JP5112665B2 - Digestion gas purification method and purification apparatus in digestion gas utilization system - Google Patents

Digestion gas purification method and purification apparatus in digestion gas utilization system Download PDF

Info

Publication number
JP5112665B2
JP5112665B2 JP2006240586A JP2006240586A JP5112665B2 JP 5112665 B2 JP5112665 B2 JP 5112665B2 JP 2006240586 A JP2006240586 A JP 2006240586A JP 2006240586 A JP2006240586 A JP 2006240586A JP 5112665 B2 JP5112665 B2 JP 5112665B2
Authority
JP
Japan
Prior art keywords
water
gas
digestion gas
absorption
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006240586A
Other languages
Japanese (ja)
Other versions
JP2008063393A (en
Inventor
恭三 竹中
章弘 小西
宏 寺岡
秀一 木山
博司 宮本
忠志 小山
勝生 松本
志朗 豊久
智裕 丸山
武男 吉ヶ江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF KOBE
Shinko Pantec Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
CITY OF KOBE
Public Works Research Institute
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF KOBE, Public Works Research Institute, Kobelco Eco Solutions Co Ltd filed Critical CITY OF KOBE
Priority to JP2006240586A priority Critical patent/JP5112665B2/en
Publication of JP2008063393A publication Critical patent/JP2008063393A/en
Application granted granted Critical
Publication of JP5112665B2 publication Critical patent/JP5112665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Gas Separation By Absorption (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、下水汚泥などの有機性廃棄物を嫌気性発酵させることで得られる消化ガスの、少なくとも前記消化槽を加温するための加温用機器の燃料としての利用分を差し引いた一部または全量を精製するとともに、この精製ガスを燃料として用いる消化ガス利用システムにおける消化ガス精製方法およびその精製装置に関するものである。 The present invention is a part of the digestion gas obtained by anaerobic fermentation of organic waste such as sewage sludge, subtracted from the amount used as fuel for the heating equipment for heating the digestion tank. Alternatively, the present invention relates to a digestion gas purification method and a purification apparatus thereof in a digestion gas utilization system that purifies the entire amount and uses this purified gas as a fuel.

地球温暖化防止や循環型社会(持続的社会)の構築のため、バイオマス資源の活用が期待されており、生ゴミなどの食品廃棄物,家畜糞尿,有機性廃水,下水処理場で発生する下水汚泥などの有機性廃棄物を嫌気性発酵させることで消化ガスを発生させて、この消化ガスをエネルギーとして利用する技術の開発が進められている。   Biomass resources are expected to be used to prevent global warming and build a recycling-oriented society (sustainable society). Food waste such as garbage, livestock manure, organic wastewater, and sewage generated at sewage treatment plants Development of a technique for generating digestion gas by subjecting organic waste such as sludge to anaerobic fermentation and using this digestion gas as energy is being promoted.

とりわけ、平成14年12月にわが国において閣議決定された「バイオマス・ニッポン総合戦略」によれば、下水処理場において最初沈殿池及び最終沈殿池で発生する下水汚泥を嫌気性発酵させて生成させるバイオガス(消化ガス)の利用が期待されている。   In particular, according to the “Biomass Nippon Comprehensive Strategy” approved by the Cabinet in Japan in December 2002, biodiesel produced by anaerobic fermentation of sewage sludge generated in the first sedimentation basin and final sedimentation basin at a sewage treatment plant. Use of gas (digestion gas) is expected.

この消化ガス(下水汚泥消化ガス)は、メタン(CH)及び二酸化炭素(CO)を主成分とし(メタン:約60容量%、二酸化炭素:約40容量%)、微量の不純物として硫黄系不純物(HS等)などを含むガスである。なお、都市部の下水汚泥の消化ガスには、シャンプー等に由来するシロキサン化合物が含まれていることが知られている。 This digestion gas (sewage sludge digestion gas) is mainly composed of methane (CH 4 ) and carbon dioxide (CO 2 ) (methane: about 60% by volume, carbon dioxide: about 40% by volume), and sulfur-based as a trace amount of impurities. A gas containing impurities (such as H 2 S). It is known that the digestion gas of sewage sludge in urban areas contains a siloxane compound derived from shampoo and the like.

消化ガス中に含まれる前記不純物やシロキサン化合物を同時に除去した精製ガスを得る方法として、本発明者等は、メタン、二酸化炭素およびシロキサン化合物を含有する原ガスと、水とを0.55〜2.0MPaの範囲を満たす高圧状態で接触させることにより、前記二酸化炭素を高圧水に溶解させて前記原ガスから分離するとともに、前記シロキサン化合物を凝縮させて前記原ガスから分離して、前記メタンを高濃度化した精製ガスを得る、いわゆる高圧水吸収法を既に提案している(特許文献1参照)。   As a method for obtaining a purified gas from which the impurities and the siloxane compound contained in the digestion gas are simultaneously removed, the present inventors have added a raw gas containing methane, carbon dioxide and a siloxane compound and water in an amount of 0.55 to 2. The carbon dioxide is dissolved in high-pressure water and separated from the raw gas by contacting in a high-pressure state satisfying a range of 0.0 MPa, the siloxane compound is condensed and separated from the raw gas, and the methane is separated. A so-called high-pressure water absorption method for obtaining purified gas having a high concentration has already been proposed (see Patent Document 1).

更に、本発明者等は、この高圧水吸収法において、嫌気性発酵槽のガス圧力を測定し、その測定結果に基づいて前記嫌気性発酵槽のガス圧力が予め定められた略一定の設定値となるように前記原ガスを昇圧する圧縮機の回転数を増減制御するバイオガスの精製方法およびバイオガス精製設備を提案した(特許文献2参照)。   Furthermore, the inventors measured the gas pressure of the anaerobic fermenter in this high-pressure water absorption method, and the gas pressure of the anaerobic fermenter was determined based on the measurement result, which was a substantially constant set value. Thus, a biogas purification method and biogas purification facility for increasing / decreasing the rotational speed of the compressor for boosting the raw gas were proposed (see Patent Document 2).

図5は、上記従来技術(特許文献2)に係る消化ガス精製装置を説明するための図であって、消化ガスを精製して精製メタンガスを得る消化ガス精製装置の構成を示すフロー図である。以下、この図5を用いて、従来技術(特許文献2)に係る消化ガス精製装置を詳細に説明する。   FIG. 5 is a diagram for explaining the digestion gas purification apparatus according to the above-described conventional technique (Patent Document 2), and is a flow diagram showing the configuration of the digestion gas purification apparatus that purifies digestion gas to obtain purified methane gas. . Hereinafter, the digestion gas purification apparatus according to the prior art (Patent Document 2) will be described in detail with reference to FIG.

図5に示す消化ガス精製装置において、原ガスである消化ガスは、ミストセパレータ401によってガス中のミスト、ダストが除去された後、直列接続されたガス圧縮機402a,402bによって大気圧より高い所定の圧力まで昇圧され、吸収塔404の下部に導入される。一方、この吸収塔404には、その上部から水が吸収水ポンプ408によって昇圧された状態で供給されるようになっている。   In the digestion gas refining apparatus shown in FIG. 5, the digestion gas as the raw gas is a predetermined gas higher than the atmospheric pressure by the gas compressors 402 a and 402 b connected in series after the mist and dust in the gas are removed by the mist separator 401. The pressure is raised to a pressure of ≦ 4, and introduced into the lower part of the absorption tower 404. On the other hand, water is supplied to the absorption tower 404 from the upper part in a state where the pressure is increased by the absorption water pump 408.

このように、吸収塔404内を高圧状態に保持し、吸収塔404内において前記消化ガスと水とを高圧状態で接触させることにより、前記消化ガス中に気体状態で含まれていた二酸化炭素及び硫黄系不純物(HS等)は、高圧の水に溶解して吸収される一方、メタンは、高圧の水にほとんど溶解することなく、吸収塔404の頂部から取り出される。 Thus, by maintaining the absorption tower 404 in a high pressure state and bringing the digestion gas and water into contact in the absorption tower 404 in a high pressure state, carbon dioxide contained in the digestion gas in a gaseous state and Sulfur impurities (H 2 S and the like) are dissolved and absorbed in high-pressure water, while methane is taken out from the top of the absorption tower 404 with almost no dissolution in high-pressure water.

また同時に、消化ガス中に含まれていたシロキサン化合物は、高圧状態のため気体状態から凝縮して液滴状態となり、この液滴状態にて、吸収塔内部を流下する高圧の水と衝突し、水とともに吸収塔404の底部に溜まることになる。   At the same time, the siloxane compound contained in the digestion gas is condensed from the gas state to a droplet state due to the high pressure state, and in this droplet state, collides with the high pressure water flowing down inside the absorption tower, It collects in the bottom part of the absorption tower 404 with water.

このように分離除去された二酸化炭素、硫黄系不純物(HS等)が溶解するとともに、分離除去されたシロキサン化合物を含む水は、吸収塔404の底部から抜き出されて、弁V10を介して減圧タンク411に導入される。そして、減圧タンク411において吸収水にわずかに溶解していたメタンが分離回収された後の二酸化炭素,硫黄系不純物(HS等)が溶解する水は、減圧タンク411の底部から弁V12を介して放散塔412の上部に導入される。 The carbon dioxide and sulfur impurities (H 2 S and the like) separated and removed in this manner are dissolved, and the water containing the separated siloxane compound is extracted from the bottom of the absorption tower 404 through the valve V10. And introduced into the decompression tank 411. The water in which carbon dioxide and sulfur-based impurities (such as H 2 S) are dissolved after the methane that has been slightly dissolved in the absorption water in the decompression tank 411 is separated from the bottom of the decompression tank 411 through the valve V12. And introduced into the upper part of the stripping tower 412.

この放散塔412においては、減圧タンク411から抜き出された水が上部から導入される一方、下部からは排気ブロワ413によって放散用ガス(例えば大気)が導入され、大気圧において両者が向流接触する。これにより、減圧タンク411から抜き出された水に溶解していた二酸化炭素、硫黄系不純物は放散用ガス側に移行し、放散用ガスとともに放散塔412の頂部から排出され、必要に応じて流路L14を経て脱臭設備へ導かれる。   In the stripping tower 412, water extracted from the decompression tank 411 is introduced from the top, while a stripping gas (for example, air) is introduced from the bottom by the exhaust blower 413, and both are in countercurrent contact at atmospheric pressure. To do. As a result, carbon dioxide and sulfur-based impurities dissolved in the water extracted from the decompression tank 411 move to the emission gas side and are discharged from the top of the diffusion tower 412 together with the emission gas, and flow as needed. It is led to the deodorizing equipment via the route L14.

