JP2012211213A - Method for refining biogas - Google Patents

Method for refining biogas Download PDF

Info

Publication number
JP2012211213A
JP2012211213A JP2011076267A JP2011076267A JP2012211213A JP 2012211213 A JP2012211213 A JP 2012211213A JP 2011076267 A JP2011076267 A JP 2011076267A JP 2011076267 A JP2011076267 A JP 2011076267A JP 2012211213 A JP2012211213 A JP 2012211213A
Authority
JP
Japan
Prior art keywords
hydrogen
biogas
gas
methane
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011076267A
Other languages
Japanese (ja)
Inventor
Noriko Osaka
典子 大坂
Toru Matsui
徹 松井
Tsuneki Nagai
恒輝 永井
Shiho Mizuno
志穂 水野
Yoshito Umeda
良人 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2011076267A priority Critical patent/JP2012211213A/en
Publication of JP2012211213A publication Critical patent/JP2012211213A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Treatment Of Sludge (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biogas refining technology suitable for the case where a biogas is injected into a city gas conduit.SOLUTION: A gas from a methane fermentation tank 4 is once stored in a storage tank 9, and thereafter mixed with a gas containing hydrogen from a storage tank 3a, and introduced to a refining apparatus 5. The mixed gas is brought into counterflow contact with water sprayed from an absorption tower (not shown) upper part in a high pressure state. The mixed gas in the absorption tower is separated according to the differences in solubility to water. Carbon dioxide and sulfur-based impurities are absorbed in water, and methane, hydrogen and oxygen are not absorbed but exit the refining apparatus 5 as gases. Siloxane compounds condense in the high-pressure state, and accompany the high-pressure water and are collected in the lower part of the absorption tower and removed. A biogas from the refining apparatus 5 is introduced to an oxygen removal apparatus 6. Hydrogen and oxygen are catalytically burned in a reactor and removed, only methane is introduced to a heat quantity regulator 7, and the heat quantity regulation is carried out according to the city gas supply rule. The heat-regulated gas is pressure-regulated and then injected in a gas conduit L0 and injected in conduit.

Description

本発明はバイオガスの精製方法に係り、特に、精製バイオガスを都市ガス導管に注入する場合に好適なバイオガスの精製方法に関する。   The present invention relates to a biogas purification method, and more particularly to a biogas purification method suitable for injecting purified biogas into a city gas conduit.

近年、再生可能な新エネルギーとして、下水汚泥等のバイオマスを嫌気性微生物により発酵させて、生成するバイオガスの精製により得られるメタンを発電やボイラー燃料として利用する技術が注目されている。さらに、バイオガスを都市ガス導管に注入して供給する技術も提案されている(例えば特許文献1、2)。
都市ガス導管に注入する場合には、メタン以外の不純物成分について供給上許容される濃度以下に抑えることが必要となる。特許文献1のバイオガス供給システム100は、図4に示すように天然ガス導管104から分岐、導入する供給ガスを、精製装置101、熱量調整装置102において精製・熱調したバイオガスと混合させてミキシングタンク103に一旦貯蔵し、導管104に注入するものである。精製後バイオガスの不純物濃度に対応して、バルブ105により導入供給ガスと精製バイオガスの混合比を調整して、注入ガスの不純物濃度を所定基準値以下となるように制御する。
2. Description of the Related Art In recent years, as a new renewable energy, attention has been paid to a technique of fermenting biomass such as sewage sludge with anaerobic microorganisms and using methane obtained by refining the produced biogas as power generation or boiler fuel. Furthermore, techniques for injecting and supplying biogas into city gas conduits have also been proposed (for example, Patent Documents 1 and 2).
When injecting into city gas conduits, it is necessary to keep the impurity components other than methane below the allowable concentration for supply. In the biogas supply system 100 of Patent Document 1, the supply gas branched and introduced from the natural gas conduit 104 as shown in FIG. 4 is mixed with the biogas purified and adjusted in the purification device 101 and the calorific value adjustment device 102. It is temporarily stored in the mixing tank 103 and injected into the conduit 104. Corresponding to the impurity concentration of the purified biogas, the mixing ratio of the introduced supply gas and the purified biogas is adjusted by the valve 105 to control the impurity concentration of the injected gas to be equal to or lower than a predetermined reference value.

