JP4572278B2 - Fuel supply method and fuel supply apparatus - Google Patents

Fuel supply method and fuel supply apparatus Download PDF

Info

Publication number
JP4572278B2
JP4572278B2 JP2005153798A JP2005153798A JP4572278B2 JP 4572278 B2 JP4572278 B2 JP 4572278B2 JP 2005153798 A JP2005153798 A JP 2005153798A JP 2005153798 A JP2005153798 A JP 2005153798A JP 4572278 B2 JP4572278 B2 JP 4572278B2
Authority
JP
Japan
Prior art keywords
gas
fermentation
hydrogen
methane
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005153798A
Other languages
Japanese (ja)
Other versions
JP2006329072A (en
Inventor
茂樹 澤山
建一郎 塚原
龍三郎 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005153798A priority Critical patent/JP4572278B2/en
Publication of JP2006329072A publication Critical patent/JP2006329072A/en
Application granted granted Critical
Publication of JP4572278B2 publication Critical patent/JP4572278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、再生可能有機性資源、例えば家庭・レストラン・オフィス・食品工場等から排出される生ごみ、紙ごみ、食品系廃棄物、有機性廃水を、水素発酵とメタン発酵の二段発酵により処理して生成される発酵ガスであるバイオガスを用いて有利な燃料供給方法及びそのための燃料供給装置に関する。   The present invention uses renewable organic resources such as household garbage, paper waste, food waste, organic waste water discharged from households, restaurants, offices, food factories, etc. by two-stage fermentation of hydrogen fermentation and methane fermentation. The present invention relates to an advantageous fuel supply method using a biogas, which is a fermentation gas produced by processing, and a fuel supply apparatus therefor.

ガスエンジン等の燃焼機関に用いられる燃料ガスについては、炭化水素系燃料をガスエンジンで利用する際に、水素を供給することによりノッキングを回避する方法(特許文献1参照)、熱分解ガス化システムより得られる低カロリーガスをガスエンジンで利用する方法(特許文献2参照)、制御装置の設定値によりガスの混合率を計算し、各ガスの流量を制御することにより熱量を制御して低カロリーガス燃料を用いる方法(特許文献3参照)等が提案されている。   Regarding a fuel gas used in a combustion engine such as a gas engine, a method of avoiding knocking by supplying hydrogen when a hydrocarbon-based fuel is used in a gas engine (see Patent Document 1), a pyrolysis gasification system A method of using a low-calorie gas obtained from a gas engine (see Patent Document 2), calculating a gas mixing ratio according to a set value of a control device, and controlling a heat amount by controlling a flow rate of each gas, thereby reducing a low calorie A method using gas fuel (see Patent Document 3) has been proposed.

特開2002−221098号公報(特許請求の範囲その他)JP 2002-221098 A (Claims and others) 特開2004−092611号公報(特許請求の範囲その他)JP 2004-092611 A (Claims and others) 特開2004−278468号公報(特許請求の範囲その他)JP 2004-278468 A (Claims and others)

本発明の課題は、ガスエンジン等の燃焼機関などのガス利用機器に、再生可能有機性資源の水素発酵とメタン発酵により生じるバイオガスを、燃料として効率よく供給する方法及びそのための装置を提供することにある。   An object of the present invention is to provide a method for efficiently supplying, as a fuel, a biogas generated by hydrogen fermentation and methane fermentation of a renewable organic resource to a gas utilization device such as a combustion engine such as a gas engine, and an apparatus therefor. There is.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、水素発酵とメタン発酵の二段発酵により生じるバイオガスについては、水素発酵ガスが相対的に低い発生圧力を示すのに対し、メタン発酵ガスは相対的に高い発生圧力を示すことから、これらのガスを混合することで、この圧力差を平均化し、その混合した混合ガスの組成を平準化してガス利用機器に供給するのが課題解決に資することを見出し、この知見に基づいて本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have shown that, for biogas produced by two-stage fermentation of hydrogen fermentation and methane fermentation, hydrogen fermentation gas exhibits a relatively low generation pressure. Since methane fermentation gas shows a relatively high generated pressure, mixing these gases averages this pressure difference and equalizes the composition of the mixed gas mixture and supplies it to the gas utilization equipment. Was found to contribute to solving the problem, and the present invention was made based on this finding.