そして、溶解していたガスが除去されて再生された吸収水は、放散塔412の底部から抜き出され、吸収水ポンプ408にて昇圧され、熱交換器409にてチラー410からのブラインとの間で熱交換して所定の温度まで冷却された後、吸収塔404の上部に循環して給水される。   Then, the absorbed water regenerated by removing the dissolved gas is extracted from the bottom of the stripping tower 412, boosted by the absorbing water pump 408, and then with the brine from the chiller 410 by the heat exchanger 409. After the heat exchange between them and cooling to a predetermined temperature, the water is circulated to the upper part of the absorption tower 404 and supplied.

一方、吸収塔404の頂部から取り出された高濃度のメタンを有する精製ガスは、除湿器405に送られる。除湿器405による除湿の目的は、精製ガスを燃料として使用(利用)するときの圧力においても結露することがないようにするためである。
特開2006−83156号公報 特開2006−95512号公報
On the other hand, the purified gas having a high concentration of methane taken out from the top of the absorption tower 404 is sent to the dehumidifier 405. The purpose of dehumidification by the dehumidifier 405 is to prevent condensation even at a pressure when the purified gas is used (utilized) as fuel.
JP 2006-83156 A JP 2006-95512 A

ところが、前述した従来例(特許文献2)に係る消化ガス精製装置を、消化槽内で加温されつつ嫌気性発酵させることにより得られた消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を消化ガス精製装置により精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムに適用した場合は、次のような問題点を有している。   However, the digestion gas purification apparatus according to the above-described conventional example (Patent Document 2) is subjected to anaerobic fermentation while being heated in the digestion tank, and at least the fuel for the digester heating apparatus. When a part or the whole amount after subtracting the used amount is purified by a digestion gas purification device and applied to a digestion gas utilization system that uses this purified gas as a fuel for other uses, the following problems occur: Yes.

即ち、前記吸収塔404から排出される吸収水を、減圧タンク411、放散塔412を経て吸収塔404へ循環させる上記従来例においては、前記吸収塔404に供給される高圧水は、前記熱交換器409にてチラー410からのブラインとの間で熱交換して所定の温度まで冷却された後供給されている。   That is, in the conventional example in which the absorption water discharged from the absorption tower 404 is circulated to the absorption tower 404 through the decompression tank 411 and the diffusion tower 412, the high-pressure water supplied to the absorption tower 404 is the heat exchange. The heat is exchanged with brine from the chiller 410 in the vessel 409, and then cooled to a predetermined temperature before being supplied.

二酸化炭素の水への溶解度は水温が低いほど大きいため、前記吸収水を冷却することによって吸収塔での二酸化炭素除去率を向上できる。しかしながら、このような循環式は、チラー410で電力を消費するため、低負荷運転時では、処理ガス単位量当たりの運転コストが高くなるという問題点がある。   Since the solubility of carbon dioxide in water increases as the water temperature decreases, the carbon dioxide removal rate in the absorption tower can be improved by cooling the absorption water. However, since such a circulation type consumes electric power in the chiller 410, there is a problem that the operation cost per unit amount of the processing gas becomes high at the time of low load operation.

外気温が低下する冬季には、前記消化槽加温用機器の燃料としての消化ガス使用量が増加するため、消化ガス精製装置に供給できる消化ガス量が低下し、消化ガス精製装置の運転が低負荷運転となるので、処理ガス単位量当たりの運転コストが高くなることになる。   In winter when the outside air temperature decreases, the amount of digestion gas used as fuel for the digester heating equipment increases, so the amount of digestion gas that can be supplied to the digestion gas purification device decreases, and the digestion gas purification device operates. Since the operation is low load, the operation cost per unit amount of the processing gas is increased.

また、吸収塔から抜出した吸収水を再生させることなく系外に排出する一過式において、吸収水に下水処理水等の溶存気体を多く含む水を使用した場合、吸収塔において吸収水が二酸化炭素を溶解する一方で、溶存気体を放出する。吸収水温度が高いほど二酸化炭素の溶解度が低くなるため、二酸化炭素を一定量吸収させるためには多くの吸収水量が必要となる。   In addition, when the absorption water extracted from the absorption tower is discharged out of the system without being regenerated, when water containing a large amount of dissolved gas such as sewage treatment water is used as the absorption water, the absorption water is absorbed in the absorption tower. Dissolves carbon while releasing dissolved gas. The higher the absorbed water temperature, the lower the solubility of carbon dioxide. Therefore, a large amount of absorbed water is required to absorb a certain amount of carbon dioxide.

その一方で、吸収水量が多いほど吸収塔内で吸収水中から精製ガス側に移行する溶存気体量も増加する。その結果、一過式で吸収水温度が高い場合、得られる精製ガスのメタン濃度を一定(例えば97容量%以上)に維持することが困難となるという問題点もある。   On the other hand, as the amount of absorbed water increases, the amount of dissolved gas that moves from the absorbed water to the purified gas side in the absorption tower also increases. As a result, when the absorption water temperature is high in a transient manner, there is also a problem that it is difficult to maintain the methane concentration of the obtained purified gas constant (for example, 97% by volume or more).

従って、本発明の目的は、有機性廃棄物を嫌気性発酵させることで得られる消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムにおいて、年間を通じて低コストに、かつ得られる精製ガスのメタン濃度を一定に維持することが可能な消化ガス精製方法およびその精製装置を提供することにある。   Therefore, the object of the present invention is to purify a digestion gas obtained by anaerobic fermentation of organic waste, at least a part or all of the digestion gas subtracted from the use as fuel for the digester heating equipment, In a digestion gas utilization system using this purified gas as a fuel for other purposes, a digestion gas purification method and a purification apparatus capable of maintaining a constant methane concentration of the resulting purified gas at a low cost throughout the year are provided. There is.

前記目的を達成するために、本発明の請求項1に係る消化ガス利用システムにおける消化ガス精製方法が採用した手段は、有機物を消化槽内で加温して嫌気性発酵させることにより得られた消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムにおける前記消化ガス精製方法に関する。   In order to achieve the above object, the means employed by the digestion gas purification method in the digestion gas utilization system according to claim 1 of the present invention was obtained by heating an organic substance in a digestion tank and performing anaerobic fermentation. The present invention relates to the digestion gas purification method in a digestion gas utilization system that purifies a part or the whole amount of the digestion gas after subtracting at least a portion to be used as a fuel for the digester heating apparatus and uses the purified gas as a fuel for other uses. .

同時に、この消化ガス精製方法は、昇圧された前記消化ガスと昇圧された吸収水とを吸収塔内において接触させることにより、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離した後、この二酸化炭素を溶解した吸収水を放散塔に導入して溶解した二酸化炭素を除去して、この二酸化炭素の除去された吸収水を再昇圧して前記吸収塔へ供給させつつ、前記吸収塔より高圧水吸収法によってメタンを高濃度化した精製ガスを得る方法に関するものである。   At the same time, in this digestion gas purification method, the digestion gas is dissolved in the absorption water by bringing the pressurized digestion gas and the pressurized absorption water into contact with each other in an absorption tower to thereby dissolve the digestion gas. Then, the absorption water in which the carbon dioxide is dissolved is introduced into the diffusion tower to remove the dissolved carbon dioxide, and the absorption water from which the carbon dioxide has been removed is re-pressurized and supplied to the absorption tower. Further, the present invention relates to a method for obtaining a purified gas having a high concentration of methane from the absorption tower by a high-pressure water absorption method.

そして、消化ガス利用システムにおけるこの消化ガス精製方法は、前記消化ガス精製系外から供給される給水水温が予め設定された25℃以下の設定温度より低い時は、前記吸収塔から排出された吸収水を系外に排水させる一過式に、また、前記給水水温が前記設定温度より高い時は、前記吸収水を冷却した後前記吸収塔へ供給させる循環式に切り換えることを特徴とするものである。
The digestion gas refining method in the digestion gas utilization system is configured such that when the feed water temperature supplied from outside the digestion gas purification system is lower than a preset temperature of 25 ° C. or lower , the absorption exhausted from the absorption tower. It is characterized in that the water is drained out of the system, and when the feed water temperature is higher than the set temperature , the absorption water is cooled and then switched to a circulation type that is supplied to the absorption tower. is there.

本発明の請求項2に係る消化ガス利用システムにおける消化ガス精製方法が採用した手段は、請求項1記載の消化ガス利用システムにおける消化ガス精製方法において、昇圧された消化ガスと昇圧された吸収水とを接触させる前記吸収塔内において、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離した後、次いで、この二酸化炭素を溶解した吸収水を減圧タンクに導入することによって、減圧された前記吸収水に溶解されたメタンガスを分離し、分離されたこのメタンを前記吸収塔前段において昇圧される前記消化ガスに還流させることを特徴とするものである。   The digestion gas purification method in the digestion gas utilization system according to claim 2 of the present invention employs the digestion gas purification method in the digestion gas utilization system according to claim 1, wherein the pressurized digestion gas and the pressurized absorption water are In the absorption tower that is in contact with the gas, the carbon dioxide contained in the digestion gas is dissolved in absorption water and separated from the digestion gas, and then the absorption water in which the carbon dioxide is dissolved is introduced into a vacuum tank. Thus, methane gas dissolved in the reduced absorption water is separated, and the separated methane is refluxed to the digestion gas pressurized in the front stage of the absorption tower.

本発明の請求項3に係る消化ガス利用システムにおける消化ガス精製装置が採用した手段は、有機物を消化槽内で加温して嫌気性発酵させることにより得られた消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムにおいて、前記精製ガスを得る消化ガス精製装置に関するものである。   The means employed by the digestion gas refining apparatus in the digestion gas utilization system according to claim 3 of the present invention is at least the digestion tank of digestion gas obtained by heating an organic substance in an digestion tank and subjecting it to anaerobic fermentation. The present invention relates to a digestion gas refining apparatus for purifying a part or the whole of a heating device, subtracting the amount used as fuel, and obtaining the purified gas in a digestion gas utilization system using this purified gas as a fuel for other uses. .