バイオガスは、一般にメタン以外に二酸化炭素を主成分とし、不純物として微量の硫化水素、シロキサン、酸素等が含まれるため、不純物のうち、二酸化炭素は化学吸収、PSA、高圧水吸収等により除去する。また、硫化水素は、活性炭や酸化鉄を用いて除去可能である。シロキサンは、特に下水汚泥メタン由来のバイオガスに含まれており、活性炭や高圧水吸収により除去可能である。
酸素は、高圧水吸収による精製過程における溶存酸素や配管等からの漏入に由来するものであり、系外から水素を添加して触媒燃焼反応により除去する方法が開示されている(例えば特許文献2)。
Biogas generally contains carbon dioxide as a main component in addition to methane, and contains trace amounts of hydrogen sulfide, siloxane, oxygen, etc., so carbon dioxide is removed by chemical absorption, PSA, high-pressure water absorption, etc. . Hydrogen sulfide can be removed using activated carbon or iron oxide. Siloxane is particularly contained in biogas derived from sewage sludge methane, and can be removed by activated carbon or high-pressure water absorption.
Oxygen is derived from dissolved oxygen in the purification process by high-pressure water absorption or leakage from pipes, etc., and a method of adding hydrogen from outside the system and removing it by catalytic combustion reaction is disclosed (for example, patent document) 2).

なお、バイオガス生成における水素発酵工程に関しては、食品廃棄物を水素発酵処理及びメタン発酵処理を2段階で進めることにより、水素・酸生成、メタン生成を効率的に進行させ、有機物のガス化効率を向上させる方法が提案されている(特許文献3)。   Regarding the hydrogen fermentation process in biogas production, the hydrogen fermentation process and methane fermentation process of food waste are promoted in two stages, so that hydrogen / acid production and methane production are efficiently advanced, and the gasification efficiency of organic matter is improved. Has been proposed (Patent Document 3).

特開2010−59416号公報JP 2010-59416 A 特開2004−300206号公報JP 2004-300206 A 特開2006−255538号公報JP 2006-255538 A

しかしながら、系外からの水素添加については、水素供給装置や水電解装置等の水素供給設備を必要とし、設備コスト及びランニングコストが課題となる。
また、特許文献3の技術は系内で水素生成を伴うものであるが、生成水素をボイラー燃料、燃料電池用燃料等に用いることを目的とするものであり、バイオガス中に含まれる不純物酸素除去を目的とするものではない。
However, hydrogen addition from outside the system requires a hydrogen supply facility such as a hydrogen supply device or a water electrolysis device, and the facility cost and running cost become problems.
Moreover, although the technique of patent document 3 is accompanied by hydrogen production | generation in a system, it aims at using produced | generated hydrogen for boiler fuel, fuel for fuel cells, etc., and the impurity oxygen contained in biogas It is not intended for removal.

本発明は、バイオマスの水素発酵で発生する水素を酸素除去に用いることにより、効率的かつ低コストのバイオガス精製技術を提供するものである。
本発明は、以下の内容を要旨とする。すなわち、本発明に係るバイオガスの精製方法は、
(1)バイオガスの精製方法であって、原料バイオマスを水素発酵させて、水素ガス及び二酸化炭素を主成分とするガスを生成させる水素発酵工程と、水素発酵工程を経たバイオマスをメタン発酵させて、メタン及び二酸化炭素を主成分とするバイオガスを生成するメタン発酵工程と、メタン発酵工程を経たバイオガスに水素発酵工程を経た水素ガスを含むガスを添加する水素ガス添加工程と、水素ガス添加工程を経たバイオガスから二酸化炭素及びその他の不純物を除去する不純物除去工程と、不純物除去工程を経たバイオガス中の水素と酸素を反応させて、不純物である酸素を除去する酸素除去工程と、を含むことを特徴とする。
The present invention provides an efficient and low-cost biogas purification technique by using hydrogen generated by hydrogen fermentation of biomass for oxygen removal.
The gist of the present invention is as follows. That is, the biogas purification method according to the present invention comprises:
(1) A method for purifying biogas, in which raw material biomass is fermented with hydrogen to produce a gas mainly composed of hydrogen gas and carbon dioxide, and biomass that has undergone the hydrogen fermentation process is fermented with methane. , A methane fermentation process for producing biogas mainly composed of methane and carbon dioxide, a hydrogen gas addition process for adding a gas containing hydrogen gas that has undergone a hydrogen fermentation process to a biogas that has undergone a methane fermentation process, and hydrogen gas addition An impurity removal step of removing carbon dioxide and other impurities from the biogas that has undergone the process, and an oxygen removal step of removing oxygen, which is an impurity, by reacting hydrogen and oxygen in the biogas that has undergone the impurity removal step. It is characterized by including.