すなわち、本発明によれば、以下の発明が提供される。
(1)再生可能有機性資源の水素・メタン二段発酵から生じる水素発酵ガスとメタン発酵ガスをそれぞれ貯留し、貯留された前記水素発酵ガスと前記メタン発酵ガスを混合し、その混合した混合ガスの組成を平準化し、平準化した混合ガスを昇圧手段で昇圧し蓄圧ガスタンクに貯蔵し定圧としてガスエンジンに供給することを特徴とする燃料供給方法。
(2)再生可能有機性資源の水素・メタン二段発酵から生じる水素発酵ガスを貯留する水素発酵ガスタンクと、前記水素・メタン二段発酵から生じるメタン発酵ガスを貯留するメタン発酵ガスタンクと、前記水素発酵ガスタンクに貯留された水素発酵ガスと前記メタン発酵ガスタンクに貯留されたメタン発酵ガスを混合するガス混合器と、前記ガス混合器から導出された混合ガスを昇圧する昇圧手段と、前記昇圧手段で昇圧された混合ガスを貯蔵する蓄圧ガスタンクとを備え、前記蓄圧ガスタンクで貯蔵された混合ガスをガスエンジンに供給することを特徴とする燃料供給装置。
(3)さらに、前記蓄圧ガスタンクから導出された混合ガスを減圧する減圧弁を備える前記(2)記載の燃料供給装置。
That is, according to the present invention, the following inventions are provided.
(1) Hydrogen and methane fermentation gas generated from hydrogen and methane two-stage fermentation of renewable organic resources are respectively stored, the stored hydrogen fermentation gas and methane fermentation gas are mixed, and the mixed gas is mixed A fuel supply method characterized in that the composition of the fuel is leveled, the leveled mixed gas is boosted by a boosting means, stored in a pressure accumulating gas tank, and supplied to the gas engine as a constant pressure.
(2) Hydrogen fermentation gas tank storing hydrogen fermentation gas generated from hydrogen / methane two-stage fermentation of renewable organic resources, methane fermentation gas tank storing methane fermentation gas generated from hydrogen / methane two-stage fermentation, and hydrogen A gas mixer for mixing the hydrogen fermentation gas stored in the fermentation gas tank and the methane fermentation gas stored in the methane fermentation gas tank, a pressure increasing means for increasing the pressure of the mixed gas derived from the gas mixer, and the pressure increasing means. A fuel supply device comprising: a pressure accumulation gas tank for storing the pressurized mixed gas, and supplying the gas mixture stored in the pressure accumulation gas tank to a gas engine.
(3) The fuel supply device according to (2), further including a pressure reducing valve that decompresses the mixed gas derived from the pressure accumulation gas tank.

本発明方法においては、まず、再生可能有機性資源の水素・メタン二段発酵によるバイオガス、すなわち水素発酵とメタン発酵により発生する水素発酵ガスとメタン発酵ガスをそれぞれ回収、貯留し、貯留された各ガスを混合して混合ガス組成を平準化させてガス利用機器に供給するが、好ましくはこのような混合、平準化の調整を、使用するガス利用機器に適合するように行わせるのがよい。
本発明方法においては、好ましくは、この混合ガスの供給に当たり、該混合ガスを昇圧手段で昇圧してから供するのがよく、さらにはこのように昇圧させた混合ガスを蓄圧ガスタンクに貯蔵し、この蓄圧ガスをガス利用機器に適合するような一定の圧力にしてから供するのがよい。昇圧手段としては昇圧ブロアや、回転型コンプレッサ、往復動型コンプレッサ等のコンプレッサなどを用いるのが好ましい。
このような方法を採択することにより、水素発酵槽の水素分圧が低く保たれ、有機物の水素発酵が効率よく進む。さらに、ガス利用機器に供給されるガスの組成や供給圧を調節できるので、ガス利用機器を効率よく安定して運転することが可能になる。
In the method of the present invention, first, biogas by hydrogen / methane two-stage fermentation of renewable organic resources, that is, hydrogen fermentation gas and methane fermentation gas generated by hydrogen fermentation and methane fermentation were respectively collected, stored, and stored. Each gas is mixed and the mixed gas composition is leveled and supplied to the gas utilization device. Preferably, such mixing and leveling adjustments should be performed so as to be compatible with the gas utilization device to be used. .
In the method of the present invention, it is preferable to supply the mixed gas after the pressure of the mixed gas is increased by the pressure increasing means, and further, the mixed gas thus increased in pressure is stored in a pressure accumulation gas tank, It is recommended that the accumulated gas be supplied after the pressure is adjusted to a certain level suitable for the gas utilization equipment. As the boosting means, it is preferable to use a booster blower, a compressor such as a rotary compressor, a reciprocating compressor, or the like.
By adopting such a method, the hydrogen partial pressure in the hydrogen fermenter is kept low, and the hydrogen fermentation of organic matter proceeds efficiently. Furthermore, since the composition and supply pressure of the gas supplied to the gas utilization device can be adjusted, the gas utilization device can be operated efficiently and stably.

上記の水素発酵とは、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物から水素と有機酸と二酸化炭素を生成させるもので、好ましくは20〜70℃、より好ましくは30〜60℃で行う発酵法を、また、メタン発酵とは、酸素のない嫌気的な条件で嫌気性微生物の働きにより、有機物、中でも有機酸含有物、例えば前記水素発酵での水素発酵ガスの回収された、有機酸等を含む発酵液等からメタンと二酸化炭素を生成させるもので、好ましくは20〜70℃、より好ましくは30〜60℃で行う発酵法をそれぞれ意味する。   Said hydrogen fermentation is what produces | generates hydrogen, an organic acid, and a carbon dioxide from organic substance by the function of an anaerobic microorganism on anaerobic conditions without oxygen, Preferably it is 20-70 degreeC, More preferably, it is 30-60. Fermentation method carried out at ℃, and methane fermentation is the recovery of organic matter, especially organic acid-containing materials such as hydrogen fermentation gas in the above hydrogen fermentation by the action of anaerobic microorganisms under anaerobic conditions without oxygen , Which produces methane and carbon dioxide from a fermentation broth containing an organic acid or the like, and preferably means a fermentation method performed at 20 to 70 ° C, more preferably 30 to 60 ° C.