同時に、この消化ガス精製装置は、前記消化ガスを昇圧する気体昇圧手段と、この消化ガスを吸収させる吸収水を昇圧する液体昇圧手段と、これらの昇圧手段によって昇圧された消化ガスと吸収水とを塔内において接触させることにより、前記消化ガスに含まれる二酸化炭素を前記吸収水に溶解させて前記消化ガスから分離させてメタンを高濃度化した精製ガスを得る吸収塔と、この二酸化炭素を溶解した吸収水を導入して溶解した二酸化炭素を除去する放散塔と、この消化ガス精製装置外から消化ガス精製装置に供給される給水流路とを備えている。   At the same time, the digestion gas purifier includes a gas pressure boosting means for boosting the digestion gas, a liquid pressure boosting means for boosting the absorption water that absorbs the digestion gas, and the digestion gas and the absorption water boosted by these pressure boosting means. In the tower, the carbon dioxide contained in the digestion gas is dissolved in the absorption water and separated from the digestion gas to obtain a purified gas having a high concentration of methane, and the carbon dioxide A stripping tower that introduces dissolved absorbed water and removes dissolved carbon dioxide, and a water supply flow path that is supplied to the digestion gas purification device from outside the digestion gas purification device are provided.

そして、前記吸収塔から抜き出された吸収水の流路にあって、前記吸収塔から抜き出された吸収水を前記放散塔を介して吸収塔へ循環させる循環流路と、前記吸収水を系外に排水する排水流路と、これら循環流路と排水流路とを切り換えるため前記放散塔の一次側もしくは二次側に設けられた第1流路切換手段と、前記吸収水を昇圧する液体昇圧手段の吸込側流路にあって、前記二酸化炭素の除去された吸収水の循環流路と、系外から供給される給水流路とを切り換えるため前記放散塔の二次側に設けられた第2流路切換手段と、前記循環流路にあってこの吸収水を冷却するための冷却器と、この消化ガス精製装置外から消化ガス精製装置に供給される給水流路にあってこの給水の水温を検出する給水温検出器とが設けられている。   A flow path for absorbing water extracted from the absorption tower, wherein the absorption water extracted from the absorption tower is circulated to the absorption tower via the diffusion tower, and the absorption water is A drainage channel for draining outside the system, a first channel switching means provided on the primary side or secondary side of the diffusion tower for switching between the circulation channel and the drainage channel, and the pressure of the absorbed water In the suction side flow path of the liquid pressurizing means, provided on the secondary side of the diffusion tower for switching between the circulation path of the absorption water from which carbon dioxide has been removed and the water supply path supplied from outside the system. A second flow path switching means, a cooler for cooling the absorbed water in the circulation flow path, and a water supply flow path supplied to the digestion gas purification apparatus from outside the digestion gas purification apparatus. A water supply temperature detector for detecting the water temperature of the water supply is provided.

更に、この消化ガス精製装置は、検出された前記給水水温を予め設定された25℃以下の設定温度と比較する演算回路と前記第1および第2流路切換手段を制御する制御回路とを内蔵する制御器とを設け、この制御器によって、前記給水水温が前記設定温度より低い
時は、前記第1流路切換手段を前記排水流路側に、かつ第2流路切換手段を前記給水流路側に、また、前記給水水温が前記設定温度より高い時は、前記第1および第2流路切換手段を前記循環流路側に切り換えるよう構成したことを特徴とするものである。
Further, the digestion gas purifying apparatus incorporates an arithmetic circuit for comparing the detected feed water temperature with a preset temperature of 25 ° C. or lower and a control circuit for controlling the first and second flow path switching means. And when the feed water temperature is lower than the set temperature, the first flow path switching means is on the drain flow path side and the second flow path switching means is on the water supply flow path side. Moreover, when the feed water temperature is higher than the set temperature, the first and second flow path switching means are switched to the circulation flow path side.

本発明の請求項4に係る消化ガス利用システムにおける消化ガス精製装置が採用した手段は、請求項3記載の消化ガス利用システムにおける消化ガス精製装置において、前記吸収塔から抜出された吸収水を循環させる循環流路に、前記吸収水に溶解されたメタンガスを分離する減圧タンクを介設し、この分離されたガスを前記吸収塔前段において昇圧される前記気体昇圧手段に還流させる還流流路を設けたものである。   The means employed by the digestion gas purification apparatus in the digestion gas utilization system according to claim 4 of the present invention is the digestion gas purification apparatus in the digestion gas utilization system according to claim 3, wherein the absorbed water extracted from the absorption tower is used. A circulation path for circulating the methane gas dissolved in the absorbed water is provided in the circulation path for circulation, and a reflux path for refluxing the separated gas to the gas booster that is boosted in the front stage of the absorption tower. It is provided.

本発明の請求項5に係る消化ガス利用システムにおける消化ガス精製装置が採用した手段は、請求項3または4記載の消化ガス利用システムにおける消化ガス精製装置において、前記第1流路切換手段および第2流路切換手段が三方弁であることを特徴とするものである。   The means employed by the digestion gas purification apparatus in the digestion gas utilization system according to claim 5 of the present invention is the digestion gas purification apparatus in the digestion gas utilization system according to claim 3 or 4, wherein the first flow path switching means and The two-channel switching means is a three-way valve.

本発明の請求項1に係る消化ガス利用システムにおける消化ガス精製方法は、前記吸収塔より高圧水吸収法によってメタンを高濃度化した精製ガスを得るとともに、前記消化ガス精製系外から供給される給水水温が低い時期では、前記吸収塔から排出された吸収水を系外に排水させる一過式に、また、前記給水水温が高い時期では、前記吸収水を溶解していた二酸化炭素を除去して再生させ、冷却した後前記吸収塔へ供給させる循環式に切り換えるので、年間を通して前記消化ガスを低コストに精製し、かつ得られる精製ガスのメタン濃度を一定に維持することが可能となる。   A digestion gas purification method in a digestion gas utilization system according to claim 1 of the present invention obtains a purified gas having a high concentration of methane by a high-pressure water absorption method from the absorption tower and is supplied from outside the digestion gas purification system. When the feed water temperature is low, the absorption water discharged from the absorption tower is drained out of the system, and when the feed water temperature is high, the carbon dioxide dissolved in the absorption water is removed. Therefore, the digestion gas can be purified at low cost throughout the year, and the methane concentration of the resulting purified gas can be maintained constant.

また、本発明の請求項2に係る消化ガス利用システムにおける消化ガス精製方法は、前記吸収塔内において、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離した後、次いで、この二酸化炭素を溶解した吸収水を減圧タンクに導入することによって、減圧された前記吸収水に溶解されていたメタンガスを分離し、分離されたこのメタンを前記吸収塔前段において昇圧される前記消化ガスに還流させるので、前記吸収水に溶解されたメタンを再度回収してメタンの回収率の向上が図られる。   Moreover, the digestion gas purification method in the digestion gas utilization system according to claim 2 of the present invention, after the carbon dioxide contained in the digestion gas is dissolved in absorption water and separated from the digestion gas in the absorption tower, Next, by introducing the absorption water in which the carbon dioxide is dissolved into the decompression tank, the methane gas dissolved in the reduced absorption water is separated, and the separated methane is pressurized in the front stage of the absorption tower. Since the gas is refluxed to the digestion gas, the methane dissolved in the absorbed water is recovered again to improve the methane recovery rate.

更に、本発明の請求項3に係る消化ガス利用システムにおける消化ガス精製装置は、前記吸収塔から抜き出された吸収水を前記放散塔を介して吸収塔へ循環させる循環流路と、前記吸収水を系外に排水する排水流路と、これら循環流路と排水流路とを切り換えるため前記放散塔の一次側もしくは二次側に設けられた第1流路切換手段と、前記吸収水を昇圧する液体昇圧手段の吸込側流路にあって、前記二酸化炭素の除去された吸収水の循環流路と、系外から供給される給水流路とを切り換えるため前記放散塔の二次側に設けられた第2流路切換手段と、前記吸収水を冷却するための冷却器と、給水の水温を検出する給水温検出器とを備えてなる。   Furthermore, the digestion gas refining apparatus in the digestion gas utilization system according to claim 3 of the present invention is configured to circulate the absorption water extracted from the absorption tower to the absorption tower through the diffusion tower, and the absorption A drainage channel for draining water out of the system, a first channel switching means provided on the primary side or secondary side of the diffusion tower for switching between the circulation channel and the drainage channel, and the absorbed water In the suction side flow path of the liquid pressure boosting means for increasing the pressure, on the secondary side of the diffusion tower for switching between the circulation path of the absorption water from which the carbon dioxide has been removed and the water supply path supplied from outside the system It comprises a second flow path switching means provided, a cooler for cooling the absorbed water, and a feed water temperature detector for detecting the feed water temperature.

同時に、検出された前記給水水温を予め設定された設定温度と比較する演算回路と前記第1および第2流路切換手段を制御する制御回路とを内蔵する制御器とを設け、この制御器によって、前記給水水温が前記設定温度より低い時は、前記第1流路切換手段を前記排水流路側に、前記第2流路切換手段を前記給水流路側に、また、前記給水水温が前記設定温度より高い時は、前記第および第2流路切換手段を前記循環流路側に切り換えるよう構成したので、前記一過式と循環式とが予め設定された設定温度により自動切換え可能となる。   At the same time, there is provided a controller incorporating an arithmetic circuit for comparing the detected feed water temperature with a preset temperature, and a control circuit for controlling the first and second flow path switching means, When the feed water temperature is lower than the set temperature, the first channel switching means is on the drain channel side, the second channel switching means is on the feed channel side, and the feed water temperature is the set temperature. When the temperature is higher, the first and second flow path switching means are switched to the circulation flow path side, so that the transient type and the circulation type can be automatically switched at a preset temperature.

また更に、本発明の請求項4に係る消化ガス利用システムにおける消化ガス精製装置は、前記吸収塔から抜出された吸収水を循環させる循環流路に、前記吸収水に溶解されたメタンガスを分離する減圧タンクを介設し、この分離されたガスを前記気体昇圧手段に還流させる還流流路を設けるよう構成したので、前記吸収水中のメタンの再回収を図るとともに前記流路切り換えの自動化により、年間を通して連続的な低コストかつ精製ガスのメタン濃度を一定に維持した運転ができる。   Furthermore, the digestion gas purification apparatus in the digestion gas utilization system according to claim 4 of the present invention separates the methane gas dissolved in the absorption water into a circulation channel for circulating the absorption water extracted from the absorption tower. Since the depressurization tank is provided and the reflux flow path for recirculating the separated gas to the gas pressurizing means is provided, the methane in the absorbed water is re-recovered and the flow path switching is automated. It can be operated continuously throughout the year at low cost and with the methane concentration of the refined gas kept constant.

