JP5033829B2 - Digestion gas deoxygenation method and apparatus - Google Patents

Digestion gas deoxygenation method and apparatus Download PDF

Info

Publication number
JP5033829B2
JP5033829B2 JP2009068731A JP2009068731A JP5033829B2 JP 5033829 B2 JP5033829 B2 JP 5033829B2 JP 2009068731 A JP2009068731 A JP 2009068731A JP 2009068731 A JP2009068731 A JP 2009068731A JP 5033829 B2 JP5033829 B2 JP 5033829B2
Authority
JP
Japan
Prior art keywords
gas
water
carbon dioxide
tower
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009068731A
Other languages
Japanese (ja)
Other versions
JP2010180197A (en
Inventor
明子 三宅
浩二 村越
英樹 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2009068731A priority Critical patent/JP5033829B2/en
Publication of JP2010180197A publication Critical patent/JP2010180197A/en
Application granted granted Critical
Publication of JP5033829B2 publication Critical patent/JP5033829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、有機性廃棄物をメタン発酵させることにより発生した消化ガスを精製したメタンガス(以下、「精製ガス」という)中に残存する酸素を除去する消化ガスの脱酸素方法及び装置に関する。   The present invention relates to a digestion gas deoxygenation method and apparatus for removing oxygen remaining in methane gas (hereinafter referred to as “refined gas”) obtained by purifying digestion gas generated by subjecting organic waste to methane fermentation.

比較的水分の多い有機性廃棄物の処理には、現在、メタン発酵処理が多用されている。このメタン発酵処理され、発生したガスは通常「消化ガス」と呼ばれ、この消化ガス中の成分は、メタンが約60容量%及び二酸化炭素が約40容量%である。さらに、微量の不純物として、通常100〜3000ppmの硫化水素(以下、「HS」という)等の硫黄系不純物や約0.3容量%の酸素も含まれている。この消化ガスは、燃料ガスとして利用される。例えば、発電用のガスエンジン、ガスタービン、燃料電池等、温水や蒸気を製造するボイラー等の燃料である。近年では、さらにこの消化ガスを精製し、都市ガスとして供給されることが待ち望まれている。しかし、この消化ガスを精製し、都市ガスとして利用するためには、上記HS等の硫黄系不純物や酸素が除去される必要がある。また、有機硫黄化合物と酸素を除去する技術としては、例えば、特許文献1に記載されたようなものが知られている。 Currently, methane fermentation treatment is frequently used to treat organic waste with relatively high water content. The gas generated by this methane fermentation treatment is usually called “digestion gas”, and the components in the digestion gas are about 60% by volume of methane and about 40% by volume of carbon dioxide. Furthermore, sulfur impurities such as 100 to 3000 ppm of hydrogen sulfide (hereinafter referred to as “H 2 S”) and about 0.3% by volume of oxygen are also included as trace amounts of impurities. This digestion gas is used as a fuel gas. For example, it is a fuel such as a boiler for producing hot water or steam, such as a gas engine for power generation, a gas turbine, or a fuel cell. In recent years, it is highly desired that this digestion gas be further purified and supplied as city gas. However, in order to refine this digestion gas and use it as city gas, it is necessary to remove sulfur impurities such as H 2 S and oxygen. Moreover, as a technique for removing the organic sulfur compound and oxygen, for example, a technique described in Patent Document 1 is known.

この特許文献1に開示された有機硫黄化合物と酸素を除去する技術は、以下のようなものである。この技術は、反応器の中にパラジウムを含む第1触媒と、モリブデン、ニッケルまたはコバルトの少なくとも1つを含む第2触媒とを備え、有機硫黄化合物と酸素を含むメタンガス中から300〜450℃で有機硫黄化合物と酸素を同時に除去するものである。   The technique for removing the organic sulfur compound and oxygen disclosed in Patent Document 1 is as follows. This technique includes a first catalyst containing palladium in a reactor and a second catalyst containing at least one of molybdenum, nickel, or cobalt, and is heated at 300 to 450 ° C. from methane gas containing an organic sulfur compound and oxygen. The organic sulfur compound and oxygen are removed at the same time.

特開昭58−215488号公報JP 58-215488 A

しかしながら、上記特許文献1に開示された有機硫黄化合物と酸素を除去する技術は、まず有機硫黄化合物の脱硫を阻害する酸素を第1触媒上で水蒸気へ変換し、次いで第2触媒上で有機硫黄化合物をHSへ変換するものであり、以下のような問題点が存在する。 However, the technology for removing organic sulfur compounds and oxygen disclosed in Patent Document 1 first converts oxygen that inhibits desulfurization of organic sulfur compounds into water vapor on the first catalyst, and then organic sulfur on the second catalyst. The compound is converted to H 2 S and has the following problems.

1)有機硫黄化合物と酸素を含むメタンガス中から酸素を水蒸気に変換する反応および有機硫黄化合物をHSに変換する反応において、300〜450℃という高温が必要である。
2)また、処理される上記ガス中の有機硫黄化合物はHSへ変換され、ガス中に残存する。
1) In a reaction for converting oxygen into water vapor from a methane gas containing an organic sulfur compound and oxygen, and a reaction for converting an organic sulfur compound into H 2 S, a high temperature of 300 to 450 ° C. is required.
2) The organic sulfur compound in the gas to be treated is converted to H 2 S and remains in the gas.

本発明の目的は、消化ガスを精製し、この精製ガス中に残存する酸素を除去するに際し、高温を要することもなく、かつ、精製ガス中にはHS等の硫黄系不純物も残存しない消化ガスの脱酸素方法及び装置を提供することにある。 An object of the present invention is to purify digestion gas and remove oxygen remaining in the purified gas without requiring a high temperature, and sulfur-based impurities such as H 2 S do not remain in the purified gas. It is an object of the present invention to provide a digestion gas deoxygenation method and apparatus.

請求項に記載の発明は、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧し、前記昇圧した消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧した消化ガスと水とを高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製する工程と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加する工程と、
前記水素が添加された精製ガスを触媒が充填された触媒塔へ供給し、触媒反応により前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる工程と、
前記分離させた二酸化炭素及び硫黄系不純物に新たに酸素を供給する工程と、
前記分離させた二酸化炭素及び硫黄系不純物と前記新たに供給された酸素とを、硫黄系不純物を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記二酸化炭素及び硫黄系不純物と前記新たに供給された酸素が混合された混合ガス中の硫黄系不純物を分解する工程と、
を備えたことを特徴とする消化ガスの脱酸素方法である。
The invention described in claim 1
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed and compressed by a compressor, the pressurized digestion gas is supplied to an absorption tower, and the digestion gas and water pressurized in the absorption tower are supplied. By contacting in a high pressure state, carbon dioxide and sulfur impurities contained in the pressurized digestion gas are dissolved in high pressure water to separate the carbon dioxide and sulfur impurities from the pressurized digestion gas, thereby purifying methane gas. Process,
Adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
Supplying the purified gas to which the hydrogen has been added to a catalyst tower packed with a catalyst, converting oxygen remaining in the purified gas to which the hydrogen has been added by catalytic reaction into water, and removing the oxygen;
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. A step of separating sulfur impurities;
Supplying oxygen to the separated carbon dioxide and sulfur impurities;
The separated carbon dioxide and sulfur-based impurities and the newly supplied oxygen are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose sulfur-based impurities are attached, and the action of the microorganisms is utilized. Decomposing sulfur impurities in a mixed gas in which the carbon dioxide and sulfur impurities and the newly supplied oxygen are mixed;
A digestion gas deoxygenation method characterized by comprising:

請求項に記載の発明は、請求項に記載の発明において、前記精製ガス中に残存する酸素が水に変換された後の精製ガスを熱交換器により冷却する工程を有したことを特徴とする。 Invention of Claim 2 has the process of cooling the refined gas after the oxygen which remains in the refined gas in the invention of Claim 1 converted into water with a heat exchanger. And

請求項に記載の発明は、請求項またはに記載の発明において、前記吸収塔出口の精製ガス中のメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出し、前記検出したガスの濃度が規定値の範囲にない場合は、前記吸収塔出口の精製ガスを流路切換弁により前記触媒塔以外へバイパスさせ、前記検出したガスの濃度が規定値の範囲にある場合は、前記吸収塔出口の精製ガスを前記流路切換弁により前記触媒塔へ供給する工程を有したことを特徴とする。 The invention according to claim 3 detects the concentration of at least one of methane, carbon dioxide, and H 2 S in the purified gas at the absorption tower outlet in the invention according to claim 1 or 2. If the concentration of the detected gas is not within the range of the specified value, the purified gas at the outlet of the absorption tower is bypassed to other than the catalyst tower by a flow path switching valve, and the concentration of the detected gas is within the range of the specified value. In this case, the method has a step of supplying the purified gas at the outlet of the absorption tower to the catalyst tower through the flow path switching valve.

請求項に記載の発明は、請求項乃至のいずれか1項に記載の発明において、前記水素と前記新たに供給された酸素は、水を電気分解して得たものであることを特徴とする。 The invention according to claim 4 is the invention according to any one of claims 1 to 3 , wherein the hydrogen and the newly supplied oxygen are obtained by electrolyzing water. Features.

請求項に記載の発明は、請求項乃至のいずれか1項に記載の発明において、前記触媒塔へ供給される前記水素が添加された精製ガスの触媒層空間速度SVは、7,000h−1以下(ただし、ゼロは含まない)であることを特徴とする。 The invention according to claim 5 is the invention according to any one of claims 1 to 4 , wherein the catalyst layer space velocity SV of the purified gas to which the hydrogen supplied to the catalyst tower is added is 7, 000h −1 or less (however, zero is not included).

請求項に記載の発明は、請求項乃至のいずれか1項に記載の発明において、前記精製ガスに水素を添加する工程において、水素の添加量を前記精製ガス中に残存する酸素量に対して、モル比で2以上にしたことを特徴とする。 The invention according to claim 6 is the invention according to any one of claims 1 to 5 , wherein in the step of adding hydrogen to the purified gas, the amount of hydrogen added is the amount of oxygen remaining in the purified gas. The molar ratio is 2 or more.

請求項に記載の発明は、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧する圧縮機と、
前記圧縮機で昇圧した消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製するための吸収塔と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加するための水素供給手段と、
前記水素供給手段により水素が添加された精製ガスを受入れ、前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する触媒が充填された触媒塔と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる分離手段と、
前記分離させた二酸化炭素及び硫黄系不純物に新たな酸素を供給するための酸素供給手段と、
前記分離させた二酸化炭素及び硫黄系不純物と前記酸素供給手段から供給された新たな酸素とを受入れ、前記硫黄系不純物を分解する微生物が付着した充填材層を有した生物脱硫塔と、
を備えたことを特徴とする消化ガスの脱酸素装置である。
The invention described in claim 7
A compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste;
The digestion gas and water pressurized by the compressor are received and contacted in a high-pressure state to dissolve carbon dioxide and sulfur impurities contained in the pressurized digestion gas in high-pressure water and from the pressurized digestion gas. An absorption tower for separating carbon dioxide and sulfur impurities and purifying methane gas;
Hydrogen supply means for adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
A catalyst tower that receives a purified gas to which hydrogen has been added by the hydrogen supply means, and is filled with a catalyst that converts and removes oxygen remaining in the purified gas to which hydrogen has been added; and
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. Separation means for separating sulfur impurities;
Oxygen supply means for supplying new oxygen to the separated carbon dioxide and sulfur impurities;
A biological desulfurization tower having a filler layer to which the separated carbon dioxide and sulfur-based impurities and new oxygen supplied from the oxygen supply means are received and microorganisms that decompose the sulfur-based impurities are attached;
A digestion gas deoxygenation apparatus comprising:

請求項に記載の発明は、請求項に記載の発明において、前記触媒塔の後段に前記触媒塔から出た精製ガスを冷却するための熱交換器を備えたことを特徴とする。 The invention described in claim 8 is characterized in that, in the invention described in claim 7 , a heat exchanger for cooling the purified gas exiting from the catalyst tower is provided at the rear stage of the catalyst tower.

