JP3224037B2 - Deoxygenation device - Google Patents

Deoxygenation device

Info

Publication number
JP3224037B2
JP3224037B2 JP09725192A JP9725192A JP3224037B2 JP 3224037 B2 JP3224037 B2 JP 3224037B2 JP 09725192 A JP09725192 A JP 09725192A JP 9725192 A JP9725192 A JP 9725192A JP 3224037 B2 JP3224037 B2 JP 3224037B2
Authority
JP
Japan
Prior art keywords
water
treated
hydrogen
hydrogen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09725192A
Other languages
Japanese (ja)
Other versions
JPH05269306A (en
Inventor
信博 織田
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP09725192A priority Critical patent/JP3224037B2/en
Publication of JPH05269306A publication Critical patent/JPH05269306A/en
Application granted granted Critical
Publication of JP3224037B2 publication Critical patent/JP3224037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水中の溶存酸素を除去
する装置に関し、より具体的には、水素ガス(H2 )お
よび触媒樹脂を利用して酸素を除去する装置に関する。
BACKGROUND OF THE INVENTION This invention relates to a device for removing water dissolved oxygen, more specifically, to a device for removing oxygen using hydrogen gas (H 2) and a catalyst resin.

【0002】今日、大量の水がボイラー用水や冷却水と
して用いられている。ところが、これらの水中に酸素が
溶存していると、その水が通るボイラー水系や冷却水系
における、溶存酸素を原因とする腐食の問題が生じる。
このため、化学的方法あるいは物理的方法によって、水
中の溶存酸素を除去しなければならない。
[0002] Today, large amounts of water are used as boiler water and cooling water. However, if oxygen is dissolved in these waters, there is a problem of corrosion caused by dissolved oxygen in a boiler water system or a cooling water system through which the water passes.
Therefore, dissolved oxygen in water must be removed by a chemical method or a physical method.

【0003】また、半導体工業向けの超純水について
も、溶存酸素量を極低濃度にする必要がある。すなわ
ち、半導体工業向けの超純水製造システムにおいては、
溶存酸素を100ppb以下、好ましくは20ppb以
下に低減する必要がある。
[0003] Ultrapure water for the semiconductor industry also needs to have an extremely low dissolved oxygen concentration. That is, in the ultrapure water production system for the semiconductor industry,
It is necessary to reduce the dissolved oxygen to 100 ppb or less, preferably 20 ppb or less.

【0004】[0004]

【従来の技術】従来、水中の溶存酸素を除去する方法と
しては、(1)純水を加熱して脱気する方法、(2)水
の蒸気圧程度まで減圧して溶存気体を除去する方法、
(3)気液接触面の気体を窒素ガスのみにして、溶存酸
素を水中から気相に拡散させる方法、(4)疎水性の高
分子膜のガス透過性の差を利用する方法、(5)ある種
の金属をイオン交換樹脂の表面に担持させた触媒樹脂
で、溶存酸素を除去する方法などが行われてきた。
2. Description of the Related Art Conventionally, methods for removing dissolved oxygen in water include (1) a method of heating pure water to degas, and (2) a method of removing dissolved gas by reducing the pressure to about the vapor pressure of water. ,
(3) a method of diffusing dissolved oxygen from water into a gaseous phase by using only a gas at the gas-liquid contact surface as nitrogen gas, (4) a method using a difference in gas permeability of a hydrophobic polymer membrane, (5) ) A method of removing dissolved oxygen with a catalyst resin having a certain metal supported on the surface of an ion exchange resin has been performed.

【0005】[0005]

【発明が解決しようとする課題】このうち、(1)から
(4)の方法では、対象が水中に溶存しているすべての
気体(窒素を利用した(3)の方法では、窒素以外のす
べての気体)であるため、酸素以外の気体も同時に除去
される欠点がある。また、(3)の窒素を用いる方法に
おいては、処理後の水が窒素により飽和してしまう欠点
がある。
Among these, in the methods (1) to (4), all the gases that are dissolved in the water in the object (in the method (3) using nitrogen, Therefore, there is a disadvantage that gases other than oxygen are also removed at the same time. The method (3) using nitrogen has a disadvantage that water after treatment is saturated with nitrogen.