本発明の請求項5に係る消化ガス利用システムにおける消化ガス精製装置は、前記第1流路切換手段および第2流路切換手段が三方弁であるので、流路切り換えの自動化を確実に具現可能となる。   In the digestion gas purification system in the digestion gas utilization system according to claim 5 of the present invention, since the first flow path switching means and the second flow path switching means are three-way valves, automation of flow path switching can be implemented reliably. It becomes.

以下、添付図面を参照しながら本発明の実施形態について説明する。図1および図2は、本発明の実施形態1に係る消化ガス精製方法およびその精製装置が適用される消化ガス利用システムの全体構成例を示すフロー図である。また、図3は、図1および図2に例示した消化ガス利用システムにおける消化ガス精製方法とその精製装置の実施の形態1を説明するためのフロー図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 and 2 are flowcharts showing an overall configuration example of a digestion gas utilization system to which a digestion gas purification method and a purification apparatus according to Embodiment 1 of the present invention are applied. FIG. 3 is a flowchart for explaining the first embodiment of the digestion gas purification method and purification apparatus in the digestion gas utilization system exemplified in FIGS. 1 and 2.

この実施形態1においては、消化ガス精製設備は下水処理場に設けられており、図1に示すように、嫌気性発酵槽としての消化槽1と、この消化槽1から発生した消化ガスを脱硫する脱硫塔2と、脱硫された消化ガスを一時貯蔵するガスホルダー3と、このガスホルダー3から供給された消化ガスを精製するための消化ガス精製装置4とを備えている。   In this Embodiment 1, the digestion gas purification equipment is provided in the sewage treatment plant, and as shown in FIG. 1, the digestion tank 1 as an anaerobic fermentation tank and the digestion gas generated from this digestion tank 1 are desulfurized. The desulfurization tower 2 is provided, a gas holder 3 for temporarily storing the desulfurized digestion gas, and a digestion gas purification device 4 for purifying the digestion gas supplied from the gas holder 3.

また、上記消化ガス精製設備を構成する消化ガス精製装置4は、脱硫塔2とガスホルダー3とを介して消化ガスを供給される必要性はなく、図2に示すように、消化槽1から発生した原料消化ガスを直接供給されて精製するよう構成しても良い。あるいは、図1および図2に示す前記脱硫塔2とガスホルダー3は無くても良い。   In addition, the digestion gas purification apparatus 4 constituting the digestion gas purification equipment does not need to be supplied with digestion gas via the desulfurization tower 2 and the gas holder 3, and as shown in FIG. The generated raw material digestion gas may be directly supplied and purified. Alternatively, the desulfurization tower 2 and the gas holder 3 shown in FIGS. 1 and 2 may be omitted.

そして、このような消化ガス精製設備と次に述べる消化ガス消費設備とにより消化ガス利用システムが構成されている。即ち、前記消化ガス消費設備は、消化槽加温用機器である温水ボイラー5と、余剰ガス利用装置6と、例えばガスエンジン(コージェネレーションシステム)やガス充填設備(天然ガススタンド)からなる精製ガス利用装置9とを備えて構成されている。   And the digestion gas utilization system is comprised by such digestion gas refinement | purification equipment and the following digestion gas consumption equipment. That is, the digestion gas consuming equipment is a purified gas comprising a hot water boiler 5 which is a digester heating equipment, a surplus gas utilization device 6, and a gas engine (cogeneration system) or a gas filling equipment (natural gas stand), for example. And a utilization device 9.

そして、例えば、図1や図2に例示した消化ガス利用システムにおいては、前記消化槽1内で加温して嫌気性発酵させることにより得られた消化ガスの全量を精製するのではなく、脱硫塔2により脱硫処理した前記消化ガスは一旦ガスホルダー3へ貯蔵される。同時に、このガスホルダー3から供給される前記消化ガスの一部は、消化槽加温用機器としての温水ボイラー5の燃料として利用され、この温水ボイラー5によって加温された温水を熱交換器7へ送り、前記消化槽1の加熱ジャケットに封入された熱媒の加温源として使用している。   For example, in the digestion gas utilization system illustrated in FIG. 1 or FIG. 2, desulfurization is performed instead of purifying the total amount of digestion gas obtained by heating in the digestion tank 1 and performing anaerobic fermentation. The digestion gas desulfurized by the tower 2 is temporarily stored in the gas holder 3. At the same time, a part of the digestion gas supplied from the gas holder 3 is used as fuel for a hot water boiler 5 as a digester heating device, and the hot water heated by the hot water boiler 5 is used as a heat exchanger 7. And used as a heating source for the heating medium enclosed in the heating jacket of the digester 1.

更に、前記消化ガスの他の一部は上述の余剰ガス利用装置6の燃料として利用され、残りの消化ガスを、消化ガス精製装置4によって精製するような消化ガス利用システムを構成している。前記消化ガス精製装置4は、図1に示す如く脱硫後の消化ガスをガスホルダー3から流路L1を経て供給され、あるいはまた、図2に示す如く脱硫前の消化ガスを流路L1を経て直接供給される。   Further, another part of the digestion gas is used as a fuel for the above-described surplus gas utilization device 6, and a digestion gas utilization system in which the remaining digestion gas is purified by the digestion gas purification device 4 is configured. The digestion gas purification apparatus 4 is supplied with the digested gas after desulfurization from the gas holder 3 through the flow path L1 as shown in FIG. 1, or alternatively, the digestion gas before desulfurization is supplied through the flow path L1 as shown in FIG. Supplied directly.

そして、この消化ガス精製装置4によって高濃度のメタンとして精製された後、夫々の流路L2を経て精製ガスタンク8へ供給するよう接続されている。本発明に係る消化ガス精製方法およびその精製装置は、このような消化ガス利用システムにおける消化ガス精製方法およびその精製装置4に関するものである。   And after refine | purifying as high concentration methane by this digestion gas refiner | purifier 4, it connects so that it may supply to the refined gas tank 8 via each flow path L2. The digestion gas purification method and the purification apparatus thereof according to the present invention relate to the digestion gas purification method and the purification apparatus 4 thereof in such a digestion gas utilization system.

次に、本発明の実施形態1に係る消化ガス精製方法およびその精製装置4について、図3を用いて説明する。この消化ガス精製装置4において、消化ガスは前記ガスホルダーまたは消化槽から流路L1を経て供給され、ミストセパレータ401によってガス中のミスト(水滴)、ダストが除去された後、直列接続された気体昇圧手段であるガス圧縮機402a,402bによって大気圧より高い所定の圧力まで昇圧される。   Next, the digestion gas purification method and its purification apparatus 4 according to Embodiment 1 of the present invention will be described with reference to FIG. In this digestion gas purification apparatus 4, digestion gas is supplied from the gas holder or digestion tank through the flow path L1, and after the mist (water droplets) and dust in the gas are removed by the mist separator 401, the gas connected in series. The pressure is increased to a predetermined pressure higher than the atmospheric pressure by the gas compressors 402a and 402b which are pressure increasing means.

前記ガス圧縮機402a,402bによって昇圧された消化ガスは、吸収塔404の下部に導入される。一方、吸収塔404には、その上部から水が液体昇圧手段である吸収水ポンプ408によって昇圧された状態で、後述するように循環供給されるようになっている。   The digestion gas pressurized by the gas compressors 402 a and 402 b is introduced into the lower part of the absorption tower 404. On the other hand, the absorption tower 404 is circulated and supplied as described later in a state where water is pressurized from the upper part by an absorption water pump 408 which is a liquid booster.

このように、気体昇圧手段であるガス圧縮機402a,402bにより消化ガスを昇圧して吸収塔404内へその下部より送り込むとともに、液体昇圧手段である吸収水ポンプ408により水を昇圧して吸収塔404内へその上部より送り込むことにより、吸収塔404内を0.55〜2.0MPaGの範囲を満たす高圧状態に保持し、吸収塔404内において消化ガスと水とを前記圧力範囲を満たす高圧状態で接触させるようにしている。尚、吸収塔404内には、消化ガスと水とを十分に接触させるためにラシヒリング等の充填物が充填されている。   As described above, the digestion gas is boosted by the gas compressors 402a and 402b which are gas boosting means and fed into the absorption tower 404 from below, and the water is boosted by the absorption water pump 408 which is the liquid boosting means to absorb the absorption tower. The inside of the absorption tower 404 is maintained in a high pressure state that satisfies the range of 0.55 to 2.0 MPaG by feeding it into the upper part 404, and the digestion gas and water are maintained in the high pressure state that satisfies the pressure range in the absorption tower 404. To make contact. The absorption tower 404 is filled with a packing such as Raschig ring in order to bring the digestion gas and water into sufficient contact.

このように、吸収塔404内を0.55〜2.0MPaGの範囲を満たす高圧状態に保持し、吸収塔404内において前記消化ガスと水とを前記圧力範囲を満たす高圧状態で接触させることにより、前記消化ガス中に気体状態で含まれていた二酸化炭素及び硫黄系不純物(HS等)は、高圧の水に溶解して吸収される一方、メタンは、高圧の水にほとんど溶解することなく、吸収塔404の頂部から取り出される。 Thus, by holding the inside of the absorption tower 404 in a high pressure state satisfying the range of 0.55 to 2.0 MPaG, and bringing the digestion gas and water into contact in the absorption tower 404 in a high pressure state satisfying the pressure range. Carbon dioxide and sulfur impurities (H 2 S, etc.) contained in the digestion gas in a gaseous state are dissolved and absorbed in high-pressure water, while methane is almost dissolved in high-pressure water. And is taken out from the top of the absorption tower 404.

また同時に、下水汚泥消化ガス中に含まれていたシロキサン化合物は、高圧状態のため気体状態から凝縮して液滴状態となり、この液滴状態にて、吸収塔内部を流下する高圧の水と衝突し、水とともに吸収塔404の底部に溜まることになる。   At the same time, the siloxane compound contained in the sewage sludge digestion gas is condensed from the gas state into a droplet state due to the high pressure state, and collides with the high pressure water flowing down inside the absorption tower in this droplet state. Then, it collects at the bottom of the absorption tower 404 together with water.