請求項に記載の発明は、請求項またはに記載の発明において、前記吸収塔と前記触媒塔の間に
前記吸収塔出口の精製ガス中のメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出するための検出手段と、前記検出手段と前記触媒塔の間に設けられた流路切換弁とを備え、前記検出手段により検出したガスの濃度が規定値の範囲にない場合は、前記吸収塔出口の精製ガスを前記流路切換弁で前記触媒塔以外へバイパスさせ、前記検出手段により検出したガスの濃度が規定値の範囲にある場合は、前記吸収塔出口の精製ガスを前記流路切換弁で前記触媒塔へ供給するように構成したことを特徴とする。
The invention according to claim 9 is the invention according to claim 7 or 8 , wherein methane, carbon dioxide, or H 2 S in the purified gas at the outlet of the absorption tower is between the absorption tower and the catalyst tower. A detection means for detecting the concentration of at least one gas; and a flow path switching valve provided between the detection means and the catalyst tower, wherein the concentration of the gas detected by the detection means is a specified value. If the concentration of the gas detected by the detection means is within a specified value range, the purified gas at the outlet of the absorption tower is bypassed to other than the catalyst tower by the flow path switching valve. The purified gas at the tower outlet is supplied to the catalyst tower by the flow path switching valve.

請求項10に記載の発明は、請求項乃至のいずれか1項に記載の発明において、前記水素供給手段と酸素供給手段は、水電解装置であることを特徴とする。 The invention described in claim 10 is the invention described in any one of claims 7 to 9 , wherein the hydrogen supply means and the oxygen supply means are water electrolysis devices.

請求項11に記載の発明は、請求項乃至10のいずれか1項に記載の発明において、前記触媒塔へ供給される前記水素が添加された精製ガスの触媒層空間速度SVは、7,000h−1以下(ただし、ゼロは含まない)であることを特徴とする。 The invention according to claim 11 is the invention according to any one of claims 7 to 10 , wherein the catalyst layer space velocity SV of the purified gas to which the hydrogen supplied to the catalyst tower is added is 7, 000h −1 or less (however, zero is not included).

請求項12に記載の発明は、請求項乃至11のいずれか1項に記載の発明において、前記精製ガス中に残存する酸素量に対して、前記水素供給手段により添加する水素量は、モル比で2以上であることを特徴とする。 The invention according to claim 12 is the invention according to any one of claims 7 to 11 , wherein the amount of hydrogen added by the hydrogen supply means is the molar amount of oxygen remaining in the purified gas. The ratio is 2 or more.

以上のように、本発明に係る消化ガスの脱酸素方法によれば、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧し、前記昇圧した消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧した消化ガスと水とを高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製する工程と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加する工程と、
前記水素が添加された精製ガスを触媒が充填された触媒塔へ供給し、触媒反応により前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる工程と、
前記分離させた二酸化炭素及び硫黄系不純物に新たに酸素を供給する工程と、
前記分離させた二酸化炭素及び硫黄系不純物と前記新たに供給された酸素とを、硫黄系不純物を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記二酸化炭素及び硫黄系不純物と前記新たに供給された酸素が混合されたガス中の硫黄系不純物を分解する工程と、
を備えているため、以下のような作用効果を奏する。
)吸収塔から抜き出された高圧水の中にはメタンガスがほとんど存在せず、逆に消化ガス中の大部分の二酸化炭素及び硫黄系不純物が高圧水中に存在するため、高圧水を減圧して発生した二酸化炭素及び硫黄系不純物を含むガスを爆発防止を気にすることなく、ガス中に含有するHSの量に応じて、適宜酸素を加えて最適な脱硫も実現できる。
2)また、生物脱硫塔へ供給される上記二酸化炭素及び硫黄系不純物と酸素を含むガス中には、上記1)で説明した通り、メタンガスをほとんど含有しないため、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をコンパクトにした脱硫も実現できる。
さらに、請求項4に記載した方法によれば、さらに次のような作用効果を奏する。
1)水の電気分解により得られる水素は高純度であるため、不純物の混入が少なく、精製ガスの純度を容易に維持できる。
2)また、電気分解により得られる酸素も高純度であるため、生物脱硫のための酸素源として空気を用いる場合に比べて、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をさらにコンパクトにした脱硫も実現できる。
3)水素を水素高圧容器(ボンベ等)で保管する場合は、高圧水素の取り扱いが煩雑になるのに対して、電気分解による水素製造は高圧水素の保管が不要であり、また、安全性が高い。
4)精製ガス中の酸素濃度の変動に対して、濃度を検知して電流制御することにより水素添加量を調節することも可能である。
As described above, according to the deoxygenation process of engaging Ru digestion gas present invention,
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed and compressed by a compressor, the pressurized digestion gas is supplied to an absorption tower, and the digestion gas and water pressurized in the absorption tower are supplied. By contacting in a high pressure state, carbon dioxide and sulfur impurities contained in the pressurized digestion gas are dissolved in high pressure water to separate the carbon dioxide and sulfur impurities from the pressurized digestion gas, thereby purifying methane gas. Process,
Adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
Supplying the purified gas to which the hydrogen has been added to a catalyst tower packed with a catalyst, converting oxygen remaining in the purified gas to which the hydrogen has been added by catalytic reaction into water, and removing the oxygen;
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. A step of separating sulfur impurities;
Supplying oxygen to the separated carbon dioxide and sulfur impurities;
The separated carbon dioxide and sulfur-based impurities and the newly supplied oxygen are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose sulfur-based impurities are attached, and the action of the microorganisms is utilized. Decomposing sulfur impurities in a gas in which the carbon dioxide and sulfur impurities and the newly supplied oxygen are mixed;
Therefore, the following effects are achieved.
1) hardly exists methane gas in the high-pressure water withdrawn from the absorption Osamuto, since contrary to most of the carbon dioxide and sulfur-based impurities digestion gas is present in the high-pressure water, vacuum high pressure water Thus, the optimum desulfurization can be realized by appropriately adding oxygen according to the amount of H 2 S contained in the gas without worrying about preventing the explosion of the gas containing carbon dioxide and sulfur impurities generated.
2) In addition, as described in the above 1), the gas containing carbon dioxide, sulfur impurities and oxygen supplied to the biological desulfurization tower contains almost no methane gas, so sulfur impurities such as H 2 S. Desulfurization with a compact biological desulfurization tower as a removal treatment section can be realized.
Furthermore, according to the method of Claim 4, there exist the following effects.
1) Since hydrogen obtained by electrolysis of water has high purity, there is little mixing of impurities, and the purity of the purified gas can be easily maintained.
2) Moreover, since the oxygen obtained by electrolysis is also highly pure, compared with the case where air is used as an oxygen source for biological desulfurization, the biological desulfurization tower as a removal treatment section for sulfur impurities such as H 2 S. Desulfurization with a more compact can be realized.
3) When hydrogen is stored in a hydrogen high-pressure vessel (cylinder, etc.), handling of high-pressure hydrogen becomes complicated, whereas hydrogen production by electrolysis does not require storage of high-pressure hydrogen and is safe. high.
4) It is also possible to adjust the hydrogen addition amount by detecting the concentration and controlling the current with respect to the fluctuation of the oxygen concentration in the purified gas.

また、本発明に係る消化ガスの脱酸素装置によれば、
有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧する圧縮機と、
前記圧縮機で昇圧した消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製するための吸収塔と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加するための水素供給手段と、
前記水素供給手段により水素が添加された精製ガスを受入れ、前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する触媒が充填された触媒塔と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる分離手段と、
前記分離させた二酸化炭素及び硫黄系不純物に新たな酸素を供給するための酸素供給手段と、
前記分離させた二酸化炭素及び硫黄系不純物と前記酸素供給手段から供給された新たな酸素とを受入れ、前記硫黄系不純物を分解する微生物が付着した充填材層を有した生物脱硫塔と、
を備えているため、以下のような作用効果を奏する。
)吸収塔から抜き出された高圧水の中にはメタンガスがほとんど存在せず、逆に消化ガス中の大部分の二酸化炭素及び硫黄系不純物が高圧水中に存在するため、高圧水を減圧して発生した二酸化炭素及び硫黄系不純物を含むガスを爆発防止を気にすることなく、ガス中に含有するHSの量に応じて、適宜酸素を加えて最適な脱硫も実現できる。
2)また、生物脱硫塔へ供給される上記二酸化炭素及び硫黄系不純物と酸素を含むガス中には、上記1)で説明した通り、メタンガスをほとんど含有しないため、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をコンパクトにした脱硫部を実現することもできる。
さらに、請求項10に記載した装置によれば、さらに次のような作用効果を奏する。
1)水の電気分解により得られる水素は高純度であるため、不純物の混入が少なく、精製ガスの純度を容易に維持できる。
2)また、電気分解により得られる酸素も高純度であるため、生物脱硫のための酸素源として空気を用いる場合に比べて、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をさらにコンパクトにした脱硫も実現できる。
3)水素を水素高圧容器(ボンベ等)で保管する場合は、高圧水素の取り扱いが煩雑になるのに対して、電気分解による水素製造は高圧水素の保管が不要であり、また、安全性が高い。
4)精製ガス中の酸素濃度の変動に対して、濃度を検知して電流制御することにより水素添加量を調節することも可能である。
Further, according to the deoxygenator engagement Ru digestion gas present invention,
A compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste;
The digestion gas and water pressurized by the compressor are received and contacted in a high-pressure state to dissolve carbon dioxide and sulfur impurities contained in the pressurized digestion gas in high-pressure water and from the pressurized digestion gas. An absorption tower for separating carbon dioxide and sulfur impurities and purifying methane gas;
Hydrogen supply means for adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
A catalyst tower that receives a purified gas to which hydrogen has been added by the hydrogen supply means, and is filled with a catalyst that converts and removes oxygen remaining in the purified gas to which hydrogen has been added; and
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. Separation means for separating sulfur impurities;
Oxygen supply means for supplying new oxygen to the separated carbon dioxide and sulfur impurities;
A biological desulfurization tower having a filler layer to which the separated carbon dioxide and sulfur-based impurities and new oxygen supplied from the oxygen supply means are received and microorganisms that decompose the sulfur-based impurities are attached;
Therefore, the following effects are achieved.
1) hardly exists methane gas in the high-pressure water withdrawn from the absorption Osamuto, since contrary to most of the carbon dioxide and sulfur-based impurities digestion gas is present in the high-pressure water, vacuum high pressure water Thus, the optimum desulfurization can be realized by appropriately adding oxygen according to the amount of H 2 S contained in the gas without worrying about preventing the explosion of the gas containing carbon dioxide and sulfur impurities generated.
2) In addition, as described in the above 1), the gas containing carbon dioxide, sulfur impurities and oxygen supplied to the biological desulfurization tower contains almost no methane gas, so sulfur impurities such as H 2 S. It is also possible to realize a desulfurization section in which the biological desulfurization tower as the removal treatment section is made compact.
Furthermore, according to the apparatus of Claim 10, there exist the following effects.
1) Since hydrogen obtained by electrolysis of water has high purity, there is little mixing of impurities, and the purity of the purified gas can be easily maintained.
2) Moreover, since the oxygen obtained by electrolysis is also highly pure, compared with the case where air is used as an oxygen source for biological desulfurization, the biological desulfurization tower as a removal treatment section for sulfur impurities such as H 2 S. Desulfurization with a more compact can be realized.
3) When hydrogen is stored in a hydrogen high-pressure vessel (cylinder, etc.), handling of high-pressure hydrogen becomes complicated, whereas hydrogen production by electrolysis does not require storage of high-pressure hydrogen and is safe. high.
4) It is also possible to adjust the hydrogen addition amount by detecting the concentration and controlling the current with respect to the fluctuation of the oxygen concentration in the purified gas.

本発明の実施の形態1の消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the whole structure of the deoxidation apparatus of the digestive gas of Embodiment 1 of this invention. 本発明の実施の形態2の消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the whole structure of the deoxidation apparatus of the digestive gas of Embodiment 2 of this invention. 本発明の実施の形態3の消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the whole structure of the deoxidation apparatus of the digestive gas of Embodiment 3 of this invention. 本発明の実施の形態4の消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。It is explanatory drawing which illustrates typically the whole structure of the deoxidation apparatus of the digestive gas of Embodiment 4 of this invention.

以下、本発明の実施形態について、添付図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(実施の形態1)
図1は本発明の消化ガスの脱酸素方法を実施するための実施の形態1に係る消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。
(Embodiment 1)
FIG. 1 is an explanatory diagram schematically illustrating the overall configuration of a digestion gas deoxygenation apparatus according to Embodiment 1 for carrying out the digestion gas deoxygenation method of the present invention.

図1において、1はミストセパレータ、2a、2bはガス圧縮機、3は吸収塔(スクラバー)、4は給水槽、5は水補給用ポンプ、6は水素供給手段としての水電解装置、7はパラジウム(Pd)触媒、8はPd触媒7が充填された触媒塔、9は除湿器である。   In FIG. 1, 1 is a mist separator, 2a and 2b are gas compressors, 3 is an absorption tower (scrubber), 4 is a water supply tank, 5 is a water supply pump, 6 is a water electrolysis device as hydrogen supply means, and 7 is Palladium (Pd) catalyst, 8 is a catalyst tower packed with Pd catalyst 7, and 9 is a dehumidifier.

