして、当該A部、B部とC部、D部とを対比したとき、Z軸方向における可動電極指31の当該対向主面の図心mcと固定電極指29の当該対向電極の図心fcとのずれを反転させている。
すなわち、センサ構造体20のA部およびB部では、可動電極指31の当該対向主面の図心mcが固定電極指29の当該対向主面の図心fcよりも基板23主面に近づくように固定電極指29,可動電極指31が配されており(図6参照)、C部およびD部では、可動電極指31の当該対向主面の図心mcが固定電極指29の当該対向主面の図心fcよりも基板23主面から離れるように固定電極指29,可動電極指31が配されている(図7参照)。
本実施の形態に係るセンサ構造体20では、加速度が作用して可動電極ユニット25の可動電極指31がZ軸方向の変位成分を有するとき、A部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とが同符号で、C部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する成分とが同符号である。
そして、既述のように、当該A部、B部とC部、D部とを対比したとき、Z軸方向における可動電極指31の当該対向主面の図心mcと固定電極指29の当該対向電極の図心fcとのずれを反転させているので、A部およびB部での静電容量の変化のうちZ軸方向の変位に起因する成分とC部およびD部での静電容量の変化のうちZ軸方向の変位に起因する成分とが逆符号となる。
すなわち、センサ構造体20では、A部およびB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に増加するとき、C部およびD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に減少し、逆にA部およびB部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に減少するとき、C部およびD部での可変キャパシタの静電容量変化のうちZ軸方向の変位に起因する部分が共に増加するような構造となっている。
具体的には、センサ構造体20のうちA部およびB部では、Z軸方向において、可動電極ユニット25の可動電極指31の長さが固定電極ユニット24の固定電極指29長さに比べて小さくなっている。そして、図4の部分拡大図に示すように、基板23主面に垂直な方向では、センサ構造体20のうちC部およびD部において、可動電極ユニット25の可動電極指31の長さが固定電極ユニット24の固定電極指29の長さに比べて大きくなっている。
そして、センサ構造体20のうちA部ないしD部の全てにおいて、固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とは基板23主面からの離間距離が同じになるように配されている。
当該構成に限定されず、当該電極指29と当該電極指31とを対比したときに基板23の主面からの離間距離が異なっていても良い。当該離間距離が同じであると、当該離間距離が異なる場合に比べて、SOI(Silicon On Insurator)基板を用いてセンサ構造体20を作製することが容易となって好ましい。
〔X軸方向、Y軸方向における対向電極の特徴〕
図3の部分拡大図に示すように、センサ構造体20のうちA部では、基板23の主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置しておらず、具体的には、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、短い。
同様に、センサ構造体20のうちB部では、基板23の主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置しておらず、具体的には、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してX軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、長い。
すなわち、センサ構造体20のうちA部とB部とを対比したとき、それぞれの部分の固定電極指29,可動電極指31の配設位置が、可動電極ユニット25の十字状の質量部30の直交点を通り、かつ基板23の主面に直交する仮想平面を中心に鏡面対称となっている。
可動電極ユニット25の可動電極指31と固定電極ユニット24の固定電極指29とが既述した位置で配設されたことによって、本実施の形態に係るセンサ構造体20では、加速度が加わって可動電極ユニット25の可動電極指31がX軸方向の変位成分を有するとき、A部とB部とを対比した場合に、可変キャパシタの静電容量の変化のうちX軸方向の変位に起因する成分が互いに逆符号となるような構造となっており、かつC部とD部とを対比した場合においても、加速度が加わって可動電極ユニット25の可動電極指31がY軸方向の変位成分を有するとき、同様の関係を有するような構造となっている。
具体的には、センサ構造体20のうちA部とB部とを対比した場合に、A部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が増加するとき、B部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が減少し、逆に、A部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が減少するとき、B部での可変キャパシタの静電容量変化のうちX軸方向の変位に起因する成分が増加するような構造となっている。