(2)前記メタン発酵工程を経たバイオガスの発生量に対応して、前記水素発酵工程の滞留時間を制御することを特徴とする。 (2) The residence time of the hydrogen fermentation process is controlled corresponding to the amount of biogas generated through the methane fermentation process.

(3)前記酸素除去工程において、除去後の精製バイオガス中の酸素残留濃度が所定の基準値を超えるときは、前記水素発酵工程により得られる水素ガスに加えて、さらに系外からの水素ガスを添加することを特徴とする。 (3) In the oxygen removal step, when the residual oxygen concentration in the purified biogas after removal exceeds a predetermined reference value, in addition to the hydrogen gas obtained by the hydrogen fermentation step, further hydrogen gas from outside the system Is added.

本発明によれば、バイオガス中の酸素除去において、外部からの水素供給を不要又は最小限に抑えることができ、設備コスト及びランニングコストの低減化が可能という効果がある。   ADVANTAGE OF THE INVENTION According to this invention, in the oxygen removal in biogas, the hydrogen supply from the outside can be made unnecessary or minimized, and there exists an effect that an installation cost and a running cost can be reduced.

第一の実施形態に係るバイオガス精製システム1の構成を示す図である。It is a figure which shows the structure of the biogas purification system 1 which concerns on 1st embodiment. 第一の実施形態の水素発酵槽滞留時間制御のフローを示す図である。It is a figure which shows the flow of hydrogen fermenter residence time control of 1st embodiment. 第二の実施形態に係るバイオガス精製システム20の構成を示す図である。It is a figure which shows the structure of the biogas purification system 20 which concerns on 2nd embodiment. 従来のバイオガス精製システム100の構成を示す図である。It is a figure which shows the structure of the conventional biogas purification system.

以下、本発明の実施形態について、図1乃至3を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。   Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.

<第一の実施形態>
図1は、本発明の一実施形態に係るバイオガス精製システム1の構成を示す図である。
バイオガス精製システム1の精製系統は、前処理槽2と、水素発酵槽3と、メタン発酵槽4と、精製装置5と、酸素除去装置6と、熱量調整装置7と、貯留タンク3a、貯留タンク9と、を主要構成として備えている。各装置間は配管L1−L8で接続されている。さらに、水素発酵槽3において生成した水素ガスをメタン発酵槽4出ガスと混合させるための配管L8と、精製ガスを都市ガス導管L0に注入するための配管L8と、を備えている。
また、制御系統は、メタン発酵槽出ガスの流量を計測する流量計S1と、水素発酵槽3における液状又はスラリー状の発酵残渣をメタン発酵槽4に送入するための送入装置10(例えばスラリーポンプ等)と、流量計S1の計測値に基づいて送入装置10に稼働指令して、水素発酵槽3における滞留時間を制御する制御部8と、を主要構成として備えている。
<First embodiment>
FIG. 1 is a diagram showing a configuration of a biogas purification system 1 according to an embodiment of the present invention.
The purification system of the biogas purification system 1 includes a pretreatment tank 2, a hydrogen fermentation tank 3, a methane fermentation tank 4, a purification apparatus 5, an oxygen removal apparatus 6, a calorific value adjustment apparatus 7, a storage tank 3a, and a storage tank. A tank 9 is provided as a main component. Each apparatus is connected by piping L1-L8. Furthermore, the piping L8 for mixing the hydrogen gas produced | generated in the hydrogen fermenter 3 with the methane fermentation tank 4 output gas, and the piping L8 for inject | pouring refined gas into the city gas conduit L0 are provided.
In addition, the control system includes a flow meter S1 that measures the flow rate of the methane fermentation tank output gas, and a feeding device 10 (for example, for feeding the liquid or slurry fermentation residue in the hydrogen fermentation tank 3 to the methane fermentation tank 4). The main components are a slurry pump and the like, and a control unit 8 that commands the operation of the feeding device 10 based on the measurement value of the flow meter S1 and controls the residence time in the hydrogen fermenter 3.