次に、本発明に係る消化ガスの脱酸素装置の運転動作について、図1を参照しながら説明する。   Next, the operation of the digestion gas deoxygenation apparatus according to the present invention will be described with reference to FIG.

有機性汚泥、有機性廃水等の有機性廃棄物をメタン発酵させることにより発生した消化ガスは、ミストセパレータ1によって消化ガス中のミスト(水分)、ダストが除去される。このミストセパレータ1を通過後の消化ガス中の成分は、メタンが約60容量%、二酸化炭素が約40容量%、酸素が約0.3容量%、硫黄系不純物としてのHSが100〜3000ppm、その他の不純物が極微量である。この消化ガスを直列接続されたガス圧縮機2a、2bによって圧縮し、大気圧より高い所定の圧力まで昇圧される。ガス圧縮機2a、2bによって昇圧された消化ガスは、吸収塔3の下部に導入される。一方、吸収塔3の上部からは、下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水が貯留された給水槽4から水補給用ポンプ5により汲み上げられ、昇圧された状態で供給されるようになっている。このとき用いられる水としては、上記下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水が利用される以外にも、水道水、井水、または、下水等の排水を処理して得られる処理水を利用することも可能である。 Digestion gas generated by methane fermentation of organic waste such as organic sludge and organic wastewater is removed by mist separator 1 from mist (water) and dust. The components in the digestion gas after passing through the mist separator 1 are about 60% by volume of methane, about 40% by volume of carbon dioxide, about 0.3% by volume of oxygen, and 100 to 100% of H 2 S as a sulfur impurity. 3000 ppm, other impurities are very small. The digestion gas is compressed by gas compressors 2a and 2b connected in series, and the pressure is increased to a predetermined pressure higher than the atmospheric pressure. The digestion gas pressurized by the gas compressors 2 a and 2 b is introduced into the lower part of the absorption tower 3. On the other hand, from the upper part of the absorption tower 3, it is pumped up by a water supply pump 5 from a water supply tank 4 in which sand filtrate from a sand filtration facility of treated water provided downstream of the final sedimentation basin of the sewage treatment plant is stored. And is supplied in a boosted state. As water used at this time, in addition to using sand filtration water from the sand filtration facility of the treated water provided downstream of the final sedimentation basin of the sewage treatment plant, tap water, well water, or It is also possible to use treated water obtained by treating wastewater such as sewage.

このように、ガス圧縮機2a、2bにより消化ガスを昇圧して吸収塔3内へその下部より送り込むとともに、水補給用ポンプ5により水を昇圧して吸収塔3内へその上部より送り込むことにより、吸収塔3内を0.55〜2.0MPaGの範囲を満たす高圧状態に保持し、吸収塔3内において消化ガスと水とを前記圧力範囲を満たす高圧状態で接触させるようにしている。なお、吸収塔3内には、消化ガスと水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   As described above, the digestion gas is pressurized by the gas compressors 2a and 2b and fed into the absorption tower 3 from the lower part thereof, and the water is boosted by the water replenishment pump 5 and fed into the absorption tower 3 from the upper part thereof. The inside of the absorption tower 3 is kept in a high pressure state satisfying the range of 0.55 to 2.0 MPaG, and the digestion gas and water are brought into contact with each other in the high pressure state satisfying the pressure range in the absorption tower 3. The absorption tower 3 is filled with a packing such as Raschig ring in order to bring the digestion gas and water into sufficient contact.

吸収塔3内において消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることにより、消化ガス中に気体状態で含まれていた二酸化炭素及びHS等の硫黄系不純物は、高圧の水に溶解して吸収される一方、メタンガスは、高圧の水にほとんど溶解することなく、吸収塔3の頂部から取り出される。また、消化ガスから二酸化炭素及びHS等の硫黄系不純物を分離し、メタンガスを精製するに際し、消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させるのがよい。この範囲より低圧力雰囲気では、二酸化炭素及びHS等の硫黄系不純物が十分に分離除去されず、また、この範囲より高圧力雰囲気にしても二酸化炭素及びHS等の硫黄系不純物の除去率がそれほど向上せず、運転コストや、高圧化仕様による装置コストの増加などの点から好ましくない。なお、除去率、運転コスト及び装置コストの点から、消化ガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることがより好ましい。 Sulfur such as carbon dioxide and H 2 S contained in the digestion gas in a gaseous state by bringing the digestion gas and water into contact with each other at a high pressure satisfying the range of 0.55 to 2.0 MPaG in the absorption tower 3. System impurities are dissolved and absorbed in high-pressure water, while methane gas is taken out from the top of the absorption tower 3 with almost no dissolution in high-pressure water. Further, when purifying methane gas by separating sulfur-based impurities such as carbon dioxide and H 2 S from the digestion gas, the digestion gas and water are brought into contact in a high pressure state satisfying the range of 0.55 to 2.0 MPaG. Good. The low pressure atmosphere than this range, not carbon dioxide and H 2 S sulfur based impurities are sufficiently separated and removed, such as, also, the sulfur-based impurities such as carbon dioxide and H 2 S even in the high pressure atmosphere from this range The removal rate is not improved so much, which is not preferable from the viewpoints of operation cost and increase in apparatus cost due to high pressure specifications. In addition, it is more preferable to make digestion gas and water contact in the high pressure state which satisfy | fills the range of 0.7 MPaG or more and less than 1.0 MPaG from the point of a removal rate, an operating cost, and apparatus cost.

なお、上記のように消化ガスと水とを0.55MPaG以上の高圧状態で接触させることにより、消化ガス中にシロキサン化合物が含まれる場合、シロキサン化合物は凝縮し消化ガス中から分離されるので、吸収塔3の頂部から取り出される高濃度のメタンガスを有する精製ガス中に残留するシロキサン化合物も僅かとなる。しかし、この精製ガス中には、依然として酸素が約0.3容量%残存したままであるため、このままではまだ都市ガスとしては利用できない。そこで、次にこの精製ガス(高濃度のメタンガスと上記含有量の酸素が中心)に水電解装置6より水素(H)を添加し、この水素が添加された精製ガスをPd触媒7が充填された触媒塔8に送り込むことにより、常温で下記式(1)に示すような触媒反応が進行し、精製ガス中の酸素(O)が、例えば、0.01容量%以下まで除去される。
+2H→ 2HO ――― 式(1)
In addition, when a siloxane compound is contained in the digestion gas by contacting the digestion gas and water in a high pressure state of 0.55 MPaG or more as described above, the siloxane compound is condensed and separated from the digestion gas. A small amount of siloxane compound remains in the purified gas having a high concentration of methane gas taken out from the top of the absorption tower 3. However, since about 0.3% by volume of oxygen still remains in this purified gas, it cannot be used as city gas as it is. Then, hydrogen (H 2 ) is added from the water electrolysis device 6 to this purified gas (mainly high-concentration methane gas and the above-mentioned oxygen content), and the purified gas to which this hydrogen is added is filled with the Pd catalyst 7. By feeding into the catalyst tower 8, a catalytic reaction as shown in the following formula (1) proceeds at room temperature, and oxygen (O 2 ) in the purified gas is removed to, for example, 0.01% by volume or less. .
O 2 + 2H 2 → 2H 2 O ――― Formula (1)

水素は、上記反応式(1)より、酸素の2倍のモル量が必要である。よって、酸素に対して水素をモル比で2以上添加することにより、精製ガス中に残存する酸素を0.01容量%以下に制御することが可能である。酸素に対する水素の添加量は、モル比で2〜約3.3とするのが好ましい。これにより、残存する酸素を所定の基準値以下まで除去しながらも、必要以上に水素を消費するのを防止できる。   From the above reaction formula (1), hydrogen needs to have a molar amount twice that of oxygen. Therefore, it is possible to control the oxygen remaining in the purified gas to 0.01% by volume or less by adding hydrogen in a molar ratio of 2 or more with respect to oxygen. The amount of hydrogen added to oxygen is preferably 2 to about 3.3 in molar ratio. Thereby, it is possible to prevent excessive consumption of hydrogen while removing remaining oxygen to a predetermined reference value or less.

また、上記水素が添加された精製ガスのPd触媒7層空間速度(SV)は、7,000h−1以下(ただし、ゼロは含まない)の範囲で変更可能であり、好ましくは、3,000〜6,000h−1の範囲である。これにより、残存する酸素を所定の基準値以下まで除去しながらも、使用するPd触媒7の量がいたずらに多くならない。したがって、触媒塔8の大きさを抑制可能である。 The Pd catalyst 7-layer space velocity (SV) of the purified gas to which hydrogen is added can be changed within a range of 7,000 h −1 or less (excluding zero), preferably 3,000. It is in the range of ˜6,000 h −1 . As a result, the amount of Pd catalyst 7 to be used is not unnecessarily increased while removing the remaining oxygen to a predetermined reference value or less. Therefore, the size of the catalyst tower 8 can be suppressed.

この酸素が低減した精製ガスが除湿器9に送られ、水分が十分に吸着除去された後、都市ガス導管へ接続される。また、消化ガスから分離した二酸化炭素及びHS等の硫黄系不純物が溶解した高圧水は、吸収塔3の底部から抜き出されて、弁V1を介して水処理設備へ供給される。尚、除湿器9としては、モレキュラーシーブ等の吸着剤を用いる吸着塔などが適用できる。 The purified gas with reduced oxygen is sent to the dehumidifier 9 and the moisture is sufficiently absorbed and removed, and then connected to the city gas conduit. Moreover, the high pressure water in which sulfur impurities such as carbon dioxide and H 2 S separated from the digestion gas are dissolved is extracted from the bottom of the absorption tower 3 and supplied to the water treatment facility via the valve V1. As the dehumidifier 9, an adsorption tower using an adsorbent such as molecular sieve can be applied.

以上のような構成であるため、本発明に係る消化ガスの脱酸素方法及び装置においては、以下のような作用効果を奏する。
1)高圧水吸収法を用い、消化ガス中の二酸化炭素及び硫黄系不純物の大部分を予め分離し、メタンガスを精製する工程を有するため、硫黄系不純物と酸素を同時に除去する必要がなくなる。したがって、精製ガス中に残存する酸素を除去するに際し、触媒反応に300〜450℃という高温を要することもなく、水素を添加し常温で触媒反応を進めるだけで十分な脱酸素が可能な方法を実現できる。
2)また、常温で上記触媒反応を開始させ、酸素を水に変換した場合にも反応熱により約100℃程度に上昇するため、上記水が水蒸気のままで、触媒塔内では凝縮せず、触媒塔の中の触媒に液体としての水が付着せず、触媒反応の効率が低下しない。
3)また、上記高圧水吸収法により精製されたメタンガス中に極微量だけ残存するHS等の硫黄系不純物も水に溶けてしまうため、この極微量のHS等の硫黄系不純物も上記精製ガスから分離することができる。
4)また、水の電気分解により得られる水素は高純度であるため、不純物の混入が少なく、精製ガスの純度を容易に維持できる。
Since it is the above structures, in the digestion gas deoxygenation method and apparatus which concern on this invention, there exist the following effects.
1) Since there is a step of previously separating carbon dioxide and sulfur-based impurities in digestion gas using a high-pressure water absorption method and purifying methane gas, it is not necessary to remove sulfur-based impurities and oxygen at the same time. Therefore, when removing oxygen remaining in the purified gas, a method that does not require a high temperature of 300 to 450 ° C. for the catalytic reaction, and can be sufficiently deoxygenated simply by adding hydrogen and proceeding the catalytic reaction at room temperature. realizable.
2) In addition, when the above catalytic reaction is started at room temperature and oxygen is converted to water, the temperature rises to about 100 ° C. due to the heat of reaction, so that the water remains as steam and does not condense in the catalyst tower, Water as a liquid does not adhere to the catalyst in the catalyst tower, and the efficiency of the catalytic reaction does not decrease.
3) In addition, since a very small amount of sulfur-based impurities such as H 2 S remaining in the methane gas purified by the high-pressure water absorption method is dissolved in water, this very small amount of sulfur-based impurities such as H 2 S is also present. It can be separated from the purified gas.
4) Moreover, since hydrogen obtained by electrolysis of water has high purity, there is little mixing of impurities, and the purity of the purified gas can be easily maintained.