このように、下水汚泥消化ガスを精製するに際し、消化ガスと水とを0.55〜2.0MPaGの範囲を満たす高圧状態で接触させることが好ましい。この範囲より低圧力雰囲気では、二酸化炭素,硫黄系不純物(HS等)、シロキサン化合物が十分に分離除去されず、また、この範囲より高圧力雰囲気にしても二酸化炭素、硫黄系不純物(HS等)、シロキサン化合物の除去率がそれほど向上せず、運転コストや、高圧化仕様による装置コストの増加などの点から好ましくない。尚、シロキサン化合物の除去、運転コスト及び装置コストの点から、消化ガスと水とを0.7MPaG以上1.0MPaG未満の範囲を満たす高圧状態で接触させることがより好ましい。 Thus, when refine | purifying sewage sludge digestion gas, it is preferable to make digestion gas and water contact in the high pressure state which satisfy | fills the range of 0.55-2.0 MPaG. In an atmosphere at a lower pressure than this range, carbon dioxide, sulfur-based impurities (H 2 S, etc.) and siloxane compounds are not sufficiently separated and removed, and even in an atmosphere at a higher pressure than this range, carbon dioxide and sulfur-based impurities (H 2 S, etc.), without removal rate much improved siloxane compound, operating costs and is not preferred in view of increased cost of the apparatus due to high pressure specifications. In addition, it is more preferable to make digestion gas and water contact in the high-pressure state which satisfy | fills the range of 0.7 MPaG or more and less than 1.0 MPaG from the point of removal of a siloxane compound, an operating cost, and an apparatus cost.

このように分離除去された二酸化炭素、硫黄系不純物(HS等)が溶解するとともに、分離除去されたシロキサン化合物を含む水は、吸収塔404の底部から吸収水として排出され、弁V10を介して放散塔412の上部に導入される。 The carbon dioxide and sulfur impurities (H 2 S, etc.) separated and removed in this manner are dissolved, and water containing the separated siloxane compound is discharged as absorbed water from the bottom of the absorption tower 404, and the valve V10 is discharged. And introduced into the upper part of the stripping tower 412.

ここで、前記吸収塔404から抜き出され、弁V10を介して前記放散塔412へ導入される吸収水の流路は、放散塔412一次側において、この吸収水を、放散塔412を経て吸収塔404へ循環させる循環流路L15aと、前記吸収水を系外に排水する排水流路L16とに分岐されている。この分岐流路に、これら循環流路L15aと排水流路L16とを切り換えるため第1流路切換手段421が設けられ、後述するような条件によって流路を切り換えるよう構成されている。   Here, the flow path of the absorption water extracted from the absorption tower 404 and introduced into the diffusion tower 412 through the valve V10 absorbs the absorbed water through the diffusion tower 412 on the primary side of the diffusion tower 412. It is branched into a circulation channel L15a that circulates to the tower 404 and a drain channel L16 that drains the absorbed water out of the system. The branch channel is provided with a first channel switching means 421 for switching between the circulation channel L15a and the drain channel L16, and is configured to switch the channel according to conditions described later.

そして、前記放散塔412において、吸収塔404から抜き出され循環流路L15aを通過した吸収水は、上部から導入される一方、下部からは排気ブロワ413によって放散用ガス(例えば大気)が導入され、大気圧において両者が向流接触する。これにより、吸収塔から抜き出された吸収水に含まれていた二酸化炭素、硫黄系不純物およびシロキサン化合物は放散用ガス側に移行し、放散用ガスとともに放散塔412の頂部から排出され、流路L14を経て必要に応じて脱臭設備へ導かれる。   In the diffusion tower 412, the absorption water extracted from the absorption tower 404 and passing through the circulation flow path L15a is introduced from the upper part, while the emission gas (for example, the atmosphere) is introduced from the lower part by the exhaust blower 413. Both are in countercurrent contact at atmospheric pressure. Thereby, the carbon dioxide, sulfur impurities and siloxane compound contained in the absorption water extracted from the absorption tower are transferred to the emission gas side and are discharged from the top of the emission tower 412 together with the emission gas. It is led to deodorizing equipment as needed via L14.

同時に、前記放散塔412内で二酸化炭素等を除去されて再生された吸収水は、放散塔412の底部から抜き出される。この吸収水流路は、前記吸収水を液体昇圧手段である吸収水ポンプ408により再昇圧して、前記吸収塔404へ供給させる循環流路L15bと、系外から吸収水を供給するための給水流路L17aとに分岐されている。この分岐流路に、これら循環流路L15bと給水流路L17aとを切り換えるため第2流路切換手段422が設けられ、後述するような条件によって流路を切り換えるよう構成されている。   At the same time, the absorbed water regenerated by removing carbon dioxide and the like in the stripping tower 412 is extracted from the bottom of the stripping tower 412. The absorption water flow path includes a circulation flow path L15b for repressurizing the absorption water by an absorption water pump 408 as a liquid pressure increase means and supplying the absorption water to the absorption tower 404, and a water supply flow for supplying absorption water from outside the system. Branches to the road L17a. The branch flow path is provided with a second flow path switching means 422 for switching between the circulation flow path L15b and the water supply flow path L17a, and is configured to switch the flow path according to conditions described later.

前記第2流路切換手段422が循環流路L15b側に切り換えられた場合は、吸収水は液体昇圧手段である吸収水ポンプ408により再昇圧され、循環流路L15c,L15dを経て吸収塔404へ供給される。また、給水流路L17a側に切り換えられた場合は、給水ポンプ407によって給水槽406から吸収水が補給され、液体昇圧手段である吸収水ポンプ408により昇圧されて、循環流路L15c,L15dを経て吸収塔404へ供給される。   When the second flow path switching means 422 is switched to the circulation flow path L15b side, the absorbed water is boosted again by the absorption water pump 408, which is a liquid boosting means, and passes through the circulation flow paths L15c and L15d to the absorption tower 404. Supplied. In addition, when the water supply channel L17a is switched, the absorption water is replenished from the water supply tank 406 by the water supply pump 407, the pressure is increased by the absorption water pump 408 which is a liquid pressure increasing means, and the circulation channels L15c and L15d are passed through. It is supplied to the absorption tower 404.

尚、前記第1流路切換手段421は、放散塔412一次側の循環流路L15aに設けた例で示したが、放散塔412二次側の循環流路L15b上の第2流路切換手段422前段に設けても良い。   Although the first flow path switching means 421 is shown in the example provided in the circulation flow path L15a on the primary side of the diffusion tower 412, the second flow path switching means on the circulation flow path L15b on the secondary side of the diffusion tower 412 is shown. 422 may be provided upstream.

一方、吸収水をこの消化ガス精製装置外から供給するための給水槽406には、給水の水温を検出するための給水温検出器424が設けられている。そして、前記給水温検出器424によって検出された給水水温が、図示しない制御器内の演算回路に予め設定された設定温度より低い場合は、前記制御器の指令信号により前記第1流路切換手段421を作動させ、前記吸収水を排水流路L16から系外へ排水させるとともに、前記第2流路切換手段を作動させ、吸収水を消化ガス精製系外からの給水に切り換える(一過式)。   On the other hand, a water supply tank 406 for supplying absorbed water from outside the digestion gas purifier is provided with a water supply temperature detector 424 for detecting the temperature of the water supply. When the feed water temperature detected by the feed water temperature detector 424 is lower than a preset temperature preset in an arithmetic circuit in a controller (not shown), the first flow path switching means is generated by a command signal from the controller. 421 is operated to drain the absorbed water from the drainage channel L16 to the outside of the system, and the second channel switching means is operated to switch the absorbed water to the feed water from outside the digestion gas purification system (transient type). .

前記設定温度としては、例えば25℃とするのが好ましく、20℃とするのが更に好ましい。この理由は、吸収水温度と精製ガスメタン濃度に関する実験データから、精製ガスメタン濃度は、吸収水温度が25℃のとき概ね97容量%以上であり、吸収水温度が20℃のとき概ね98容量%以上であるからである。   As said preset temperature, it is preferable to set it as 25 degreeC, for example, and it is still more preferable to set it as 20 degreeC. The reason for this is that, based on the experimental data on the absorbed water temperature and the purified gas methane concentration, the purified gas methane concentration is approximately 97% by volume or higher when the absorbed water temperature is 25 ° C, and is approximately 98% by volume or higher when the absorbed water temperature is 20 ° C. Because.

また逆に、前記給水温検出器424によって検出された給水水温が前記設定温度を越える場合は、前記制御器の指令信号により前記第1流路切換手段421および第2流路切換手段422を作動させ、前記吸収水は、夫々循環流路L15aおよびL15b側に切り換えられて吸収水ポンプ408に導入される。   Conversely, when the feed water temperature detected by the feed water temperature detector 424 exceeds the set temperature, the first flow path switching means 421 and the second flow path switching means 422 are actuated by a command signal from the controller. The absorbed water is switched to the circulation flow paths L15a and L15b, respectively, and introduced into the absorbed water pump 408.

そして、前記吸収水は、この吸収水ポンプ408により昇圧されて循環流路L15cから冷却器414へ至り、この冷却器414を構成する熱交換器409とチラー410によって、熱交換器409にてチラー410からのブラインとの間で熱交換して所定の温度まで冷却された後、循環流路L15dを経て吸収塔404の上部に供給される(循環式)。   The absorption water is boosted by the absorption water pump 408 and reaches the cooler 414 from the circulation flow path L15c. The heat exchanger 409 and the chiller 410 constituting the cooler 414 allow the chiller to move to the chiller. After the heat exchange with the brine from 410 is cooled to a predetermined temperature, it is supplied to the upper part of the absorption tower 404 via the circulation flow path L15d (circulation type).

上記において、吸収塔404に供給される吸収水の品質を維持するために、定期的に弁V13を開弁することが望ましい。これによって吸収水を一部抜き出し、抜き出された水は、流路L13を経て排水処理設備へ送られるようになっている。この抜き出しによって吸収水量が所定量以下になった場合は、給水ポンプ407により給水流路L17b上の弁V14を開弁して不足分の水を給水槽406から補給する。   In the above, in order to maintain the quality of the absorption water supplied to the absorption tower 404, it is desirable to open the valve V13 periodically. As a result, a part of the absorbed water is extracted, and the extracted water is sent to the wastewater treatment facility via the flow path L13. When the amount of absorbed water becomes equal to or less than a predetermined amount due to this extraction, the water supply pump 407 opens the valve V14 on the water supply flow path L17b to supply the insufficient water from the water supply tank 406.

このとき用いられる水としては、下水等の排水を処理して得られる処理水が挙げられ、この実施形態では、下水処理場の最終沈殿池の下流に設けられている処理水の砂ろ過設備からの砂ろ過水を利用するようにしている。なお、水道水、あるいは井水を利用することも可能である。   The water used at this time includes treated water obtained by treating wastewater such as sewage, and in this embodiment, from the sand filtration facility of treated water provided downstream of the final sedimentation basin of the sewage treatment plant. The sand filtration water is used. It is also possible to use tap water or well water.