前処理装置2において物理化学的処理(異物除去、加熱、破砕、場合によって酸処理、アルカリ処理等)を施したバイオマスを、水素発酵槽3に導入する。水素発酵槽3において、原料バイオマスは槽内の嫌気性微生物の存在下で分解され、水素と二酸化炭素を主成分とするガスが生成する。生成ガスは一旦、貯留タンク3aに貯留される。
原料供給は回分式もしくは連続式により行う。水素発酵条件としては、温度は30℃−65℃、圧力は常圧、pHは4−8の範囲が好ましい。
生成ガス中の水素、二酸化炭素の発生ガス量は原料の槽内滞留時間により定まり、滞留時間が長いほど発生する水素ガス量が多くなる。滞留時間は、後述するようにメタン発酵槽出ガスの流量に対応して定められる。
Biomass that has been subjected to physicochemical treatment (foreign matter removal, heating, crushing, acid treatment, alkali treatment, etc. in the pretreatment device 2) is introduced into the hydrogen fermenter 3. In the hydrogen fermentation tank 3, the raw material biomass is decomposed in the presence of anaerobic microorganisms in the tank, and a gas mainly composed of hydrogen and carbon dioxide is generated. The generated gas is temporarily stored in the storage tank 3a.
The raw material is supplied batchwise or continuously. As hydrogen fermentation conditions, the temperature is preferably 30 ° C. to 65 ° C., the pressure is normal pressure, and the pH is preferably in the range of 4-8.
The amount of hydrogen and carbon dioxide generated in the product gas is determined by the residence time of the raw material in the tank, and the longer the residence time, the more hydrogen gas is generated. The residence time is determined according to the flow rate of the methane fermentation tank output gas, as will be described later.

水素発酵槽3の水素発酵残渣は、有機酸(酢酸、ギ酸、酪酸等)、未反応有機物等を含み、これらは送入装置10の稼働によりメタン発酵槽4に送入される。水素発酵残渣は、メタン発酵槽4内において嫌気性微生物により分解され、メタン及び二酸化炭素を主成分とするガスが生成する。発酵残渣は処理槽(図示せず)に集められ、処理されて肥料等に利用される。メタン発酵条件としては、温度は35℃−60℃、pH6−8の間が望ましい。   The hydrogen fermentation residue in the hydrogen fermenter 3 includes organic acids (acetic acid, formic acid, butyric acid, etc.), unreacted organic substances, and the like, and these are fed into the methane fermenter 4 by the operation of the feeding device 10. The hydrogen fermentation residue is decomposed by anaerobic microorganisms in the methane fermentation tank 4 to generate a gas mainly composed of methane and carbon dioxide. The fermentation residue is collected in a treatment tank (not shown), processed, and used as fertilizer. As methane fermentation conditions, the temperature is preferably between 35 ° C.-60 ° C. and pH 6-8.

メタン発酵槽4出ガスは貯留タンク9に一旦蓄えられた後、貯留タンク3a出の水素を含むガスと混合され、精製装置5に導入される。導入されるガスはメタン、二酸化炭素及び水素を主成分とし、不純物として微量の硫化水素、シロキサン、酸素等を含む。
精製装置5において、混合ガスは昇圧器(図示せず)により所定の圧力に昇圧され、高圧状態で吸収塔(図示せず)上部から噴霧される水と向流接触する。吸収塔内の混合ガスは、水に対する溶解度の相違により分離される。すなわち、二酸化炭素及び硫黄系不純物(HS等)は水に吸収され、メタン、水素、酸素は吸収されることなく気体のまま精製装置5を出る。また、シロキサン化合物は高圧状態で凝縮して、高圧水に随伴して吸収塔底部に溜り除去される。
The gas output from the methane fermentation tank 4 is temporarily stored in the storage tank 9 and then mixed with the gas containing hydrogen output from the storage tank 3 a and introduced into the purifier 5. The introduced gas contains methane, carbon dioxide and hydrogen as main components, and contains trace amounts of hydrogen sulfide, siloxane, oxygen and the like as impurities.
In the purifier 5, the mixed gas is pressurized to a predetermined pressure by a booster (not shown), and in countercurrent contact with water sprayed from the upper part of the absorption tower (not shown). The mixed gas in the absorption tower is separated by the difference in solubility in water. That is, carbon dioxide and sulfur-based impurities (such as H 2 S) are absorbed by water, and methane, hydrogen, and oxygen exit the purifier 5 without being absorbed. Further, the siloxane compound is condensed in a high pressure state, and is collected and removed at the bottom of the absorption tower accompanying the high pressure water.