本実施の形態における水電解装置6としては、水素を発生するものであれば利用可能であり、好ましい水電解装置としては、固体高分子電解質膜等を利用した水電解式水素発生装置が挙げられ、高純度の水素及び酸素を発生させる株式会社神鋼環境ソリューション製の水電解式高純度水素酸素発生装置(商品名:HHOG)を利用することが可能である。この水電解式高純度水素酸素発生装置を利用することで、高圧水素ボンベを用いて水素を予め貯蔵しておく必要がなく、純度の高い水素を電源のON/ OFF操作により、必要な時に必要な量だけ供給でき、安全である。また、精製ガス中の酸素濃度の変動に対して濃度を検知して水素の量を制御することが可能である。このように、精製ガス中に残存する酸素の除去量を制御することも可能である。また、後述するように同時に純度の高い酸素も供給可能である。   The water electrolysis device 6 in the present embodiment can be used as long as it generates hydrogen, and a preferable water electrolysis device includes a water electrolysis hydrogen generation device using a solid polymer electrolyte membrane or the like. It is possible to use a water electrolysis type high purity hydrogen oxygen generator (trade name: HHOG) manufactured by Shinko Environmental Solution Co., Ltd., which generates high purity hydrogen and oxygen. By using this water electrolysis-type high-purity hydrogen oxygen generator, it is not necessary to store hydrogen in advance using a high-pressure hydrogen cylinder, and high-purity hydrogen is required when the power is turned on / off. It is safe to supply only a small amount. Further, it is possible to control the amount of hydrogen by detecting the concentration with respect to fluctuations in the oxygen concentration in the purified gas. Thus, it is possible to control the amount of oxygen remaining in the purified gas. Further, as described later, high-purity oxygen can be supplied at the same time.

また、本実施の形態においては、触媒塔8の前後にミストセパレータとしてのコアレッサーが図示されていないが、コアレッサーを設置するのが好ましい。このようにすることで、飛散する水分が除去できる。また、Pd触媒7としては、金属パラジウム、酸化パラジウム、水酸化パラジウムなどのパラジウム化合物が利用可能である。また、触媒として、白金など常温で酸素と水素との反応を促進させる作用を有するものであれば利用可能である。さらに、これらの触媒物質をアルミナ、ゼオライト等の担体に担持させたものも利用可能である。   Further, in the present embodiment, a coalescer as a mist separator is not shown before and after the catalyst tower 8, but it is preferable to install a coalescer. By doing so, scattered water can be removed. As the Pd catalyst 7, palladium compounds such as metal palladium, palladium oxide, and palladium hydroxide can be used. Further, any catalyst can be used as long as it has an action of promoting the reaction between oxygen and hydrogen at room temperature, such as platinum. Furthermore, those obtained by supporting these catalyst substances on a carrier such as alumina or zeolite can also be used.

本発明の作用効果を確証するため、以下のラボ試験を実施した。図1において、例えば、水素が添加された酸素が0.3容量%残存する精製ガスを触媒塔8へ供給し、触媒反応を進行させ、触媒塔8を出た精製ガス中の酸素濃度を50ppm未満(目標値:都市ガスとして使用する場合にも十分問題のない値)にすることが可能なSV値は、どの程度かを調べる試験を行った。消化ガスを吸収塔3を用いて精製した場合の精製ガス中には水分が含まれるため、試験ガスとして、酸素濃度が0.3容量%、水素濃度が0.6容量%、残りメタンガスから構成されるガスに30℃飽和水分量となるように水を供給した(下記表1参照)。試験条件として、SV値を3,000h−1、5,000h−1、7,000h−1の3水準とする場合、供給水としてはそれぞれ12μL/min、21μL/min、29μL/minとした(下記表1参照)。また、上記3水準の試験ガス(試験No.1、2、3)の圧力は、いずれも0.9MPaGである(下記表1参照)。この3水準の試験ガス(試験No.1、2、3)を触媒塔8へ供給し、触媒反応後の触媒塔8を出た試験No.1、2、3の試験ガス中の酸素濃度、水素濃度を総経過時間が6時間になるまで1時間経過毎に測定した。また、6時間経過後に、触媒塔8を出た試験No.1、2、3の試験ガス中の累積水分量も合わせて測定し、単位時間当たりに換算した水分量を求めた(その結果を下記表1に表示)。

Figure 0005033829
In order to confirm the effects of the present invention, the following laboratory tests were conducted. In FIG. 1, for example, a purified gas in which 0.3% by volume of oxygen to which hydrogen is added remains is supplied to the catalyst tower 8 to advance the catalytic reaction, and the oxygen concentration in the purified gas exiting the catalyst tower 8 is 50 ppm. A test was conducted to find out how much the SV value could be less than (target value: a value that is sufficiently satisfactory even when used as city gas). Since the purified gas when the digestion gas is purified using the absorption tower 3 contains moisture, the test gas is composed of 0.3 vol% oxygen concentration, 0.6 vol% hydrogen concentration, and the remaining methane gas Water was supplied to the gas to be 30 ° C. saturated water content (see Table 1 below). As test conditions, when the SV value 3,000h -1, 5,000h -1, and three levels of 7,000H -1, as the feed water was respectively 12μL / min, 21μL / min, and 29 [mu] L / min ( See Table 1 below). In addition, the pressures of the above three levels of test gases (test Nos. 1, 2, and 3) are all 0.9 MPaG (see Table 1 below). These three levels of test gas (test Nos. 1, 2, and 3) were supplied to the catalyst tower 8, and the test no. The oxygen concentration and hydrogen concentration in the test gases 1, 2, and 3 were measured every 1 hour until the total elapsed time reached 6 hours. In addition, after 6 hours, the test No. 1 exiting the catalyst tower 8 occurred. The accumulated moisture content in the test gases 1, 2, and 3 was also measured, and the moisture content converted per unit time was determined (the results are shown in Table 1 below).
Figure 0005033829

上記表1に示すように、試験No.1、2、3(すなわち、SV値が3,000h−1、5,000h−1、7,000h−1の3水準)のいずれとも6時間経過後まで、触媒塔8を出た試験ガス中の酸素濃度が0ppmであり、目標値の50ppm未満(括弧内に表示)を満足した。このように、SV値=7,000h−1でも十分に触媒塔8を出た試験ガス中の酸素濃度を目標値の50ppm未満にすることができるため、実稼働においても水素が添加された酸素が0.3容量%残存する精製ガス中から酸素を除去するに際して、使用するPd触媒7の量がいたずらに多くならないことの証左でもある。すなわち、触媒塔8の大きさを抑制可能であることを示唆する。 As shown in Table 1 above, Test No. 1, 2, and 3 (that is, the SV values are 3,000 h −1 , 5,000 h −1 , and 7,000 h −1 ) in the test gas exiting the catalyst tower 8 until 6 hours have elapsed. The oxygen concentration was 0 ppm, which was less than the target value of 50 ppm (indicated in parentheses). As described above, since the oxygen concentration in the test gas exiting the catalyst tower 8 can be sufficiently less than the target value of 50 ppm even when the SV value = 7,000 h −1 , oxygen added with hydrogen even in actual operation. This is also a proof that the amount of Pd catalyst 7 to be used does not become unnecessarily large when oxygen is removed from the 0.3% by volume remaining purified gas. That is, it is suggested that the size of the catalyst tower 8 can be suppressed.

また、上記表1に示すように、試験No.1、2、3(すなわち、SV値が3,000h−1、5,000h−1、7,000h−1の3水準)のいずれとも6時間経過後まで、触媒塔8を出た試験ガス中の水素濃度も0ppmであり、目標値とする50ppm未満を満足した。これは、実稼働においても精製ガス中の酸素に対する水素の添加量が、モル比で2とすることが可能であることの証左である。したがって、必要以上に水素を消費することを防止できる。 In addition, as shown in Table 1 above, Test No. 1, 2, and 3 (that is, the SV values are 3,000 h −1 , 5,000 h −1 , and 7,000 h −1 ) in the test gas exiting the catalyst tower 8 until 6 hours have elapsed. The hydrogen concentration of was also 0 ppm, satisfying the target value of less than 50 ppm. This is proof that the amount of hydrogen added to oxygen in the purified gas can be made 2 in molar ratio even in actual operation. Therefore, consumption of hydrogen more than necessary can be prevented.

また、上記表1に示すように、試験No.1、2、3(すなわち、SV値が3,000h−1、5,000h−1、7,000h−1の3水準)において、触媒塔8を出た試験ガス中に含有する単位時間当たりに換算した水分量が、それぞれ1.5062g/h(水分回収率:87%)、2.5552g/h(水分回収率:90%)、3.6302g/h(水分回収率:91%)になった。これは、触媒塔8を出た試験ガス中の酸素濃度を目標値の50ppm未満にするために、SV値に対応した適切な触媒反応が起こったことの証左でもある。 In addition, as shown in Table 1 above, Test No. Per unit time contained in the test gas exiting the catalyst tower 8 at 1 , 2, and 3 (that is, SV levels of 3,000 h −1 , 5,000 h −1 and 7,000 h −1 ). The converted water amounts were 1.5062 g / h (water recovery rate: 87%), 2.5552 g / h (water recovery rate: 90%), 3.6302 g / h (water recovery rate: 91%), respectively. It was. This is also evidence that an appropriate catalytic reaction corresponding to the SV value has occurred in order to make the oxygen concentration in the test gas exiting the catalyst tower 8 less than the target value of 50 ppm.

(実施の形態2)
図2は本発明の消化ガスの脱酸素方法を実施するための実施の形態2に係る消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。本実施の形態において、実施の形態1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。
(Embodiment 2)
FIG. 2 is an explanatory diagram schematically illustrating the overall configuration of a digestion gas deoxygenation apparatus according to Embodiment 2 for carrying out the digestion gas deoxygenation method of the present invention. In the present embodiment, the same components as those in the first embodiment are given the same numbers, and detailed description thereof is omitted, and only different portions are described in detail.

図2において、20は熱交換器である。本実施の形態において、実施の形態1と大きく異なる部分は、触媒塔8と除湿器9の間に熱交換器20が設置されている点にあるため、この部分を中心に詳述する。   In FIG. 2, 20 is a heat exchanger. In the present embodiment, a portion that is greatly different from the first embodiment is that a heat exchanger 20 is installed between the catalyst tower 8 and the dehumidifier 9, and therefore this portion will be described in detail.

触媒塔8での触媒反応により、脱酸素反応が進行すると触媒塔8を出た水分を含む精製ガスは反応熱により温度が上昇している。この温度が上昇した水分を含む精製ガスを熱交換器20で冷却し、温度を低下させることで、後段の除湿器9における水分吸着能力が高くなる。このように、除湿器9における水分吸着能力が高くなると、除湿器9をコンパクトにすることが可能になる。また、触媒塔8を出た水分を含む精製ガスの温度を低下させることで、精製ガス中の水分の一部が凝縮し、凝縮した水を除湿器9の前段に設けられたドレントラップ(図示せず)にて分離し系外に排出することにより、除湿器9に導入される精製ガス中の水分量も低減しているので、除湿器9をさらにコンパクトにすることが可能となる。残存する酸素量が増加した精製ガスを触媒塔8で脱酸素する場合には、反応熱量がより高くなるため、この構成(熱交換器20が追加された構成)の果たす役割はより重要になる。なお、熱交換器20の出口の精製ガス温度を、吸収塔3の出口の精製ガス温度より低くするように冷却することにより、触媒反応で生成した水分よりも多くの水分を凝縮でき、除湿器9のさらなるコンパクト化に寄与するので、好ましい。   When the deoxygenation reaction proceeds due to the catalytic reaction in the catalyst tower 8, the temperature of the purified gas containing the water exiting the catalyst tower 8 is increased by the heat of reaction. By cooling the purified gas containing moisture whose temperature has been increased by the heat exchanger 20 and lowering the temperature, the moisture adsorption capacity of the dehumidifier 9 in the subsequent stage is increased. Thus, when the moisture adsorption capacity in the dehumidifier 9 is increased, the dehumidifier 9 can be made compact. Further, by reducing the temperature of the purified gas containing the water that has exited the catalyst tower 8, a part of the water in the purified gas is condensed, and the condensed water is provided in a drain trap (see FIG. Since the amount of water in the purified gas introduced into the dehumidifier 9 is also reduced by separating it at a not-shown) and discharging it out of the system, the dehumidifier 9 can be made more compact. In the case where the purified gas with the increased amount of remaining oxygen is deoxygenated by the catalyst tower 8, the amount of heat of reaction becomes higher, so the role played by this configuration (the configuration in which the heat exchanger 20 is added) becomes more important. . In addition, by cooling the purified gas temperature at the outlet of the heat exchanger 20 to be lower than the purified gas temperature at the outlet of the absorption tower 3, more moisture than the moisture generated by the catalytic reaction can be condensed, and the dehumidifier This contributes to further downsizing of 9, which is preferable.