水素発酵に用いられる水素発酵微生物は、嫌気性消化において水素、有機酸、二酸化炭素等を生成する微生物であって、Clostridium sp.等が挙げられる。
また、メタン発酵に用いられるメタン発酵微生物は、嫌気性消化においてメタン、二酸化炭素を生成する微生物であって、Methanobacterium sp., Methanothermobacter sp., Methanosarcina sp.、Methanosaeta sp.等が挙げられる。両者とも従来よく知られているものである。本発明では、水素発酵では特定されない多様な水素発酵微生物が生育し、メタン発酵では特定されない多様なメタン発酵微生物が成育する。このように、多様な微生物が存在することにより、原料を殺菌しなくても原料に対応した最適な微生物群が増殖し、安定した分解処理が行える。
Hydrogen-fermenting microorganisms used for hydrogen fermentation are microorganisms that generate hydrogen, organic acids, carbon dioxide, and the like in anaerobic digestion, and include Clostridium sp. Etc.
Moreover, methane fermentation microorganisms used in the methane fermentation is a microorganism that produces methane, carbon dioxide in an anaerobic digestion, Methanobacterium sp. , Methanotherbacter sp. , Methanosarcina sp. , Methanosaeta sp. Etc. Both are well known in the art. In the present invention, various hydrogen-fermenting microorganisms that are not specified by hydrogen fermentation grow, and various methane-fermenting microorganisms that are not specified by methane fermentation grow. As described above, since various microorganisms exist, an optimum group of microorganisms corresponding to the raw material grows without performing sterilization of the raw material, and stable decomposition treatment can be performed.

本発明に用いられるガス利用機器としては、燃焼機関や、原料ガスを所望ガス、例えば水素等に改質するガス改質装置などが挙げられる。
燃焼機関としては、例えばガスエンジンや、ガスバーナー、改質装置に付属する燃焼器等が挙げられる。
本発明にいうガスエンジンとは、シリンダー内で点火プラグにより燃料に点火し、燃焼によりピストンを動かす内燃機関を意味し、発電機やコージェネレーションとして一般的に利用されている装置を意味する。バイオガスは5000から6000kcal/Nm3の低カロリーガスであるため、バイオガスのみを用いる場合は低カロリーガスに対応したガスエンジンを用いる必要がある。バイオガスと同時に都市ガスや軽油を使用する複合燃料タイプのガスエンジンは、低カロリーガスに対応していなくてもよい。
また、前記ガス改質装置に本発明方法を適用して所定混合ガスを供給すると、ガス組成が平準化されていること、さらに好ましくは圧力が安定していることにより、改質反応が安定化し、改質効率を向上させることが可能になる。
Examples of the gas utilization equipment used in the present invention include a combustion engine and a gas reformer that reforms a raw material gas into a desired gas such as hydrogen.
Examples of the combustion engine include a gas engine, a gas burner, and a combustor attached to the reformer.
The gas engine referred to in the present invention means an internal combustion engine that ignites fuel by a spark plug in a cylinder and moves a piston by combustion, and means a device generally used as a generator or cogeneration. Since biogas is a low calorie gas of 5000 to 6000 kcal / Nm 3 , it is necessary to use a gas engine corresponding to the low calorie gas when only biogas is used. A composite fuel type gas engine that uses city gas or light oil simultaneously with biogas may not support low-calorie gas.
Further, when a predetermined mixed gas is supplied by applying the method of the present invention to the gas reforming apparatus, the reforming reaction is stabilized because the gas composition is leveled, more preferably the pressure is stable. As a result, the reforming efficiency can be improved.

本発明において用いられる再生可能有機性資源は、バイオマス等の資化可能な有機性材を含む各種資源であれば特に制限されず、例えば有機性廃棄物、有機性廃水、中でも生ごみ、食品系廃棄物、紙ごみ等が挙げられ、生ごみや食品系廃棄物としては、家庭・レストラン・食品工場等から排出される食品残滓や廃水などが、また、紙ごみとしては廃棄紙類、シュレッダーにかけられた紙ごみなどがそれぞれ挙げられる。
再生可能有機性資源としては、有機性廃棄物、有機性廃水がコストや量的に有利である。
Renewable organic resources used in the present invention are not particularly limited as long as they are various resources including organic materials that can be assimilated such as biomass. For example, organic waste, organic waste water, particularly garbage, food system Examples include waste and paper waste. Examples of food waste and food waste include food residues and waste water discharged from households, restaurants and food factories. Paper waste is also used for waste paper and shredder. Examples include paper waste.
As renewable organic resources, organic waste and organic wastewater are advantageous in terms of cost and quantity.

本発明方法としては、まず水素発酵槽内で水素発酵微生物群と再生可能有機性資源、例えば生ごみと紙ごみの粉砕混合物を、含水率75〜99.9%望ましくは85〜98%に調整し、20℃以上望ましくは30〜60℃更に好ましくは35〜55℃で湿式可溶化水素発酵処理させ、そして、可溶化水素発酵後の発酵液を原料として、メタン発酵槽内でメタン発酵微生物群と混合し、20℃以上望ましくは30〜60℃更に好ましくは35〜55℃で湿式メタン発酵処理させるのがよい。   In the method of the present invention, first, a hydrogen fermenting microorganism group and a renewable organic resource, for example, a pulverized mixture of garbage and paper waste are adjusted to a moisture content of 75 to 99.9%, preferably 85 to 98% in a hydrogen fermenter. 20 ° C. or higher, preferably 30 to 60 ° C., more preferably 35 to 55 ° C., and wet solubilized hydrogen fermentation treatment, and the fermentation broth after solubilized hydrogen fermentation is used as a raw material in the methane fermentation tank. And wet methane fermentation treatment at 20 ° C or higher, desirably 30-60 ° C, more preferably 35-55 ° C.