【0006】また、(5)の触媒樹脂を利用した方法と
しては、例えば、特公昭59−32195号公報および
特開平2−265604号公報に記載されているよう
な、パラジウムなどの貴金属を担持した触媒を用い、水
素を添加して、溶存酸素を除去する方法がある。すなわ
ち、溶存酸素と水素とを触媒の存在下で反応させること
により、水に変化させる方法である。
As the method (5) using a catalyst resin, for example, as described in JP-B-59-32195 and JP-A-2-265604, noble metals such as palladium are supported. There is a method of removing dissolved oxygen by adding hydrogen using a catalyst. That is, this is a method in which dissolved oxygen and hydrogen are reacted in the presence of a catalyst to change the water to water.

【0007】この方法において、処理水の溶存酸素を1
0ppb以下にするためには、注入する水素は理論値の
1.1から1.3倍の量が必要である。しかも、溶存酸
素濃度に合わせて水素ガスの注入量を制御しても、0.
1〜0.3ppmの水素ガスが処理水に溶存してしま
う。また、処理中の水素ガスは、処理槽上部や配管の上
部にたまり、危険である。さらに、半導体ウェーハの洗
浄用水としては、このような処理水が気泡の発生原因と
なる問題があった。加えて、水素ガスの過剰注入によ
り、ランニングコストが高くなったり、ボイラーや熱交
換器などにおいて、金属材質の水素による脆化を起こす
可能性があるといった問題があった。
In this method, the dissolved oxygen in the treated water is reduced to 1
In order to make it 0 ppb or less, the amount of hydrogen to be implanted needs to be 1.1 to 1.3 times the theoretical value. In addition, even if the injection amount of hydrogen gas is controlled in accordance with the concentration of dissolved oxygen, the amount of hydrogen gas does not exceed 0.
1 to 0.3 ppm of hydrogen gas is dissolved in the treated water. In addition, hydrogen gas during the process is dangerous because it accumulates in the upper portion of the processing tank or the pipe. Further, as the cleaning water for semiconductor wafers, there is a problem that such treated water causes the generation of bubbles. In addition, there is a problem that running cost is increased due to excessive injection of hydrogen gas, and there is a possibility that embrittlement due to hydrogen of a metal material occurs in a boiler or a heat exchanger.

【0008】本発明は、上述の従来技術のもつ課題に鑑
み、水素ガスの消費量を減少させるとともに、処理後の
溶存水素ガスの量を0.01ppm以下として、溶存水
素により引き起こされる問題を解決できる脱酸素装置を
提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art and solves the problems caused by dissolved hydrogen by reducing the consumption of hydrogen gas and reducing the amount of dissolved hydrogen gas after treatment to 0.01 ppm or less. It is an object of the present invention to provide a deoxygenation device which can be used.

【0009】[0009]

【課題を解決するための手段】本発明は、以下のような
脱酸素装置を提供する。
The present invention provides the following deoxygenation apparatus.

【0010】(1)パラジウム触媒の存在下の水素と酸
素から水を生成する反応を利用して水から酸素を除去す
る脱酸素装置において、水素ガスを被処理水に注入する
水素ラインと、その水素ラインの下流にあってパラジウ
ム触媒を充填した脱酸素塔と、該脱酸素塔の出口に設け
られた真空脱気装置または膜脱気装置と、該真空脱気装
置または膜脱気装置において被処理水から分離された、
水素を主に含むガスを上記脱酸素塔の上流に注入するた
めのガスラインとからなる脱酸素装置。
(1) In a deoxygenation apparatus for removing oxygen from water by utilizing a reaction for producing water from hydrogen and oxygen in the presence of a palladium catalyst, a hydrogen line for injecting hydrogen gas into water to be treated, A deoxygenation tower downstream of the hydrogen line and filled with a palladium catalyst, a vacuum deaerator or a membrane deaerator provided at an outlet of the deoxygenation tower, and a vacuum deaerator or a membrane deaerator. Separated from the treated water,
A deoxygenation apparatus comprising a gas line for injecting a gas mainly containing hydrogen into the upstream of the deoxygenation tower.