また、本実施の形態においては、触媒塔8の前にミストセパレータとしてのコアレッサーが図示されていないが、コアレッサーを設置するのが好ましい。このようにすることで、飛散する水分が除去できる。   In the present embodiment, a coalescer as a mist separator is not shown in front of the catalyst tower 8, but it is preferable to install a coalescer. By doing so, scattered water can be removed.

(実施の形態3)
図3は本発明の消化ガスの脱酸素方法を実施するための実施の形態3に係る消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。本実施の形態において、実施の形態1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。
(Embodiment 3)
FIG. 3 is an explanatory view schematically illustrating the overall configuration of a digestion gas deoxygenation apparatus according to Embodiment 3 for carrying out the digestion gas deoxygenation method of the present invention. In the present embodiment, the same components as those in the first embodiment are given the same numbers, and detailed description thereof is omitted, and only different portions are described in detail.

図3において、30はメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出するための検出手段、40は流路切換弁である。本実施の形態において、実施の形態1と大きく異なる部分は、吸収塔3の出口にメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出するための検出手段30が設置され、検出手段30により検出されたガスの濃度が規定値の範囲にない場合は、吸収塔3の出口のガスを流路切換弁40でバイパスさせ、ミストセパレータ1へ戻すように構成されている点である。したがって、この部分を中心に詳述する。 In FIG. 3, 30 is a detection means for detecting the concentration of at least one of methane, carbon dioxide, and H 2 S, and 40 is a flow path switching valve. In the present embodiment, the part greatly different from the first embodiment is that the detection means 30 for detecting the concentration of at least one of methane, carbon dioxide, and H 2 S at the outlet of the absorption tower 3 is provided. When the gas concentration that is installed and detected by the detection means 30 is not within the range of the specified value, the gas at the outlet of the absorption tower 3 is bypassed by the flow path switching valve 40 and returned to the mist separator 1. It is a point. Therefore, this part will be described in detail.

吸収塔3の運転開始時は、まだ吸収塔3内の圧力が上がらないため、水補給用ポンプ5により水を吸収塔3の上部から供給できない。したがって、吸収塔3の出口からは二酸化炭素、HS(、場合によってはシロキサン化合物)が残存したままの消化ガスが出てくる。したがって、このような二酸化炭素、HS(、場合によってはシロキサン化合物)が残存したままの消化ガスがそのまま触媒塔8に供給されてしまうと、触媒の劣化を招いてしまう。しかし、上記のような構成を有している場合は、検出手段30により検出されたガスの濃度が規定値の範囲にない場合は、吸収塔3出口の精製ガス{ただし、前記検出手段30により検出されたガスの濃度が規定値の範囲にない場合は、所定の組成を有した精製ガスとはならず、二酸化炭素、HS(、場合によってはシロキサン化合物)が残存したままの消化ガス}を流路切換弁40でバイパスさせてしまい、触媒塔8へは供給しないため、触媒の劣化を防止できる。 At the start of operation of the absorption tower 3, the pressure in the absorption tower 3 has not yet increased, so water cannot be supplied from the upper part of the absorption tower 3 by the water supply pump 5. Therefore, the digestion gas with carbon dioxide and H 2 S (or siloxane compound depending on the case) remaining from the outlet of the absorption tower 3 comes out. Therefore, if such digested gas with carbon dioxide and H 2 S (or siloxane compound in some cases) remaining is supplied to the catalyst tower 8 as it is, the catalyst will be deteriorated. However, in the case of having the above-described configuration, if the concentration of the gas detected by the detection means 30 is not within the specified value range, the purified gas at the outlet of the absorption tower 3 (however, the detection means 30 When the concentration of the detected gas is not within the range of the specified value, it is not a purified gas having a predetermined composition, but a digestion gas in which carbon dioxide and H 2 S (or a siloxane compound in some cases) remain. } Is bypassed by the flow path switching valve 40 and is not supplied to the catalyst tower 8, so that the deterioration of the catalyst can be prevented.

なお、本実施の形態においては、メタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出するための検出手段30および流路切換弁40を実施の形態1に示す構成に付加した例について説明したが、必ずしもこれに限定されるものではなく、実施の形態2に示す構成に付加することも当然可能である。 In the present embodiment, the configuration shown in the first embodiment includes the detection means 30 and the flow path switching valve 40 for detecting the concentration of at least one of methane, carbon dioxide, and H 2 S. Although the example added to is described, it is not necessarily limited to this, and it is naturally possible to add to the configuration shown in the second embodiment.

また、本実施の形態においては、検出手段30により検出されたガスの濃度が規定値の範囲にない場合は、吸収塔3出口の精製ガス{ただし、前記検出手段30により検出されたガスの濃度が規定値の範囲にない場合は、所定の組成を有した精製ガスとはならず、二酸化炭素、HS(、場合によってはシロキサン化合物)が残存したままの消化ガス}を流路切換弁40でバイパスさせ、ミストセパレータ1へ戻すように構成された例について説明したが、これはほんの一例であり、必ずしもこれに限定されるものではない。 In the present embodiment, when the concentration of the gas detected by the detection means 30 is not within the range of the specified value, the purified gas at the outlet of the absorption tower 3 (however, the concentration of the gas detected by the detection means 30) Is not in the range of the specified value, it is not a purified gas having a predetermined composition, but carbon dioxide, H 2 S (or, in some cases, a siloxane compound) remains as a digestion gas}. Although an example in which it is bypassed at 40 and returned to the mist separator 1 has been described, this is only an example and is not necessarily limited thereto.

(実施の形態4)
図4は本発明の消化ガスの脱酸素方法を実施するための実施の形態4に係る消化ガスの脱酸素装置の全体構成を模式的に説明する説明図である。本実施の形態において、実施の形態1と同一の構成要素については、同一の番号を付与して詳細な説明は省略し、異なる部分のみ詳述する。図4において、10は水循環用ポンプ、11は熱交換器、12はチラー、13は減圧タンク(フラッシングタンク)、14は放散塔(ストリッピングタワー)、15は微生物としてチオバチルス属細菌を主とした好気性硫黄酸化細菌が付着した充填材層、16は充填材層15を内包した生物脱硫塔、17はミストセパレータ1を通過した消化ガス中の硫黄系不純物としてのHSの濃度を測定するためのHS濃度計である。
(Embodiment 4)
FIG. 4 is an explanatory view schematically illustrating the overall configuration of a digestion gas deoxygenation apparatus according to Embodiment 4 for carrying out the digestion gas deoxygenation method of the present invention. In the present embodiment, the same components as those in the first embodiment are given the same numbers, and detailed description thereof is omitted, and only different portions are described in detail. In FIG. 4, 10 is a water circulation pump, 11 is a heat exchanger, 12 is a chiller, 13 is a decompression tank (flushing tank), 14 is a stripping tower (stripping tower), and 15 is mainly a bacterium belonging to the genus Thiobacillus. A filler layer to which aerobic sulfur-oxidizing bacteria are attached, 16 is a biological desulfurization tower containing the filler layer 15, and 17 is a concentration of H 2 S as a sulfur-based impurity in the digested gas that has passed through the mist separator 1. H 2 S densitometer.

本実施の形態において、実施の形態1と大きく異なる部分は、高圧水吸収法を用いて消化ガス中から二酸化炭素及びHS等の硫黄系不純物を分離させた後の高圧水の処理工程以降(特に、脱硫工程が付加されている点)にあるため、この部分を中心に詳述する。また、本実施の形態においては、実施の形態1の場合と異なり、水補給用ポンプ5により水を昇圧して吸収塔3の上部より送り込むのではなく、後述するように水循環用ポンプ10により昇圧された循環水を吸収塔3の上部より供給されるようになっている点である。 In the present embodiment, the part greatly different from that of the first embodiment is the high-pressure water treatment process after separating sulfur-based impurities such as carbon dioxide and H 2 S from digestion gas using the high-pressure water absorption method. (In particular, a desulfurization step is added), so this part will be described in detail. Further, in the present embodiment, unlike the case of the first embodiment, the water is not boosted by the water replenishment pump 5 and fed from the upper part of the absorption tower 3, but is boosted by the water circulation pump 10 as will be described later. The circulating water thus supplied is supplied from the upper part of the absorption tower 3.

図4において、消化ガスから分離した二酸化炭素及びHS等の硫黄系不純物が溶解した高圧水は、吸収塔3の底部から抜き出されて、弁V1を介して減圧タンク13に導入される。この減圧タンク13内の圧力は、吸収塔3内に比べて減圧されている。例えば、吸収塔3内の圧力が0.9MPaGのとき、減圧タンク13内の圧力は0.3MPaGである。そして、メタンガスの回収率を高める目的で、吸収塔3の底部からの高圧水にわずかに溶解しているメタンガスは分離されて減圧タンク13の頂部から弁V2を介して、ガス圧縮機2a、2bの中間段に戻されてガス圧縮機2aからの消化ガスに合流されるようになっている。このメタンガスが分離回収された後の二酸化炭素及びHS等の硫黄系不純物が溶解した水は、減圧タンク13の底部から弁V3を介して放散塔14の上部に導入される。また、実施の形態1においても説明したように、触媒塔8の中の脱酸素過程において生成した水(ただし、この水は、触媒反応熱により水蒸気のままで触媒塔内では凝縮しない。)は触媒塔8と除湿器の間で図示しないドレントラップにて凝縮水として回収され、この凝縮水に精製ガス中に極微量だけ残存するHS等の硫黄系不純物が溶け、その凝縮水はミストセパレータ1に導入される。また、触媒塔8と除湿器の間にドレントラップを設けることにより、触媒塔8からの脱酸素された精製ガス中の水分が低減されるので、ドレントラップの後段の除湿器の大型化を抑制できる。なお、本実施の形態においては、上記凝縮水をミストセパレータ1に導入する例について説明したが、これに限定されるものでなく、図示していない圧縮機2bの吐出側のセパレータに導入することも可能である。 In FIG. 4, high-pressure water in which sulfur impurities such as carbon dioxide and H 2 S separated from digestion gas are dissolved is extracted from the bottom of the absorption tower 3 and introduced into the vacuum tank 13 through the valve V1. . The pressure in the decompression tank 13 is reduced compared to that in the absorption tower 3. For example, when the pressure in the absorption tower 3 is 0.9 MPaG, the pressure in the decompression tank 13 is 0.3 MPaG. For the purpose of increasing the recovery rate of methane gas, the methane gas slightly dissolved in the high-pressure water from the bottom of the absorption tower 3 is separated and gas compressors 2a, 2b are passed from the top of the decompression tank 13 through the valve V2. It is returned to the intermediate stage of the gas and is joined to the digestion gas from the gas compressor 2a. The water in which sulfur impurities such as carbon dioxide and H 2 S are dissolved after the methane gas is separated and recovered is introduced from the bottom of the decompression tank 13 to the upper portion of the diffusion tower 14 through the valve V3. Further, as described in the first embodiment, the water generated in the deoxygenation process in the catalyst tower 8 (however, this water remains as steam due to the catalytic reaction heat and does not condense in the catalyst tower). The condensed water is recovered as condensed water by a drain trap (not shown) between the catalyst tower 8 and the dehumidifier, and sulfur-based impurities such as H 2 S remaining in the purified gas in a trace amount are dissolved in the condensed water. Introduced into the separator 1. In addition, by providing a drain trap between the catalyst tower 8 and the dehumidifier, moisture in the deoxygenated purified gas from the catalyst tower 8 is reduced, so that the dehumidifier downstream of the drain trap is prevented from being enlarged. it can. In addition, in this Embodiment, although the example which introduce | transduces the said condensed water into the mist separator 1 was demonstrated, it is not limited to this, It introduce | transduces into the separator of the discharge side of the compressor 2b which is not shown in figure. Is also possible.