また、図4の部分拡大図に示すように、センサ構造体20のうちC部およびD部でも、基板23主面に沿う方向において、固定電極ユニット24の固定電極指29に挟まれるように配置された可動電極ユニット25の可動電極指31が両隣の固定電極ユニット24の固定電極指29に対して等距離に位置していない。
具体的には、基板23主面に沿う方向において、センサ構造体20のうちC部では、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該電極指31に対してY軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、短い。
そして、基板23主面に沿う方向において、センサ構造体20のうちD部では、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の負の方向に位置する固定電極ユニット24の固定電極指29との間隙距離が、可動電極ユニット25の可動電極指31と当該可動電極指31に対してY軸の正の方向に位置する固定電極ユニット24の固定電極指29との間隙距離に比べて、長い。
すなわち、センサ構造体20のうちC部とD部とを対比したとき、それぞれの部分の固定電極指29,可動電極指31の配設位置が、可動電極ユニット25の十字状の質量部30の直交点を通り、かつ基板23の主面と直交する仮想平面を中心に鏡面対称となっている。
そして、センサ構造体20のうちC部とD部とを対比した場合に、C部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が増加するとき、D部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が減少し、逆に、C部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が減少するとき、D部での可変キャパシタの静電容量変化のうちY軸方向の変位に起因する成分が増加するような構造となっている。
<回路としての構成>
図5(a)は、本実施の形態に係るセンサ構造体20を電気等価回路で示した概略模式図であり、図5(b)は、本実施の形態に係る検出回路34を電気等価回路で示した概略模式図であり、図5(c)は、検出回路34への電圧印加のon/offのタイミングチャートを示した概略模式図である。
なお、図5(b)においては、破線で囲った部分が本実施の形態にかかるセンサ構造体20に相当し、キャパシタC1ないしC4は、それぞれA部ないしD部の各部分の電極指29,31のそれぞれの主面が対向して構築された可変キャパシタに対応する。
図5(a)に示すように、本実施の形態にかかるセンサ構造体20を電気等価回路として見たときに、可変キャパシタC1ないしC4のそれぞれでは、可動電極ユニット25の可動電極指31の各主面が同電位の平板電極となり、固定電極ユニット24の固定電極指29の主面が当該可動電極指31の主面とは異なる電位の平板電極となりかつ当該固定電極指29同士でも異なる電位に設定可能な平板電極となるように、センサ構造体20が構築されている。
上記構造を有するセンサ構造体20が、図5(b)に示した検出回路34の一部となり、不図示の電源から図5(c)で示したタイミングチャートに基づいて当該検出回路34に対して電圧を印加して検出回路34を駆動させると、各軸方向の変位成分を電圧として出力することができる。
<検出装置の動作>
図6、7は本実施の形態に係る可変キャパシタの概略断面図である。図6は上記A部およびB部での可変キャパシタの断面を、図7は上記C部およびD部での可変キャパシタの断面を概略的に示したものである。ちょうど図6は図3と対応し、図7は図4と対応している。
〔可変キャパシタC1ないしC4について〕
可変キャパシタC1,C2では、図3で示したように対向電極を構成する可動電極ユニット25の可動電極指31が一体的にかつ3次元的に変位するように設けられているので、センサ構造体20に加速度が加わったとき、図6の破線で示すように全ての当該可動電極指31が同じ方向に変位する。具体的には、X軸方向の変位成分とZ軸方向の変位成分とを含む方向に当該可動電極指31全てが同じ方向に変位する。
可変キャパシタC3,C4でも同様に、図4で示したように対向電極を構成する可動電極ユニット25の可動電極指31が一体的にかつ3次元的に変位するように設けられているので、センサ構造体20に加速度が加わったとき、図7の破線で示すように全ての当該可動電極指31が同じ方向に変位する。具体的には、Y軸方向の変位成分とZ軸方向の変位成分とを含む方向に当該可動電極指31全てが同じ方向に変位する。
可変キャパシタC1,C2のそれぞれを構築している可動電極ユニット25の可動電極指31がいずれかの軸方向に変位成分を有する場合、可変キャパシタC1,C2の初期容量をCo、可変キャパシタC1,C2の容量の変化量を△C1,△C2、真空の誘電率をεo、固定電極指29と可動電極指31との間にある絶縁物の比誘電率をεr、固定電極指29,可動電極指31のうち可変キャパシタC1,C2を構築する部分での基板23主面方向の長さをl、固定電極指29,可動電極指31のうち可変キャパシタC1,C2を構築する部分での基板23に垂直な長さ方向の長さをh、可動電極ユニット25の電極指31のX軸方向の変位量、Z軸方向の変位量をそれぞれ△X,△Zとするとき、理論上、静電容量Cは、