一方、吸収塔404の頂部から取り出された高濃度のメタンを有する精製ガスは、除湿器405に送られる。除湿器405は、この実施形態では圧力スイング吸着法(PSA法)により水分を吸着除去する除湿器であり、合成ゼオライトを吸着剤とするものである。除湿器405による除湿の目的は、精製ガスを燃料として使用(利用)するときの圧力においても結露することがないようにするためである。   On the other hand, the purified gas having a high concentration of methane taken out from the top of the absorption tower 404 is sent to the dehumidifier 405. In this embodiment, the dehumidifier 405 is a dehumidifier that adsorbs and removes moisture by a pressure swing adsorption method (PSA method), and uses synthetic zeolite as an adsorbent. The purpose of dehumidification by the dehumidifier 405 is to prevent condensation even at a pressure when the purified gas is used (utilized) as fuel.

吸収塔404から取り出された精製ガスの圧力は、例えば0.9MPaGであり(吸収塔404内の圧力が0.9MPaGの場合)、この精製ガスに対して、例えば天然ガス自動車の燃料として使用するときの圧力19.6MPaGにおいても結露することがないように、大気圧における露点に換算して露点が−60℃以下、より好ましくは−70℃以下、特に好ましくは−80℃以下となるように、除湿器405による除湿が施される。   The pressure of the purified gas taken out from the absorption tower 404 is, for example, 0.9 MPaG (when the pressure in the absorption tower 404 is 0.9 MPaG), and the purified gas is used, for example, as fuel for a natural gas vehicle. The dew point is -60 ° C or less, more preferably -70 ° C or less, and particularly preferably -80 ° C or less in terms of the dew point at atmospheric pressure so that no dew condensation occurs even at a pressure of 19.6 MPaG. Dehumidification by the dehumidifier 405 is performed.

このように、燃料として使用するときの圧力においても結露することがないように除湿器405によって除湿された精製ガスが、流路L2を経て図1または図2に示した精製ガスタンク8に送られるようになっている。   As described above, the purified gas dehumidified by the dehumidifier 405 so as not to condense even at the pressure when used as fuel is sent to the purified gas tank 8 shown in FIG. 1 or 2 through the flow path L2. It is like that.

以上の如く、本発明の実施の形態1に係る消化ガス利用システムにおける消化ガス精製方法およびその精製装置は、吸収塔より高圧水吸収法によってメタンを高濃度化した精製ガスを得るとともに、前記消化ガス精製系外から供給される給水水温が低い時期では、前記吸収塔から排出された吸収水を系外に排水させる前記一過式に、また、前記給水水温が高い時期では、前記給水を冷却した後前記吸収塔へ供給させる前記循環式に切り換える消化ガス精製方法およびその精製装置であるので、気温の低い時は消化ガス精製装置に供給可能な消化ガス量が少ないため一過式に切り換え、年間を通して前記消化ガスを低コストに精製し、かつ得られる精製ガスのメタン濃度を一定に維持することが可能となる。   As described above, the digestion gas purification method and the purification apparatus thereof in the digestion gas utilization system according to Embodiment 1 of the present invention obtain purified gas having a high concentration of methane by a high-pressure water absorption method from the absorption tower, and the digestion gas When the feed water temperature supplied from outside the gas purification system is low, the absorption water discharged from the absorption tower is drained outside the system, and when the feed water temperature is high, the feed water is cooled. After that, because the digestion gas purification method and its purification apparatus are switched to the circulation type to be supplied to the absorption tower, when the temperature is low, the digestion gas purification apparatus has a small amount of digestion gas that can be supplied to the digestion gas purification apparatus. Through the year, the digestion gas can be purified at a low cost, and the methane concentration of the purified gas obtained can be maintained constant.

次に、本発明の実施の形態2に係る消化ガス利用システムにおける消化ガス精製方法およびその精製装置を、図4を参照しながら以下説明する。図4は、図1および図2に例示した消化ガス利用システムにおける消化ガス精製方法とその精製装置の実施の形態2を説明するためのフロー図である。   Next, a digestion gas purification method and a purification apparatus thereof in a digestion gas utilization system according to Embodiment 2 of the present invention will be described below with reference to FIG. FIG. 4 is a flowchart for explaining a digestion gas purification method and a purification apparatus according to Embodiment 2 in the digestion gas utilization system exemplified in FIGS. 1 and 2.

尚、本発明の実施の形態2が上記実施の形態1と相違するところは、前記吸収塔404から排出される吸収水を減圧タンク411にて後処理する所に相違があり、その他は同構成であるから、上記実施の形態1と同一のものに同一符号を付して、その相違する点について以下説明する。   The second embodiment of the present invention is different from the first embodiment in that the absorbed water discharged from the absorption tower 404 is post-treated in the decompression tank 411, and the rest is the same configuration. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be described below.

即ち、本発明の実施の形態2に係る消化ガス利用システムにおける消化ガス精製方法およびその精製装置は、図4のフロー図に示す如く、二酸化炭素を溶解した吸収水は、吸収塔404の底部から抜き出された後、弁V10を介して減圧タンク411に導入される。この減圧タンク411内の圧力は、吸収塔404内に比べて減圧されている。   That is, in the digestion gas purification method and purification apparatus in the digestion gas utilization system according to Embodiment 2 of the present invention, as shown in the flowchart of FIG. 4, the absorbed water in which carbon dioxide is dissolved is fed from the bottom of the absorption tower 404. After being extracted, it is introduced into the decompression tank 411 through the valve V10. The pressure in the decompression tank 411 is reduced compared to that in the absorption tower 404.

そして、メタン回収率を高める目的で、吸収塔404の底部から抜き出された吸収水にわずかに溶解しているメタンは、ガスとして分離されて減圧タンク411の頂部から弁V11を介して、気体昇圧手段を構成するガス圧縮機402a,402bの中間段に戻されて、前記ガス圧縮機402aからの消化ガスに合流される、即ち、吸収塔前段において昇圧される消化ガスに還流させるようになっている。一方、このメタンが分離回収され、二酸化炭素,硫黄系不純物(HS等)が溶解し減圧された吸収水は、減圧タンク411の底部から弁V12を介して第1流路切換手段421へ至る(第1流路切換手段421が放散塔412二次側に設けられている場合は、放散塔412へ至る)。 For the purpose of increasing the methane recovery rate, the methane slightly dissolved in the absorption water extracted from the bottom of the absorption tower 404 is separated as a gas and gas is supplied from the top of the decompression tank 411 through the valve V11. The gas is returned to the intermediate stage of the gas compressors 402a and 402b constituting the pressure increasing means and merged with the digested gas from the gas compressor 402a, that is, recirculated to the digested gas whose pressure is increased in the front stage of the absorption tower. ing. Meanwhile, the methane is separated and recovered, and the absorbed water in which carbon dioxide and sulfur impurities (H 2 S and the like) are dissolved and decompressed is supplied from the bottom of the decompression tank 411 to the first flow path switching means 421 through the valve V12. (If the first flow path switching means 421 is provided on the secondary side of the diffusion tower 412, it reaches the diffusion tower 412).

そして、前記給水温検出器424によって検出された給水水温の温度信号が制御器に送信され、この制御器に内蔵された演算回路により、前記給水水温が予め設定された設定温度より低い場合は、前記制御器の指令信号により前記第1流路切換手段421を作動させ、前記吸収水を排水流路L16から系外へ排出させるとともに、前記第2流路切換手段422を作動させて吸収水を系外からの給水に切り換える(一過式)。前記排水流路L16から系外へ排出された吸収水は、気液分離槽425において気液分離され、分離された気体は排気流路L18より排気され、液体は排水流路L19より排水される。   And the temperature signal of the feed water temperature detected by the feed water temperature detector 424 is transmitted to the controller, and when the feed water temperature is lower than the preset temperature set by the arithmetic circuit built in the controller, In response to a command signal from the controller, the first flow path switching means 421 is operated to discharge the absorbed water from the drain flow path L16 to the outside of the system, and the second flow path switching means 422 is operated to supply the absorbed water. Switch to water supply from outside the system (one-time type). The absorbed water discharged from the drainage channel L16 to the outside of the system is gas-liquid separated in the gas-liquid separation tank 425, the separated gas is exhausted from the exhaust channel L18, and the liquid is drained from the drainage channel L19. .

一方、前記給水水温が予め設定された前記設定温度を越える場合は、前記制御器の指令信号により第1流路切換手段421を作動させ、前記吸収水を放散塔412の上部に導入する循環流路L15a側に切り換えるとともに、前記第2流路切換手段422を作動させて、最終的には循環流路L15b,L15c,l15dを経て吸収塔404へ供給する吸収水を前記放散塔412で再生された吸収水に切り換える(循環式)。   On the other hand, when the feed water temperature exceeds the preset set temperature, the first flow path switching means 421 is actuated by a command signal from the controller to introduce the absorbed water into the upper portion of the diffusion tower 412. In addition to switching to the path L15a side, the second flow path switching means 422 is operated, and finally the absorbed water supplied to the absorption tower 404 through the circulation flow paths L15b, L15c, and l15d is regenerated in the diffusion tower 412. Switch to the absorbed water (circulation type).

上記において、減圧タンク411から排出される吸収水を排水流路L16から系外に排出し、前記吸収塔404への吸収水として利用しない場合(一過式)、あるいは前記吸収水を放散塔412で再生させて前記吸収塔404の吸収水として利用する場合(循環式)の何れかを選択し、前記第2流路切換手段422の切換えを行うための基準となる前記設定温度は、前記第1流路切換手段421の設定温度と同一である。前記第1流路切換手段421および第2流路切換手段422の切換を同一条件で行わなければ、直ちに系内での吸収水の過不足が生じて精製装置の運転を継続できないからである。   In the above, when the absorption water discharged from the decompression tank 411 is discharged out of the system from the drainage channel L16 and not used as absorption water to the absorption tower 404 (transient type), or the absorption water 412 In the case of using the water as the absorption water of the absorption tower 404 (circulation type), the set temperature serving as a reference for switching the second flow path switching means 422 is selected as the reference temperature. This is the same as the set temperature of the one flow path switching means 421. This is because if the switching of the first flow path switching means 421 and the second flow path switching means 422 is not performed under the same conditions, an excess or shortage of absorbed water immediately occurs in the system, and the operation of the purification apparatus cannot be continued.