【0011】(2)上記(1)の脱酸素装置において、
上記真空脱気装置または膜脱気装置へ真空を供給するた
めに、被処理水の流れにより作動し、上記ガスラインに
接続するエゼクタを、上記脱酸素塔の上流に設置するこ
とを特徴とする脱酸素装置。
(2) In the deoxygenation apparatus of the above (1),
In order to supply a vacuum to the vacuum deaerator or the membrane deaerator, an ejector operated by a flow of the water to be treated and connected to the gas line is provided upstream of the deoxygenation tower. Deoxygenation device.

【0012】(3)上記(2)の脱酸素装置において、
上記真空脱気装置または膜脱気装置と上記エゼクタの間
の上記ガスラインに水素ガス分離膜装置を設置し、上記
エゼクタから水素ガスのみを被処理水に戻すことを特徴
とする脱酸素装置。
(3) In the deoxidizer of the above (2),
A deoxygenation apparatus, comprising: installing a hydrogen gas separation membrane device in the gas line between the vacuum deaerator or the membrane deaerator and the ejector, and returning only the hydrogen gas from the ejector to the water to be treated.

【0013】本発明の装置において、溶存酸素の除去
は、パラジウムを触媒として、処理される水中に加えら
れた水素と溶存している酸素とを反応させることにより
行われる。すなわち、溶存酸素を含有した水に過剰量の
水素ガスを添加し、パラジウム触媒の存在下において、
酸素と水素との化学反応により水を生成して、溶存酸素
を除去する。
In the apparatus of the present invention, dissolved oxygen is removed by reacting hydrogen added to the water to be treated with dissolved oxygen using palladium as a catalyst. That is, an excess amount of hydrogen gas is added to water containing dissolved oxygen, and in the presence of a palladium catalyst,
Water is generated by a chemical reaction between oxygen and hydrogen to remove dissolved oxygen.

【0014】パラジウム触媒としては、金属パラジウ
ム、酸化パラジウム、水酸化パラジウム等のパラジウム
化合物をイオン交換樹脂やアルミナ、活性炭、ゼオライ
ト等の担体に担持させたものを使用することができる。
この場合、担持量は単体に対し外割で通常0.1〜10
重量%程度である。担体としては、特に、アニオン交換
樹脂を用いることにより、少ないパラジウム担持量で、
優れた効果を発揮させることができ、きわめて好適であ
る。
As the palladium catalyst, a catalyst in which a palladium compound such as palladium metal, palladium oxide or palladium hydroxide is supported on a carrier such as ion exchange resin or alumina, activated carbon or zeolite can be used.
In this case, the loading amount is usually 0.1 to 10 as an outer part with respect to the single substance.
% By weight. As the carrier, in particular, by using an anion exchange resin, with a small amount of palladium carried,
An excellent effect can be exhibited, which is very suitable.

【0015】なお、アニオン交換樹脂にパラジウムを担
持させるには、アニオン交換樹脂をカラムに充填し、次
いで塩化パラジウムの酸性溶液を通水すればよい。もし
金属パラジウムとして担持させるのならば、さらにホル
マリンなどを加えて還元すれば良い。
In order to carry palladium on the anion exchange resin, the column is filled with the anion exchange resin, and then an aqueous solution of palladium chloride is passed through. If it is supported as metal palladium, it may be reduced by further adding formalin or the like.