Figure 0005034043
と表され、したがって、静電容量の変化量は、
Figure 0005034043
と、表せるので、変位後の可変キャパシタC1,C2の静電容量C1,C2について以下の関係式が成立する。
すなわち、可動電極ユニット25の可動電極指31がZ軸の正方向の変位成分を有するとき、
Figure 0005034043
Figure 0005034043
また、可動電極ユニット25の可動電極指31がZ軸の負の方向の変位成分を有するとき、
Figure 0005034043
Figure 0005034043
式3、式4においてZ軸変位成分が表れていないが、理論上、可動電極ユニット25の可動電極指31がZ軸の正の方向に変位成分を有するときには、可変キャパシタC1,C2それぞれにおける対向電極面積が変化しないためである。
しかしながら、実際には、端部効果によって、可動電極ユニット25の可動電極指31がZ軸の正の方向に変位成分を有するときにも、Z軸の正方向への変位に起因して可変キャパシタC1,C2の静電容量C1,C2が変化する。具体的には、Z軸の正の方向において一定の範囲内では、静電容量の変化量のうちZ軸方向変位に起因する変化成分は増加する。
当該端部効果と上記式3、式4、式5、式6とに鑑みれば、上記可動電極指31が変位したとき、可変キャパシタC1,C2については以下の関係式を導き出すことができる。
Figure 0005034043
Figure 0005034043
上記いずれの式にもY軸方向の変位に起因する成分が含まれていない(△Yの項がない)のは、各固定電極指29,可動電極指31において互いに他の固定電極指29,可動電極指31と対向する面での基板23の主面方向の長さlが当該面での基板23に垂直な方向の長さhと比べて大きいため、静電容量変化のうちY軸方向の変位に起因する成分が無視できるほどに小さいからである。
また、可変キャパシタC3,C4のそれぞれを構築している可動電極ユニット25の可動電極指31がいずれかの軸方向に変位成分を有する場合、可変キャパシタC3,C4の初期容量をCo、可変キャパシタC3,C4の容量の変化量を△C3,△C4、真空の誘電率をεo、固定電極指29と可動電極指31との間にある絶縁物の比誘電率をεr、固定電極指29,稼動電極指31のうち可変キャパシタC3,C4を構築する部分での基板23主面方向の長さをl、固定電極指29,可動電極指31のうち可変キャパシタC3,C4を構築する部分での基板23に垂直な長さ方向の長さをh、可動電極ユニット25の電極指31のY軸方向の変位量、Z軸方向の変位量をそれぞれ△Y,△Zとするとき、変位後の可変キャパシタC3,C4の静電容量C3,C4について理論上、以下の関係式が成立する。
すなわち、可動電極ユニット25の可動電極指31がZ軸の正方向の変位成分を有するとき、
Figure 0005034043
Figure 0005034043
また、可動電極ユニット25の可動電極指31がZ軸の負の方向の変位成分を有するとき、
Figure 0005034043
Figure 0005034043
式11、式12においてZ軸変位成分が表れていないが、理論上、可動電極ユニット25の可動電極指31がZ軸の負の方向に変位成分を有するときには、可変キャパシタC3,C4それぞれにおける対向電極面積が変化しないためである。
しかしながら、実際には、端部効果によって、可動電極ユニット25の可動電極指31がZ軸の負の方向に変位成分を有するときにも、Z軸の負方向への変位に起因して可変キャパシタC3,C4の静電容量C3,C4が変化する。具体的には、Z軸の負の方向において一定の範囲内では、静電容量の変化量のうちZ軸方向変位に起因する変化成分は増加する。
当該端部効果と上記式9、式10、式11、式12とに鑑みれば、上記電極指31が変位したとき、可変キャパシタC3,C4については以下の関係式を導き出すことができる。
Figure 0005034043
Figure 0005034043
上記いずれの式にもX軸方向の変位に起因する成分が含まれていない(△Xの項がない)のは、各固定電極指29,可動電極指31において互いに他の固定電極指29,可動電極指31と対向する面での基板23の主面方向の長さlが当該面での基板23に垂直な方向の長さhと比べて大きいため、静電容量変化のうちX軸方向の変位に起因する成分が無視できるほどに小さいからである。
上記式7と式8とを対比したときに注目すべき点は、X軸方向変位に起因する変化成分すなわち△Xの項の符号が逆となっていて、かつ△Zの項の符号が同じになっている点である。
そして、上記式13と式14とを対比したときに注目すべき点は、Y軸方向変位に起因する変化成分すなわち△Yの項の符号が逆となっていて、かつ△Zの項の符号が同じになっている点である。
なおかつ、上記式7および式8に対して上記式13および式14を対比したときに注目すべき点は、Z軸方向変位に起因する変化成分すなわち△Zの項の符号が逆になっている点である。
△X,△Y,△Zそれぞれの項においてこのような符号の関係が成立するのは、既述した電極構造に起因する。
以下、具体的に当該検出回路34の動作を説明する。
〔X軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p1において、検出回路34のスイッチング素子s1b,s2aをonにし、かつ他のスイッチング素子をoffにすると、可変キャパシタC1のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加され、かつ可変キャパシタC2のうち固定電極ユニット24の可動電極指29に対して電源から+Vrの電圧が印加される。