また、前記流路切換手段421,422が一過式に切り換えられた場合は、当然同時に、冷却器を構成するチラー410の運転も、制御器の指令により停止させるのが好ましい。このように、外気温が低く消化ガス精製装置4に供給可能な消化ガス量が少ない時期において、給水温度が低い場合に、消化ガス精製装置4の運転を前記循環式から一過式に切り換えることによって、不要機器の運転を停止して消費電力を低減し、年間を通じた運転コストの低下が図られるのである。   In addition, when the flow path switching means 421 and 422 are switched temporarily, it is naturally preferable that the operation of the chiller 410 constituting the cooler is also stopped at the command of the controller. In this way, when the feed water temperature is low at a time when the outside air temperature is low and the amount of digestion gas that can be supplied to the digestion gas purification device 4 is low, the operation of the digestion gas purification device 4 is switched from the circulation type to the transient type. As a result, the operation of unnecessary equipment is stopped to reduce the power consumption, and the operation cost can be reduced throughout the year.

前記流路切換手段421,422は、図3や図4に示す如く三方弁であるのが好ましいが、排水流路L16および循環流路L15a,L15b、給水流路L17aに夫々自動開閉弁を設けて前記流路切換手段421,422を構成し、前記制御器により開閉指令されて前記流路の流れを切り換えるのでも良い。   The flow path switching means 421 and 422 are preferably three-way valves as shown in FIG. 3 and FIG. 4, but automatic open / close valves are provided in the drain flow path L16, the circulation flow paths L15a and L15b, and the water supply flow path L17a, respectively. The flow path switching means 421 and 422 may be configured, and the flow of the flow path may be switched by an opening / closing command from the controller.

また、このような流路切換は、前記給水温検出器424によって検出された温度信号によって、制御器の指令により自動切換されるのではなく、例えば、11月〜4月の水温が低い時期は一過式とし、5月〜10月の水温が高い時期は循環式に、排水流路L16および循環流路L15a,L15b,給水流路L17aに夫々設けた手動バルブを手動切り替えする構成としても良い。   Further, such flow path switching is not automatically switched by a command from the controller based on the temperature signal detected by the feed water temperature detector 424. For example, when the water temperature is low from November to April. It may be configured to be a transient type, and manually switch over manual valves provided in the drainage flow path L16, the circulation flow paths L15a and L15b, and the water supply flow path L17a, respectively, during a period when the water temperature is high from May to October. .

以上、本発明に係る消化ガス利用システムにおける消化ガス精製方法およびその精製装置によれば、吸収塔より高圧水吸収法によってメタンを高濃度化した精製ガスを得るとともに、前記消化ガス精製系外から供給される給水水温が低い時期では、前記吸収塔から排出された吸収水を系外に排水させる一過式に、また、前記給水水温が高い時期では、前記吸収塔から排出された吸収水を再生させ、冷却した後前記吸収塔へ供給させる循環式に切り換えるので、年間を通して前記消化ガスを低コストに精製し、かつ得られる精製ガスのメタン濃度を一定に維持することが可能となる。   As described above, according to the digestion gas purification method and purification apparatus in the digestion gas utilization system according to the present invention, a purified gas having a high concentration of methane by a high-pressure water absorption method is obtained from an absorption tower, and from outside the digestion gas purification system. When the supplied water temperature is low, the absorption water discharged from the absorption tower is drained out of the system, and when the supply water temperature is high, the absorption water discharged from the absorption tower is discharged. Since it is switched to a circulation system that is regenerated and cooled and then supplied to the absorption tower, it is possible to purify the digestion gas at a low cost throughout the year and to maintain a constant methane concentration in the resulting purified gas.

また、この消化ガス精製方法およびその精製装置によれば、前記吸収塔内において、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離した後、次いで、この二酸化炭素を溶解した吸収水を減圧タンクに導入することによって、減圧された前記吸収水に溶解されたメタンガスを分離し、分離されたこのメタンを前記吸収塔前段において昇圧される前記消化ガスに還流させるとともに、メタンガス分離後の前記吸収水を放散塔に導入して溶解した二酸化炭素を除去するので、前記吸収水に溶解されたメタンを再度回収してメタンの回収率の向上が図られる。   Further, according to the digestion gas purification method and the purification apparatus, after the carbon dioxide contained in the digestion gas is dissolved in absorption water and separated from the digestion gas in the absorption tower, the carbon dioxide is then removed. By introducing the dissolved absorption water into the vacuum tank, the methane gas dissolved in the reduced absorption water is separated, and the separated methane is refluxed to the digestion gas pressurized in the front stage of the absorption tower, Since the absorbed water after methane gas separation is introduced into a diffusion tower to remove dissolved carbon dioxide, the methane dissolved in the absorbed water is recovered again to improve the recovery rate of methane.

本発明の実施形態1に係る消化ガス精製方法およびその精製装置が適用される消化ガス利用システムの全体構成例を示すフロー図である。It is a flowchart which shows the example of whole structure of the digestion gas utilization system to which the digestion gas refinement | purification method and its refiner | purifier which concern on Embodiment 1 of this invention are applied. 本発明の実施形態1に係る消化ガス精製方法およびその精製装置が適用される消化ガス利用システムの他の全体構成例を示すフロー図である。It is a flowchart which shows the other whole structure example of the digestion gas utilization system to which the digestion gas refinement | purification method and its refiner | purifier which concern on Embodiment 1 of this invention are applied. 消化ガス利用システムにおける消化ガス精製方法とその精製装置の実施の形態1を説明するためのフロー図である。It is a flowchart for demonstrating Embodiment 1 of the digestion gas purification method and its refinement | purification apparatus in a digestion gas utilization system. 消化ガス利用システムにおける消化ガス精製方法とその精製装置の実施の形態2を説明するためのフロー図である。It is a flowchart for demonstrating Embodiment 2 of the digestion gas purification method in the digestion gas utilization system, and its refinement | purification apparatus. 従来技術(特許文献2)に係る消化ガス精製装置を説明するための図であって、消化ガスを精製して精製メタンガスを得る消化ガス精製装置の構成を示すフロー図である。It is a figure for demonstrating the digestion gas refinement | purification apparatus which concerns on a prior art (patent document 2), Comprising: It is a flowchart which shows the structure of the digestion gas refinement | purification apparatus which refine | purifies digestion gas and obtains refined methane gas.

符号の説明Explanation of symbols

1…消化槽, 2…脱硫塔, 3…ガスホルダー,
4…消化ガス精製装置, 5…消化槽加温用機器(温水ボイラー),
6…余剰ガス利用装置, 7…熱交換器, 8…精製ガスタンク,
9…精製ガス利用装置,
401…ミストセパレータ,
402a,402b…気体昇圧手段(ガス圧縮機),
404…吸収塔, 405…除湿器, 406…給水槽,
407…給水ポンプ, 408…液体昇圧手段(吸収水ポンプ),
409…熱交換器, 410…チラー, 411…減圧タンク,
412…放散塔, 413…排気ブロワ, 414…冷却器,
421…第1流路切換手段(三方弁),422…第2流路切換手段(三方弁),
424…給水温検出器, 425…気液分離槽
1 ... digester, 2 ... desulfurization tower, 3 ... gas holder,
4 ... digestion gas purifier, 5 ... digester heating equipment (hot water boiler),
6 ... surplus gas utilization device, 7 ... heat exchanger, 8 ... purified gas tank,
9 ... Purified gas utilization device,
401 ... mist separator,
402a, 402b ... Gas pressure raising means (gas compressor),
404 ... Absorption tower, 405 ... Dehumidifier, 406 ... Water tank,
407 ... Water supply pump, 408 ... Liquid pressure raising means (absorption water pump),
409 ... heat exchanger, 410 ... chiller, 411 ... decompression tank,
412 ... diffusion tower, 413 ... exhaust blower, 414 ... cooler,
421 ... first flow path switching means (three-way valve), 422 ... second flow path switching means (three-way valve),
424 ... Feed water temperature detector, 425 ... Gas-liquid separation tank

Claims (5)