このようにして、有機性廃棄物や廃水を水素・メタン二段発酵処理すると、有機物が分解されて水素、メタン、二酸化炭素を主成分とするバイオガスが得られる。この方法では、水素発酵の有機物分解速度が速いため、発酵が迅速に進み発酵槽を小型化できるという利点がある。   In this way, when organic waste or wastewater is subjected to a hydrogen / methane two-stage fermentation process, the organic matter is decomposed to obtain biogas mainly composed of hydrogen, methane, and carbon dioxide. In this method, since the organic matter decomposition speed of hydrogen fermentation is high, there is an advantage that fermentation proceeds rapidly and the fermenter can be downsized.

また、水素の純度を上げるために水素発酵槽の上部に水素分離部(図示略)を配置してもよい。水素分離部では、水素を透過させるが、二酸化炭素等の他のガスは透過させない水素分離膜、例えばパラジウム膜やパラジウム合金膜などを用いた膜分離器により、又は混合ガスをアルカリ溶液に透過させることにより二酸化炭素を吸収させて回収したりすることにより、水素濃度を高めることができる。
このように精製された高純度の水素は、燃料電池用に好適である。
In order to increase the purity of hydrogen, a hydrogen separation unit (not shown) may be disposed on the upper part of the hydrogen fermenter. In the hydrogen separator, hydrogen is allowed to pass through, but other gas such as carbon dioxide is not allowed to pass through, such as a membrane separator using a palladium membrane or a palladium alloy membrane, or the mixed gas is allowed to pass through the alkaline solution. Thus, the hydrogen concentration can be increased by absorbing and recovering carbon dioxide.
The purified high-purity hydrogen is suitable for fuel cells.

本発明方法では、水素・メタン二段発酵処理で生成する水素発酵ガスとメタン発酵ガスは前者の方が後者よりも相対的に発生圧力が低いことから、これらのガスをそれぞれ回収・貯留後、ガス混合器でガスを混合することで、混合ガス組成を平準化してガス利用機器、例えばガスエンジン等の燃焼機関などに供することが可能になる。   In the method of the present invention, the hydrogen fermentation gas and methane fermentation gas produced in the hydrogen / methane two-stage fermentation process have a relatively lower generation pressure than the latter, so these gases are collected and stored, respectively. By mixing gas with a gas mixer, the composition of the mixed gas can be leveled and used for a gas utilization device, for example, a combustion engine such as a gas engine.

また、本発明方法で、低圧で貯留されたガスを混合後、さらに昇圧手段、例えば昇圧ガスブロア又はコンプレッサなどで昇圧してガス利用機器、例えばガスエンジン等の燃焼機関などに供給することで、それに最適なガス供給圧を維持することが可能になる。   In the method of the present invention, after the gas stored at a low pressure is mixed, the gas is further boosted by a boosting means, such as a booster gas blower or a compressor, and supplied to a gas utilization device such as a combustion engine such as a gas engine. It becomes possible to maintain the optimum gas supply pressure.

さらにまた、本発明方法では低圧で貯留されたガスを混合後、昇圧手段、例えば昇圧ガスブロア又はコンプレッサなどで昇圧し、さらに昇圧された混合ガスを蓄圧ガスタンクに貯蔵したのち、一定圧に調整してガス利用機器、例えばガスエンジン等の燃焼機関などに供給することで、それに最適なガス供給圧を安定して維持することが可能になる。
蓄圧ガスタンクは、蓄圧機能の他、ガス利用機器のガス使用量と発酵ガス量との差異を吸収するバッファー機能や、ガスのさらなるミキシング機能をも備えており、この蓄圧ガスタンクに減圧弁を併用することにより混合ガスを定圧にすることができる。
Furthermore, in the method of the present invention, after mixing the gas stored at a low pressure, the pressure is increased by a pressure increasing means, for example, a pressure increasing gas blower or a compressor, and the pressure increasing mixed gas is stored in a pressure accumulating gas tank and then adjusted to a constant pressure. By supplying to a gas utilization device, for example, a combustion engine such as a gas engine, it is possible to stably maintain an optimum gas supply pressure.
In addition to the pressure accumulation function, the pressure accumulation gas tank also has a buffer function that absorbs the difference between the amount of gas used by the gas utilization device and the amount of fermentation gas, and a further gas mixing function. As a result, the mixed gas can be kept at a constant pressure.