このとき、可変キャパシタC1,C2と負帰還用キャパシタCfとの間において、可変キャパシタC1の静電容量をC1、可変キャパシタC2の静電容量をC2、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。
Figure 0005034043
式15と上記の式7、式8とから、以下の関係式を導き出せる。
Figure 0005034043
式16を整理すると、電源から各可変キャパシタC1,C2の固定電極指29に印加される電圧が逆極性であることから式16の左辺において初期容量Coおよび△Zの項が消えて、以下の関係式が導出される。
Figure 0005034043
式17から分かるように、出力電圧Vxは、△Xの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のX軸方向の変位成分にのみ依存する。
この出力電圧Vxがオペアンプ(OPA)35から出力され、期間p1においてスイッチSxがonされるとキャパシタCxに出力電圧Vxが蓄積され、出力電圧Vxを検出できる。
期間p1経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の固定電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC1,C2で維持されていた電位差が消去される。
したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のX軸方向の変位成分のみを検出することができる。
〔Y軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p2において、検出回路34のスイッチング素子s3b,s4aをonにし、かつ他のスイッチング素子をoffにすると、可変キャパシタC3のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加され、かつ可変キャパシタC4のうち固定電極ユニット24の固定電極指29に対して電源から+Vrの電圧が印加される。
このとき、可変キャパシタC3,C4と負帰還用キャパシタCfとの間において、可変キャパシタC3の静電容量をC3、可変キャパシタC4の静電容量をC4、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。
Figure 0005034043
式18と上記の式13、式14とから、以下の関係式を導き出せる。
Figure 0005034043
式19を整理すると、電源から各可変キャパシタC3,C4の固定電極指29に印加される電圧が逆極性であることから式19の左辺において初期容量Coおよび△Zの項が消えて、以下の関係式が導出される。
Figure 0005034043
式20から分かるように、出力電圧Vyは、△Yの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のY軸方向の変位成分にのみ依存する。
この出力電圧Vyがオペアンプ(OPA)35から出力され、期間p2においてスイッチSyがonされるとキャパシタCyに出力電圧Vyが蓄積され、出力電圧Vyを検出できる。
期間p2経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC3,C4で維持されていた電位差が消去される。
したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のY軸方向の変位成分のみを検出することができる。
〔Z軸方向の加速度成分の検出動作〕
図5(c)に示すように、期間p3において、検出回路34のスイッチング素子s1a,s2a,s3b,s4bをonにし、かつ他のスイッチング素子をoffにすると、各可変キャパシタC1,C2のうち固定電極ユニット24の固定電極指29に対して電源から+Vrの電圧が印加され、かつ各可変キャパシタC3,C4のうち固定電極ユニット24の固定電極指29に対して電源から−Vrの電圧が印加される。
このとき、可変キャパシタC1,C2,C3,C4と負帰還用キャパシタCfとの間において、可変キャパシタC1の静電容量をC1、可変キャパシタC2の静電容量をC2、可変キャパシタC3の静電容量をC3、可変キャパシタC4の静電容量をC4、負帰還用キャパシタCfの静電容量をCfとするとき、以下の関係式が成立する。
Figure 0005034043
式21と上記の式7、式8、式13、式14とから、以下の関係式が導き出せる。
Figure 0005034043
式22を整理すると、可変キャパシタC1と可変キャパシタC2とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ同極性であり、かつX軸方向の変位に起因する静電容量の変化成分、すなわち△Xの項が異符号であるので、△Xの項が消える。そして、可変キャパシタC3と可変キャパシタC4とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ同極性であり、かつY軸方向の変位に起因する静電容量の変化成分、すなわち△Yの項が異符号であるので、△Yの項が消える。