有機物を消化槽内で加温して嫌気性発酵させることにより得られた消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムにおいて、昇圧された前記消化ガスと昇圧された吸収水とを吸収塔内において接触させることにより、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離してメタンを高濃度化した精製ガスを得るとともに、消化ガス精製系外から供給される給水水温が予め設定された25℃以下の設定温度より低い時は、前記吸収塔から排出された吸収水を系外に排出させる一過式に、また、前記給水水温が前記設定温度より高い時は、前記吸収塔から排出され二酸化炭素を溶解した吸収水を放散塔に導入して溶解した二酸化炭素を除去して、この二酸化炭素が除去されて再生された吸収水を再昇圧して冷却した後前記吸収塔へ供給させる循環式に切り換えることを特徴とする消化ガス利用システムにおける消化ガス精製方法。 The digestion gas obtained by heating the organic matter in the digestion tank and anaerobic fermentation is purified at least partly or entirely after subtracting the amount used as fuel for the digester heating equipment. In a digestion gas utilization system using gas as a fuel for other purposes, carbon dioxide contained in the digestion gas is dissolved in absorption water by bringing the pressurized digestion gas and the pressurized absorption water into contact with each other in an absorption tower. To obtain a purified gas having a high concentration of methane separated from the digestion gas, and when the feed water temperature supplied from outside the digestion gas purification system is lower than a preset temperature of 25 ° C. or less , the absorption through once to discharge the absorbed water discharged from the column out of the system, when the water-supply water temperature is higher than the set temperature, and dissolved carbon dioxide is discharged from the absorption tower absorption The dissolved carbon dioxide is removed by introducing the gas into the stripping tower, and the absorption water regenerated by removing the carbon dioxide is re-pressurized and cooled, and then switched to a circulation type that is supplied to the absorption tower. A digestion gas purification method in a digestion gas utilization system. 昇圧された消化ガスと昇圧された吸収水とを接触させる前記吸収塔内において、前記消化ガスに含まれる二酸化炭素を吸収水に溶解させて前記消化ガスから分離した後、次いで、この二酸化炭素を溶解した吸収水を減圧タンクに導入することによって、減圧された前記吸収水に溶解されていたメタンガスを分離し、分離されたこのメタンを前記吸収塔前段において昇圧される前記消化ガスに還流させることを特徴とする請求項1記載の消化ガス利用システムにおける消化ガス精製方法。   In the absorption tower in which the pressurized digestion gas and the pressurized absorption water are brought into contact with each other, carbon dioxide contained in the digestion gas is dissolved in absorption water and separated from the digestion gas. By introducing the dissolved absorption water into the vacuum tank, the methane gas dissolved in the reduced absorption water is separated, and the separated methane is refluxed to the digestion gas pressurized in the front stage of the absorption tower. The digestion gas refinement | purification method in the digestion gas utilization system of Claim 1 characterized by these. 有機物を消化槽内で加温して嫌気性発酵させることにより得られた消化ガスの、少なくとも前記消化槽加温用機器の燃料としての利用分を差し引いた一部または全量を精製し、この精製ガスを他用途の燃料として用いる消化ガス利用システムにおいて、前記精製ガス
を得る消化ガス精製装置が、前記消化ガスを昇圧する気体昇圧手段と、この消化ガスに含まれる二酸化炭素を吸収させる吸収水を昇圧する液体昇圧手段と、これらの昇圧手段によって昇圧された消化ガスと吸収水とを塔内において接触させることにより、前記消化ガスに含まれる二酸化炭素を前記吸収水に溶解させて前記消化ガスから分離させてメタンを高濃度化した精製ガスを得る吸収塔と、この二酸化炭素を溶解した吸収水を導入して溶解した二酸化炭素を除去する放散塔と、この消化ガス精製装置外から消化ガス精製装置に供給される給水流路とを備えるとともに、前記吸収塔から抜き出された吸収水を前記放散塔を介して吸収塔へ循環させる循環流路と、前記吸収水を系外に排水する排水流路と、これら循環流路と排水流路とを切り換えるため前記放散塔の一次側もしくは二次側に設けられた第1流路切換手段と、前記吸収水を昇圧する液体昇圧手段の吸込側流路にあって、前記二酸化炭素の除去された吸収水の循環流路と、系外から供給される給水流路とを切り換えるため前記放散塔の二次側に設けられた第2流路切換手段と、前記循環流路にあってこの吸収水を冷却するための冷却器と、この消化ガス精製装置外から消化ガス精製装置に供給される給水流路にあってこの給水の水温を検出する給水温検出器と、検出された前記給水水温を予め設定された25℃以下の設定温度と比較する演算回路と前記第1および第2流路切換手段を制御する制御回路とを内蔵する制御器とを設け、この制御器によって、前記給水水温が前記設定温度より低い時は、前記第1流路切換手段を前記排水流路側に、かつ第2流路切換手段を前記給水流路側に、また、前記給水水温が前記設定温度より高い時は、前記第1および第2流路切換手段を前記循環流路側に切り換えるよう構成したことを特徴とする消化ガス利用システムにおける消化ガス精製装置。
The digestion gas obtained by heating the organic matter in the digestion tank and anaerobic fermentation is purified at least partly or entirely after subtracting the amount used as fuel for the digester heating equipment. In a digestion gas utilization system that uses gas as a fuel for other purposes, a digestion gas purification device that obtains the purified gas comprises gas boosting means for boosting the digestion gas, and absorption water that absorbs carbon dioxide contained in the digestion gas. By bringing the liquid pressurizing means to pressurize, and the digestion gas pressurized by these pressurizing means and the absorbed water in contact with each other in the tower, carbon dioxide contained in the digestive gas is dissolved in the absorbed water, and from the digested gas. Absorption tower that obtains purified gas with high concentration of methane by separation, and stripping tower that removes dissolved carbon dioxide by introducing absorbed water in which this carbon dioxide is dissolved A circulation flow path for supplying absorption water extracted from the absorption tower to the absorption tower via the diffusion tower, and a water supply flow path supplied to the digestion gas purification apparatus from outside the digestion gas purification apparatus A drainage channel for draining the absorbed water out of the system; a first channel switching means provided on the primary side or secondary side of the diffusion tower for switching between the circulation channel and the drainage channel; In the suction side flow path of the liquid pressure boosting means for boosting the absorption water, the two of the diffusion towers are switched to switch between the absorption water circulation path from which the carbon dioxide has been removed and the water supply path supplied from outside the system. A second flow path switching means provided on the secondary side, a cooler for cooling the absorbed water in the circulation flow path, and a feed water flow supplied from outside the digestion gas purification apparatus to the digestion gas purification apparatus Water temperature detection that detects the temperature of this water supply on the road When provided a controller incorporating a control circuit for controlling the operation circuit and said first and second channel switching means for comparing said detected set the water coolant temperature in advance has been 25 ° C. below the set temperature, When the feed water temperature is lower than the set temperature by the controller, the first channel switching means is on the drain channel side, the second channel switching means is on the water channel side, and the feed water temperature is When the temperature is higher than the set temperature, the digestion gas purification apparatus in the digestion gas utilization system is configured to switch the first and second flow path switching means to the circulation flow path side.
前記吸収塔から抜出された吸収水を循環させる循環流路に、前記吸収水に溶解されたメタンガスを分離する減圧タンクを介設し、この分離されたガスを前記吸収塔前段において昇圧される前記気体昇圧手段に還流させる還流流路を設けるよう構成したことを特徴とする請求項3記載の消化ガス利用システムにおける消化ガス精製装置。   A decompression tank for separating methane gas dissolved in the absorption water is provided in a circulation channel for circulating the absorption water extracted from the absorption tower, and the pressure of the separated gas is increased in the upstream stage of the absorption tower. The digestion gas refining apparatus in a digestion gas utilization system according to claim 3, wherein a reflux flow path for refluxing is provided in the gas pressurizing means. 前記第1流路切換手段および第2流路切換手段が三方弁であることを特徴とする請求項3または4記載の消化ガス利用システムにおける消化ガス精製装置。   The digestion gas purification apparatus in a digestion gas utilization system according to claim 3 or 4, wherein the first flow path switching means and the second flow path switching means are three-way valves.
JP2006240586A 2006-09-05 2006-09-05 Digestion gas purification method and purification apparatus in digestion gas utilization system Active JP5112665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006240586A JP5112665B2 (en) 2006-09-05 2006-09-05 Digestion gas purification method and purification apparatus in digestion gas utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006240586A JP5112665B2 (en) 2006-09-05 2006-09-05 Digestion gas purification method and purification apparatus in digestion gas utilization system

Publications (2)

Publication Number Publication Date
JP2008063393A JP2008063393A (en) 2008-03-21
JP5112665B2 true JP5112665B2 (en) 2013-01-09

Family

ID=39286383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006240586A Active JP5112665B2 (en) 2006-09-05 2006-09-05 Digestion gas purification method and purification apparatus in digestion gas utilization system

Country Status (1)

Country Link
JP (1) JP5112665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113945A (en) * 2013-02-01 2013-05-22 王仕华 Marsh gas purification system and marsh gas purification method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033829B2 (en) * 2008-08-27 2012-09-26 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP5600250B2 (en) * 2009-06-26 2014-10-01 大阪瓦斯株式会社 Fuel gas purification method and fuel gas purification system
US8876951B2 (en) * 2009-09-29 2014-11-04 Fluor Technologies Corporation Gas purification configurations and methods
CN101837227B (en) * 2010-04-28 2012-07-25 天津大学 Absorption liquid desorption method and device in methane purification system
FI124060B (en) * 2012-12-07 2014-02-28 Mikkelin Ammattikorkeakoulu Oy Methods and systems for collecting carbon dioxide from gas
CN103074136A (en) * 2013-01-16 2013-05-01 东莞新奥燃气有限公司 System and process method for producing natural gas by beer biogas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015334A (en) * 1996-07-03 1998-01-20 Mitsubishi Heavy Ind Ltd Refining of carbon dioxide gas and device therefor
JP2003320221A (en) * 2002-05-07 2003-11-11 Sanwa Engineering Kk Biogas refining method and biogas refining apparatus
JP2004083542A (en) * 2002-08-23 2004-03-18 Nittetu Chemical Engineering Ltd Process for purifying methane fermentation gas
JP2006036849A (en) * 2004-07-23 2006-02-09 Kobelco Eco-Solutions Co Ltd System for treating and utilizing biomass and method for treating and utilizing biomass gas
JP4088632B2 (en) * 2005-03-25 2008-05-21 神戸市 Gas purification method
JP4022555B2 (en) * 2005-07-25 2007-12-19 神戸市 Biogas purification method and biogas purification equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113945A (en) * 2013-02-01 2013-05-22 王仕华 Marsh gas purification system and marsh gas purification method
CN103113945B (en) * 2013-02-01 2015-04-08 王仕华 Marsh gas purification system and marsh gas purification method

Also Published As

Publication number Publication date
JP2008063393A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP4022555B2 (en) Biogas purification method and biogas purification equipment
JP5112665B2 (en) Digestion gas purification method and purification apparatus in digestion gas utilization system
KR100985911B1 (en) System for preprocessing of bio-gas
RU2508157C2 (en) Method and system of green gas cleaning, in particular, biogas for production of methane
CA2675833C (en) Method and plant for treating crude gas, in particular biogas, containing methane and carbon dioxide, in order to produce methane
RU2495706C2 (en) Method and system of biogas cleaning for methane extraction
JP2006036849A (en) System for treating and utilizing biomass and method for treating and utilizing biomass gas
EP2134446B1 (en) Biogas upgrading
JP2008062138A (en) Biogas refining method and system
JP4344773B1 (en) Digestion gas desulfurization method and apparatus
JP5492942B2 (en) Digestion gas deoxygenation method and apparatus
RU2480401C2 (en) Method and apparatus for regenerating amine-containing solution to wash incoming gas during purification
US10927008B2 (en) Method and device for upgrading of biogas and hydrogen production from anaerobic fermentation of biological material
AU2009311516A1 (en) Reabsorber for ammonia stripper offgas
KR20110117809A (en) Purification system of high purity biogas for fuel cell and purification method thereof
EP3386609B1 (en) Process and system for the purification of a gas
US20140096681A1 (en) System and method for treating natural gas that contains methane
KR101899600B1 (en) Apparatus for treating carbon dioxide
KR101604731B1 (en) Purification System of biogas and control method thereof
CN104667709A (en) Natural gas decarbonization treatment system
JP5112664B2 (en) Methane recovery method and digestion gas purification device
JP2010024443A (en) Method for desulfurizing digestion gas and desulfurizer therefor
CN110446688A (en) Biogas solidifies preprocess method
CN205055476U (en) Totally -enclosed coking tail gas processing apparatus
JP5248352B2 (en) Gas purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5112665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250