本発明の燃料供給装置は、このような本発明方法に用いて好適なものであり、再生可能有機性資源の水素・メタン二段発酵から生じる水素発酵ガスを貯留する水素発酵ガスタンクと、前記水素・メタン二段発酵から生じるメタン発酵ガスを貯留するメタン発酵ガスタンクと、前記水素発酵ガスタンクに貯留された水素発酵ガスと前記メタン発酵ガスタンクに貯留されたメタン発酵ガスを混合するガス混合器を備えてなり、前記ガス混合器で混合され導出された混合ガスをガス利用機器に供給するものである。
この燃料供給装置は、さらに、前記ガス混合器から導出された混合ガスを昇圧する昇圧手段を備えるのが好ましく、また、前記昇圧手段で昇圧された混合ガスを貯蔵する蓄圧ガスタンクを備えるのが好ましく、さらにまた、前記蓄圧ガスタンクから導出された混合ガスを減圧する減圧弁を備えるのが好ましい。この昇圧手段としては前記したように昇圧ブロアや、回転型コンプレッサ、往復動型コンプレッサ等のコンプレッサなどを用いるのが好ましい。
また、前記ガス利用機器はガスエンジンであるのが好ましい。
The fuel supply apparatus of the present invention is suitable for use in such a method of the present invention, and includes a hydrogen fermentation gas tank that stores hydrogen fermentation gas generated from hydrogen / methane two-stage fermentation of renewable organic resources, and the hydrogen A methane fermentation gas tank that stores methane fermentation gas generated from methane two-stage fermentation, and a gas mixer that mixes the hydrogen fermentation gas stored in the hydrogen fermentation gas tank and the methane fermentation gas stored in the methane fermentation gas tank. Thus, the mixed gas derived and mixed by the gas mixer is supplied to the gas utilization device.
The fuel supply device preferably further includes a boosting unit that pressurizes the mixed gas derived from the gas mixer, and preferably includes a pressure accumulation gas tank that stores the mixed gas boosted by the boosting unit. Furthermore, it is preferable that a pressure reducing valve for reducing the pressure of the mixed gas derived from the pressure accumulating gas tank is provided. As this boosting means, it is preferable to use a booster blower or a compressor such as a rotary compressor or a reciprocating compressor as described above.
Moreover, it is preferable that the said gas utilization apparatus is a gas engine.

本発明によれば、有機性廃棄物や廃水中の有機物が水素発酵処理とメタン発酵処理を順番に受け、分解消化に関わる微生物についてそれぞれの発酵で最適な温度、pH、滞留時間、酸化還元電位、水素分圧等を維持するようにして、有機物の分解速度を速め、水素ガスとメタンガスをより迅速に発生させうる。こうして発生させた水素発酵ガスとメタン発酵ガスを、ガス混合器で混合し、昇圧手段、例えば昇圧ガスブロア又はコンプレッサなどにより昇圧し、蓄圧ガスタンクに貯蔵後、一定圧でガス利用機器、例えばガスエンジン等の燃焼機関などに混合されたバイオガスを供給することにより、ガス利用機器、例えばガスエンジン等の燃焼機関などを高エネルギー効率で安定に運転することが可能になる。   According to the present invention, organic waste and organic matter in wastewater are subjected to hydrogen fermentation treatment and methane fermentation treatment in order, and the optimum temperature, pH, residence time, oxidation-reduction potential in each fermentation for microorganisms involved in degradation digestion In addition, by maintaining the hydrogen partial pressure and the like, the decomposition rate of organic matter can be increased, and hydrogen gas and methane gas can be generated more rapidly. The hydrogen fermentation gas and methane fermentation gas generated in this way are mixed in a gas mixer, boosted by a boosting means such as a booster gas blower or compressor, and stored in an accumulator gas tank, and then gas-utilized equipment such as a gas engine at a constant pressure. By supplying the mixed biogas to the combustion engine, it is possible to stably operate a gas utilization device, for example, a combustion engine such as a gas engine, with high energy efficiency.

次に、本発明を実施するための最良の形態について図面を参照しながら詳述する。
図1は本発明を実施する場合のフローシートを示す。
Next, the best mode for carrying out the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a flow sheet for carrying out the present invention.

図1において、1は原料貯留タンク、2は原料配管、3は水素発酵槽、4は水素発酵ガス配管、5は水素発酵ガス貯留タンク、6は水素発酵物配管、7はメタン発酵槽、8は貯留水素ガス配管、9はメタン発酵ガス配管、10はメタン発酵ガス貯留タンク、11は貯留メタンガス配管、12はガス混合器、13は混合ガス配管、14は昇圧ブロア又はコンプレッサ、15は昇圧ガス配管、16は蓄圧ガス貯留タンク、17は蓄圧貯留ガス配管、18は減圧弁、19は一定圧ガス配管、20はガスエンジン、21はメタン発酵処理物配管、22は処理物貯留タンクをそれぞれ示す。   In FIG. 1, 1 is a raw material storage tank, 2 is a raw material pipe, 3 is a hydrogen fermentation tank, 4 is a hydrogen fermentation gas pipe, 5 is a hydrogen fermentation gas storage tank, 6 is a hydrogen fermentation product pipe, 7 is a methane fermentation tank, 8 Is a storage hydrogen gas pipe, 9 is a methane fermentation gas pipe, 10 is a methane fermentation gas storage tank, 11 is a storage methane gas pipe, 12 is a gas mixer, 13 is a mixed gas pipe, 14 is a booster blower or compressor, and 15 is a booster gas. Piping, 16 is a pressure storage gas storage tank, 17 is a pressure storage gas piping, 18 is a pressure reducing valve, 19 is a constant pressure gas piping, 20 is a gas engine, 21 is a methane fermentation processed material piping, and 22 is a processed material storage tank. .

図1に従って本発明を実施するには、有機性廃棄物や廃水を貯留する原料タンク1より原料配管2を通って、水素発酵を生じさせる微生物群を含有する水素発酵槽3に供給する。水素発酵槽3は嫌気的な条件に保つ。
水素発酵を生じさせる微生物群としては、下水処理場の下水汚泥の嫌気性消化汚泥やコンポスト(堆肥)等を使用すればよい。
In order to carry out the present invention according to FIG. 1, a raw material tank 1 for storing organic waste and waste water is supplied through a raw material pipe 2 to a hydrogen fermenter 3 containing a microorganism group that causes hydrogen fermentation. The hydrogen fermenter 3 is kept under anaerobic conditions.
As the microorganism group causing hydrogen fermentation, anaerobic digested sludge of sewage sludge, compost (compost), or the like may be used.