この放散塔14においては、減圧タンク13から抜き出された水が上部から導入され大気圧程度まで減圧される一方、下部からは水電解装置6によって生物脱硫に必要な新たな酸素が供給される。大気圧程度まで減圧されることおよびこの酸素により、減圧タンク13から抜き出された水に溶解していた二酸化炭素及びHS等の硫黄系不純物を水から分離させ、さらに放散塔14内でこの分離させた二酸化炭素及びHS等の硫黄系不純物と水電解装置6から供給された新たな酸素を混合し、この混合した二酸化炭素、HS等の硫黄系不純物及び新たな酸素からなる混合ガスが生物脱硫塔16の上部に導入される。また、生物脱硫に必要な新たな酸素を供給するための酸素供給手段としては、上記水電解装置6に必ずしも限定されるものではないが、水電解装置を用いることで水素供給手段と酸素供給手段を兼ねることが可能であるため好ましい。また、上述したように、例えば株式会社神鋼環境ソリューション製の水電解式高純度水素酸素発生装置(商品名:HHOG)を利用することで、純度の高い酸素を電源のON/ OFF操作により、必要な時に必要な量だけ供給できる。 In the stripping tower 14, the water extracted from the decompression tank 13 is introduced from the upper part and depressurized to about atmospheric pressure, and new oxygen necessary for biological desulfurization is supplied from the lower part by the water electrolysis device 6. . By reducing the pressure to about atmospheric pressure and by this oxygen, sulfur-based impurities such as carbon dioxide and H 2 S dissolved in the water extracted from the vacuum tank 13 are separated from the water. The separated sulfur-based impurities such as carbon dioxide and H 2 S are mixed with new oxygen supplied from the water electrolysis device 6, and the mixed carbon dioxide, sulfur-based impurities such as H 2 S and new oxygen are mixed. The mixed gas is introduced into the upper part of the biological desulfurization tower 16. Further, the oxygen supply means for supplying new oxygen necessary for biological desulfurization is not necessarily limited to the water electrolysis apparatus 6, but by using the water electrolysis apparatus, a hydrogen supply means and an oxygen supply means. It is preferable because it can serve as both. In addition, as described above, for example, by using a water electrolysis type high-purity hydrogen oxygen generator (trade name: HHOG) manufactured by Shinko Environmental Solution Co., Ltd., high purity oxygen is required by turning the power ON / OFF. You can supply only the amount you need.

また、二酸化炭素及びHS等の硫黄系不純物が追い出された水は、放散塔14の底部から抜き出され、水循環用ポンプ10にて昇圧され、熱交換器11にてチラー12からのブラインとの間で熱交換して所定の温度(例えば、7℃)まで冷却された後、吸収塔3の上部に供給される。なお、放散塔14内には、上記酸素と水とを十分に接触させるためにラシヒリング等の充填物が充填されている。 Further, the water from which sulfur impurities such as carbon dioxide and H 2 S have been expelled is extracted from the bottom of the diffusion tower 14, boosted by the water circulation pump 10, and brine from the chiller 12 by the heat exchanger 11. And is cooled to a predetermined temperature (for example, 7 ° C.) and then supplied to the upper portion of the absorption tower 3. The diffusion tower 14 is filled with a packing such as Raschig ring in order to bring the oxygen and water into sufficient contact.

また、生物脱硫塔16の上部から導入される水として、給水槽4に貯留された水や弁V4から排出される排水を利用することができる。また、生物脱硫塔16の上部から導入される水として、温水を利用する場合は、以下のような仕組みを設けることで後述する生物脱硫塔16内の硫黄酸化細菌の働きが活発になるため、より好ましい。例えば、圧縮機2a、2bから発生する熱により温水(例えば、30〜50℃)を製造し、その温水を生物脱硫塔16の上部から導入する。具体的には、圧縮機2a、2bの冷却に利用した水を生物脱硫塔16の上部から導入する。また、圧縮機2a、2bから発生する熱を回収し、回収した熱を利用して生物脱硫塔16を温めるのが好ましい。すなわち、圧縮機2a、2bから発生する熱を水で冷却するための冷却手段(図示せず)を圧縮機2a、2bに近接させて設けておく。そして、この冷却手段で冷却処理した後の温水(例えば、50℃〜60℃)を回収した回収手段(図示せず)から生物脱硫塔16に近接させて設けた保温手段(図示せず)に供給し、この温水で生物脱硫塔16内の硫黄酸化細菌の働きが最も活発となるように約37℃に温める。   Moreover, as the water introduced from the upper part of the biological desulfurization tower 16, the water stored in the water tank 4 or the waste water discharged from the valve V4 can be used. Moreover, when using warm water as water introduced from the upper part of the biological desulfurization tower 16, since the action | operation of the sulfur oxidation bacteria in the biological desulfurization tower 16 mentioned later becomes active by providing the following structures, More preferred. For example, hot water (for example, 30 to 50 ° C.) is produced by heat generated from the compressors 2 a and 2 b, and the hot water is introduced from the upper part of the biological desulfurization tower 16. Specifically, water used for cooling the compressors 2 a and 2 b is introduced from the upper part of the biological desulfurization tower 16. Further, it is preferable to recover the heat generated from the compressors 2a and 2b and warm the biological desulfurization tower 16 using the recovered heat. That is, a cooling means (not shown) for cooling the heat generated from the compressors 2a and 2b with water is provided close to the compressors 2a and 2b. And the heat retention means (not shown) provided in the vicinity of the biological desulfurization tower 16 from the recovery means (not shown) which collected the warm water (for example, 50 ° C. to 60 ° C.) after being cooled by the cooling means. The warm water is heated to about 37 ° C. so that the action of sulfur-oxidizing bacteria in the biological desulfurization tower 16 becomes most active.

次に、生物脱硫塔16内で二酸化炭素、HS等の硫黄系不純物及び新たな酸素からなる混合ガス中のHS等の硫黄系不純物を分解する(脱硫する)過程を説明する。生物脱硫塔16の上部から導入された上記混合ガスと水をチオバチルス属細菌を主とした好気性硫黄酸化細菌が付着した充填材層15を通過させることにより、この好気性硫黄酸化細菌の働きを利用して、硫黄系不純物中のHSを酸化分解し硫黄(S)に変化させる。さらに、このSが酸化されSO 2−に変化する。このような過程を経て、最終的に消化ガス中からHS等の硫黄系不純物が分解除去される(脱硫が完了する)。 Next, a process of decomposing (desulfurizing) sulfur-based impurities such as H 2 S in a mixed gas composed of carbon dioxide, H 2 S and other sulfur-based impurities and new oxygen in the biological desulfurization tower 16 will be described. By passing the mixed gas and water introduced from the upper part of the biological desulfurization tower 16 through the filler layer 15 to which aerobic sulfur-oxidizing bacteria mainly including Thiobacillus bacteria are attached, the aerobic sulfur-oxidizing bacteria can function. Utilizing it, H 2 S in sulfur-based impurities is oxidized and decomposed to change to sulfur (S). Further, this S is oxidized and changed to SO 4 2− . Through such a process, sulfur-based impurities such as H 2 S are finally decomposed and removed from the digestion gas (desulfurization is completed).

上記生物脱硫塔16内では、硫黄系不純物としてのHSの濃度が一定の時に安定的に脱硫が行われ、効率が良くなるため、本実施の形態のように、以下のような仕組みを設けるのが、より好ましい。すなわち、ミストセパレータ1を通過した箇所に消化ガス中の硫黄系不純物としてのHSの濃度を測定するためのHS濃度計17を設け、生物脱硫塔16内に導入される混合ガス中のHSの濃度をほぼ一定に保つように、測定したHSの濃度に応じて、水電解装置6から供給する酸素の量を制御する。 In the biological desulfurization tower 16, desulfurization is stably performed when the concentration of H 2 S as a sulfur-based impurity is constant, and the efficiency is improved. Therefore, as in the present embodiment, the following mechanism is used. It is more preferable to provide it. That is, an H 2 S concentration meter 17 for measuring the concentration of H 2 S as a sulfur-based impurity in the digestion gas is provided at a location that has passed through the mist separator 1, and in the mixed gas introduced into the biological desulfurization tower 16. the concentration of H 2 S in so as to maintain substantially constant, depending on the concentration of the measured H 2 S, to control the amount of oxygen supplied from water electrolysis apparatus 6.

また、上述の脱硫過程では、HSが酸化分解され、変化したSが充填材層15に付着する傾向がある。そこで、本実施の形態のように、以下のような仕組みを設けるのが、より好ましい。すなわち、吸収塔3から抜き出された二酸化炭素及びHS等の硫黄系不純物が溶解した高圧水中の二酸化炭素及びHS等の硫黄系不純物の発泡による気泡で生物脱硫塔16内の充填材層15に付着したSを洗浄するために、この高圧水を生物脱硫塔16へ供給する高圧水供給手段(図示せず)を設けておけばよい。このようにすれば、高圧水から発泡により発生する気泡含有水で付着物が洗浄され、剥げ落ちたSなどからなる付着物がSO 2−を含む水とともに弁V8を介して排水される。また、HSが分解除去された混合ガスは弁V7を介して排ガスされる。上記高圧水による充填材層15の洗浄は、具体的には、充填材層15に水で満たしてから高圧水を充填材層15の下から供給して気泡で洗浄するか、あるいは、高圧水を充填材層15の下から供給して充填材層15に水で満たしつつ気泡で洗浄するかのいずれかの方法が好ましい。 In the above desulfurization process, H 2 S is oxidized and decomposed, and the changed S tends to adhere to the filler layer 15. Therefore, it is more preferable to provide the following mechanism as in this embodiment. That is, the inside of the biological desulfurization tower 16 is filled with bubbles generated by foaming of carbon dioxide and sulfur impurities such as H 2 S in high pressure water in which sulfur impurities such as carbon dioxide and H 2 S extracted from the absorption tower 3 are dissolved. In order to wash S adhering to the material layer 15, high-pressure water supply means (not shown) for supplying this high-pressure water to the biological desulfurization tower 16 may be provided. In this way, the deposit is washed with the bubble-containing water generated by foaming from the high-pressure water, and the deposit consisting of peeled S and the like is drained through the valve V8 together with the water containing SO 4 2- . The mixed gas from which H 2 S has been decomposed and removed is exhausted through the valve V7. Specifically, the cleaning of the filler layer 15 with the high-pressure water is performed by filling the filler layer 15 with water and then supplying high-pressure water from the bottom of the filler layer 15 and cleaning with bubbles, or by using high-pressure water. Is preferably supplied from under the filler layer 15 and filled with water while the filler layer 15 is washed with bubbles.

また、吸収塔3に供給される循環水の品質を維持するために、定期的に弁V4を開にすることが望ましい。これによって循環水を一部抜き出し、抜き出された水は、排水される。この抜き出しによって循環水量が所定量以下になった場合は、水補給用ポンプ5により、弁V5を開にして不足分の水を給水槽4から補給する。このとき用いられる水としては、実施の形態1でも説明したように、下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水が利用される以外にも、水道水、井水、または、下水等の排水を処理して得られる処理水を利用することも可能である。   Moreover, in order to maintain the quality of the circulating water supplied to the absorption tower 3, it is desirable to open the valve V4 regularly. Thereby, a part of the circulating water is extracted, and the extracted water is drained. When the amount of circulating water becomes equal to or less than a predetermined amount due to this extraction, the water supply pump 5 opens the valve V5 and supplies the insufficient amount of water from the water supply tank 4. As the water used at this time, as described in the first embodiment, sand filtration water from the sand filtration facility of the treated water provided downstream of the final sedimentation basin of the sewage treatment plant is used. It is also possible to use treated water obtained by treating waste water such as tap water, well water or sewage.

以上のような構成であるため、本発明に係る消化ガスの脱酸素方法及び装置においては、以下のような作用効果を奏する。
1)上述の1)〜4)に記載した脱酸素方法及び装置における作用効果に加えて、さらに次のような作用効果を奏する。すなわち、吸収塔から抜き出された高圧水の中にはメタンガスがほとんど存在せず、逆に消化ガス中の大部分の二酸化炭素及び硫黄系不純物が高圧水中に存在するため、高圧水を減圧して発生した二酸化炭素及び硫黄系不純物を含むガスを爆発防止を気にすることなく、ガス中に含有するHSの量に応じて、適宜酸素を加えて最適な脱硫も実現できる。
2)また、生物脱硫塔へ供給される上記二酸化炭素及び硫黄系不純物と酸素を含む混合ガス中には、上記1)で説明した通り、メタンガスをほとんど含有しないため、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をコンパクトにした脱硫も実現できる。
3)また、水の電気分解により得られる水素は高純度であるため、不純物の混入が少なく、精製ガスの純度を容易に維持できる。
4)また、電気分解により得られる酸素も高純度であるため、生物脱硫のための酸素源として空気を用いる場合に比べて、HS等の硫黄系不純物の除去処理部としての生物脱硫塔をさらにコンパクトにした脱硫も実現できる。
Since it is the above structures, in the digestion gas deoxygenation method and apparatus which concern on this invention, there exist the following effects.
1) In addition to the operational effects of the deoxygenation method and apparatus described in 1) to 4) above, the following operational effects are further exhibited. That is, there is almost no methane gas in the high-pressure water extracted from the absorption tower, and conversely, most of the carbon dioxide and sulfur-based impurities in the digestion gas are present in the high-pressure water. Without worrying about preventing the explosion of the gas containing carbon dioxide and sulfur-based impurities generated in this manner, optimum desulfurization can be realized by appropriately adding oxygen according to the amount of H 2 S contained in the gas.
2) Moreover, since the mixed gas containing carbon dioxide and sulfur impurities and oxygen supplied to the biological desulfurization tower hardly contains methane gas as described in 1) above, a sulfur system such as H 2 S is used. Desulfurization in which the biological desulfurization tower as the impurity removal processing unit is made compact can also be realized.
3) Moreover, since hydrogen obtained by electrolysis of water has high purity, there is little contamination with impurities, and the purity of the purified gas can be easily maintained.
4) Moreover, since the oxygen obtained by electrolysis is also highly pure, compared to the case where air is used as an oxygen source for biological desulfurization, the biological desulfurization tower as a removal treatment section for sulfur impurities such as H 2 S Desulfurization with a more compact can be realized.