【0016】パラジウム触媒の形状は、粉末状、粒状、
ペレット状などいずれの形状でも利用できる。粉末状の
ものを使用する場合には、反応槽を脱酸素塔内に設け
て、この反応槽に適当量添加する。粒状またはペレット
状のものはカラム等に充填し、被処理水を連続的に通水
するときに有利である。もちろん、粉末状のものでも、
カラムに充填して、流動床で通水処理することができ
る。
The shape of the palladium catalyst may be powdery, granular,
Any shape such as a pellet shape can be used. When a powdery material is used, a reaction tank is provided in a deoxygenation tower, and an appropriate amount is added to the reaction tank. Granules or pellets are advantageous when packed in a column or the like and the water to be treated is passed continuously. Of course, even in powder form,
It can be packed in a column and subjected to water treatment in a fluidized bed.

【0017】本発明の装置の処理の対象となる被処理水
としては、純水はもちろんのこと、例えば、ボイラー給
水、冷却水などがある。
The water to be treated by the apparatus of the present invention includes not only pure water but also, for example, boiler feed water and cooling water.

【0018】この脱酸素塔における処理の後、さらに余
剰の水素ガスなどのその他のガス成分を真空脱気装置ま
たは膜脱気装置により分離する。
After the treatment in this deoxygenation tower, other gas components such as excess hydrogen gas are further separated by a vacuum deaerator or a membrane deaerator.

【0019】上記真空脱気装置としては、脱気塔にラシ
ヒリング等の充填物を充填した装置を利用することがで
きる。この脱気塔の上部から真空を供給し、充填物上の
ノズルから被処理水を噴射して、真空脱気による水素の
除去が行われる。
As the vacuum deaerator, a device in which a deaerator is filled with a filler such as Raschig rings can be used. A vacuum is supplied from the upper part of the degassing tower, and water to be treated is jetted from a nozzle on the packing to remove hydrogen by vacuum degassing.

【0020】さらに、上記膜脱気装置としては、例え
ば、ケイ素樹脂またはポリフッ化エチレン等の膜を利用
した装置を使用することができる。
Further, as the above-mentioned membrane deaerator, for example, an apparatus using a membrane such as silicon resin or polyfluoroethylene can be used.

【0021】また、上記真空脱気装置または膜脱気装置
が必要とする真空は、真空ポンプを利用して供給するこ
ともできるが、その代わり、上記脱酸素塔の入口にエゼ
クタを設けることができる。すなわち、被処理水の流れ
を利用して、エゼクタを脱水素塔に接続する真空ライン
の真空源として利用する。エゼクタを使用することによ
り、真空供給のための別個の動力源が不要となり、設備
の簡略化を図ることができる。
The vacuum required by the vacuum deaerator or the membrane deaerator can be supplied using a vacuum pump. Instead, an ejector may be provided at the inlet of the deoxygenation tower. it can. That is, utilizing the flow of the water to be treated, the ejector is used as a vacuum source for a vacuum line connecting the ejector to the dehydrogenation tower. By using an ejector, a separate power source for vacuum supply is not required, and the equipment can be simplified.

【0022】このように、真空脱気装置または膜脱気装
置において酸素以外のガス成分を分離し、エゼクタまた
は真空ポンプを経て、水素ガスを多く含むこの分離ガス
を、上記脱酸素塔へと戻す。これにより、水素ガスの使
用量を低減することができるとともに、処理後の水に含
まれる水素ガスが下流の配管等にたまる危険を避けるこ
とができる。
As described above, gas components other than oxygen are separated in the vacuum deaerator or the membrane deaerator, and the separated gas containing a large amount of hydrogen gas is returned to the deoxygenation tower via an ejector or a vacuum pump. . As a result, the amount of hydrogen gas used can be reduced, and the danger that hydrogen gas contained in the treated water accumulates in downstream piping and the like can be avoided.