この水素発酵槽3において、有機性廃棄物や廃水は水素発酵微生物の分解作用を受け、有機物が水素と二酸化炭素と有機酸に迅速に安定的に分解される。   In this hydrogen fermenter 3, organic waste and wastewater are subjected to the action of decomposing hydrogen-fermenting microorganisms, and the organic matter is rapidly and stably decomposed into hydrogen, carbon dioxide and organic acid.

水素発酵槽3内で発生した水素を含む水素発酵ガスの発生ガス圧は0.1〜0.5kPaである。この水素発酵ガスは水素発酵ガス配管4を通って水素発酵ガス貯留タンク5に貯留される。この場合の水素含有ガスは、通常H2:40〜80モル%、CO2:20〜60モル%を含有する。 The generated gas pressure of the hydrogen fermentation gas containing hydrogen generated in the hydrogen fermenter 3 is 0.1 to 0.5 kPa. This hydrogen fermentation gas is stored in the hydrogen fermentation gas storage tank 5 through the hydrogen fermentation gas pipe 4. Hydrogen-containing gas in this case is usually H 2: 40 to 80 mol%, CO 2: containing 20 to 60 mol%.

一方、水素発酵槽3で得られた発酵物は水素発酵物配管6を通ってメタン発酵槽7に導入される。メタン発酵槽7は嫌気的な条件に保つ。
メタン発酵を生じさせる微生物群としては、下水処理場の下水汚泥の嫌気性消化汚泥等を使用すればよい。
On the other hand, the fermented product obtained in the hydrogen fermenter 3 is introduced into the methane fermenter 7 through the hydrogen fermented product pipe 6. The methane fermenter 7 is kept under anaerobic conditions.
As the microorganism group that causes methane fermentation, anaerobic digested sludge of sewage sludge from a sewage treatment plant may be used.

このメタン発酵槽7において、有機酸を主体とする発酵液はメタン発酵微生物の作用を受け、メタンと二酸化炭素に分解される。このメタン生成処理により、原料中の有機酸は迅速に安定的に分解される。   In the methane fermentation tank 7, the fermentation liquid mainly composed of organic acid is decomposed into methane and carbon dioxide by the action of methane fermentation microorganisms. By this methane production treatment, the organic acid in the raw material is rapidly and stably decomposed.

メタン発酵槽7内で発生したメタンを含むメタン発酵ガスの発生ガス圧は1.0〜5.0kPaである。このメタン発酵ガスはメタン発酵ガス配管9を通ってメタン発酵ガス貯留タンク10に貯留される。この場合のメタン含有ガスは、通常CH4:40〜90モル%、CO2:10〜60モル%を含有する。 The generated gas pressure of the methane fermentation gas containing methane generated in the methane fermentation tank 7 is 1.0 to 5.0 kPa. The methane fermentation gas is stored in the methane fermentation gas storage tank 10 through the methane fermentation gas pipe 9. Methane-containing gas in this case is usually CH 4: 40 to 90 mol%, CO 2: containing 10 to 60 mol%.

貯留された水素ガスは、貯留水素ガス配管8を通って、ガス混合器12に送られ、貯留されたメタンガスも同様に、貯留メタンガス配管11を通って、ガス混合器12に送られ水素発酵ガスとメタン発酵ガスが混合される。ガス混合器12は、具体的には貯留水素ガス配管8に付設された流量制御弁12aと、貯留メタンガス配管11に付設された流量制御弁12bと、貯留水素ガス配管8と貯留メタンガス配管11を合流させることによって構成される。流量制御弁12a、12bにより水素発酵ガスとメタン発酵ガスの混合比が所望組成(水素/メタン比)に制御される。混合ガスは、混合ガス配管13を通って昇圧手段14に吸引されガス圧が高められる。昇圧したガスは昇圧ガス配管15を通って、蓄圧ガス貯留タンク16に一端貯留された後、蓄圧貯留ガス配管17を通って減圧弁18でガス圧を5kPaと一定にし、一定圧ガス配管19を通ってガスエンジン20に送られる。
水素発酵ガスは前記したように発生ガス圧が極めて低いので、昇圧手段14により吸引することにより、水素発酵ガスとメタン発酵ガスを確実に混合することができる。前記したように、発生ガス圧が大きく異なる水素発酵ガスとメタン発酵ガスを混合して利用するためには、このようにガス混合器12と昇圧手段14が重要な役割を果たしている。
The stored hydrogen gas is sent to the gas mixer 12 through the stored hydrogen gas pipe 8, and the stored methane gas is similarly sent to the gas mixer 12 through the stored methane gas pipe 11 and hydrogen fermentation gas. And methane fermentation gas are mixed. Specifically, the gas mixer 12 includes a flow control valve 12 a attached to the stored hydrogen gas pipe 8, a flow control valve 12 b attached to the stored methane gas pipe 11, a stored hydrogen gas pipe 8, and a stored methane gas pipe 11. Composed by joining. The mixing ratio of the hydrogen fermentation gas and the methane fermentation gas is controlled to a desired composition (hydrogen / methane ratio) by the flow rate control valves 12a and 12b. The mixed gas is sucked into the booster 14 through the mixed gas pipe 13 and the gas pressure is increased. After the pressurized gas passes through the pressurized gas pipe 15 and is once stored in the pressure-accumulated gas storage tank 16, it passes through the pressure-accumulated gas storage pipe 17 and the pressure of the pressure reducing valve 18 is kept constant at 5 kPa. It is sent to the gas engine 20 through.
Since the hydrogen fermentation gas has a very low generated gas pressure as described above, the hydrogen fermentation gas and the methane fermentation gas can be reliably mixed by being sucked by the pressure increasing means 14. As described above, in order to mix and use the hydrogen fermentation gas and the methane fermentation gas with greatly different generated gas pressures, the gas mixer 12 and the pressure raising means 14 play an important role in this way.