メタン、水素及び微量酸素を含む精製装置5出のバイオガスは、酸素除去装置6に導入される。ここで、水素と酸素は反応器(図示せず)内で触媒燃焼して除去される。使用する触媒としては、Pt、Pd、Ru、Rh、Agを支持体に担持させたものを用いることができる。メタン以外の不純物成分について許容濃度以下になったバイオガスが、熱量調整装置7に導入される。ここで、都市ガス供給規定による熱量調整が行われる。熱量調整されたガスは圧力調整されたのちガス導管L0に注入され、導管内の供給ガスの一部として使用に供される。   Biogas from the refining device 5 containing methane, hydrogen and trace oxygen is introduced into the oxygen removing device 6. Here, hydrogen and oxygen are removed by catalytic combustion in a reactor (not shown). As a catalyst to be used, a catalyst in which Pt, Pd, Ru, Rh, Ag is supported on a support can be used. Biogas having an allowable concentration or less with respect to impurity components other than methane is introduced into the calorific value adjusting device 7. Here, the amount of heat is adjusted according to the city gas supply regulations. The heat-adjusted gas is pressure-adjusted and then injected into the gas conduit L0 to be used as part of the supply gas in the conduit.

次に、図2をも参照して、制御部8の指令により実行される水素発酵槽3における滞留時間制御の具体的内容について説明する。初期状態において、滞留時間Tsはデフォルト値(Td)に設定されている(S101)。発酵処理中は、メタン発酵槽出ガスの流量Fmが計測されている(S102)。
Fmが上限、下限閾値範囲内(Fmax≧Fm≧Fmin)にある場合には(S103においてYES)、現状滞留時間が維持される(S105)。Fm>Fmaxの場合にはメタン生成量が過大であるため、水素発酵ガスの発生量を増大させて、発生したメタンと水素のエネルギー比率(熱量ベース)で表すメタン生成比率を減少させるべく、滞留時間を1段階延長させる(S104)。またFm<Fminの場合には、メタン生成量が過小であるため、水素発酵ガスの発生量を減少させてメタン生成比率を増大させるべく、滞留時間を1段階短縮させる(S106)。
通常、精製装置5出ガスの酸素濃度は0.2−1.0%であるから、以上の制御を所定の時間ごとに繰返し行うことにより、酸素濃度に対応して水素添加量を増減することができ、ガス導管L0に注入するバイオガスの残留酸素濃度を供給上許容される値以下に制御することができる。
Next, the specific contents of the residence time control in the hydrogen fermenter 3 executed by the command of the control unit 8 will be described with reference to FIG. In the initial state, the residence time Ts is set to a default value (Td) (S101). During the fermentation process, the flow rate Fm of the methane fermentation tank output gas is measured (S102).
If Fm is within the upper and lower threshold ranges (Fmax ≧ Fm ≧ Fmin) (YES in S103), the current residence time is maintained (S105). When Fm> Fmax, the amount of methane produced is excessive, so that the amount of hydrogen fermentation gas generated is increased, and the methane production ratio expressed by the energy ratio (calorie base) of the generated methane and hydrogen is reduced. The time is extended by one step (S104). When Fm <Fmin, the amount of methane produced is too small, so the residence time is shortened by one step in order to reduce the amount of hydrogen fermentation gas produced and increase the methane production ratio (S106).
Usually, since the oxygen concentration of the purified gas 5 is 0.2-1.0%, the amount of hydrogen addition can be increased or decreased according to the oxygen concentration by repeatedly performing the above control every predetermined time. The residual oxygen concentration of the biogas injected into the gas conduit L0 can be controlled to a value that is acceptable for supply.

なお、本実施形態においては精製装置5において混合ガス中の二酸化炭素、硫黄系不純物及びシロキサン化合物の除去を高圧水吸収により行う例を示したが、それぞれ個別に除去する態様、例えば硫黄系不純物については活性炭又は酸化鉄による除去と、その後にシロキサン化合物については活性炭による除去と、その後に二酸化炭素についてはPSA又は吸収液による除去、によることも可能である。   In the present embodiment, the example in which the carbon dioxide, the sulfur-based impurities and the siloxane compound in the mixed gas are removed by high-pressure water absorption in the purification apparatus 5 has been shown. Can be removed by activated carbon or iron oxide, followed by removal of siloxane compounds by activated carbon, and subsequent removal of carbon dioxide by PSA or an absorbent.