【0023】さらに、このようにして分離されたガスか
ら、水素分離膜等を利用して水素ガスのみを分離し、上
記脱酸素塔に戻すことができる。これによれば、処理後
の水質をさらに高めることができる。
Further, only the hydrogen gas can be separated from the gas thus separated by using a hydrogen separation membrane or the like and returned to the deoxygenation tower. According to this, the water quality after the treatment can be further improved.

【0024】[0024]

【実施例】図面を参照しつつ本発明をさらに詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the drawings.

【0025】図1に、本発明装置の第1の実施例の構成
を示す。本発明の装置による処理の対象となる水を貯蔵
するタンク1から、ポンプ2により被処理水ライン3を
通って脱酸素塔4へと被処理水が送られる。そのライン
に水素ガスライン5から水素ガスを注入する。上記脱酸
素塔4の入口の直前の被処理水ライン3にエゼクタ6が
設けられる。脱酸素塔4には、パラジウム触媒を担持し
た樹脂、例えばバイエル社製のLewatit OC1
063またはOC1045のようなパラジウム触媒をア
ニオン交換樹脂に担持したものが充填されており、水中
の過剰量の水素ガスと酸素が、この触媒により反応し
て、水となる。
FIG. 1 shows the configuration of a first embodiment of the apparatus of the present invention. Water to be treated is sent from a tank 1 for storing water to be treated by the apparatus of the present invention to a deoxygenation tower 4 through a treated water line 3 by a pump 2. Hydrogen gas is injected from the hydrogen gas line 5 into the line. An ejector 6 is provided in the treated water line 3 immediately before the inlet of the deoxygenation tower 4. The deoxygenation tower 4 is provided with a resin supporting a palladium catalyst, for example, Lewatit OC1 manufactured by Bayer AG.
It is filled with a palladium catalyst such as 063 or OC1045 supported on an anion exchange resin, and an excess amount of hydrogen gas and oxygen in water react with this catalyst to become water.

【0026】この脱酸素塔4において酸素が化学的に除
去された水は、ラシヒリングや充填剤が充填された脱水
素塔7へと送られる。この脱水素塔7には上記エゼクタ
6につながる真空ライン8が接続されている。すなわ
ち、このエゼクタ6は、上記脱酸素塔4に流入する水の
流れを利用して作動し、上記脱水素塔7を真空排気す
る。エゼクタ6を使用することにより、真空脱気を行う
ための真空ポンプなどの別個の動力源が不要となる。こ
の脱水素塔7において、水素等の酸素以外のガスが物理
的に真空脱気される。脱水素塔7での処理を終了した水
は、ポンプ9により排出される。この真空脱気により、
処理された水の中の溶存水素ガス濃度を減少させること
ができ、水素ガスが配管中などにたまる危険性、半導体
ウェーハの洗浄水として使用する場合における気泡の発
生などを防止することができる。
The water from which oxygen has been chemically removed in the deoxygenation tower 4 is sent to a dehydrogenation tower 7 filled with Raschig rings and a filler. A vacuum line 8 connected to the ejector 6 is connected to the dehydrogenation tower 7. That is, the ejector 6 operates using the flow of water flowing into the deoxygenation tower 4 to evacuate the dehydrogenation tower 7. The use of the ejector 6 eliminates the need for a separate power source such as a vacuum pump for performing vacuum degassing. In the dehydrogenation tower 7, gases other than oxygen, such as hydrogen, are physically deaerated in vacuum. The water that has been processed in the dehydrogenation tower 7 is discharged by the pump 9. By this vacuum degassing,
The concentration of dissolved hydrogen gas in the treated water can be reduced, and the danger of hydrogen gas accumulating in piping and the like, and the generation of bubbles when used as cleaning water for semiconductor wafers can be prevented.