そして、可変キャパシタC1および可変キャパシタC2と、可変キャパシタC3および可変キャパシタC4とを対比したとき、固定電極指29に電源から印加される電圧は、その絶対値が同じでかつ異極性であり、なおかつ初期容量Coが同符号であるので、初期容量Coの項が消える。また、当該対比において、可変キャパシタC1の△Zの項と可変キャパシタC2の△Zの項とが同符号で、可変キャパシタC3の△Zの項と可変キャパシタC4の△Zの項とが同符号であるので、上記の印加電圧の極性関係と組み合わされると、以下の関係式が導出される。
Figure 0005034043
式23から分かるように、出力電圧Vzは、△Zの項のみで表され、すなわち、可動電極ユニット25の可動電極指31のZ軸方向の変位成分にのみ依存する。
この出力電圧Vzがオペアンプ(OPA)35から出力され、期間p3においてスイッチSzがonされるとキャパシタCzに出力電圧Vzが蓄積され、出力電圧Vzを検出できる。
期間p3経過後にスイッチS5がonされると、負帰還用キャパシタCfが短絡した状態となるので可動電極ユニット25の可動電極指31に電荷が注入され、同時に不図示の線を通じて固定電極ユニット24の固定電極指29側の電荷も移動されて、入力電圧Vrに起因して可変キャパシタC1,C2,C3,C4で維持されていた電位差が消去される。
したがって、上記電極構造ならびに上記演算処理によって可動電極ユニット25の可動電極指31のZ軸方向の変位成分のみを検出することができる。
《実施の形態1に係る加速度検出装置の効果》
本実施の形態では、当該センサ構造体20が固定電極ユニット24の固定電極指29と可動電極ユニット25の可動電極指31とが上記構成を有することにより、A部とB部とを対比するとき、可変キャパシタC1とC2とがX軸方向において逆符号の静電容量変化を起こすように配され、かつC部とD部とを対比したとき、可変キャパシタC3とC4とがY軸方向において逆符号の静電容量変化を起こすように配されている。
なおかつ、A部およびB部とC部およびD部とを対比するとき、可変キャパシタC1,C2と可変キャパシタC3,C4とがZ軸方向において逆符号の静電容量変化を起こすように配されている。
したがって、当該センサ構造体20を上記演算処理部に組み込み、上記タイミングに従って当該センサ構造体20に加速度が加わったときの出力値を演算処理すれば、3軸方向の加速度を検出することができる加速度検出装置を実現することができる。
すなわち、当該センサ構造体20では、従来の1軸検出可能なセンサ構造体を3つ組み合わせた場合や、従来の1軸の加速度を検出可能なセンサ構造体と2軸の加速度を検出可能なセンサ構造体とを組み合わせた場合、あるいは、バルクマイクロマシニング技術で作製された加速度センサと比べて、実装面積の増大を招くこと無く3軸の加速度を検出することができ、3軸の加速度の検出を可能にしながら小型化を実現することができる。
当該センサ構造体20を加速度検出装置に組み込めば、当該検出装置の小型化を図ることができる。
そして、本実施の形態における加速度センサは、サーフェスマイクロマシニング技術で作製できるので、汎用のMEMSプロセスで作製でき、従来のバルクマイクロマシニング技術で作製された3軸加速度センサと比べて製造工程が簡易な構造を備えている。
本実施の形態に係る加速度センサでは、ばね部33によって可動電極ユニット25が所定の基準位置で支持され、加速度が作用していない状態での上記A部ないしD部において、キャパシタとして機能する電極対の初期容量Coが同一になっているので、差動検出によって上記演算を実行する際に参照容量を用いなくても初期容量Coを消去でき、従来のいわゆるバルク型の3軸加速度センサと比べて、センサ構造体20の更なる小型化を図ることができる。
本実施の形態では、図2で示したように壁部28が基板23の主面上において二等辺状に配され、そこから固定電極指29が直交する杆状の質量部30に向けて櫛歯状に延伸され、質量部30からは可動電極指31が壁部28に向けて櫛歯状に延伸されているので、これら可動電極指31、固定電極指29の夫々を基板23の限られた面積内にたくさん配設することができ、上記A領域ないしD領域の夫々で形成されるキャパシタの対向面積を大きく確保でき、A領域ないしD領域の夫々で可動電極指31と固定電極指29のそれぞれが1本ずつの場合に比べて感度を向上させることができて好ましい。
そして、上記櫛歯状の可動電極指31、固定電極指29の夫々が十字状の質量部30の軸を基準に線対称に配された状態であるので、これら電極指の延伸方向に可動電極ユニット25が揺動しても当該方向に対しての感度を消すことができるので、既述の演算処理において、演算負担を軽減できて好ましい。
また、図2に示すように、固定電極指29への通電経路は、二等辺状の壁部28を通じてその端、より具体的には十字状の質量部30を構成する上記杆の夫々を線対称の軸とする正方形を想定したときにその仮想の正方形の角部から基板23の主面に形成された電位取り出し部26へと繋がり、可動電極指31への通電経路は、上記仮想正方形の各辺の中間に位置するばね部33に通電経路を兼用させて、質量部30とそのばね部33を通りアンカー部32を通って固定電極指29側の電位取出し部26とは異なる電位取出し部26へと繋がっているので、当該センサ構造体20での配線を平面状に容易に形成することができ、センサ構造体20の薄型化を図ることができる。
<その他>