また、本実施形態においては水素発酵槽3の滞留時間を、メタン発酵槽4出ガスの流量に基づき制御する例を示したが、酸素除去装置6出ガスの残留酸素濃度に基づき水素発酵槽3の滞留時間を制御する態様としてもよい。   Moreover, in this embodiment, although the example which controls the residence time of the hydrogen fermenter 3 based on the flow volume of the methane fermentation tank 4 output gas was shown, the hydrogen fermenter 3 based on the residual oxygen concentration of the oxygen removal apparatus 6 output gas The residence time may be controlled.

また、水素発酵槽3出ガスを貯留タンク3aに一旦貯留する例を示したが、貯留することなく直接、メタン発酵槽4出ガスと混合させる態様としてもよい。   Moreover, although the example which once stores the hydrogen fermentation tank 3 output gas in the storage tank 3a was shown, it is good also as an aspect made to mix with the methane fermentation tank 4 output gas directly, without storing.

<第二の実施形態>
次に、図3を参照して本発明の他の実施形態について説明する。本実施形態に係るバイオガス精製システム20の構成が上述のバイオガス精製システム1と異なる点は、酸素除去装置の構成である。すなわち、本実施形態の酸素除去装置21は、酸化触媒反応器22の上流側に水素ボンベ23a、流量制御装置23bを含む水素ガス添加装置23を備えており、触媒反応器22に導入されるガスに水素が添加されることである。さらに、触媒反応器22の下流側に酸素濃度計S2を備えており、触媒反応器22出ガスの残留酸素濃度を測定可能に構成されていることである。その他の構成についてはバイオガス精製システム1と同様であるので、重複説明を省略する。
以上の構成によりバイオガス精製システム20においては、酸素濃度計S2の計測値に基づき、触媒反応器22出ガスの酸素濃度を所定の許容濃度以下に制御する。すなわち、触媒反応器22出ガスの酸素濃度が所定の閾値以上のときは、水素ガス添加装置23からの水素を添加して触媒反応器22における酸化反応促進を図る。これにより、ガス導管L0に注入するバイオガスの残留酸素濃度を許容基準値以下に制御することができる。
<Second Embodiment>
Next, another embodiment of the present invention will be described with reference to FIG. The configuration of the biogas purification system 20 according to the present embodiment is different from the above-described biogas purification system 1 in the configuration of the oxygen removing device. That is, the oxygen removing device 21 of the present embodiment includes a hydrogen gas addition device 23 including a hydrogen cylinder 23 a and a flow rate control device 23 b on the upstream side of the oxidation catalyst reactor 22, and the gas introduced into the catalyst reactor 22. Is that hydrogen is added. Furthermore, an oxygen concentration meter S2 is provided on the downstream side of the catalyst reactor 22, and the residual oxygen concentration of the gas output from the catalyst reactor 22 can be measured. Since the other configuration is the same as that of the biogas purification system 1, a duplicate description is omitted.
With the above configuration, in the biogas purification system 20, the oxygen concentration of the gas output from the catalytic reactor 22 is controlled to a predetermined allowable concentration or less based on the measurement value of the oxygen concentration meter S2. That is, when the oxygen concentration of the gas output from the catalyst reactor 22 is equal to or greater than a predetermined threshold, hydrogen from the hydrogen gas addition device 23 is added to promote the oxidation reaction in the catalyst reactor 22. As a result, the residual oxygen concentration of the biogas injected into the gas conduit L0 can be controlled below the allowable reference value.

以下、水素発酵槽の原料滞留時間を変化させたときの、生成バイオガスの成分比及びエネルギー回収効率を測定した。試験条件は以下の通りである。

Figure 2012211213
Hereinafter, the component ratio and energy recovery efficiency of the produced biogas when the raw material residence time of the hydrogen fermenter was changed were measured. The test conditions are as follows.

Figure 2012211213

各滞留時間条件についての、全バイオガス発生量に対する水素及びメタン発生割合を表2に示す。ここに、回収効率とは、原料のエネルギー(熱量ベース)に対する回収ガス(水素、メタン)のエネルギーの比率である。

Figure 2012211213
Table 2 shows the hydrogen and methane generation ratio with respect to the total biogas generation amount for each residence time condition. Here, the recovery efficiency is the ratio of the energy of the recovered gas (hydrogen, methane) to the energy of the raw material (calorie base).
Figure 2012211213

以上の結果から、水素発酵槽の滞留時間を変化させることにより、水素とメタンの回収効率の比を変更することが可能であることが分かった。   From the above results, it was found that the ratio of the recovery efficiency of hydrogen and methane can be changed by changing the residence time of the hydrogen fermenter.