【0027】図2に、本発明装置の第2の実施例の構成
を示す。同様な部位については、第1図と同一の参照番
号を使用し、重複した記載を省略する。第1の実施例の
場合と同様に、処理される水には水素ガスが注入され、
エゼクタ6を通って、脱酸素塔4へと流入する。第1の
実施例と同様のパラジウム触媒が充填された脱酸素塔4
において、酸素と水素の反応が起こって、酸素が取り除
かれる。その後、ケイ素樹脂またはポリフッ化エチレン
等の脱気膜を有する膜脱気装置10において、酸素が取
り除かれた水からさらに、水素、窒素等の酸素以外のガ
スが除去される。この膜脱気装置10には、エゼクタ6
につながる真空ライン8により真空が供給されている。
真空ライン8の途中には、水素ガス分離装置11があっ
て、上記膜脱気装置10において分離された各種の気体
のうちから水素のみをさらに分離する。ここで、分離さ
れた水素ガスは、エゼクタ6において、処理される水に
加えられるが、水素以外の窒素その他の気体は、上記水
素ガス分離装置11から排出される。このように水素ガ
スを回収・再利用することにより、水素ガスの使用量を
低減することができるとともに、水素ガスのみを分離し
て処理水に加えることにより、処理後の水質をさらに高
めることができる。
FIG. 2 shows the configuration of a second embodiment of the apparatus of the present invention. For the same parts, the same reference numerals as those in FIG. 1 are used, and duplicate descriptions are omitted. As in the first embodiment, the water to be treated is injected with hydrogen gas,
It flows into the deoxygenation tower 4 through the ejector 6. Deoxygenation tower 4 filled with the same palladium catalyst as in the first embodiment
In, a reaction between oxygen and hydrogen occurs to remove oxygen. Then, in the membrane deaerator 10 having a deaeration film such as a silicon resin or a polyfluoroethylene, gases other than oxygen, such as hydrogen and nitrogen, are further removed from the water from which oxygen has been removed. The membrane deaerator 10 includes an ejector 6
Is supplied by a vacuum line 8 leading to a vacuum.
A hydrogen gas separator 11 is provided in the middle of the vacuum line 8, and further separates only hydrogen from various gases separated in the membrane deaerator 10. Here, the separated hydrogen gas is added to the water to be treated in the ejector 6, but nitrogen and other gases other than hydrogen are discharged from the hydrogen gas separation device 11. By collecting and reusing hydrogen gas in this way, the amount of hydrogen gas used can be reduced, and by separating and adding only hydrogen gas to the treated water, the water quality after treatment can be further improved. it can.

【0028】実験例 バイエル社製の触媒樹脂Lewatit OC1063
を20リットル、SUSカラム(直径200mm×長さ
1000mm)に充填した。このカラムからなる脱酸素
塔の入口にエゼクタおよび同脱酸素塔の後段に膜面積
0.5m2 の中空子型の膜脱気装置を設けた。この脱酸
素塔に水素ガスを1.3g/hrの流量で注入しつつ、
溶存酸素8ppmを含む純水を2.5kg/cm2 の操
作圧ものとで、1000リットル/hrの流量で通し
た。エゼクタによる減圧は、650mmHgであった。
Experimental Example A catalyst resin Lewatit OC1063 manufactured by Bayer AG
Was packed in a 20 liter SUS column (200 mm in diameter x 1000 mm in length). An ejector was provided at the inlet of the deoxygenation tower composed of this column, and a hollow piece type membrane deaerator with a membrane area of 0.5 m 2 was provided at the subsequent stage of the deoxygenation tower. While injecting hydrogen gas into this deoxygenation tower at a flow rate of 1.3 g / hr,
Pure water containing 8 ppm of dissolved oxygen was passed at a flow rate of 1000 liter / hr with an operating pressure of 2.5 kg / cm 2 . The pressure reduced by the ejector was 650 mmHg.

【0029】比較例 上記の実験例の装置から膜脱気装置とエゼクタを取り去
り、その他の物理的条件を同一なものとして実験を行っ
た。
Comparative Example An experiment was conducted by removing the membrane deaerator and the ejector from the apparatus of the above experimental example, and maintaining the same other physical conditions.