本実施の形態では、上記第1の主面と上記第2の主面とが基板23主面方向における直交座標系の各軸方向(X軸方向およびY軸方向)と直角になるように配されていたが、これに限定されず、これらX軸方向、Y軸方向と直角でなくても良い。
直角でない配置とすることによって、上記第1の主面と第2の主面とで形成されるキャパシタの数を減らすことができる。
なぜなら、既述のように、3軸の加速度を受けたときの各キャパシタの静電容量には、各キャパシタの対向主面と垂直な方向の変位成分と、基板23に垂直な方向の変位成分との2つの成分が含まれているので、3つのキャパシタを用意しておけば適切な演算処理を実行することにより当該各方向の変位成分を抽出でき、基板23主面での実装面積を削減することができる。
しかしながら、上記第1の主面と上記第2の主面とが上記X軸方向および上記Y軸方向と直角になるように配されていれば、上記演算処理部の演算処理によって直交座標軸方向での変位を検出でき、上記演算処理部での演算処理上の負担を軽減することができる点で、好ましい。
すなわち、上記実施の形態で用いた簡易な構成の演算処理部によっては、3つのキャパシタからなるセンサ構造体を採用すると、演算処理ができないのに対し、本実施の形態に係る4つのキャパシタからなるセンサ構造体20を用いれば、演算処理ができる。
本実施の形態では、質量部30が十字状であって、具体的には可動電極指31が質量部30を構成する上記杆部材から当該杆部材の軸に線対称となるように配されていたが、これに限定されず、質量部30は当該杆状でなくてもよく、可動電極指31も質量部30の杆の軸に線対称に配されていなくても良い。
しかしながら、質量部30が直交する杆状の外形を有していれば、幾何的に安定するので、感度の安定性を向上させることができて好ましく、さらに可動電極指31が当該杆部材の軸に線対称に配されていれば、さらに幾何的に安定して感度の安定性を向上させることができる。
本実施の形態では、上記A部ないしD部が図示した範囲内においてセンサ構造体20を均等に占領した状態となっているが、これに限らず、上記A部ないしD部がセンサ構造体20を均等に占領していなくても良い。しかしながら、A部ないしD部がセンサ構造体20を均等に占領した状態となっていると、いわゆる初期容量をA部ないしD部で等しくでき、従来のいわゆるバルク型の3軸加速度検出装置と比べて参照容量が必要なくなるので好ましい。
本実施の形態では、固定電極指29,可動電極指31の各々が互いに相手を囲繞するような配置となっているので、固定電極指29,可動電極指31同士の対向主面の各々が基板23の主面方向に動いたときの端部効果も無視できるが、本実施の形態以外の構成を採用する場合、すなわち、固定電極指29と可動電極指31との間において一方の電極指が他方の電極指を囲繞しない構成を採用するとき、基板23の主面方向においては、固定電極指29,可動電極指31同士の対向主面のうち可動電極指31側の主面の合計の長さが固定電極指29側の主面の合計の長さに比べて大きくなるように設定され、かつ固定電極指29の端と可動電極指31の端との距離が互いに等しくなるように設定すれば、固定電極指29,可動電極指31同士の対向主面の各々が基板23の主面方向に動いたときの静電容量変化分において当該変位成分を除去できる。
また、本実施の形態では、センサ構造体20において、固定電極指29,可動電極指31で構成される可変キャパシタが基板23の主面に沿って四方に配された構成となっていたが、これに限定されず、基板23の主面に沿って可変キャパシタが四方以上に配されても良い。
本発明は、携帯情報端末やデジタルカメラ、外付HDDなど、今後ますます小型化されるであろう機器に広く適用でき、その産業上の利用可能性は非常に広く、且つ大きい。
(a)は、実施の形態1に係る3軸加速度検出装置の概略断面図であり、同図(b)は、当該検出装置内の要部平面図である。 実施の形態1に係るセンサ構造体の概略平面図である。 実施の形態1に係るセンサ構造体の要部斜視断面図である。 実施の形態1に係るセンサ構造体の要部斜視断面図である。 (a)は、実施の形態1に係るセンサ構造体を電気等価回路で示した概略模式図であり、(b)は、実施の形態1に係る検出回路を電気等価回路で示した概略模式図であり、(c)は、実施の形態1にかかる検出回路への電圧印加のon/offのタイミングチャートを示した概略模式図である。 実施の形態1に係る可変キャパシタの概略断面図である。 実施の形態1に係る可変キャパシタの概略断面図である。
符号の説明
10 加速度検出装置
11 絶縁モールド体
12 センサ部
13 演算処理部
14 ダイパッド
15 導電部材
16 リード
17,18,19 ボンディングパッド部
20 センサ構造体
21 被覆板
22 スルーホール
23 基板
24 固定電極ユニット
25 可動電極ユニット
26 電位取り出し部
27 枠体
28 壁部
29 固定電極指
30 質量(マス)部
31 可動電極指
32 アンカー部
33 ばね部
34 検出回路
35 オペアンプ
36 シーケンス制御用回路
37 検出回路部

Claims (7)

  1. 基板と、この基板に対しX,Y,Z軸方向に揺動自在な揺動体とを備え、
    前記揺動体は第1揺動杆とこれに交差する第2揺動杆とを備え、
    両揺動杆の交差部を中心として反対方向に伸びる、合計4つの揺動杆部材の夫々には複数の可動電極が形成され、前記基板側には前記可動電極の夫々に対向する固定電極が形成されて電極対が形成され、