本発明は、下水汚泥のみならず、生ゴミ、食品廃棄物、廃材、木材チップ等、種々のバイオマスを原料としたバイオガス精製システムに広く適用可能である。   The present invention can be widely applied not only to sewage sludge but also to biogas purification systems using various biomass as raw materials such as raw garbage, food waste, waste materials, and wood chips.

1、20・・・・バイオガス精製システム
2・・・・前処理槽
3・・・・水素発酵槽
4・・・・メタン発酵槽
5・・・・精製装置
6、21・・・・酸素除去装置
7・・・・熱量調整装置
8・・・・制御部
9・・・・貯留タンク
10・・・・送入装置
22・・・・酸化触媒反応器
23・・・・水素ガス添加装置
L0・・・・ガス導管
S1・・・流量計
S2・・・酸素濃度計


DESCRIPTION OF SYMBOLS 1, 20 ... Biogas purification system 2 ... Pretreatment tank 3 ... Hydrogen fermentation tank 4 ... Methane fermentation tank 5 ... Purification apparatus 6, 21 ... Oxygen Removal device 7 ... Heat amount adjusting device 8 ... Control unit 9 ... Storage tank 10 ... Delivery device 22 ... Oxidation catalyst reactor 23 ... Hydrogen gas addition device L0 ... ・ Gas conduit S1 ... Flow meter S2 ... Oxygen concentration meter


Claims (3)

バイオガスの精製方法であって、
原料バイオマスを水素発酵させて、水素ガス及び二酸化炭素を主成分とするガスを生成させる水素発酵工程と、
水素発酵工程を経たバイオマスをメタン発酵させて、メタン及び二酸化炭素を主成分とするバイオガスを生成するメタン発酵工程と、
メタン発酵工程を経たバイオガスに、水素発酵工程を経た水素ガスを含むガスを添加する水素ガス添加工程と、
水素ガス添加工程を経たバイオガスから、二酸化炭素及びその他の不純物を除去する不純物除去工程と、
不純物除去工程を経たバイオガス中の水素と酸素を反応させて、不純物である酸素を除去する酸素除去工程と、
を含むことを特徴とするバイオガスの精製方法。
A method for purifying biogas,
A hydrogen fermentation process in which raw material biomass is fermented with hydrogen to generate a gas mainly composed of hydrogen gas and carbon dioxide;
A methane fermentation process in which biomass that has undergone a hydrogen fermentation process is subjected to methane fermentation to produce biogas mainly composed of methane and carbon dioxide;
A hydrogen gas addition process for adding a gas containing hydrogen gas that has undergone a hydrogen fermentation process to biogas that has undergone a methane fermentation process;
Impurity removal process for removing carbon dioxide and other impurities from the biogas that has undergone the hydrogen gas addition process,
Oxygen removal step of reacting hydrogen and oxygen in biogas that has undergone the impurity removal step to remove oxygen as an impurity;
A method for purifying biogas, comprising:
前記メタン発酵工程を経たバイオガスの発生量に対応して、前記水素発酵工程の滞留時間を制御することを特徴とする請求項1に記載のバイオガスの精製方法。   The biogas purification method according to claim 1, wherein the residence time of the hydrogen fermentation process is controlled in accordance with the amount of biogas generated through the methane fermentation process. 前記酸素除去工程において、除去後の精製バイオガス中の酸素残留濃度が所定の基準値を超えるときは、前記水素発酵工程により得られる水素ガスに加えて、さらに系外からの水素ガスを添加することを特徴とする請求項1又は2に記載のバイオガスの精製方法。
In the oxygen removal step, when the residual oxygen concentration in the purified biogas after removal exceeds a predetermined reference value, hydrogen gas from outside the system is further added in addition to the hydrogen gas obtained by the hydrogen fermentation step. The method for purifying biogas according to claim 1 or 2, wherein
JP2011076267A 2011-03-30 2011-03-30 Method for refining biogas Pending JP2012211213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076267A JP2012211213A (en) 2011-03-30 2011-03-30 Method for refining biogas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076267A JP2012211213A (en) 2011-03-30 2011-03-30 Method for refining biogas