【0030】表1に上記実験例および比較例の結果を記
す。
Table 1 shows the results of the above experimental examples and comparative examples.

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明の脱酸素装置によれば、水素ガス
の消費量を減少させるとともに、処理後の溶存水素ガス
の量を0.01ppm以下として、溶存水素により引き
起こされる問題を解決できる。本発明の脱酸素装置によ
り酸素を除去された高品質の水は、ボイラー用水や冷却
水として使用することができ、腐食の問題を生じること
がない。また、本発明の装置は、半導体工業の分野で使
用される超純水の製造装置としても好適であり、ウェー
ハの製造で問題となる気泡の発生を防ぐことができる。
According to the deoxidizer of the present invention, the consumption of hydrogen gas can be reduced, and the amount of dissolved hydrogen gas after treatment can be reduced to 0.01 ppm or less to solve the problem caused by dissolved hydrogen. High-quality water from which oxygen has been removed by the deoxidizer of the present invention can be used as boiler water or cooling water, and does not cause corrosion problems. Further, the apparatus of the present invention is also suitable as an apparatus for producing ultrapure water used in the field of the semiconductor industry, and can prevent generation of bubbles which are a problem in the production of wafers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の第1の実施例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing a first embodiment of the apparatus of the present invention.

【図2】本発明の装置の第2の実施例を示す概略図であ
る。
FIG. 2 is a schematic diagram showing a second embodiment of the apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 被処理水貯蔵タンク 2 ポンプ 3 被処理水ライン 4 脱酸素塔 5 水素ガスライン 6 エゼクタ 7 脱水素塔(真空脱気装置) 8 真空ライン 9 ポンプ 10 膜脱気装置 11 水素ガス分離装置 Reference Signs List 1 treated water storage tank 2 pump 3 treated water line 4 deoxygenation tower 5 hydrogen gas line 6 ejector 7 dehydrogenation tower (vacuum deaerator) 8 vacuum line 9 pump 10 membrane deaerator 11 hydrogen gas separator

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01D 19/00 C02F 1/20 C02F 1/58 Continuation of front page (58) Field surveyed (Int. Cl. 7 , DB name) B01D 19/00 C02F 1/20 C02F 1/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 パラジウム触媒の存在下で水素と酸素か
ら水を生成する反応を利用して水から酸素を除去する脱
酸素装置において、 水素ガスを被処理水に注入する水素ラインと、水素の注入された被処理水が供給されるとともに パラジ
ウム触媒を充填した脱酸素塔と、 該脱酸素塔の下流に設けられた真空脱気装置または膜脱
気装置と、 該真空脱気装置または膜脱気装置において被処理水から
分離された、水素を主に含むガスを上記脱酸素塔に供給
される被処理水に注入するガスラインとからなる脱酸素
装置。
1. A deoxygenation apparatus for removing oxygen from water using a reaction of generating water from hydrogen and oxygen in the presence of a palladium catalyst, comprising: a hydrogen line for injecting hydrogen gas into water to be treated ; A deoxygenation tower to which the injected water to be treated is supplied and filled with a palladium catalyst; a vacuum deaerator or a membrane deaerator provided downstream of the deoxygenation tower; The gas mainly containing hydrogen separated from the water to be treated in the gasifier is supplied to the deoxygenation tower .
And a gas line for injecting water to be treated .
【請求項2】 上記真空脱気装置または膜脱気装置へ真
空を供給するために、水素を主に含むガスを被処理水に
注入する箇所に、被処理水により作動するエゼクタを
置することを特徴とする請求項1に記載の脱酸素装置。
2. A gas mainly containing hydrogen is supplied to the water to be treated in order to supply a vacuum to the vacuum deaerator or the membrane deaerator.
An ejector operated by the water to be treated is installed at the injection point.
Deoxygenation apparatus according to claim 1, characterized in that the location.
【請求項3】 上記ガスラインに水素ガス分離膜装置を
設置し、該水素ガス分離膜装置で分離された水素ガスの
みを被処理水に注入することを特徴とする請求項2に記
載の脱酸素装置。
3. established a hydrogen gas separation membrane system to the gas line, de-described only hydrogen gas separated by the hydrogen gas separation membrane system in claim 2, characterized in that injecting the water to be treated Oxygen equipment.
JP09725192A 1992-03-24 1992-03-24 Deoxygenation device Expired - Lifetime JP3224037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09725192A JP3224037B2 (en) 1992-03-24 1992-03-24 Deoxygenation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09725192A JP3224037B2 (en) 1992-03-24 1992-03-24 Deoxygenation device