    前記第1揺動杆、第2揺動杆の夫々に形成された夫々の前記可動電極が、長尺状であって前記基板と並行し、これらに対向する前記固定電極が長尺状であって前記基板と並行しており、前記固定電極と前記可動電極とは夫々の軸が平行になるように対向しており、各揺動杆部材に設けられた複数の可動電極とそれに対向する基板上の固定電極は、前記交差部からの距離に比例して電極長が長くなるように構成され、且つ各可動電極とそれに対向する基板上の固定電極は、揺動杆の軸を基準に線対称になるように配され、
    第1揺動杆を構成する一対の前記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成されている電極対は、第1揺動杆の長手方向(X軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定され、
    第2揺動杆を構成する一対の前記揺動杆部材の夫々の可動電極と、これらに対向する前記固定電極とによって形成された電極対は、第2揺動杆の長手方向(Y軸方向)の揺動に対し、一方の電極対の間隙が縮まり、他方の電極対の間隙が拡がるように設定され、
    さらに、前記揺動体のZ軸方向の揺動に対し、第1揺動杆の電極対の静電容量の変化と第2揺動杆の電極対の静電容量の変化とが逆になるよう前記固定電極と可動電極の関係が設定されていることを特徴とする加速度センサ。
  2. 加速度が作用していない状態において、前記第1揺動杆に形成された前記可動電極と前記基板上の前記固定電極とで構成される1対の電極対の静電容量、ならびに前記第2揺動杆に形成された前記可動電極と前記基板上の前記固定電極とで構成される1対の電極対の静電容量が夫々等しく設定されていることを特徴とする請求項1に記載の加速度センサ。
  3. 2つの揺動杆の前記可動電極と前記基板上の前記固定電極との配設順序は、2つの揺動杆の交差部から見たとき、いずれの揺動杆部材に沿う方向においても同一の順序であることを特徴とする請求項1または2に記載の加速度センサ。
  4. 前記第1揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との前記Z軸方向での順序が、前記第2揺動杆の電極対の対向面における可動電極側の対向面の図心と固定電極側の対向面の図心との前記Z軸方向での順序と、逆になっていることを特徴とする請求項1から3のいずれかに記載の加速度センサ。
  5. 第1揺動杆と第2揺動杆とは、各杆の両端部が、基板に設けたばね部材で支持されていることにより、揺動自在な構成とされていることを特徴とする請求項1に記載の加速度センサ。
  6. 加速度作用時において、前記第1揺動杆部の電極対が、以下の式(1)または(2)の関係を満たす静電容量変化を起こすキャパシタとして夫々形成され、前記第2揺動杆部の電極対が以下の式(3)または(4)の関係を満たす静電容量変化を起こすキャパシタとして夫々形成されていることを特徴とする請求項1からのいずれかに記載の加速度センサ。
    (1) C1=Co+P△X+R△Z
    (2) C2=Co−P△X+R△Z
    (3) C3=Co+Q△Y−R△Z
    (4) C4=Co−Q△Y−R△Z
    但し、C1,C2,C3,C4:加速度が作用したときの各可変キャパシタの静電容量
    Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
    P,Q,R:係数
    △X,△Y,△Z:各軸方向の変位
  7. 請求項に記載の加速度センサと、加速度の作用に応じて前記X,Y,Zの夫々の軸方向成分値を出力する演算処理部とを備えており、
    前記演算処理部は加速度の作用に応じて以下の式(5)から(7)を実行することを特徴とする加速度検出装置。
    (5) (Co+P△X+R△Z)・(−Vr)+(Co−P△X+R△Z)・(+Vr)=Cf・Vx
    (6) (Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(+Vr)=Cf・Vy
    (7) (Co+P△X+R△Z)・(+Vr)+(Co−P△X+R△Z)・(+Vr)+(Co+Q△Y−R△Z)・(−Vr)+(Co−Q△Y−R△Z)・(−Vr)=Cf・Vz
    但し、Co:加速度が作用していないときの各可変キャパシタの静電容量(初期容量)
    P,Q,R:係数
    △X,△Y,△Z:各軸方向の変位
    +Vr,−Vr:当該加速度検出装置に対する入力電圧
    Vx,Vy,Vz:当該加速度検出装置からの出力電圧
    Cf:負帰還用キャパシタの静電容量
JP2006242852A 2006-09-07 2006-09-07 加速度センサ、および加速度検出装置 Active JP5034043B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242852A JP5034043B2 (ja) 2006-09-07 2006-09-07 加速度センサ、および加速度検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242852A JP5034043B2 (ja) 2006-09-07 2006-09-07 加速度センサ、および加速度検出装置

Publications (2)

Publication Number Publication Date
JP2008064603A JP2008064603A (ja) 2008-03-21