また、本実施の形態においては、生物脱硫塔16の上部から導入される水として、給水槽4に貯留された水の例について説明したが、必ずしもこれに限定されるものではない。例えば、弁V4から排出される排水を生物脱硫塔16の上部から導入してもよい。また、圧縮機2a、2bの冷却に利用した水(例えば、30〜50℃)を生物脱硫塔16の上部から導入してもよい。   Moreover, in this Embodiment, although the example of the water stored in the water supply tank 4 was demonstrated as water introduce | transduced from the upper part of the biological desulfurization tower 16, it is not necessarily limited to this. For example, waste water discharged from the valve V4 may be introduced from the upper part of the biological desulfurization tower 16. Moreover, you may introduce | transduce the water (for example, 30-50 degreeC) utilized for cooling of compressor 2a, 2b from the upper part of the biodesulfurization tower 16. FIG.

また、本実施の形態においては、減圧タンク13から抜き出された二酸化炭素及びHS等の硫黄系不純物が溶解した水から二酸化炭素及びHS等の硫黄系不純物を分離させ、この分離させた二酸化炭素及びHS等の硫黄系不純物に水電解装置6から供給された新たな酸素を混合する例について説明したが、必ずしもこれに限定されるものではない。例えば、減圧タンク13から抜き出された二酸化炭素及びHS等の硫黄系不純物が溶解した水中の二酸化炭素及びHS等の硫黄系不純物を吸入孔を有した気化塔(気液分離手段:図示せず)の吸入孔を通して大気圧開放することで、気化塔内へ二酸化炭素及びHS等の硫黄系不純物を気化させ、この気化された二酸化炭素及びHS等の硫黄系不純物と水電解装置6から供給された新たな酸素を気化塔内で混合させるような構成でも構わない。また、二酸化炭素及びHS等の硫黄系不純物が生物脱硫塔16に供給される前に上記新たな酸素を供給するのではなく、生物脱硫塔16に直接上記新たな酸素を供給するような構成でも構わない。また、本実施の形態においては、水電解装置は、水素及び酸素を発生させるタイプであり、酸素を利用してHSを生物学的に分解する(生物脱硫する)例について説明したが、必ずしもこれに限定されるものではなく、水電解装置が、水素とオゾンを発生するタイプでれば、オゾン(O)を用いてHSを分解する(脱硫する)ことも可能である。 In the present embodiment, the sulfur-based impurities such as carbon dioxide and H 2 S are separated from the water in which the sulfur-based impurities such as carbon dioxide and H 2 S extracted from the decompression tank 13 are dissolved. a sulfur-based impurities of carbon dioxide and H 2 S or the like is an example has been described for mixing a new oxygen supplied from water electrolysis apparatus 6 is not necessarily limited thereto. For example, vacuum vaporization tower sulfur-based impurities of carbon dioxide and H 2 S or the like withdrawn from the tank 13 had a sulfur-based impurities suction hole such carbon dioxide and H 2 S in water dissolved (gas-liquid separating means : Atmospheric pressure is released through a suction hole (not shown) to vaporize sulfur-based impurities such as carbon dioxide and H 2 S into the vaporization tower, and the vaporized carbon-based impurities and sulfur-based impurities such as H 2 S The new oxygen supplied from the water electrolysis apparatus 6 may be mixed in the vaporization tower. In addition, the new oxygen is not supplied before sulfur-based impurities such as carbon dioxide and H 2 S are supplied to the biological desulfurization tower 16, but the new oxygen is supplied directly to the biological desulfurization tower 16. It does not matter if it is configured. In the present embodiment, the water electrolysis apparatus is a type that generates hydrogen and oxygen, and has been described with respect to an example in which H 2 S is biologically decomposed (biodesulfurized) using oxygen. However, the present invention is not necessarily limited thereto, and if the water electrolysis device is a type that generates hydrogen and ozone, it is possible to decompose (desulfurize) H 2 S using ozone (O 3 ).

また、本実施の形態においては、メタンガスの回収率を高めるために減圧タンク13を設けたが、例えば、減圧タンク13を設けずに、吸収塔3から二酸化炭素及びHS等の硫黄系不純物が溶解した高圧水を抜き出し、大気圧開放等することにより気化塔(気液分離手段)にて二酸化炭素及びHS等の硫黄系不純物が溶解した水から二酸化炭素及びHS等の硫黄系不純物を分離する構成も、本発明の技術的範囲である。すなわち、少なくとも吸収塔3から抜き出された二酸化炭素及びHS等の硫黄系不純物が溶解した高圧水を減圧して、吸収塔3から抜き出された二酸化炭素及びHS等の硫黄系不純物が溶解した水から二酸化炭素及びHS等の硫黄系不純物を分離させる機能を有した分離手段でありさえすればよい。 In the present embodiment, the decompression tank 13 is provided in order to increase the recovery rate of methane gas. For example, without providing the decompression tank 13, sulfur-based impurities such as carbon dioxide and H 2 S are provided from the absorption tower 3. There withdrawn pressure water dissolved, sulfur dioxide and H 2 S and the like from water sulfur based impurities dissolved carbon dioxide and H 2 S or the like in the vaporization column (gas-liquid separation means) by atmospheric pressure relief, etc. A configuration for separating system impurities is also within the technical scope of the present invention. That is, at least the high-pressure water in which sulfur impurities such as carbon dioxide extracted from the absorption tower 3 and H 2 S are dissolved is decompressed, and the sulfur carbon such as carbon dioxide extracted from the absorption tower 3 and H 2 S is extracted. What is necessary is just a separation means having a function of separating sulfur-based impurities such as carbon dioxide and H 2 S from water in which impurities are dissolved.

また、本実施の形態においては、充填材層15に付着される硫黄酸化細菌として、チオバチルス属細菌を用いた例について説明したが必ずしもこれに限定されるものではない。   Further, in the present embodiment, an example in which Thiobacillus bacteria are used as the sulfur-oxidizing bacteria attached to the filler layer 15 has been described, but the present invention is not necessarily limited thereto.

なお、本実施の形態は、実施の形態1に追加する構成について説明したが、必ずしもこれに限定されるものではなく、実施の形態2や実施の形態3に追加する構成とすることも当然可能である。   In addition, although this Embodiment demonstrated the structure added to Embodiment 1, it is not necessarily limited to this, Of course, it can also be set as the structure added to Embodiment 2 or Embodiment 3. It is.

1 ミストセパレータ
2a、2b ガス圧縮機
3 吸収塔
4 給水槽
5 水補給用ポンプ
6 水電解装置
7 Pd触媒
8 触媒塔
9 除湿器
10 水循環用ポンプ
11、20 熱交換器
12 チラー
13 減圧タンク
14 放散塔
15 充填材層
16 生物脱硫塔
17 HS濃度計
30 検出手段
40 流路切換弁
DESCRIPTION OF SYMBOLS 1 Mist separator 2a, 2b Gas compressor 3 Absorption tower 4 Water supply tank 5 Water supply pump 6 Water electrolysis apparatus 7 Pd catalyst 8 Catalyst tower 9 Dehumidifier 10 Water circulation pump 11, 20 Heat exchanger 12 Chiller 13 Pressure reduction tank 14 Dissipation Tower 15 Packing material layer 16 Biodesulfurization tower 17 H 2 S concentration meter 30 Detection means 40 Flow path switching valve

Claims (12)