Publications (1)

Publication Number Publication Date
JP2012211213A true JP2012211213A (en) 2012-11-01

Family

ID=47265438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076267A Pending JP2012211213A (en) 2011-03-30 2011-03-30 Method for refining biogas

Country Status (1)

Country Link
JP (1) JP2012211213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118187A (en) * 2012-12-17 2014-06-30 Ihi Corp Biomass storage device and biomass storage method
JP2020037535A (en) * 2018-09-05 2020-03-12 日立化成株式会社 Methanation system for carbon dioxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149983A (en) * 1999-11-26 2001-06-05 Naomichi Nishio Bio gas generator
JP2002272491A (en) * 2001-03-22 2002-09-24 Kajima Corp Method for producing hydrogen by microbial group and the same hydrogen-fermenting microbial group
JP2006329072A (en) * 2005-05-26 2006-12-07 National Institute Of Advanced Industrial & Technology Fuel supplying method and fuel supply system
JP2009530435A (en) * 2006-03-16 2009-08-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Oxygen removal
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
JP2010229248A (en) * 2009-03-26 2010-10-14 Kobelco Eco-Solutions Co Ltd Method for deoxygenation of digestion gas and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149983A (en) * 1999-11-26 2001-06-05 Naomichi Nishio Bio gas generator
JP2002272491A (en) * 2001-03-22 2002-09-24 Kajima Corp Method for producing hydrogen by microbial group and the same hydrogen-fermenting microbial group
JP2006329072A (en) * 2005-05-26 2006-12-07 National Institute Of Advanced Industrial & Technology Fuel supplying method and fuel supply system
JP2009530435A (en) * 2006-03-16 2009-08-27 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Oxygen removal
JP2010180197A (en) * 2008-08-27 2010-08-19 Kobelco Eco-Solutions Co Ltd Method for deoxidation of digestive gas and apparatus therefor
JP2010229248A (en) * 2009-03-26 2010-10-14 Kobelco Eco-Solutions Co Ltd Method for deoxygenation of digestion gas and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014118187A (en) * 2012-12-17 2014-06-30 Ihi Corp Biomass storage device and biomass storage method
JP2020037535A (en) * 2018-09-05 2020-03-12 日立化成株式会社 Methanation system for carbon dioxide

Similar Documents

Publication Publication Date Title
Sarker et al. Overview of recent progress towards in-situ biogas upgradation techniques
Salomoni et al. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes
US20190337876A1 (en) Integrated system and method for producing methanol product
Díaz et al. Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge
Tao et al. Simultaneous biomethanisation of endogenous and imported CO2 in organically loaded anaerobic digesters
BR112020014630A2 (en) PROCESS TO IMPROVE CARBON CONVERSION EFFICIENCY
WO2008083008A1 (en) Process and apparatus for producing hydrogen from sewage sludge
CN101250005A (en) Cassava grain stillage anaerobic treatment method
Lin et al. Hydrogen production from beverage wastewater via dark fermentation and room-temperature methane reforming
CN102154373B (en) Treatment method of itaconic acid waste residue
AU2022253075A1 (en) Process for improving carbon conversion efficiency
JP4572278B2 (en) Fuel supply method and fuel supply apparatus
JP2012211213A (en) Method for refining biogas
US20220325227A1 (en) Integrated fermentation and electrolysis process for improving carbon capture efficiency
KR100990167B1 (en) Method and apparatus for Bio-hydrogen gas production from organic waste by using inhibitor for methane producing microorganisms and gas purging under low pH condition
CN101563439B (en) Accelerate from the raw methanogenic method and system of biomass
KR20090099915A (en) Method and apparatus for bio-hydrogen gas production from organic waste by using inhibitor for methane producing microorganisms and gas purging
US20220323927A1 (en) Process and apparatus for providing a feedstock
JP2008080336A (en) Method and apparatus for generating biogas
KR102093895B1 (en) Biomethanation process for biogas upgrading
US20230312381A1 (en) Bioelectrochemical bioreactor
JP2000157994A (en) Methane fermentation method and device therefor
Sołowski et al. Hydrogen Production in Institute of Fluid Machinery of Polish Academy of Science in Gdańsk—theory and practice
CA3170251A1 (en) Hydrogen biomethane process and apparatus
CN118202062A (en) Green process for producing products from hydrogen enriched synthesis gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141007