JP5034043B2 true JP5034043B2 (ja) 2012-09-26

Family

ID=39287443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242852A Active JP5034043B2 (ja) 2006-09-07 2006-09-07 加速度センサ、および加速度検出装置

Country Status (1)

Country Link
JP (1) JP5034043B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370632B2 (en) 2013-11-12 2019-08-06 Kajima Corporation Facility for culturing pluripotent stem cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737276B2 (ja) 2008-11-10 2011-07-27 株式会社デンソー 半導体力学量センサおよびその製造方法
CN114814293B (zh) * 2022-06-29 2022-09-09 成都华托微纳智能传感科技有限公司 一种锯齿形梳齿结构的mems加速度计

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131331A (ja) * 2000-10-24 2002-05-09 Denso Corp 半導体力学量センサ
JP4174351B2 (ja) * 2002-03-15 2008-10-29 株式会社豊田中央研究所 可動電極を有する装置、可動ミラー装置、振動型ジャイロスコープ及びこれらの製造方法
JP2003294782A (ja) * 2002-03-29 2003-10-15 Aisin Seiki Co Ltd 加速度センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370632B2 (en) 2013-11-12 2019-08-06 Kajima Corporation Facility for culturing pluripotent stem cells

Also Published As

Publication number Publication date
JP2008064603A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
US11808574B2 (en) Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
US10209269B2 (en) Z-axis microelectromechanical detection structure with reduced drifts
CN106597014B (zh) 应力敏感性降低的微机电传感器器件
US7258011B2 (en) Multiple axis accelerometer
US6928872B2 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
US9383383B2 (en) Physical quantity sensor, manufacturing method thereof, and electronic apparatus
JP6295435B2 (ja) Memsデバイス
JP2012225920A (ja) マイクロ−電子機械システム(mems)デバイス
CA3004760A1 (en) 3d mems magnetometer and associated methods
CN107003333B9 (zh) Mems 传感器和半导体封装
US8707784B2 (en) Laminated structure provided with movable portion
CN108020686B (zh) 具有改进配置的mems三轴加速度计
JP2018514397A (ja) 微小電気機械静電容量型センサの構造体およびデバイス
JP5034043B2 (ja) 加速度センサ、および加速度検出装置
JP2018136132A (ja) ジャイロセンサー、電子機器、および移動体
CN103378061B (zh) 惯性传感器、惯性传感器的制造方法以及电子设备
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
JP2001349732A (ja) マイクロマシンデバイスおよび角加速度センサおよび加速度センサ
JPH09318656A (ja) 静電容量式加速度センサ
JP2011196966A (ja) 慣性センサ
EP3347674B1 (en) An electrode for a microelectromechanical device
JP5783201B2 (ja) 容量式物理量センサ
KR100607360B1 (ko) 3차원 반도체 자이로스코프 센싱 구조
KR100593534B1 (ko) 2차원 반도체 자이로스코프 센싱 구조
CN117192155A (zh) 单质量三轴mems加速度传感器和电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150