水素発酵ガスとメタン発酵ガスはガス混合器により平準化され、昇圧ブロア又はコンプレッサにより吸引、昇圧され蓄圧ガスタンクから一定圧でガスエンジンに供給されるので、ガスエンジンは安定して効率良く運転することができる。   Hydrogen fermentation gas and methane fermentation gas are leveled by a gas mixer, sucked and boosted by a booster blower or compressor, and supplied to the gas engine at a constant pressure from the accumulator gas tank, so the gas engine must be operated stably and efficiently. Can do.

一方、メタン発酵槽7で得られた処理物はメタン発酵物配管21を通って処理物貯留タンク22に貯留される。   On the other hand, the processed product obtained in the methane fermentation tank 7 is stored in the processed product storage tank 22 through the methane fermented product piping 21.

処理物は、通常溶存有機物や溶存無機物の濃度の低いものであり、必要に応じ廃水処理後放流される。   The treated product is usually one having a low concentration of dissolved organic matter or dissolved inorganic matter, and is discharged after wastewater treatment as necessary.

本発明方法及び本発明装置の説明図。Explanatory drawing of this invention method and this invention apparatus.

符号の説明Explanation of symbols

1 原料貯留タンク
2 原料配管
3 水素発酵槽
4 水素発酵ガス配管
5 水素発酵ガス貯留タンク
6 水素発酵物配管
7 メタン発酵槽
8 貯留水素ガス配管
9 メタン発酵ガス配管
10 メタン発酵ガス貯留タンク
11 貯留メタンガス配管
12 ガス混合器
13 混合ガス配管
14 昇圧ブロア又はコンプレッサ
15 昇圧ガス配管
16 蓄圧ガス貯留タンク
17 蓄圧貯留ガス配管
18 減圧弁
19 一定圧ガス配管
20 ガスエンジン
21 メタン発酵処理物配管
22 処理物貯留タンク
DESCRIPTION OF SYMBOLS 1 Raw material storage tank 2 Raw material piping 3 Hydrogen fermentation tank 4 Hydrogen fermentation gas piping 5 Hydrogen fermentation gas storage tank 6 Hydrogen fermentation product piping 7 Methane fermentation tank 8 Reservoir hydrogen gas piping 9 Methane fermentation gas piping 10 Methane fermentation gas storage tank 11 Retained methane gas Piping 12 Gas mixer 13 Mixed gas piping 14 Booster blower or compressor 15 Boosted gas piping 16 Accumulated gas storage tank 17 Accumulated storage gas piping 18 Pressure reducing valve 19 Constant pressure gas piping 20 Gas engine 21 Methane fermentation treatment product piping 22 Processed material storage tank

Claims (3)

再生可能有機性資源の水素・メタン二段発酵から生じる水素発酵ガスとメタン発酵ガスをそれぞれ貯留し、貯留された前記水素発酵ガスと前記メタン発酵ガスを混合し、その混合した混合ガスの組成を平準化し、平準化した混合ガスを昇圧手段で昇圧し蓄圧ガスタンクに貯蔵し定圧としてガスエンジンに供給することを特徴とする燃料供給方法。 Hydrogen fermentation gas and methane fermentation gas generated from hydrogen and methane two-stage fermentation of renewable organic resources are stored respectively, the stored hydrogen fermentation gas and methane fermentation gas are mixed, and the composition of the mixed gas mixture is A fuel supply method characterized by leveling, boosting the leveled mixed gas by a pressure boosting means, storing it in a pressure storage gas tank, and supplying it to a gas engine as a constant pressure . 再生可能有機性資源の水素・メタン二段発酵から生じる水素発酵ガスを貯留する水素発酵ガスタンクと、前記水素・メタン二段発酵から生じるメタン発酵ガスを貯留するメタン発酵ガスタンクと、前記水素発酵ガスタンクに貯留された水素発酵ガスと前記メタン発酵ガスタンクに貯留されたメタン発酵ガスを混合するガス混合器と、前記ガス混合器から導出された混合ガスを昇圧する昇圧手段と、前記昇圧手段で昇圧された混合ガスを貯蔵する蓄圧ガスタンクとを備え、前記蓄圧ガスタンクで貯蔵された混合ガスをガスエンジンに供給することを特徴とする燃料供給装置。 Hydrogen fermentation gas tank storing hydrogen fermentation gas generated from hydrogen / methane two-stage fermentation of renewable organic resources, methane fermentation gas tank storing methane fermentation gas generated from hydrogen / methane two-stage fermentation, and hydrogen fermentation gas tank A gas mixer that mixes the stored hydrogen fermentation gas and the methane fermentation gas stored in the methane fermentation gas tank, a booster that boosts the mixed gas derived from the gas mixer, and a booster that boosts the gas and a pressure accumulator tank for storing a gas mixture, the stored gas mixture in the accumulator tank fuel supply system and supplying the gas engine. さらに、前記蓄圧ガスタンクから導出された混合ガスを減圧する減圧弁を備える請求項記載の燃料供給装置。 The fuel supply apparatus according to claim 2 , further comprising a pressure reducing valve that depressurizes the mixed gas derived from the pressure accumulation gas tank.
JP2005153798A 2005-05-26 2005-05-26 Fuel supply method and fuel supply apparatus Expired - Fee Related JP4572278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005153798A JP4572278B2 (en) 2005-05-26 2005-05-26 Fuel supply method and fuel supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005153798A JP4572278B2 (en) 2005-05-26 2005-05-26 Fuel supply method and fuel supply apparatus