有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮機で圧縮し昇圧し、前記昇圧した消化ガスを吸収塔へ供給して、前記吸収塔内で前記昇圧した消化ガスと水とを高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製する工程と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加する工程と、
前記水素が添加された精製ガスを触媒が充填された触媒塔へ供給し、触媒反応により前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する工程と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる工程と、
前記分離させた二酸化炭素及び硫黄系不純物に新たに酸素を供給する工程と、
前記分離させた二酸化炭素及び硫黄系不純物と前記新たに供給された酸素とを、硫黄系不純物を分解する微生物が付着した充填材層を有する生物脱硫塔へ供給し、前記微生物の働きを利用して前記二酸化炭素及び硫黄系不純物と前記新たに供給された酸素が混合された混合ガス中の硫黄系不純物を分解する工程と、
を備えたことを特徴とする消化ガスの脱酸素方法。
The digestion gas generated by subjecting the organic waste to methane fermentation is compressed and compressed by a compressor, the pressurized digestion gas is supplied to an absorption tower, and the digestion gas and water pressurized in the absorption tower are supplied. By contacting in a high pressure state, carbon dioxide and sulfur impurities contained in the pressurized digestion gas are dissolved in high pressure water to separate the carbon dioxide and sulfur impurities from the pressurized digestion gas, thereby purifying methane gas. Process,
Adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
Supplying the purified gas to which the hydrogen has been added to a catalyst tower packed with a catalyst, converting oxygen remaining in the purified gas to which the hydrogen has been added by catalytic reaction into water, and removing the oxygen;
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. A step of separating sulfur impurities;
Supplying oxygen to the separated carbon dioxide and sulfur impurities;
The separated carbon dioxide and sulfur-based impurities and the newly supplied oxygen are supplied to a biological desulfurization tower having a filler layer to which microorganisms that decompose sulfur-based impurities are attached, and the action of the microorganisms is utilized. Decomposing sulfur impurities in a mixed gas in which the carbon dioxide and sulfur impurities and the newly supplied oxygen are mixed;
A method for deoxidizing digestive gas, comprising:
前記精製ガス中に残存する酸素が水に変換された後の精製ガスを熱交換器により冷却する工程を有したことを特徴とする請求項に記載の消化ガスの脱酸素方法。 The method for deoxidizing digestion gas according to claim 1 , further comprising a step of cooling the purified gas after the oxygen remaining in the purified gas is converted to water by a heat exchanger. 前記吸収塔出口の精製ガス中のメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出し、前記検出したガスの濃度が規定値の範囲にない場合は、前記吸収塔出口の精製ガスを流路切換弁により前記触媒塔以外へバイパスさせ、前記検出したガスの濃度が規定値の範囲にある場合は、前記吸収塔出口の精製ガスを前記流路切換弁により前記触媒塔へ供給する工程を有したことを特徴とする請求項またはに記載の消化ガスの脱酸素方法。 The concentration of at least one of methane, carbon dioxide, and H 2 S in the purified gas at the outlet of the absorption tower is detected. If the detected gas concentration is not within a specified value range, the absorption is performed. The purified gas at the outlet of the tower is bypassed to other than the catalyst tower by a flow path switching valve, and when the detected gas concentration is within a specified value range, the purified gas at the outlet of the absorption tower is bypassed by the flow path switching valve. deoxygenation method digestion gas according to claim 1 or 2, characterized in that had feeding to the catalyst tower. 前記水素と前記新たに供給された酸素は、水を電気分解して得たものであることを特徴とする請求項乃至のいずれか1項に記載の消化ガスの脱酸素方法。 The method for deoxidizing digestion gas according to any one of claims 1 to 3 , wherein the hydrogen and the newly supplied oxygen are obtained by electrolyzing water. 前記触媒塔へ供給される前記水素が添加された精製ガスの触媒層空間速度SVは、7,000h−1以下(ただし、ゼロは含まない)であることを特徴とする請求項乃至のいずれか1項に記載の消化ガスの脱酸素方法。 The catalyst layer space velocity SV of the purified gas in which the hydrogen supplied to the catalyst column is added, 7,000H -1 or less (zero is not included) of claims 1 to 4, characterized in that it is The method for deoxidizing digestion gas according to any one of the above. 前記精製ガスに水素を添加する工程において、水素の添加量を前記精製ガス中に残存する酸素量に対して、モル比で2以上にしたことを特徴とする請求項乃至のいずれか1項に記載の消化ガスの脱酸素方法。 In the step of adding hydrogen to the purified gas, relative to the amount of oxygen remaining the amount of hydrogen in the purified gas, any one of claims 1 to 5, characterized in that it has two or more at a molar ratio of 1 The method for deoxidizing digestive gas according to Item. 有機性廃棄物をメタン発酵させることにより発生した消化ガスを圧縮し昇圧する圧縮機と、
前記圧縮機で昇圧した消化ガスと水とを受入れ、高圧状態で接触させることにより、前記昇圧した消化ガスに含まれる二酸化炭素及び硫黄系不純物を高圧水に溶解して前記昇圧した消化ガスから前記二酸化炭素及び硫黄系不純物を分離し、メタンガスを精製するための吸収塔と、
前記精製されたメタンガス(以下、「精製ガス」という)に水素を添加するための水素供給手段と、
前記水素供給手段により水素が添加された精製ガスを受入れ、前記水素が添加された精製ガス中に残存する酸素を水に変換し除去する触媒が充填された触媒塔と、
前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した前記高圧水を減圧して、前記吸収塔から抜き出された前記二酸化炭素及び硫黄系不純物が溶解した水から前記二酸化炭素及び硫黄系不純物を分離させる分離手段と、
前記分離させた二酸化炭素及び硫黄系不純物に新たな酸素を供給するための酸素供給手段と、
前記分離させた二酸化炭素及び硫黄系不純物と前記酸素供給手段から供給された新たな酸素とを受入れ、前記硫黄系不純物を分解する微生物が付着した充填材層を有した生物脱硫塔と、
を備えたことを特徴とする消化ガスの脱酸素装置。
A compressor that compresses and pressurizes digestion gas generated by methane fermentation of organic waste;
The digestion gas and water pressurized by the compressor are received and contacted in a high-pressure state to dissolve carbon dioxide and sulfur impurities contained in the pressurized digestion gas in high-pressure water and from the pressurized digestion gas. An absorption tower for separating carbon dioxide and sulfur impurities and purifying methane gas;
Hydrogen supply means for adding hydrogen to the purified methane gas (hereinafter referred to as “purified gas”);
A catalyst tower that receives a purified gas to which hydrogen has been added by the hydrogen supply means, and is filled with a catalyst that converts and removes oxygen remaining in the purified gas to which hydrogen has been added; and
Depressurizing the high-pressure water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved, and the carbon dioxide and water from the water in which the carbon dioxide and sulfur impurities extracted from the absorption tower are dissolved. Separation means for separating sulfur impurities;
Oxygen supply means for supplying new oxygen to the separated carbon dioxide and sulfur impurities;
A biological desulfurization tower having a filler layer to which the separated carbon dioxide and sulfur-based impurities and new oxygen supplied from the oxygen supply means are received and microorganisms that decompose the sulfur-based impurities are attached;
A digestion gas deoxygenation apparatus comprising:
前記触媒塔の後段に前記触媒塔から出た精製ガスを冷却するための熱交換器を備えたことを特徴とする請求項に記載の消化ガスの脱酸素装置。 The digestion gas deoxygenation apparatus according to claim 7 , further comprising a heat exchanger for cooling the purified gas exiting from the catalyst tower at a stage subsequent to the catalyst tower. 前記吸収塔と前記触媒塔の間に前記吸収塔出口の精製ガス中のメタン、二酸化炭素、HSの内の少なくともいずれか1つのガスの濃度を検出するための検出手段と、前記検出手段と前記触媒塔の間に設けられた流路切換弁とを備え、前記検出手段により検出したガスの濃度が規定値の範囲にない場合は、前記吸収塔出口の精製ガスを前記流路切換弁で前記触媒塔以外へバイパスさせ、前記検出手段により検出したガスの濃度が規定値の範囲にある場合は、前記吸収塔出口の精製ガスを前記流路切換弁で前記触媒塔へ供給するように構成したことを特徴とする請求項またはに記載の消化ガスの脱酸素装置。 Detecting means for detecting the concentration of at least one of methane, carbon dioxide, and H 2 S in the purified gas at the outlet of the absorption tower between the absorption tower and the catalyst tower; and the detection means And a flow path switching valve provided between the catalyst towers, and when the concentration of the gas detected by the detection means is not within a specified value range, purified gas at the outlet of the absorption tower is supplied to the flow path switching valve. When the gas concentration detected by the detection means is within the specified range, the purified gas at the outlet of the absorption tower is supplied to the catalyst tower by the flow path switching valve. The digestion gas deoxygenation apparatus according to claim 7 or 8 , wherein the digestion gas deoxygenation apparatus is configured. 前記水素供給手段と酸素供給手段は、水電解装置であることを特徴とする請求項乃至のいずれか1項に記載の消化ガスの脱酸素装置。 The digestion gas deoxygenation apparatus according to any one of claims 7 to 9 , wherein the hydrogen supply means and the oxygen supply means are water electrolysis apparatuses. 前記触媒塔へ供給される前記水素が添加された精製ガスの触媒層空間速度SVは、7,000h−1以下(ただし、ゼロは含まない)であることを特徴とする請求項乃至10のいずれか1項に記載の消化ガスの脱酸素装置。 The catalyst layer space velocity SV of the purified gas in which the hydrogen supplied to the catalyst column is added, 7,000H -1 or less (zero is not included) of claims 7 to 10, characterized in that it is The digestion gas deoxygenation apparatus of any one of Claims 1. 前記精製ガス中に残存する酸素量に対して、前記水素供給手段により添加する水素量は、モル比で2以上であることを特徴とする請求項乃至11のいずれか1項に記載の消化ガスの脱酸素装置。 The digestion according to any one of claims 7 to 11 , wherein the amount of hydrogen added by the hydrogen supply means is 2 or more in molar ratio to the amount of oxygen remaining in the purified gas. Gas deoxygenator.
JP2009068731A 2008-08-27 2009-03-19 Digestion gas deoxygenation method and apparatus Active JP5033829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068731A JP5033829B2 (en) 2008-08-27 2009-03-19 Digestion gas deoxygenation method and apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008218511 2008-08-27
JP2008218511 2008-08-27
JP2009001656 2009-01-07
JP2009001656 2009-01-07
JP2009068731A JP5033829B2 (en) 2008-08-27 2009-03-19 Digestion gas deoxygenation method and apparatus

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2012129244A Division JP5492942B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus
JP2012129245A Division JP5492943B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus

Publications (2)

Publication Number Publication Date
JP2010180197A JP2010180197A (en) 2010-08-19
JP5033829B2 true JP5033829B2 (en) 2012-09-26

Family

ID=42762011

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2009068731A Active JP5033829B2 (en) 2008-08-27 2009-03-19 Digestion gas deoxygenation method and apparatus
JP2012129244A Active JP5492942B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus
JP2012129245A Active JP5492943B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012129244A Active JP5492942B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus
JP2012129245A Active JP5492943B2 (en) 2008-08-27 2012-06-06 Digestion gas deoxygenation method and apparatus

Country Status (1)

Country Link
JP (3) JP5033829B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206521A (en) * 2011-05-05 2011-10-05 西南化工研究设计院 Dual-pressure catalytic deoxidation process of CMM (Coalbed Methane) in coal mine area

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033829B2 (en) * 2008-08-27 2012-09-26 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
CA2709722A1 (en) 2010-07-15 2012-01-15 Alakh Prasad Integrated biogas cleaning a system to remove water, siloxanes, sulfur, oxygen, chlorides, and volatile organic compounds
CN102430367B (en) * 2010-09-29 2013-11-06 中国石油化工股份有限公司 Coal-bed gas deoxidization method applying tube array fixed bed reactor
JP2012211213A (en) * 2011-03-30 2012-11-01 Tokyo Gas Co Ltd Method for refining biogas
JP2012207145A (en) * 2011-03-30 2012-10-25 Sumitomo Seika Chem Co Ltd Method for treating gas essentially composed of methane
JP4934231B1 (en) * 2011-11-17 2012-05-16 株式会社神鋼環境ソリューション Life prediction method and system for predicting catalyst life in purified gas deoxygenator
JP4934230B1 (en) * 2011-11-17 2012-05-16 株式会社神鋼環境ソリューション City gas manufacturing method and apparatus
EP2828231B1 (en) * 2012-03-21 2019-11-06 P2 Science, Inc. Method for the production of Guerbet Alcohols
CN104913540B (en) * 2015-06-25 2017-05-03 林兆晟 Air separation waste heat and material integrated utilization system
EP3463627A1 (en) 2016-05-24 2019-04-10 Haldor Topsøe A/S A method for the removal of oxygen from an industrial gas
CN107596857A (en) * 2017-10-10 2018-01-19 华能国际电力股份有限公司 Purifier for supercritical carbon dioxide Brayton cycle power generation system
GB2607400A (en) * 2021-04-02 2022-12-07 Toshiba Kk Gas processing equipment and gas processing method, and carbon dioxide capture system and carbon dioxide capture method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527473A1 (en) * 1982-05-25 1983-12-02 Inst Francais Du Petrole PROCESS FOR THE HYDRODESULFURATION OF GAS CONTAINING OXYGEN AND ORGANIC COMPOUNDS OF SULFUR
JPS5954608A (en) * 1982-09-20 1984-03-29 Hoxan Corp Removal of oxygen in crude inert gas
JP3224037B2 (en) * 1992-03-24 2001-10-29 栗田工業株式会社 Deoxygenation device
JP2006036849A (en) * 2004-07-23 2006-02-09 Kobelco Eco-Solutions Co Ltd System for treating and utilizing biomass and method for treating and utilizing biomass gas
JP4088632B2 (en) * 2005-03-25 2008-05-21 神戸市 Gas purification method
JP4022555B2 (en) * 2005-07-25 2007-12-19 神戸市 Biogas purification method and biogas purification equipment
GB0605232D0 (en) * 2006-03-16 2006-04-26 Johnson Matthey Plc Oxygen removal
JP5020575B2 (en) * 2006-09-05 2012-09-05 神戸市 Biogas purification method
JP5112665B2 (en) * 2006-09-05 2013-01-09 神戸市 Digestion gas purification method and purification apparatus in digestion gas utilization system
JP5112664B2 (en) * 2006-09-05 2013-01-09 神戸市 Methane recovery method and digestion gas purification device
US8899968B2 (en) * 2007-07-25 2014-12-02 Osaka Gas Co., Ltd. Combustible gas processing system and combustible gas processing method
JP4344773B1 (en) * 2008-07-22 2009-10-14 株式会社神鋼環境ソリューション Digestion gas desulfurization method and apparatus
JP5033829B2 (en) * 2008-08-27 2012-09-26 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206521A (en) * 2011-05-05 2011-10-05 西南化工研究设计院 Dual-pressure catalytic deoxidation process of CMM (Coalbed Methane) in coal mine area

Also Published As

Publication number Publication date
JP5492942B2 (en) 2014-05-14
JP5492943B2 (en) 2014-05-14
JP2012214808A (en) 2012-11-08
JP2010180197A (en) 2010-08-19
JP2012197448A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5033829B2 (en) Digestion gas deoxygenation method and apparatus
JP4344773B1 (en) Digestion gas desulfurization method and apparatus
JP4022555B2 (en) Biogas purification method and biogas purification equipment
KR100985911B1 (en) System for preprocessing of bio-gas
JP4088632B2 (en) Gas purification method
US20110244555A1 (en) Method and system for purifying raw gases, particularly biogas, for obtaining methane
JP2018505958A (en) Method for producing ultra-high purity carbon monoxide
JP2008255209A (en) Method and apparatus for concentrating methane gas
JP6518070B2 (en) Ethanol synthesis method and apparatus
US9180402B2 (en) System and method for treating natural gas that contains methane
JP6659717B2 (en) Hydrogen recovery method
JP4909371B2 (en) Digestion gas deoxygenation method and apparatus
JP4959742B2 (en) Digestion gas deoxygenation method and apparatus
JP2008045049A (en) Method and apparatus for easily separating gas component
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
JP2010024443A (en) Method for desulfurizing digestion gas and desulfurizer therefor
JP2014015504A (en) Treatment method and treatment system of biogas
JP2006206989A (en) Method for manufacturing high-purity hydrogen and apparatus used for the same
JP5112664B2 (en) Methane recovery method and digestion gas purification device
JP2008208268A (en) Methane gas purifying equipment, and methane gas purifying equipment and system
JP2006299105A (en) Method for concentrating methane gas and carbon dioxide gas and concentrator
JPS5864188A (en) Purification of waste water
JP5248352B2 (en) Gas purification equipment
JP6077169B1 (en) Method for producing hydrogen gas and biogas hydrogenation facility
JP2017206402A (en) Hydrogen gas production method and biogas hydrogenation facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250