Publications (2)

Publication Number Publication Date
JPH05269306A JPH05269306A (en) 1993-10-19
JP3224037B2 true JP3224037B2 (en) 2001-10-29

Family

ID=14187354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09725192A Expired - Lifetime JP3224037B2 (en) 1992-03-24 1992-03-24 Deoxygenation device

Country Status (1)

Country Link
JP (1) JP3224037B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4756327B2 (en) * 2005-06-21 2011-08-24 栗田工業株式会社 Nitrogen gas dissolved water production method
JP4978144B2 (en) * 2006-10-13 2012-07-18 栗田工業株式会社 Method and apparatus for removing dissolved oxygen in water
JP5033829B2 (en) * 2008-08-27 2012-09-26 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP4959742B2 (en) * 2009-03-26 2012-06-27 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP4909371B2 (en) * 2009-03-31 2012-04-04 株式会社神鋼環境ソリューション Digestion gas deoxygenation method and apparatus
JP5663410B2 (en) * 2011-06-10 2015-02-04 オルガノ株式会社 Ultrapure water production method and apparatus
CN107879517B (en) * 2017-12-14 2023-12-12 浙江启尔机电技术有限公司 Ultrapure water degasser for immersion lithography
CN113083047A (en) * 2021-04-27 2021-07-09 苏州艾吉克膜科技有限公司 Deoxygenated hydrogen-rich water and preparation method and device thereof

Also Published As

Publication number Publication date
JPH05269306A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JPH0673603B2 (en) Method for removing dissolved oxygen in pure water or ultrapure water
WO2010013677A1 (en) Process and equipment for the treatment of water containing organic matter
JP3765354B2 (en) Method for producing hydrogen-containing ultrapure water
EP0145262B1 (en) Method for removing dissolved oxygen from aqueous media
JPH0677729B2 (en) Liquid / gas mixture processing method and apparatus
JP4756327B2 (en) Nitrogen gas dissolved water production method
JP3224037B2 (en) Deoxygenation device
JP2653319B2 (en) Deoxidizer
JPH0671594B2 (en) Method and apparatus for removing dissolved oxygen in water
JP3593723B2 (en) Boiler feedwater treatment apparatus and boiler feedwater treatment method
JP3009789B2 (en) Removal of dissolved oxygen in water
JPH04293503A (en) Removal of dissolved oxygen in water
JPH03154601A (en) Removal of dissolving oxygen in water
JP4208270B2 (en) Pure water production method
JP3476039B2 (en) How to remove dissolved oxygen
JP2988290B2 (en) Deaerator for ultrapure water
JP3267704B2 (en) Removal method of dissolved oxygen in water
JP2519122B2 (en) Method and apparatus for removing dissolved oxygen in liquid
JPH02265604A (en) Removing equipment for dissolved oxygen in water
JP4538702B2 (en) Ozone dissolved water supply device
JP4038940B2 (en) Ozone-dissolved water production equipment
JP3100504B2 (en) Demineralized water production equipment
JP6627321B2 (en) Pretreatment method and pretreatment device for platinum group metal carrier
JPH04267993A (en) Removal method of dissolved oxygen in pure water or super pure water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080824

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090824

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 11