Publications (2)

Publication Number Publication Date
JP2006329072A JP2006329072A (en) 2006-12-07
JP4572278B2 true JP4572278B2 (en) 2010-11-04

Family

ID=37551015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005153798A Expired - Fee Related JP4572278B2 (en) 2005-05-26 2005-05-26 Fuel supply method and fuel supply apparatus

Country Status (1)

Country Link
JP (1) JP4572278B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048579B2 (en) * 2008-04-23 2012-10-17 株式会社タクマ Hydrogen recovery method
JP4951592B2 (en) * 2008-07-07 2012-06-13 本田技研工業株式会社 Control device for internal combustion engine
JP5805395B2 (en) * 2010-03-31 2015-11-04 一般財団法人電力中央研究所 Hydrogen fermentation treatment method
JP2012211213A (en) * 2011-03-30 2012-11-01 Tokyo Gas Co Ltd Method for refining biogas
KR20160032318A (en) * 2014-09-15 2016-03-24 현대중공업 주식회사 A Treatment System Of Liquefied Gas
JP7392234B1 (en) * 2023-05-24 2023-12-06 ライズピットカンパニー株式会社 Gas engine system for power generation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190640A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Premixed forced ignition type gas engine
JP2004270590A (en) * 2003-03-10 2004-09-30 Jfe Engineering Kk Gas supply system
JP2005002950A (en) * 2003-06-13 2005-01-06 Kawasaki Heavy Ind Ltd Power supply equipment
JP2005066420A (en) * 2003-08-20 2005-03-17 Japan Science & Technology Agency Hydrogen and methane two-stage fermentation treatment method for waste bread

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936597A (en) * 1982-08-26 1984-02-28 Mitsubishi Kakoki Kaisha Ltd Treatment of night soil
JPH0356197A (en) * 1989-07-25 1991-03-11 Toshiba Corp Anaerobic water treatment apparatus
JP3191400B2 (en) * 1992-05-06 2001-07-23 栗田工業株式会社 Anaerobic treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190640A (en) * 2002-12-13 2004-07-08 Mitsubishi Heavy Ind Ltd Premixed forced ignition type gas engine
JP2004270590A (en) * 2003-03-10 2004-09-30 Jfe Engineering Kk Gas supply system
JP2005002950A (en) * 2003-06-13 2005-01-06 Kawasaki Heavy Ind Ltd Power supply equipment
JP2005066420A (en) * 2003-08-20 2005-03-17 Japan Science & Technology Agency Hydrogen and methane two-stage fermentation treatment method for waste bread

Also Published As

Publication number Publication date
JP2006329072A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
Zabranska et al. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens
Sarker et al. Overview of recent progress towards in-situ biogas upgradation techniques
Budzianowski A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment
US11193142B2 (en) Methods and apparatus for hydrogen based biogas upgrading
Salomoni et al. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes
Díaz et al. Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge
JP4572278B2 (en) Fuel supply method and fuel supply apparatus
Grangeiro et al. New trends in biogas production and utilization
Valdez‐Vazquez et al. Effect of inhibition treatment, type of inocula, and incubation temperature on batch H2 production from organic solid waste
WO2008083008A1 (en) Process and apparatus for producing hydrogen from sewage sludge
US20100233775A1 (en) System for the production of methane and other useful products and method of use
JP2020045430A (en) Renewable energy utilization system
KR101953550B1 (en) An Hydrogen Manufacturing Apparatus and a Method of Producing Hydrogen using Thereof
CN105623761B (en) A kind of method of coke-stove gas biosynthesis natural gas
Haan et al. Zero waste technologies for sustainable development in palm oil mills
JP2006255538A (en) Method and apparatus for treatment of food waste
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
US11772039B2 (en) Gas treatment method and gas treatment apparatus
CN115698308A (en) Process for the biological production of hydrogen and/or methane by absorption and bioconversion of carbon dioxide
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
Li et al. Sequential anaerobic fermentative production of hydrogen and methane from organic fraction of municipal solid waste
US20230357683A1 (en) Anaerobic process for production of methane rich biogas
Rahma et al. Biohydrogen production by modified anaerobic fluidized bed reactor (AFBR) using mixed bacterial cultures in thermophilic condition
Burkhardt et al. Biologica l methanation by GICON®-trickle bed process–an upgrade for conventional bioga s plants
JP6795707B2 (en) Organic substance manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100716

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees